freebsd-skq/sys/dev/mpt/mpt_cam.c
Matt Jacob a4ca1e0bb0 If we actually succeed in the Task Management Function where we
are aborting timed out commands, pull the request off the TAILQ.
2006-03-17 04:54:06 +00:00

2139 lines
59 KiB
C

/*-
* FreeBSD/CAM specific routines for LSI '909 FC adapters.
* FreeBSD Version.
*
* Copyright (c) 2000, 2001 by Greg Ansley
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 2002, 2006 by Matthew Jacob
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the names of the above listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Support from Chris Ellsworth in order to make SAS adapters work
* is gratefully acknowledged.
*/
/*-
* Copyright (c) 2004, Avid Technology, Inc. and its contributors.
* Copyright (c) 2005, WHEEL Sp. z o.o.
* Copyright (c) 2004, 2005 Justin T. Gibbs
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the names of the above listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/mpt/mpt.h>
#include <dev/mpt/mpt_cam.h>
#include <dev/mpt/mpt_raid.h>
#include "dev/mpt/mpilib/mpi_ioc.h" /* XXX Fix Event Handling!!! */
#include "dev/mpt/mpilib/mpi_init.h"
#include "dev/mpt/mpilib/mpi_targ.h"
#include <sys/callout.h>
#include <sys/kthread.h>
static void mpt_poll(struct cam_sim *);
static timeout_t mpt_timeout;
static void mpt_action(struct cam_sim *, union ccb *);
static int mpt_setwidth(struct mpt_softc *, int, int);
static int mpt_setsync(struct mpt_softc *, int, int, int);
static void mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended);
static mpt_reply_handler_t mpt_scsi_reply_handler;
static mpt_reply_handler_t mpt_scsi_tmf_reply_handler;
static int mpt_scsi_reply_frame_handler(struct mpt_softc *mpt, request_t *req,
MSG_DEFAULT_REPLY *reply_frame);
static int mpt_bus_reset(struct mpt_softc *, int /*sleep_ok*/);
static int mpt_spawn_recovery_thread(struct mpt_softc *mpt);
static void mpt_terminate_recovery_thread(struct mpt_softc *mpt);
static void mpt_recovery_thread(void *arg);
static int mpt_scsi_send_tmf(struct mpt_softc *, u_int /*type*/,
u_int /*flags*/, u_int /*channel*/,
u_int /*target*/, u_int /*lun*/,
u_int /*abort_ctx*/, int /*sleep_ok*/);
static void mpt_recover_commands(struct mpt_softc *mpt);
static uint32_t scsi_io_handler_id = MPT_HANDLER_ID_NONE;
static uint32_t scsi_tmf_handler_id = MPT_HANDLER_ID_NONE;
static mpt_probe_handler_t mpt_cam_probe;
static mpt_attach_handler_t mpt_cam_attach;
static mpt_event_handler_t mpt_cam_event;
static mpt_reset_handler_t mpt_cam_ioc_reset;
static mpt_detach_handler_t mpt_cam_detach;
static struct mpt_personality mpt_cam_personality =
{
.name = "mpt_cam",
.probe = mpt_cam_probe,
.attach = mpt_cam_attach,
.event = mpt_cam_event,
.reset = mpt_cam_ioc_reset,
.detach = mpt_cam_detach,
};
DECLARE_MPT_PERSONALITY(mpt_cam, SI_ORDER_SECOND);
int
mpt_cam_probe(struct mpt_softc *mpt)
{
/*
* Only attach to nodes that support the initiator
* role or have RAID physical devices that need
* CAM pass-thru support.
*/
if ((mpt->mpt_proto_flags & MPI_PORTFACTS_PROTOCOL_INITIATOR) != 0
|| (mpt->ioc_page2 != NULL && mpt->ioc_page2->MaxPhysDisks != 0))
return (0);
return (ENODEV);
}
int
mpt_cam_attach(struct mpt_softc *mpt)
{
struct cam_devq *devq;
mpt_handler_t handler;
int maxq;
int error;
MPTLOCK_2_CAMLOCK(mpt);
TAILQ_INIT(&mpt->request_timeout_list);
mpt->bus = 0;
maxq = (mpt->mpt_global_credits < MPT_MAX_REQUESTS(mpt))?
mpt->mpt_global_credits : MPT_MAX_REQUESTS(mpt);
handler.reply_handler = mpt_scsi_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&scsi_io_handler_id);
if (error != 0)
goto cleanup;
handler.reply_handler = mpt_scsi_tmf_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&scsi_tmf_handler_id);
if (error != 0)
goto cleanup;
/*
* We keep one request reserved for timeout TMF requests.
*/
mpt->tmf_req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
if (mpt->tmf_req == NULL) {
mpt_prt(mpt, "Unable to allocate dedicated TMF request!\n");
error = ENOMEM;
goto cleanup;
}
/*
* Mark the request as free even though not on the free list.
* There is only one TMF request allowed to be outstanding at
* a time and the TMF routines perform their own allocation
* tracking using the standard state flags.
*/
mpt->tmf_req->state = REQ_STATE_FREE;
maxq--;
if (mpt_spawn_recovery_thread(mpt) != 0) {
mpt_prt(mpt, "Unable to spawn recovery thread!\n");
error = ENOMEM;
goto cleanup;
}
/*
* Create the device queue for our SIM(s).
*/
devq = cam_simq_alloc(maxq);
if (devq == NULL) {
mpt_prt(mpt, "Unable to allocate CAM SIMQ!\n");
error = ENOMEM;
goto cleanup;
}
/*
* Construct our SIM entry.
*/
mpt->sim = cam_sim_alloc(mpt_action, mpt_poll, "mpt", mpt,
mpt->unit, 1, maxq, devq);
if (mpt->sim == NULL) {
mpt_prt(mpt, "Unable to allocate CAM SIM!\n");
cam_simq_free(devq);
error = ENOMEM;
goto cleanup;
}
/*
* Register exactly the bus.
*/
if (xpt_bus_register(mpt->sim, 0) != CAM_SUCCESS) {
mpt_prt(mpt, "Bus registration Failed!\n");
error = ENOMEM;
goto cleanup;
}
if (xpt_create_path(&mpt->path, NULL, cam_sim_path(mpt->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
mpt_prt(mpt, "Unable to allocate Path!\n");
error = ENOMEM;
goto cleanup;
}
/*
* Only register a second bus for RAID physical
* devices if the controller supports RAID.
*/
if (mpt->ioc_page2 == NULL
|| mpt->ioc_page2->MaxPhysDisks == 0)
return (0);
/*
* Create a "bus" to export all hidden disks to CAM.
*/
mpt->phydisk_sim = cam_sim_alloc(mpt_action, mpt_poll, "mpt", mpt,
mpt->unit, 1, maxq, devq);
if (mpt->phydisk_sim == NULL) {
mpt_prt(mpt, "Unable to allocate Physical Disk CAM SIM!\n");
error = ENOMEM;
goto cleanup;
}
/*
* Register exactly the bus.
*/
if (xpt_bus_register(mpt->phydisk_sim, 1) != CAM_SUCCESS) {
mpt_prt(mpt, "Physical Disk Bus registration Failed!\n");
error = ENOMEM;
goto cleanup;
}
if (xpt_create_path(&mpt->phydisk_path, NULL,
cam_sim_path(mpt->phydisk_sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
mpt_prt(mpt, "Unable to allocate Physical Disk Path!\n");
error = ENOMEM;
goto cleanup;
}
CAMLOCK_2_MPTLOCK(mpt);
return (0);
cleanup:
CAMLOCK_2_MPTLOCK(mpt);
mpt_cam_detach(mpt);
return (error);
}
void
mpt_cam_detach(struct mpt_softc *mpt)
{
mpt_handler_t handler;
mpt_terminate_recovery_thread(mpt);
handler.reply_handler = mpt_scsi_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
scsi_io_handler_id);
handler.reply_handler = mpt_scsi_tmf_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
scsi_tmf_handler_id);
if (mpt->tmf_req != NULL) {
mpt_free_request(mpt, mpt->tmf_req);
mpt->tmf_req = NULL;
}
if (mpt->sim != NULL) {
xpt_free_path(mpt->path);
xpt_bus_deregister(cam_sim_path(mpt->sim));
cam_sim_free(mpt->sim, TRUE);
mpt->sim = NULL;
}
if (mpt->phydisk_sim != NULL) {
xpt_free_path(mpt->phydisk_path);
xpt_bus_deregister(cam_sim_path(mpt->phydisk_sim));
cam_sim_free(mpt->phydisk_sim, TRUE);
mpt->phydisk_sim = NULL;
}
}
/* This routine is used after a system crash to dump core onto the
* swap device.
*/
static void
mpt_poll(struct cam_sim *sim)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc *)cam_sim_softc(sim);
MPT_LOCK(mpt);
mpt_intr(mpt);
MPT_UNLOCK(mpt);
}
/*
* Watchdog timeout routine for SCSI requests.
*/
static void
mpt_timeout(void *arg)
{
union ccb *ccb;
struct mpt_softc *mpt;
request_t *req;
ccb = (union ccb *)arg;
#ifdef NOTYET
mpt = mpt_find_softc(mpt);
if (mpt == NULL)
return;
#else
mpt = ccb->ccb_h.ccb_mpt_ptr;
#endif
MPT_LOCK(mpt);
req = ccb->ccb_h.ccb_req_ptr;
mpt_prt(mpt, "Request %p:serno Timed out.\n", req, req->serno);
if ((req->state & REQ_STATE_QUEUED) == REQ_STATE_QUEUED) {
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
TAILQ_INSERT_TAIL(&mpt->request_timeout_list, req, links);
req->state |= REQ_STATE_TIMEDOUT;
mpt_wakeup_recovery_thread(mpt);
}
MPT_UNLOCK(mpt);
}
/*
* Callback routine from "bus_dmamap_load" or, in simple cases, called directly.
*
* Takes a list of physical segments and builds the SGL for SCSI IO command
* and forwards the commard to the IOC after one last check that CAM has not
* aborted the transaction.
*/
static void
mpt_execute_req(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
request_t *req, *trq;
char *mpt_off;
union ccb *ccb;
struct mpt_softc *mpt;
int seg, first_lim;
uint32_t flags, nxt_off;
bus_dmasync_op_t op;
MSG_SCSI_IO_REQUEST *mpt_req;
SGE_SIMPLE64 *se;
SGE_CHAIN64 *ce;
req = (request_t *)arg;
ccb = req->ccb;
mpt = ccb->ccb_h.ccb_mpt_ptr;
req = ccb->ccb_h.ccb_req_ptr;
mpt_req = req->req_vbuf;
mpt_off = req->req_vbuf;
if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
error = EFBIG;
}
bad:
if (error != 0) {
if (error != EFBIG && error != ENOMEM)
mpt_prt(mpt, "mpt_execute_req: err %d\n", error);
if (ccb->ccb_h.status == CAM_REQ_INPROG) {
xpt_freeze_devq(ccb->ccb_h.path, 1);
ccb->ccb_h.status = CAM_DEV_QFRZN;
if (error == EFBIG) {
ccb->ccb_h.status |= CAM_REQ_TOO_BIG;
} else if (error == ENOMEM) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"FREEZEQ\n");
}
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
} else
ccb->ccb_h.status |= CAM_REQ_CMP_ERR;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
mpt_free_request(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
/*
* No data to transfer?
* Just make a single simple SGL with zero length.
*/
if (mpt->verbose >= MPT_PRT_DEBUG) {
int tidx = ((char *)&mpt_req->SGL) - mpt_off;
memset(&mpt_off[tidx], 0xff, MPT_REQUEST_AREA - tidx);
}
if (nseg == 0) {
SGE_SIMPLE32 *se1 = (SGE_SIMPLE32 *) &mpt_req->SGL;
MPI_pSGE_SET_FLAGS(se1,
(MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
goto out;
}
mpt_req->DataLength = ccb->csio.dxfer_len;
flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_64_BIT_ADDRESSING;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
op = BUS_DMASYNC_PREREAD;
} else {
op = BUS_DMASYNC_PREWRITE;
}
if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) {
bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
}
/*
* Okay, fill in what we can at the end of the command frame.
* If we have up to MPT_NSGL_FIRST, we can fit them all into
* the command frame.
*
* Otherwise, we fill up through MPT_NSGL_FIRST less one
* SIMPLE64 pointers and start doing CHAIN64 entries after
* that.
*/
if (nseg < MPT_NSGL_FIRST(mpt)) {
first_lim = nseg;
} else {
/*
* Leave room for CHAIN element
*/
first_lim = MPT_NSGL_FIRST(mpt) - 1;
}
se = (SGE_SIMPLE64 *) &mpt_req->SGL;
for (seg = 0; seg < first_lim; seg++, se++, dm_segs++) {
uint32_t tf;
bzero(se, sizeof (*se));
se->Address.Low = dm_segs->ds_addr;
if (sizeof(bus_addr_t) > 4) {
se->Address.High = ((uint64_t) dm_segs->ds_addr) >> 32;
}
MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
tf = flags;
if (seg == first_lim - 1) {
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
}
if (seg == nseg - 1) {
tf |= MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
}
MPI_pSGE_SET_FLAGS(se, tf);
}
if (seg == nseg) {
goto out;
}
/*
* Tell the IOC where to find the first chain element.
*/
mpt_req->ChainOffset = ((char *)se - (char *)mpt_req) >> 2;
nxt_off = MPT_RQSL(mpt);
trq = req;
/*
* Make up the rest of the data segments out of a chain element
* (contiained in the current request frame) which points to
* SIMPLE64 elements in the next request frame, possibly ending
* with *another* chain element (if there's more).
*/
while (seg < nseg) {
int this_seg_lim;
uint32_t tf, cur_off;
bus_addr_t chain_list_addr;
/*
* Point to the chain descriptor. Note that the chain
* descriptor is at the end of the *previous* list (whether
* chain or simple).
*/
ce = (SGE_CHAIN64 *) se;
/*
* Before we change our current pointer, make sure we won't
* overflow the request area with this frame. Note that we
* test against 'greater than' here as it's okay in this case
* to have next offset be just outside the request area.
*/
if ((nxt_off + MPT_RQSL(mpt)) > MPT_REQUEST_AREA) {
nxt_off = MPT_REQUEST_AREA;
goto next_chain;
}
/*
* Set our SGE element pointer to the beginning of the chain
* list and update our next chain list offset.
*/
se = (SGE_SIMPLE64 *) &mpt_off[nxt_off];
cur_off = nxt_off;
nxt_off += MPT_RQSL(mpt);
/*
* Now initialized the chain descriptor.
*/
bzero(ce, sizeof (SGE_CHAIN64));
/*
* Get the physical address of the chain list.
*/
chain_list_addr = trq->req_pbuf;
chain_list_addr += cur_off;
if (sizeof (bus_addr_t) > 4) {
ce->Address.High =
(uint32_t) ((uint64_t)chain_list_addr >> 32);
}
ce->Address.Low = (uint32_t) chain_list_addr;
ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT |
MPI_SGE_FLAGS_64_BIT_ADDRESSING;
/*
* If we have more than a frame's worth of segments left,
* set up the chain list to have the last element be another
* chain descriptor.
*/
if ((nseg - seg) > MPT_NSGL(mpt)) {
this_seg_lim = seg + MPT_NSGL(mpt) - 1;
/*
* The length of the chain is the length in bytes of the
* number of segments plus the next chain element.
*
* The next chain descriptor offset is the length,
* in words, of the number of segments.
*/
ce->Length = (this_seg_lim - seg) *
sizeof (SGE_SIMPLE64);
ce->NextChainOffset = ce->Length >> 2;
ce->Length += sizeof (SGE_CHAIN64);
} else {
this_seg_lim = nseg;
ce->Length = (this_seg_lim - seg) *
sizeof (SGE_SIMPLE64);
}
/*
* Fill in the chain list SGE elements with our segment data.
*
* If we're the last element in this chain list, set the last
* element flag. If we're the completely last element period,
* set the end of list and end of buffer flags.
*/
while (seg < this_seg_lim) {
bzero(se, sizeof (*se));
se->Address.Low = dm_segs->ds_addr;
if (sizeof (bus_addr_t) > 4) {
se->Address.High =
((uint64_t)dm_segs->ds_addr) >> 32;
}
MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
tf = flags;
if (seg == this_seg_lim - 1) {
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
}
if (seg == nseg - 1) {
tf |= MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
}
MPI_pSGE_SET_FLAGS(se, tf);
se++;
seg++;
dm_segs++;
}
next_chain:
/*
* If we have more segments to do and we've used up all of
* the space in a request area, go allocate another one
* and chain to that.
*/
if (seg < nseg && nxt_off >= MPT_REQUEST_AREA) {
request_t *nrq = mpt_get_request(mpt, FALSE);
if (nrq == NULL) {
error = ENOMEM;
goto bad;
}
/*
* Append the new request area on the tail of our list.
*/
if ((trq = req->chain) == NULL) {
req->chain = nrq;
} else {
while (trq->chain != NULL) {
trq = trq->chain;
}
trq->chain = nrq;
}
trq = nrq;
mpt_off = trq->req_vbuf;
mpt_req = trq->req_vbuf;
if (mpt->verbose >= MPT_PRT_DEBUG) {
memset(mpt_off, 0xff, MPT_REQUEST_AREA);
}
nxt_off = 0;
}
}
out:
/*
* Last time we need to check if this CCB needs to be aborted.
*/
if (ccb->ccb_h.status != CAM_REQ_INPROG) {
if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0)
bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
CAMLOCK_2_MPTLOCK(mpt);
mpt_free_request(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
return;
}
ccb->ccb_h.status |= CAM_SIM_QUEUED;
CAMLOCK_2_MPTLOCK(mpt);
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
ccb->ccb_h.timeout_ch =
timeout(mpt_timeout, (caddr_t)ccb,
(ccb->ccb_h.timeout * hz) / 1000);
} else {
callout_handle_init(&ccb->ccb_h.timeout_ch);
}
if (mpt->verbose >= MPT_PRT_DEBUG) {
int nc = 0;
mpt_print_scsi_io_request(req->req_vbuf);
for (trq = req->chain; trq; trq = trq->chain) {
printf(" Additional Chain Area %d\n", nc++);
mpt_dump_sgl(trq->req_vbuf, 0);
}
}
mpt_send_cmd(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
}
static void
mpt_start(struct cam_sim *sim, union ccb *ccb)
{
request_t *req;
struct mpt_softc *mpt;
MSG_SCSI_IO_REQUEST *mpt_req;
struct ccb_scsiio *csio = &ccb->csio;
struct ccb_hdr *ccbh = &ccb->ccb_h;
int raid_passthru;
/* Get the pointer for the physical addapter */
mpt = ccb->ccb_h.ccb_mpt_ptr;
raid_passthru = (sim == mpt->phydisk_sim);
CAMLOCK_2_MPTLOCK(mpt);
/* Get a request structure off the free list */
if ((req = mpt_get_request(mpt, /*sleep_ok*/FALSE)) == NULL) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n");
}
MPTLOCK_2_CAMLOCK(mpt);
ccb->ccb_h.status = CAM_REQUEUE_REQ;
xpt_done(ccb);
return;
}
MPTLOCK_2_CAMLOCK(mpt);
#if 0
COWWWWW
if (raid_passthru) {
status = mpt_raid_quiesce_disk(mpt, mpt->raid_disks + ccb->ccb_h.target_id,
request_t *req)
}
#endif
/*
* Link the ccb and the request structure so we can find
* the other knowing either the request or the ccb
*/
req->ccb = ccb;
ccb->ccb_h.ccb_req_ptr = req;
/* Now we build the command for the IOC */
mpt_req = req->req_vbuf;
bzero(mpt_req, sizeof *mpt_req);
mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST;
if (raid_passthru)
mpt_req->Function = MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH;
mpt_req->Bus = mpt->bus;
mpt_req->SenseBufferLength =
(csio->sense_len < MPT_SENSE_SIZE) ?
csio->sense_len : MPT_SENSE_SIZE;
/*
* We use the message context to find the request structure when we
* Get the command completion interrupt from the IOC.
*/
mpt_req->MsgContext = htole32(req->index | scsi_io_handler_id);
/* Which physical device to do the I/O on */
mpt_req->TargetID = ccb->ccb_h.target_id;
/*
* XXX Assumes Single level, Single byte, CAM LUN type.
*/
mpt_req->LUN[1] = ccb->ccb_h.target_lun;
/* Set the direction of the transfer */
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
mpt_req->Control = MPI_SCSIIO_CONTROL_READ;
else if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE;
else
mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER;
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
switch(ccb->csio.tag_action) {
case MSG_HEAD_OF_Q_TAG:
mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ;
break;
case MSG_ACA_TASK:
mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ;
break;
case MSG_ORDERED_Q_TAG:
mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ;
break;
case MSG_SIMPLE_Q_TAG:
default:
mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
break;
}
} else {
if (mpt->is_fc)
mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
else
/* XXX No such thing for a target doing packetized. */
mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
}
if (mpt->is_fc == 0 && mpt->is_sas == 0) {
if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) {
mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT;
}
}
/* Copy the scsi command block into place */
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0)
bcopy(csio->cdb_io.cdb_ptr, mpt_req->CDB, csio->cdb_len);
else
bcopy(csio->cdb_io.cdb_bytes, mpt_req->CDB, csio->cdb_len);
mpt_req->CDBLength = csio->cdb_len;
mpt_req->DataLength = csio->dxfer_len;
mpt_req->SenseBufferLowAddr = req->sense_pbuf;
/*
* If we have any data to send with this command,
* map it into bus space.
*/
if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccbh->flags & CAM_SCATTER_VALID) == 0) {
/*
* We've been given a pointer to a single buffer.
*/
if ((ccbh->flags & CAM_DATA_PHYS) == 0) {
/*
* Virtual address that needs to translated into
* one or more physical address ranges.
*/
int error;
error = bus_dmamap_load(mpt->buffer_dmat,
req->dmap, csio->data_ptr, csio->dxfer_len,
mpt_execute_req, req, 0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(mpt->sim, 1);
ccbh->status |= CAM_RELEASE_SIMQ;
}
} else {
/*
* We have been given a pointer to single
* physical buffer.
*/
struct bus_dma_segment seg;
seg.ds_addr =
(bus_addr_t)(vm_offset_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
mpt_execute_req(req, &seg, 1, 0);
}
} else {
/*
* We have been given a list of addresses.
* This case could be easily supported but they are not
* currently generated by the CAM subsystem so there
* is no point in wasting the time right now.
*/
struct bus_dma_segment *segs;
if ((ccbh->flags & CAM_SG_LIST_PHYS) == 0) {
mpt_execute_req(req, NULL, 0, EFAULT);
} else {
/* Just use the segments provided */
segs = (struct bus_dma_segment *)csio->data_ptr;
mpt_execute_req(req, segs, csio->sglist_cnt, 0);
}
}
} else {
mpt_execute_req(req, NULL, 0, 0);
}
}
static int
mpt_bus_reset(struct mpt_softc *mpt, int sleep_ok)
{
int error;
u_int status;
error = mpt_scsi_send_tmf(mpt, MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS,
mpt->is_fc ? MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION : 0,
/*bus*/0, /*target_id*/0, /*target_lun*/0, /*abort_ctx*/0,
sleep_ok);
if (error != 0) {
/*
* mpt_scsi_send_tmf hard resets on failure, so no
* need to do so here.
*/
mpt_prt(mpt,
"mpt_bus_reset: mpt_scsi_send_tmf returned %d\n", error);
return (EIO);
}
/* Wait for bus reset to be processed by the IOC. */
error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE,
REQ_STATE_DONE, sleep_ok, /*time_ms*/5000);
status = mpt->tmf_req->IOCStatus;
mpt->tmf_req->state = REQ_STATE_FREE;
if (error) {
mpt_prt(mpt, "mpt_bus_reset: Reset timed-out."
"Resetting controller.\n");
mpt_reset(mpt, /*reinit*/TRUE);
return (ETIMEDOUT);
} else if ((status & MPI_IOCSTATUS_MASK) != MPI_SCSI_STATUS_SUCCESS) {
mpt_prt(mpt, "mpt_bus_reset: TMF Status %d."
"Resetting controller.\n", status);
mpt_reset(mpt, /*reinit*/TRUE);
return (EIO);
}
return (0);
}
static int
mpt_cam_event(struct mpt_softc *mpt, request_t *req,
MSG_EVENT_NOTIFY_REPLY *msg)
{
mpt_lprt(mpt, MPT_PRT_ALWAYS, "mpt_cam_event: 0x%x\n",
msg->Event & 0xFF);
switch(msg->Event & 0xFF) {
case MPI_EVENT_UNIT_ATTENTION:
mpt_prt(mpt, "Bus: 0x%02x TargetID: 0x%02x\n",
(msg->Data[0] >> 8) & 0xff, msg->Data[0] & 0xff);
break;
case MPI_EVENT_IOC_BUS_RESET:
/* We generated a bus reset */
mpt_prt(mpt, "IOC Bus Reset Port: %d\n",
(msg->Data[0] >> 8) & 0xff);
xpt_async(AC_BUS_RESET, mpt->path, NULL);
break;
case MPI_EVENT_EXT_BUS_RESET:
/* Someone else generated a bus reset */
mpt_prt(mpt, "Ext Bus Reset\n");
/*
* These replies don't return EventData like the MPI
* spec says they do
*/
xpt_async(AC_BUS_RESET, mpt->path, NULL);
break;
case MPI_EVENT_RESCAN:
/*
* In general this means a device has been added
* to the loop.
*/
mpt_prt(mpt, "Rescan Port: %d\n", (msg->Data[0] >> 8) & 0xff);
/* xpt_async(AC_FOUND_DEVICE, path, NULL); */
break;
case MPI_EVENT_LINK_STATUS_CHANGE:
mpt_prt(mpt, "Port %d: LinkState: %s\n",
(msg->Data[1] >> 8) & 0xff,
((msg->Data[0] & 0xff) == 0)? "Failed" : "Active");
break;
case MPI_EVENT_LOOP_STATE_CHANGE:
switch ((msg->Data[0] >> 16) & 0xff) {
case 0x01:
mpt_prt(mpt,
"Port 0x%x: FC LinkEvent: LIP(%02x,%02x) "
"(Loop Initialization)\n",
(msg->Data[1] >> 8) & 0xff,
(msg->Data[0] >> 8) & 0xff,
(msg->Data[0] ) & 0xff);
switch ((msg->Data[0] >> 8) & 0xff) {
case 0xF7:
if ((msg->Data[0] & 0xff) == 0xF7) {
printf("Device needs AL_PA\n");
} else {
printf("Device %02x doesn't like "
"FC performance\n",
msg->Data[0] & 0xFF);
}
break;
case 0xF8:
if ((msg->Data[0] & 0xff) == 0xF7) {
printf("Device had loop failure at its "
"receiver prior to acquiring "
"AL_PA\n");
} else {
printf("Device %02x detected loop "
"failure at its receiver\n",
msg->Data[0] & 0xFF);
}
break;
default:
printf("Device %02x requests that device "
"%02x reset itself\n",
msg->Data[0] & 0xFF,
(msg->Data[0] >> 8) & 0xFF);
break;
}
break;
case 0x02:
mpt_prt(mpt, "Port 0x%x: FC LinkEvent: "
"LPE(%02x,%02x) (Loop Port Enable)\n",
(msg->Data[1] >> 8) & 0xff, /* Port */
(msg->Data[0] >> 8) & 0xff, /* Character 3 */
(msg->Data[0] ) & 0xff /* Character 4 */);
break;
case 0x03:
mpt_prt(mpt, "Port 0x%x: FC LinkEvent: "
"LPB(%02x,%02x) (Loop Port Bypass)\n",
(msg->Data[1] >> 8) & 0xff, /* Port */
(msg->Data[0] >> 8) & 0xff, /* Character 3 */
(msg->Data[0] ) & 0xff /* Character 4 */);
break;
default:
mpt_prt(mpt, "Port 0x%x: FC LinkEvent: Unknown "
"FC event (%02x %02x %02x)\n",
(msg->Data[1] >> 8) & 0xff, /* Port */
(msg->Data[0] >> 16) & 0xff, /* Event */
(msg->Data[0] >> 8) & 0xff, /* Character 3 */
(msg->Data[0] ) & 0xff /* Character 4 */);
}
break;
case MPI_EVENT_LOGOUT:
mpt_prt(mpt, "FC Logout Port: %d N_PortID: %02x\n",
(msg->Data[1] >> 8) & 0xff, msg->Data[0]);
break;
case MPI_EVENT_EVENT_CHANGE:
mpt_lprt(mpt, MPT_PRT_DEBUG,
"mpt_cam_event: MPI_EVENT_EVENT_CHANGE\n");
break;
case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
/*
* Devices are attachin'.....
*/
mpt_prt(mpt,
"mpt_cam_event: MPI_EVENT_SAS_DEVICE_STATUS_CHANGE\n");
break;
default:
return (/*handled*/0);
}
return (/*handled*/1);
}
/*
* Reply path for all SCSI I/O requests, called from our
* interrupt handler by extracting our handler index from
* the MsgContext field of the reply from the IOC.
*
* This routine is optimized for the common case of a
* completion without error. All exception handling is
* offloaded to non-inlined helper routines to minimize
* cache footprint.
*/
static int
mpt_scsi_reply_handler(struct mpt_softc *mpt, request_t *req,
MSG_DEFAULT_REPLY *reply_frame)
{
MSG_SCSI_IO_REQUEST *scsi_req;
union ccb *ccb;
scsi_req = (MSG_SCSI_IO_REQUEST *)req->req_vbuf;
ccb = req->ccb;
if (ccb == NULL) {
mpt_prt(mpt, "Completion without CCB. Flags %#x, Func %#x\n",
req->state, scsi_req->Function);
mpt_print_scsi_io_request(scsi_req);
return (/*free_reply*/TRUE);
}
untimeout(mpt_timeout, ccb, ccb->ccb_h.timeout_ch);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
}
if (reply_frame == NULL) {
/*
* Context only reply, completion
* without error status.
*/
ccb->csio.resid = 0;
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
ccb->csio.scsi_status = SCSI_STATUS_OK;
} else {
mpt_scsi_reply_frame_handler(mpt, req, reply_frame);
}
if (mpt->outofbeer) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
mpt->outofbeer = 0;
mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n");
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
MPTLOCK_2_CAMLOCK(mpt);
if (scsi_req->Function == MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH
&& scsi_req->CDB[0] == INQUIRY
&& (scsi_req->CDB[1] & SI_EVPD) == 0) {
struct scsi_inquiry_data *inq;
/*
* Fake out the device type so that only the
* pass-thru device will attach.
*/
inq = (struct scsi_inquiry_data *)ccb->csio.data_ptr;
inq->device &= ~0x1F;
inq->device |= T_NODEVICE;
}
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
if ((req->state & REQ_STATE_TIMEDOUT) == 0)
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
else
TAILQ_REMOVE(&mpt->request_timeout_list, req, links);
if ((req->state & REQ_STATE_NEED_WAKEUP) == 0) {
mpt_free_request(mpt, req);
return (/*free_reply*/TRUE);
}
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
wakeup(req);
return (/*free_reply*/TRUE);
}
static int
mpt_scsi_tmf_reply_handler(struct mpt_softc *mpt, request_t *req,
MSG_DEFAULT_REPLY *reply_frame)
{
MSG_SCSI_TASK_MGMT_REPLY *tmf_reply;
uint16_t status;
KASSERT(req == mpt->tmf_req, ("TMF Reply not using mpt->tmf_req"));
tmf_reply = (MSG_SCSI_TASK_MGMT_REPLY *)reply_frame;
/* Record status of TMF for any waiters. */
req->IOCStatus = tmf_reply->IOCStatus;
status = le16toh(tmf_reply->IOCStatus);
mpt_lprt(mpt,
(status == MPI_IOCSTATUS_SUCCESS)? MPT_PRT_DEBUG : MPT_PRT_ERROR,
"TMF Complete: req %p:%u status 0x%x\n", req, req->serno, status);
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
req->state |= REQ_STATE_DONE;
wakeup(req);
} else
mpt->tmf_req->state = REQ_STATE_FREE;
return (/*free_reply*/TRUE);
}
/*
* Clean up all SCSI Initiator personality state in response
* to a controller reset.
*/
static void
mpt_cam_ioc_reset(struct mpt_softc *mpt, int type)
{
/*
* The pending list is already run down by
* the generic handler. Perform the same
* operation on the timed out request list.
*/
mpt_complete_request_chain(mpt, &mpt->request_timeout_list,
MPI_IOCSTATUS_INVALID_STATE);
/*
* Inform the XPT that a bus reset has occurred.
*/
xpt_async(AC_BUS_RESET, mpt->path, NULL);
}
/*
* Parse additional completion information in the reply
* frame for SCSI I/O requests.
*/
static int
mpt_scsi_reply_frame_handler(struct mpt_softc *mpt, request_t *req,
MSG_DEFAULT_REPLY *reply_frame)
{
union ccb *ccb;
MSG_SCSI_IO_REPLY *scsi_io_reply;
u_int ioc_status;
u_int sstate;
u_int loginfo;
MPT_DUMP_REPLY_FRAME(mpt, reply_frame);
KASSERT(reply_frame->Function == MPI_FUNCTION_SCSI_IO_REQUEST
|| reply_frame->Function == MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
("MPT SCSI I/O Handler called with incorrect reply type"));
KASSERT((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0,
("MPT SCSI I/O Handler called with continuation reply"));
scsi_io_reply = (MSG_SCSI_IO_REPLY *)reply_frame;
ioc_status = le16toh(scsi_io_reply->IOCStatus);
loginfo = ioc_status & MPI_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE;
ioc_status &= MPI_IOCSTATUS_MASK;
sstate = scsi_io_reply->SCSIState;
ccb = req->ccb;
ccb->csio.resid =
ccb->csio.dxfer_len - le32toh(scsi_io_reply->TransferCount);
if ((sstate & MPI_SCSI_STATE_AUTOSENSE_VALID) != 0
&& (ccb->ccb_h.flags & (CAM_SENSE_PHYS | CAM_SENSE_PTR)) == 0) {
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
ccb->csio.sense_resid =
ccb->csio.sense_len - scsi_io_reply->SenseCount;
bcopy(req->sense_vbuf, &ccb->csio.sense_data,
min(ccb->csio.sense_len, scsi_io_reply->SenseCount));
}
if ((sstate & MPI_SCSI_STATE_QUEUE_TAG_REJECTED) != 0) {
/*
* Tag messages rejected, but non-tagged retry
* was successful.
XXXX
mpt_set_tags(mpt, devinfo, MPT_QUEUE_NONE);
*/
}
switch(ioc_status) {
case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
/*
* XXX
* Linux driver indicates that a zero
* transfer length with this error code
* indicates a CRC error.
*
* No need to swap the bytes for checking
* against zero.
*/
if (scsi_io_reply->TransferCount == 0) {
mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY);
break;
}
/* FALLTHROUGH */
case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN:
case MPI_IOCSTATUS_SUCCESS:
case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR:
if ((sstate & MPI_SCSI_STATE_NO_SCSI_STATUS) != 0) {
/*
* Status was never returned for this transaction.
*/
mpt_set_ccb_status(ccb, CAM_UNEXP_BUSFREE);
} else if (scsi_io_reply->SCSIStatus != SCSI_STATUS_OK) {
ccb->csio.scsi_status = scsi_io_reply->SCSIStatus;
mpt_set_ccb_status(ccb, CAM_SCSI_STATUS_ERROR);
if ((sstate & MPI_SCSI_STATE_AUTOSENSE_FAILED) != 0)
mpt_set_ccb_status(ccb, CAM_AUTOSENSE_FAIL);
} else if ((sstate & MPI_SCSI_STATE_RESPONSE_INFO_VALID) != 0) {
/* XXX Handle SPI-Packet and FCP-2 reponse info. */
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
} else
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
case MPI_IOCSTATUS_SCSI_DATA_OVERRUN:
mpt_set_ccb_status(ccb, CAM_DATA_RUN_ERR);
break;
case MPI_IOCSTATUS_SCSI_IO_DATA_ERROR:
mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY);
break;
case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
/*
* Since selection timeouts and "device really not
* there" are grouped into this error code, report
* selection timeout. Selection timeouts are
* typically retried before giving up on the device
* whereas "device not there" errors are considered
* unretryable.
*/
mpt_set_ccb_status(ccb, CAM_SEL_TIMEOUT);
break;
case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR:
mpt_set_ccb_status(ccb, CAM_SEQUENCE_FAIL);
break;
case MPI_IOCSTATUS_SCSI_INVALID_BUS:
mpt_set_ccb_status(ccb, CAM_PATH_INVALID);
break;
case MPI_IOCSTATUS_SCSI_INVALID_TARGETID:
mpt_set_ccb_status(ccb, CAM_TID_INVALID);
break;
case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
ccb->ccb_h.status = CAM_UA_TERMIO;
break;
case MPI_IOCSTATUS_INVALID_STATE:
/*
* The IOC has been reset. Emulate a bus reset.
*/
/* FALLTHROUGH */
case MPI_IOCSTATUS_SCSI_EXT_TERMINATED:
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
break;
case MPI_IOCSTATUS_SCSI_TASK_TERMINATED:
case MPI_IOCSTATUS_SCSI_IOC_TERMINATED:
/*
* Don't clobber any timeout status that has
* already been set for this transaction. We
* want the SCSI layer to be able to differentiate
* between the command we aborted due to timeout
* and any innocent bystanders.
*/
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG)
break;
mpt_set_ccb_status(ccb, CAM_REQ_TERMIO);
break;
case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES:
mpt_set_ccb_status(ccb, CAM_RESRC_UNAVAIL);
break;
case MPI_IOCSTATUS_BUSY:
mpt_set_ccb_status(ccb, CAM_BUSY);
break;
case MPI_IOCSTATUS_INVALID_FUNCTION:
case MPI_IOCSTATUS_INVALID_SGL:
case MPI_IOCSTATUS_INTERNAL_ERROR:
case MPI_IOCSTATUS_INVALID_FIELD:
default:
/* XXX
* Some of the above may need to kick
* of a recovery action!!!!
*/
ccb->ccb_h.status = CAM_UNREC_HBA_ERROR;
break;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
mpt_freeze_ccb(ccb);
return (/*free_reply*/TRUE);
}
static void
mpt_action(struct cam_sim *sim, union ccb *ccb)
{
struct mpt_softc *mpt;
struct ccb_trans_settings *cts;
u_int tgt;
int raid_passthru;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("mpt_action\n"));
mpt = (struct mpt_softc *)cam_sim_softc(sim);
raid_passthru = (sim == mpt->phydisk_sim);
tgt = ccb->ccb_h.target_id;
if (raid_passthru
&& ccb->ccb_h.func_code != XPT_PATH_INQ
&& ccb->ccb_h.func_code != XPT_RESET_BUS) {
CAMLOCK_2_MPTLOCK(mpt);
if (mpt_map_physdisk(mpt, ccb, &tgt) != 0) {
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
return;
}
MPTLOCK_2_CAMLOCK(mpt);
}
ccb->ccb_h.ccb_mpt_ptr = mpt;
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO: /* Execute the requested I/O operation */
/*
* Do a couple of preliminary checks...
*/
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
/* Max supported CDB length is 16 bytes */
/* XXX Unless we implement the new 32byte message type */
if (ccb->csio.cdb_len >
sizeof (((PTR_MSG_SCSI_IO_REQUEST)0)->CDB)) {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
return;
}
ccb->csio.scsi_status = SCSI_STATUS_OK;
mpt_start(sim, ccb);
break;
case XPT_RESET_BUS:
mpt_lprt(mpt, MPT_PRT_DEBUG, "XPT_RESET_BUS\n");
if (!raid_passthru) {
CAMLOCK_2_MPTLOCK(mpt);
(void)mpt_bus_reset(mpt, /*sleep_ok*/FALSE);
MPTLOCK_2_CAMLOCK(mpt);
}
/*
* mpt_bus_reset is always successful in that it
* will fall back to a hard reset should a bus
* reset attempt fail.
*/
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
xpt_done(ccb);
break;
case XPT_ABORT:
/*
* XXX: Need to implement
*/
ccb->ccb_h.status = CAM_UA_ABORT;
xpt_done(ccb);
break;
#ifdef CAM_NEW_TRAN_CODE
#define IS_CURRENT_SETTINGS(c) (c->type == CTS_TYPE_CURRENT_SETTINGS)
#else
#define IS_CURRENT_SETTINGS(c) (c->flags & CCB_TRANS_CURRENT_SETTINGS)
#endif
#define DP_DISC_ENABLE 0x1
#define DP_DISC_DISABL 0x2
#define DP_DISC (DP_DISC_ENABLE|DP_DISC_DISABL)
#define DP_TQING_ENABLE 0x4
#define DP_TQING_DISABL 0x8
#define DP_TQING (DP_TQING_ENABLE|DP_TQING_DISABL)
#define DP_WIDE 0x10
#define DP_NARROW 0x20
#define DP_WIDTH (DP_WIDE|DP_NARROW)
#define DP_SYNC 0x40
case XPT_SET_TRAN_SETTINGS: /* Nexus Settings */
cts = &ccb->cts;
if (!IS_CURRENT_SETTINGS(cts)) {
mpt_prt(mpt, "Attempt to set User settings\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
if (mpt->is_fc == 0 && mpt->is_sas == 0) {
uint8_t dval = 0;
u_int period = 0, offset = 0;
#ifndef CAM_NEW_TRAN_CODE
if (cts->valid & CCB_TRANS_DISC_VALID) {
dval |= DP_DISC_ENABLE;
}
if (cts->valid & CCB_TRANS_TQ_VALID) {
dval |= DP_TQING_ENABLE;
}
if (cts->valid & CCB_TRANS_BUS_WIDTH_VALID) {
if (cts->bus_width)
dval |= DP_WIDE;
else
dval |= DP_NARROW;
}
/*
* Any SYNC RATE of nonzero and SYNC_OFFSET
* of nonzero will cause us to go to the
* selected (from NVRAM) maximum value for
* this device. At a later point, we'll
* allow finer control.
*/
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) &&
(cts->valid & CCB_TRANS_SYNC_OFFSET_VALID)) {
dval |= DP_SYNC;
period = cts->sync_period;
offset = cts->sync_offset;
}
#else
struct ccb_trans_settings_scsi *scsi =
&cts->proto_specific.scsi;
struct ccb_trans_settings_spi *spi =
&cts->xport_specific.spi;
if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
dval |= DP_DISC_ENABLE;
else
dval |= DP_DISC_DISABL;
}
if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
dval |= DP_TQING_ENABLE;
else
dval |= DP_TQING_DISABL;
}
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) {
if (spi->bus_width == MSG_EXT_WDTR_BUS_16_BIT)
dval |= DP_WIDE;
else
dval |= DP_NARROW;
}
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) &&
(spi->valid & CTS_SPI_VALID_SYNC_RATE) &&
(spi->sync_period && spi->sync_offset)) {
dval |= DP_SYNC;
period = spi->sync_period;
offset = spi->sync_offset;
}
#endif
CAMLOCK_2_MPTLOCK(mpt);
if (dval & DP_DISC_ENABLE) {
mpt->mpt_disc_enable |= (1 << tgt);
} else if (dval & DP_DISC_DISABL) {
mpt->mpt_disc_enable &= ~(1 << tgt);
}
if (dval & DP_TQING_ENABLE) {
mpt->mpt_tag_enable |= (1 << tgt);
} else if (dval & DP_TQING_DISABL) {
mpt->mpt_tag_enable &= ~(1 << tgt);
}
if (dval & DP_WIDTH) {
if (mpt_setwidth(mpt, tgt, dval & DP_WIDE)) {
mpt_prt(mpt, "Set width Failed!\n");
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
break;
}
}
if (dval & DP_SYNC) {
if (mpt_setsync(mpt, tgt, period, offset)) {
mpt_prt(mpt, "Set sync Failed!\n");
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
break;
}
}
MPTLOCK_2_CAMLOCK(mpt);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"SET tgt %d flags %x period %x off %x\n",
tgt, dval, period, offset);
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
case XPT_GET_TRAN_SETTINGS:
cts = &ccb->cts;
if (mpt->is_fc) {
#ifndef CAM_NEW_TRAN_CODE
/*
* a lot of normal SCSI things don't make sense.
*/
cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB;
cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
/*
* How do you measure the width of a high
* speed serial bus? Well, in bytes.
*
* Offset and period make no sense, though, so we set
* (above) a 'base' transfer speed to be gigabit.
*/
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
#else
struct ccb_trans_settings_fc *fc =
&cts->xport_specific.fc;
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_FC;
cts->transport_version = 0;
fc->valid = CTS_FC_VALID_SPEED;
fc->bitrate = 100000; /* XXX: Need for 2Gb/s */
/* XXX: need a port database for each target */
#endif
} else if (mpt->is_sas) {
#ifndef CAM_NEW_TRAN_CODE
cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB;
cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
/*
* How do you measure the width of a high
* speed serial bus? Well, in bytes.
*
* Offset and period make no sense, though, so we set
* (above) a 'base' transfer speed to be gigabit.
*/
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
#else
struct ccb_trans_settings_sas *sas =
&cts->xport_specific.sas;
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_3;
cts->transport = XPORT_SAS;
cts->transport_version = 0;
sas->valid = CTS_SAS_VALID_SPEED;
sas->bitrate = 300000; /* XXX: Default 3Gbps */
#endif
} else {
#ifdef CAM_NEW_TRAN_CODE
struct ccb_trans_settings_scsi *scsi =
&cts->proto_specific.scsi;
struct ccb_trans_settings_spi *spi =
&cts->xport_specific.spi;
#endif
uint8_t dval, pval, oval;
int rv;
/*
* We aren't going off of Port PAGE2 params for
* tagged queuing or disconnect capabilities
* for current settings. For goal settings,
* we assert all capabilities- we've had some
* problems with reading NVRAM data.
*/
if (IS_CURRENT_SETTINGS(cts)) {
CONFIG_PAGE_SCSI_DEVICE_0 tmp;
dval = 0;
tmp = mpt->mpt_dev_page0[tgt];
CAMLOCK_2_MPTLOCK(mpt);
rv = mpt_read_cur_cfg_page(mpt, tgt,
&tmp.Header,
sizeof(tmp),
/*sleep_ok*/FALSE,
/*timeout_ms*/5000);
if (rv) {
mpt_prt(mpt,
"cannot get target %d DP0\n", tgt);
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"SPI Tgt %d Page 0: NParms %x "
"Information %x\n", tgt,
tmp.NegotiatedParameters,
tmp.Information);
MPTLOCK_2_CAMLOCK(mpt);
if (tmp.NegotiatedParameters &
MPI_SCSIDEVPAGE0_NP_WIDE)
dval |= DP_WIDE;
if (mpt->mpt_disc_enable & (1 << tgt)) {
dval |= DP_DISC_ENABLE;
}
if (mpt->mpt_tag_enable & (1 << tgt)) {
dval |= DP_TQING_ENABLE;
}
oval = (tmp.NegotiatedParameters >> 16) & 0xff;
pval = (tmp.NegotiatedParameters >> 8) & 0xff;
} else {
/*
* XXX: Fix wrt NVRAM someday. Attempts
* XXX: to read port page2 device data
* XXX: just returns zero in these areas.
*/
dval = DP_WIDE|DP_DISC|DP_TQING;
oval = (mpt->mpt_port_page0.Capabilities >> 16);
pval = (mpt->mpt_port_page0.Capabilities >> 8);
}
#ifndef CAM_NEW_TRAN_CODE
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
if (dval & DP_DISC_ENABLE) {
cts->flags |= CCB_TRANS_DISC_ENB;
}
if (dval & DP_TQING_ENABLE) {
cts->flags |= CCB_TRANS_TAG_ENB;
}
if (dval & DP_WIDE) {
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
} else {
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
}
cts->valid = CCB_TRANS_BUS_WIDTH_VALID |
CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
if (oval) {
cts->sync_period = pval;
cts->sync_offset = oval;
cts->valid |=
CCB_TRANS_SYNC_RATE_VALID |
CCB_TRANS_SYNC_OFFSET_VALID;
}
#else
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_SPI;
cts->transport_version = 2;
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
if (dval & DP_DISC_ENABLE) {
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
}
if (dval & DP_TQING_ENABLE) {
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
}
if (oval && pval) {
spi->sync_offset = oval;
spi->sync_period = pval;
spi->valid |= CTS_SPI_VALID_SYNC_OFFSET;
spi->valid |= CTS_SPI_VALID_SYNC_RATE;
}
spi->valid |= CTS_SPI_VALID_BUS_WIDTH;
if (dval & DP_WIDE) {
spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
} else {
spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
}
if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) {
scsi->valid = CTS_SCSI_VALID_TQ;
spi->valid |= CTS_SPI_VALID_DISC;
} else {
scsi->valid = 0;
}
#endif
mpt_lprt(mpt, MPT_PRT_DEBUG,
"GET %s tgt %d flags %x period %x offset %x\n",
IS_CURRENT_SETTINGS(cts)
? "ACTIVE" : "NVRAM",
tgt, dval, pval, oval);
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
ccg = &ccb->ccg;
if (ccg->block_size == 0) {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
mpt_calc_geometry(ccg, /*extended*/1);
xpt_done(ccb);
break;
}
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->target_sprt = 0;
cpi->hba_eng_cnt = 0;
cpi->max_lun = 7;
cpi->bus_id = cam_sim_bus(sim);
/* XXX Report base speed more accurately for FC/SAS, etc.*/
if (raid_passthru) {
cpi->max_target = mpt->ioc_page2->MaxPhysDisks;
cpi->hba_misc = PIM_NOBUSRESET;
cpi->initiator_id = cpi->max_target + 1;
cpi->hba_inquiry = PI_TAG_ABLE;
if (mpt->is_fc) {
cpi->base_transfer_speed = 100000;
} else if (mpt->is_sas) {
cpi->base_transfer_speed = 300000;
} else {
cpi->base_transfer_speed = 3300;
cpi->hba_inquiry |=
PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
}
} else if (mpt->is_fc) {
/* XXX SHOULD BE BASED UPON IOC FACTS XXX */
cpi->max_target = 255;
cpi->hba_misc = PIM_NOBUSRESET;
cpi->initiator_id = cpi->max_target + 1;
cpi->base_transfer_speed = 100000;
cpi->hba_inquiry = PI_TAG_ABLE;
} else if (mpt->is_sas) {
cpi->max_target = 63; /* XXX */
cpi->hba_misc = PIM_NOBUSRESET;
cpi->initiator_id = cpi->max_target;
cpi->base_transfer_speed = 300000;
cpi->hba_inquiry = PI_TAG_ABLE;
} else {
cpi->initiator_id = mpt->mpt_ini_id;
cpi->base_transfer_speed = 3300;
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
cpi->hba_misc = 0;
cpi->max_target = 15;
}
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "LSI", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static int
mpt_setwidth(struct mpt_softc *mpt, int tgt, int onoff)
{
CONFIG_PAGE_SCSI_DEVICE_1 tmp;
int rv;
tmp = mpt->mpt_dev_page1[tgt];
if (onoff) {
tmp.RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE;
} else {
tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE;
}
rv = mpt_write_cur_cfg_page(mpt, tgt, &tmp.Header, sizeof(tmp),
/*sleep_ok*/FALSE, /*timeout_ms*/5000);
if (rv) {
mpt_prt(mpt, "mpt_setwidth: write cur page failed\n");
return (-1);
}
rv = mpt_read_cur_cfg_page(mpt, tgt, &tmp.Header, sizeof(tmp),
/*sleep_ok*/FALSE, /*timeout_ms*/5000);
if (rv) {
mpt_prt(mpt, "mpt_setwidth: read cur page failed\n");
return (-1);
}
mpt->mpt_dev_page1[tgt] = tmp;
mpt_lprt(mpt, MPT_PRT_DEBUG,
"SPI Target %d Page 1: RequestedParameters %x Config %x\n",
tgt, mpt->mpt_dev_page1[tgt].RequestedParameters,
mpt->mpt_dev_page1[tgt].Configuration);
return (0);
}
static int
mpt_setsync(struct mpt_softc *mpt, int tgt, int period, int offset)
{
CONFIG_PAGE_SCSI_DEVICE_1 tmp;
int rv;
tmp = mpt->mpt_dev_page1[tgt];
tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK;
tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK;
tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_DT;
tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_QAS;
tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_IU;
/*
* XXX: For now, we're ignoring specific settings
*/
if (period && offset) {
int factor, offset, np;
factor = (mpt->mpt_port_page0.Capabilities >> 8) & 0xff;
offset = (mpt->mpt_port_page0.Capabilities >> 16) & 0xff;
np = 0;
if (factor < 0x9) {
np |= MPI_SCSIDEVPAGE1_RP_QAS;
np |= MPI_SCSIDEVPAGE1_RP_IU;
}
if (factor < 0xa) {
np |= MPI_SCSIDEVPAGE1_RP_DT;
}
np |= (factor << 8) | (offset << 16);
tmp.RequestedParameters |= np;
}
rv = mpt_write_cur_cfg_page(mpt, tgt, &tmp.Header, sizeof(tmp),
/*sleep_ok*/FALSE, /*timeout_ms*/5000);
if (rv) {
mpt_prt(mpt, "mpt_setsync: write cur page failed\n");
return (-1);
}
rv = mpt_read_cur_cfg_page(mpt, tgt, &tmp.Header, sizeof(tmp),
/*sleep_ok*/FALSE, /*timeout_ms*/500);
if (rv) {
mpt_prt(mpt, "mpt_setsync: read cur page failed\n");
return (-1);
}
mpt->mpt_dev_page1[tgt] = tmp;
mpt_lprt(mpt, MPT_PRT_DEBUG,
"SPI Target %d Page 1: RParams %x Config %x\n",
tgt, mpt->mpt_dev_page1[tgt].RequestedParameters,
mpt->mpt_dev_page1[tgt].Configuration);
return (0);
}
static void
mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended)
{
#if __FreeBSD_version >= 500000
cam_calc_geometry(ccg, extended);
#else
uint32_t size_mb;
uint32_t secs_per_cylinder;
size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size);
if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccg->ccb_h.status = CAM_REQ_CMP;
#endif
}
/****************************** Timeout Recovery ******************************/
static int
mpt_spawn_recovery_thread(struct mpt_softc *mpt)
{
int error;
error = mpt_kthread_create(mpt_recovery_thread, mpt,
&mpt->recovery_thread, /*flags*/0,
/*altstack*/0, "mpt_recovery%d", mpt->unit);
return (error);
}
/*
* Lock is not held on entry.
*/
static void
mpt_terminate_recovery_thread(struct mpt_softc *mpt)
{
MPT_LOCK(mpt);
if (mpt->recovery_thread == NULL) {
MPT_UNLOCK(mpt);
return;
}
mpt->shutdwn_recovery = 1;
wakeup(mpt);
/*
* Sleep on a slightly different location
* for this interlock just for added safety.
*/
mpt_sleep(mpt, &mpt->recovery_thread, PUSER, "thtrm", 0);
MPT_UNLOCK(mpt);
}
static void
mpt_recovery_thread(void *arg)
{
struct mpt_softc *mpt;
#if __FreeBSD_version >= 500000
mtx_lock(&Giant);
#endif
mpt = (struct mpt_softc *)arg;
MPT_LOCK(mpt);
for (;;) {
if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0
&& mpt->shutdwn_recovery == 0)
mpt_sleep(mpt, mpt, PUSER, "idle", 0);
if (mpt->shutdwn_recovery != 0)
break;
MPT_UNLOCK(mpt);
mpt_recover_commands(mpt);
MPT_LOCK(mpt);
}
mpt->recovery_thread = NULL;
wakeup(&mpt->recovery_thread);
MPT_UNLOCK(mpt);
#if __FreeBSD_version >= 500000
mtx_unlock(&Giant);
#endif
kthread_exit(0);
}
static int
mpt_scsi_send_tmf(struct mpt_softc *mpt, u_int type,
u_int flags, u_int channel, u_int target, u_int lun,
u_int abort_ctx, int sleep_ok)
{
MSG_SCSI_TASK_MGMT *tmf_req;
int error;
/*
* Wait for any current TMF request to complete.
* We're only allowed to issue one TMF at a time.
*/
error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_FREE, REQ_STATE_MASK,
sleep_ok, MPT_TMF_MAX_TIMEOUT);
if (error != 0) {
mpt_reset(mpt, /*reinit*/TRUE);
return (ETIMEDOUT);
}
mpt->tmf_req->state = REQ_STATE_ALLOCATED|REQ_STATE_QUEUED;
TAILQ_INSERT_HEAD(&mpt->request_pending_list, mpt->tmf_req, links);
tmf_req = (MSG_SCSI_TASK_MGMT *)mpt->tmf_req->req_vbuf;
bzero(tmf_req, sizeof(*tmf_req));
tmf_req->TargetID = target;
tmf_req->Bus = channel;
tmf_req->ChainOffset = 0;
tmf_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT;
tmf_req->Reserved = 0;
tmf_req->TaskType = type;
tmf_req->Reserved1 = 0;
tmf_req->MsgFlags = flags;
tmf_req->MsgContext =
htole32(mpt->tmf_req->index | scsi_tmf_handler_id);
bzero(&tmf_req->LUN, sizeof(tmf_req->LUN) + sizeof(tmf_req->Reserved2));
tmf_req->LUN[1] = lun;
tmf_req->TaskMsgContext = abort_ctx;
mpt_lprt(mpt, MPT_PRT_INFO,
"Issuing TMF %p with MsgContext of 0x%x\n", tmf_req,
tmf_req->MsgContext);
if (mpt->verbose > MPT_PRT_DEBUG)
mpt_print_request(tmf_req);
error = mpt_send_handshake_cmd(mpt, sizeof(*tmf_req), tmf_req);
if (error != 0)
mpt_reset(mpt, /*reinit*/TRUE);
return (error);
}
/*
* When a command times out, it is placed on the requeust_timeout_list
* and we wake our recovery thread. The MPT-Fusion architecture supports
* only a single TMF operation at a time, so we serially abort/bdr, etc,
* the timedout transactions. The next TMF is issued either by the
* completion handler of the current TMF waking our recovery thread,
* or the TMF timeout handler causing a hard reset sequence.
*/
static void
mpt_recover_commands(struct mpt_softc *mpt)
{
request_t *req;
union ccb *ccb;
int error;
MPT_LOCK(mpt);
if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
/*
* No work to do- leave.
*/
mpt_prt(mpt, "mpt_recover_commands: no requests.\n");
MPT_UNLOCK(mpt);
return;
}
/*
* Flush any commands whose completion coincides with their timeout.
*/
mpt_intr(mpt);
if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
/*
* The timedout commands have already
* completed. This typically means
* that either the timeout value was on
* the hairy edge of what the device
* requires or - more likely - interrupts
* are not happening.
*/
mpt_prt(mpt, "Timedout requests already complete. "
"Interrupts may not be functioning.\n");
mpt_enable_ints(mpt);
MPT_UNLOCK(mpt);
return;
}
/*
* We have no visibility into the current state of the
* controller, so attempt to abort the commands in the
* order they timed-out.
*/
while ((req = TAILQ_FIRST(&mpt->request_timeout_list)) != NULL) {
u_int status;
u_int32_t serno = req->serno;
mpt_prt(mpt, "Attempting to Abort Req %p:%u\n", req, serno);
ccb = req->ccb;
mpt_set_ccb_status(ccb, CAM_CMD_TIMEOUT);
error = mpt_scsi_send_tmf(mpt,
MPI_SCSITASKMGMT_TASKTYPE_ABORT_TASK,
/*MsgFlags*/0, mpt->bus, ccb->ccb_h.target_id,
ccb->ccb_h.target_lun,
htole32(req->index | scsi_io_handler_id), /*sleep_ok*/TRUE);
if (error != 0) {
mpt_prt(mpt, "Abort Req %p:%u failed to start TMF\n",
req, serno);
/*
* mpt_scsi_send_tmf hard resets on failure, so no
* need to do so here. Our queue should be emptied
* by the hard reset.
*/
continue;
}
error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE,
REQ_STATE_DONE, /*sleep_ok*/TRUE, /*time_ms*/500);
status = mpt->tmf_req->IOCStatus;
if (error != 0) {
/*
* If we've errored out and the transaction is still
* pending, reset the controller.
*/
mpt_prt(mpt, "Abort Req %p:%d timed-out. "
"Resetting controller\n", req, serno);
mpt_reset(mpt, /*reinit*/TRUE);
continue;
}
/*
* TMF is complete.
*/
TAILQ_REMOVE(&mpt->request_timeout_list, req, links);
mpt->tmf_req->state = REQ_STATE_FREE;
if ((status & MPI_IOCSTATUS_MASK) == MPI_SCSI_STATUS_SUCCESS)
continue;
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Abort Req %p: %u Failed "
"with status 0x%x\n. Resetting bus.",
req, serno, status);
/*
* If the abort attempt fails for any reason, reset the bus.
* We should find all of the timed-out commands on our
* list are in the done state after this completes.
*/
mpt_bus_reset(mpt, /*sleep_ok*/TRUE);
}
MPT_UNLOCK(mpt);
}