freebsd-skq/sys/vm/vm_page.c
ken 0d3a835f3f At long last, commit the zero copy sockets code.
MAKEDEV:	Add MAKEDEV glue for the ti(4) device nodes.

ti.4:		Update the ti(4) man page to include information on the
		TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
		and also include information about the new character
		device interface and the associated ioctls.

man9/Makefile:	Add jumbo.9 and zero_copy.9 man pages and associated
		links.

jumbo.9:	New man page describing the jumbo buffer allocator
		interface and operation.

zero_copy.9:	New man page describing the general characteristics of
		the zero copy send and receive code, and what an
		application author should do to take advantage of the
		zero copy functionality.

NOTES:		Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
		TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.

conf/files:	Add uipc_jumbo.c and uipc_cow.c.

conf/options:	Add the 5 options mentioned above.

kern_subr.c:	Receive side zero copy implementation.  This takes
		"disposable" pages attached to an mbuf, gives them to
		a user process, and then recycles the user's page.
		This is only active when ZERO_COPY_SOCKETS is turned on
		and the kern.ipc.zero_copy.receive sysctl variable is
		set to 1.

uipc_cow.c:	Send side zero copy functions.  Takes a page written
		by the user and maps it copy on write and assigns it
		kernel virtual address space.  Removes copy on write
		mapping once the buffer has been freed by the network
		stack.

uipc_jumbo.c:	Jumbo disposable page allocator code.  This allocates
		(optionally) disposable pages for network drivers that
		want to give the user the option of doing zero copy
		receive.

uipc_socket.c:	Add kern.ipc.zero_copy.{send,receive} sysctls that are
		enabled if ZERO_COPY_SOCKETS is turned on.

		Add zero copy send support to sosend() -- pages get
		mapped into the kernel instead of getting copied if
		they meet size and alignment restrictions.

uipc_syscalls.c:Un-staticize some of the sf* functions so that they
		can be used elsewhere.  (uipc_cow.c)

if_media.c:	In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
		calling malloc() with M_WAITOK.  Return an error if
		the M_NOWAIT malloc fails.

		The ti(4) driver and the wi(4) driver, at least, call
		this with a mutex held.  This causes witness warnings
		for 'ifconfig -a' with a wi(4) or ti(4) board in the
		system.  (I've only verified for ti(4)).

ip_output.c:	Fragment large datagrams so that each segment contains
		a multiple of PAGE_SIZE amount of data plus headers.
		This allows the receiver to potentially do page
		flipping on receives.

if_ti.c:	Add zero copy receive support to the ti(4) driver.  If
		TI_PRIVATE_JUMBOS is not defined, it now uses the
		jumbo(9) buffer allocator for jumbo receive buffers.

		Add a new character device interface for the ti(4)
		driver for the new debugging interface.  This allows
		(a patched version of) gdb to talk to the Tigon board
		and debug the firmware.  There are also a few additional
		debugging ioctls available through this interface.

		Add header splitting support to the ti(4) driver.

		Tweak some of the default interrupt coalescing
		parameters to more useful defaults.

		Add hooks for supporting transmit flow control, but
		leave it turned off with a comment describing why it
		is turned off.

if_tireg.h:	Change the firmware rev to 12.4.11, since we're really
		at 12.4.11 plus fixes from 12.4.13.

		Add defines needed for debugging.

		Remove the ti_stats structure, it is now defined in
		sys/tiio.h.

ti_fw.h:	12.4.11 firmware.

ti_fw2.h:	12.4.11 firmware, plus selected fixes from 12.4.13,
		and my header splitting patches.  Revision 12.4.13
		doesn't handle 10/100 negotiation properly.  (This
		firmware is the same as what was in the tree previously,
		with the addition of header splitting support.)

sys/jumbo.h:	Jumbo buffer allocator interface.

sys/mbuf.h:	Add a new external mbuf type, EXT_DISPOSABLE, to
		indicate that the payload buffer can be thrown away /
		flipped to a userland process.

socketvar.h:	Add prototype for socow_setup.

tiio.h:		ioctl interface to the character portion of the ti(4)
		driver, plus associated structure/type definitions.

uio.h:		Change prototype for uiomoveco() so that we'll know
		whether the source page is disposable.

ufs_readwrite.c:Update for new prototype of uiomoveco().

vm_fault.c:	In vm_fault(), check to see whether we need to do a page
		based copy on write fault.

vm_object.c:	Add a new function, vm_object_allocate_wait().  This
		does the same thing that vm_object allocate does, except
		that it gives the caller the opportunity to specify whether
		it should wait on the uma_zalloc() of the object structre.

		This allows vm objects to be allocated while holding a
		mutex.  (Without generating WITNESS warnings.)

		vm_object_allocate() is implemented as a call to
		vm_object_allocate_wait() with the malloc flag set to
		M_WAITOK.

vm_object.h:	Add prototype for vm_object_allocate_wait().

vm_page.c:	Add page-based copy on write setup, clear and fault
		routines.

vm_page.h:	Add page based COW function prototypes and variable in
		the vm_page structure.

Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00

1845 lines
44 KiB
C

/*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
* $FreeBSD$
*/
/*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* GENERAL RULES ON VM_PAGE MANIPULATION
*
* - a pageq mutex is required when adding or removing a page from a
* page queue (vm_page_queue[]), regardless of other mutexes or the
* busy state of a page.
*
* - a hash chain mutex is required when associating or disassociating
* a page from the VM PAGE CACHE hash table (vm_page_buckets),
* regardless of other mutexes or the busy state of a page.
*
* - either a hash chain mutex OR a busied page is required in order
* to modify the page flags. A hash chain mutex must be obtained in
* order to busy a page. A page's flags cannot be modified by a
* hash chain mutex if the page is marked busy.
*
* - The object memq mutex is held when inserting or removing
* pages from an object (vm_page_insert() or vm_page_remove()). This
* is different from the object's main mutex.
*
* Generally speaking, you have to be aware of side effects when running
* vm_page ops. A vm_page_lookup() will return with the hash chain
* locked, whether it was able to lookup the page or not. vm_page_free(),
* vm_page_cache(), vm_page_activate(), and a number of other routines
* will release the hash chain mutex for you. Intermediate manipulation
* routines such as vm_page_flag_set() expect the hash chain to be held
* on entry and the hash chain will remain held on return.
*
* pageq scanning can only occur with the pageq in question locked.
* We have a known bottleneck with the active queue, but the cache
* and free queues are actually arrays already.
*/
/*
* Resident memory management module.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>
#include <vm/uma_int.h>
/*
* Associated with page of user-allocatable memory is a
* page structure.
*/
static struct mtx vm_page_buckets_mtx;
static struct vm_page **vm_page_buckets; /* Array of buckets */
static int vm_page_bucket_count; /* How big is array? */
static int vm_page_hash_mask; /* Mask for hash function */
vm_page_t vm_page_array = 0;
int vm_page_array_size = 0;
long first_page = 0;
int vm_page_zero_count = 0;
/*
* vm_set_page_size:
*
* Sets the page size, perhaps based upon the memory
* size. Must be called before any use of page-size
* dependent functions.
*/
void
vm_set_page_size(void)
{
if (cnt.v_page_size == 0)
cnt.v_page_size = PAGE_SIZE;
if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
panic("vm_set_page_size: page size not a power of two");
}
/*
* vm_page_startup:
*
* Initializes the resident memory module.
*
* Allocates memory for the page cells, and
* for the object/offset-to-page hash table headers.
* Each page cell is initialized and placed on the free list.
*/
vm_offset_t
vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
{
vm_offset_t mapped;
struct vm_page **bucket;
vm_size_t npages, page_range;
vm_offset_t new_end;
int i;
vm_offset_t pa;
int nblocks;
vm_offset_t last_pa;
/* the biggest memory array is the second group of pages */
vm_offset_t end;
vm_offset_t biggestone, biggestsize;
vm_offset_t total;
vm_size_t bootpages;
total = 0;
biggestsize = 0;
biggestone = 0;
nblocks = 0;
vaddr = round_page(vaddr);
for (i = 0; phys_avail[i + 1]; i += 2) {
phys_avail[i] = round_page(phys_avail[i]);
phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
}
for (i = 0; phys_avail[i + 1]; i += 2) {
vm_size_t size = phys_avail[i + 1] - phys_avail[i];
if (size > biggestsize) {
biggestone = i;
biggestsize = size;
}
++nblocks;
total += size;
}
end = phys_avail[biggestone+1];
/*
* Initialize the queue headers for the free queue, the active queue
* and the inactive queue.
*/
vm_pageq_init();
/*
* Allocate memory for use when boot strapping the kernel memory allocator
*/
bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
new_end = end - bootpages;
new_end = trunc_page(new_end);
mapped = pmap_map(&vaddr, new_end, end,
VM_PROT_READ | VM_PROT_WRITE);
bzero((caddr_t) mapped, end - new_end);
uma_startup((caddr_t)mapped);
end = new_end;
/*
* Allocate (and initialize) the hash table buckets.
*
* The number of buckets MUST BE a power of 2, and the actual value is
* the next power of 2 greater than the number of physical pages in
* the system.
*
* We make the hash table approximately 2x the number of pages to
* reduce the chain length. This is about the same size using the
* singly-linked list as the 1x hash table we were using before
* using TAILQ but the chain length will be smaller.
*
* Note: This computation can be tweaked if desired.
*/
if (vm_page_bucket_count == 0) {
vm_page_bucket_count = 1;
while (vm_page_bucket_count < atop(total))
vm_page_bucket_count <<= 1;
}
vm_page_bucket_count <<= 1;
vm_page_hash_mask = vm_page_bucket_count - 1;
/*
* Validate these addresses.
*/
new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
new_end = trunc_page(new_end);
mapped = pmap_map(&vaddr, new_end, end,
VM_PROT_READ | VM_PROT_WRITE);
bzero((caddr_t) mapped, end - new_end);
mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
vm_page_buckets = (struct vm_page **)mapped;
bucket = vm_page_buckets;
for (i = 0; i < vm_page_bucket_count; i++) {
*bucket = NULL;
bucket++;
}
/*
* Compute the number of pages of memory that will be available for
* use (taking into account the overhead of a page structure per
* page).
*/
first_page = phys_avail[0] / PAGE_SIZE;
page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
npages = (total - (page_range * sizeof(struct vm_page)) -
(end - new_end)) / PAGE_SIZE;
end = new_end;
/*
* Initialize the mem entry structures now, and put them in the free
* queue.
*/
new_end = trunc_page(end - page_range * sizeof(struct vm_page));
mapped = pmap_map(&vaddr, new_end, end,
VM_PROT_READ | VM_PROT_WRITE);
vm_page_array = (vm_page_t) mapped;
/*
* Clear all of the page structures
*/
bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
vm_page_array_size = page_range;
/*
* Construct the free queue(s) in descending order (by physical
* address) so that the first 16MB of physical memory is allocated
* last rather than first. On large-memory machines, this avoids
* the exhaustion of low physical memory before isa_dmainit has run.
*/
cnt.v_page_count = 0;
cnt.v_free_count = 0;
for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
pa = phys_avail[i];
if (i == biggestone)
last_pa = new_end;
else
last_pa = phys_avail[i + 1];
while (pa < last_pa && npages-- > 0) {
vm_pageq_add_new_page(pa);
pa += PAGE_SIZE;
}
}
return (vaddr);
}
/*
* vm_page_hash:
*
* Distributes the object/offset key pair among hash buckets.
*
* NOTE: This macro depends on vm_page_bucket_count being a power of 2.
* This routine may not block.
*
* We try to randomize the hash based on the object to spread the pages
* out in the hash table without it costing us too much.
*/
static __inline int
vm_page_hash(vm_object_t object, vm_pindex_t pindex)
{
int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
return (i & vm_page_hash_mask);
}
void
vm_page_flag_set(vm_page_t m, unsigned short bits)
{
GIANT_REQUIRED;
m->flags |= bits;
}
void
vm_page_flag_clear(vm_page_t m, unsigned short bits)
{
GIANT_REQUIRED;
m->flags &= ~bits;
}
void
vm_page_busy(vm_page_t m)
{
KASSERT((m->flags & PG_BUSY) == 0,
("vm_page_busy: page already busy!!!"));
vm_page_flag_set(m, PG_BUSY);
}
/*
* vm_page_flash:
*
* wakeup anyone waiting for the page.
*/
void
vm_page_flash(vm_page_t m)
{
if (m->flags & PG_WANTED) {
vm_page_flag_clear(m, PG_WANTED);
wakeup(m);
}
}
/*
* vm_page_wakeup:
*
* clear the PG_BUSY flag and wakeup anyone waiting for the
* page.
*
*/
void
vm_page_wakeup(vm_page_t m)
{
KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
vm_page_flag_clear(m, PG_BUSY);
vm_page_flash(m);
}
/*
*
*
*/
void
vm_page_io_start(vm_page_t m)
{
GIANT_REQUIRED;
m->busy++;
}
void
vm_page_io_finish(vm_page_t m)
{
GIANT_REQUIRED;
m->busy--;
if (m->busy == 0)
vm_page_flash(m);
}
/*
* Keep page from being freed by the page daemon
* much of the same effect as wiring, except much lower
* overhead and should be used only for *very* temporary
* holding ("wiring").
*/
void
vm_page_hold(vm_page_t mem)
{
GIANT_REQUIRED;
mem->hold_count++;
}
void
vm_page_unhold(vm_page_t mem)
{
GIANT_REQUIRED;
--mem->hold_count;
KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
vm_page_free_toq(mem);
}
/*
* vm_page_protect:
*
* Reduce the protection of a page. This routine never raises the
* protection and therefore can be safely called if the page is already
* at VM_PROT_NONE (it will be a NOP effectively ).
*/
void
vm_page_protect(vm_page_t mem, int prot)
{
if (prot == VM_PROT_NONE) {
if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
pmap_page_protect(mem, VM_PROT_NONE);
vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
}
} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
pmap_page_protect(mem, VM_PROT_READ);
vm_page_flag_clear(mem, PG_WRITEABLE);
}
}
/*
* vm_page_zero_fill:
*
* Zero-fill the specified page.
* Written as a standard pagein routine, to
* be used by the zero-fill object.
*/
boolean_t
vm_page_zero_fill(vm_page_t m)
{
pmap_zero_page(m);
return (TRUE);
}
/*
* vm_page_zero_fill_area:
*
* Like vm_page_zero_fill but only fill the specified area.
*/
boolean_t
vm_page_zero_fill_area(vm_page_t m, int off, int size)
{
pmap_zero_page_area(m, off, size);
return (TRUE);
}
/*
* vm_page_copy:
*
* Copy one page to another
*/
void
vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
{
pmap_copy_page(src_m, dest_m);
dest_m->valid = VM_PAGE_BITS_ALL;
}
/*
* vm_page_free:
*
* Free a page
*
* The clearing of PG_ZERO is a temporary safety until the code can be
* reviewed to determine that PG_ZERO is being properly cleared on
* write faults or maps. PG_ZERO was previously cleared in
* vm_page_alloc().
*/
void
vm_page_free(vm_page_t m)
{
vm_page_flag_clear(m, PG_ZERO);
vm_page_free_toq(m);
vm_page_zero_idle_wakeup();
}
/*
* vm_page_free_zero:
*
* Free a page to the zerod-pages queue
*/
void
vm_page_free_zero(vm_page_t m)
{
vm_page_flag_set(m, PG_ZERO);
vm_page_free_toq(m);
}
/*
* vm_page_sleep_busy:
*
* Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
* m->busy is zero. Returns TRUE if it had to sleep ( including if
* it almost had to sleep and made temporary spl*() mods), FALSE
* otherwise.
*
* This routine assumes that interrupts can only remove the busy
* status from a page, not set the busy status or change it from
* PG_BUSY to m->busy or vise versa (which would create a timing
* window).
*/
int
vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
{
GIANT_REQUIRED;
if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
int s = splvm();
if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
/*
* Page is busy. Wait and retry.
*/
vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
tsleep(m, PVM, msg, 0);
}
splx(s);
return (TRUE);
/* not reached */
}
return (FALSE);
}
/*
* vm_page_dirty:
*
* make page all dirty
*/
void
vm_page_dirty(vm_page_t m)
{
KASSERT(m->queue - m->pc != PQ_CACHE,
("vm_page_dirty: page in cache!"));
m->dirty = VM_PAGE_BITS_ALL;
}
/*
* vm_page_undirty:
*
* Set page to not be dirty. Note: does not clear pmap modify bits
*/
void
vm_page_undirty(vm_page_t m)
{
m->dirty = 0;
}
/*
* vm_page_insert: [ internal use only ]
*
* Inserts the given mem entry into the object and object list.
*
* The pagetables are not updated but will presumably fault the page
* in if necessary, or if a kernel page the caller will at some point
* enter the page into the kernel's pmap. We are not allowed to block
* here so we *can't* do this anyway.
*
* The object and page must be locked, and must be splhigh.
* This routine may not block.
*/
void
vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
{
struct vm_page **bucket;
GIANT_REQUIRED;
if (m->object != NULL)
panic("vm_page_insert: already inserted");
/*
* Record the object/offset pair in this page
*/
m->object = object;
m->pindex = pindex;
/*
* Insert it into the object_object/offset hash table
*/
bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
mtx_lock_spin(&vm_page_buckets_mtx);
m->hnext = *bucket;
*bucket = m;
mtx_unlock_spin(&vm_page_buckets_mtx);
/*
* Now link into the object's list of backed pages.
*/
TAILQ_INSERT_TAIL(&object->memq, m, listq);
object->generation++;
/*
* show that the object has one more resident page.
*/
object->resident_page_count++;
/*
* Since we are inserting a new and possibly dirty page,
* update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
*/
if (m->flags & PG_WRITEABLE)
vm_object_set_writeable_dirty(object);
}
/*
* vm_page_remove:
* NOTE: used by device pager as well -wfj
*
* Removes the given mem entry from the object/offset-page
* table and the object page list, but do not invalidate/terminate
* the backing store.
*
* The object and page must be locked, and at splhigh.
* The underlying pmap entry (if any) is NOT removed here.
* This routine may not block.
*/
void
vm_page_remove(vm_page_t m)
{
vm_object_t object;
vm_page_t *bucket;
GIANT_REQUIRED;
if (m->object == NULL)
return;
if ((m->flags & PG_BUSY) == 0) {
panic("vm_page_remove: page not busy");
}
/*
* Basically destroy the page.
*/
vm_page_wakeup(m);
object = m->object;
/*
* Remove from the object_object/offset hash table. The object
* must be on the hash queue, we will panic if it isn't
*/
bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
mtx_lock_spin(&vm_page_buckets_mtx);
while (*bucket != m) {
if (*bucket == NULL)
panic("vm_page_remove(): page not found in hash");
bucket = &(*bucket)->hnext;
}
*bucket = m->hnext;
m->hnext = NULL;
mtx_unlock_spin(&vm_page_buckets_mtx);
/*
* Now remove from the object's list of backed pages.
*/
TAILQ_REMOVE(&object->memq, m, listq);
/*
* And show that the object has one fewer resident page.
*/
object->resident_page_count--;
object->generation++;
m->object = NULL;
}
/*
* vm_page_lookup:
*
* Returns the page associated with the object/offset
* pair specified; if none is found, NULL is returned.
*
* The object must be locked. No side effects.
* This routine may not block.
* This is a critical path routine
*/
vm_page_t
vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
{
vm_page_t m;
struct vm_page **bucket;
/*
* Search the hash table for this object/offset pair
*/
bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
mtx_lock_spin(&vm_page_buckets_mtx);
for (m = *bucket; m != NULL; m = m->hnext)
if (m->object == object && m->pindex == pindex)
break;
mtx_unlock_spin(&vm_page_buckets_mtx);
return (m);
}
/*
* vm_page_rename:
*
* Move the given memory entry from its
* current object to the specified target object/offset.
*
* The object must be locked.
* This routine may not block.
*
* Note: this routine will raise itself to splvm(), the caller need not.
*
* Note: swap associated with the page must be invalidated by the move. We
* have to do this for several reasons: (1) we aren't freeing the
* page, (2) we are dirtying the page, (3) the VM system is probably
* moving the page from object A to B, and will then later move
* the backing store from A to B and we can't have a conflict.
*
* Note: we *always* dirty the page. It is necessary both for the
* fact that we moved it, and because we may be invalidating
* swap. If the page is on the cache, we have to deactivate it
* or vm_page_dirty() will panic. Dirty pages are not allowed
* on the cache.
*/
void
vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
{
int s;
s = splvm();
vm_page_remove(m);
vm_page_insert(m, new_object, new_pindex);
if (m->queue - m->pc == PQ_CACHE)
vm_page_deactivate(m);
vm_page_dirty(m);
splx(s);
}
/*
* vm_page_select_cache:
*
* Find a page on the cache queue with color optimization. As pages
* might be found, but not applicable, they are deactivated. This
* keeps us from using potentially busy cached pages.
*
* This routine must be called at splvm().
* This routine may not block.
*/
static vm_page_t
vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
{
vm_page_t m;
GIANT_REQUIRED;
while (TRUE) {
m = vm_pageq_find(
PQ_CACHE,
(pindex + object->pg_color) & PQ_L2_MASK,
FALSE
);
if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
m->hold_count || m->wire_count)) {
vm_page_deactivate(m);
continue;
}
return m;
}
}
/*
* vm_page_select_free:
*
* Find a free or zero page, with specified preference.
*
* This routine must be called at splvm().
* This routine may not block.
*/
static __inline vm_page_t
vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
{
vm_page_t m;
m = vm_pageq_find(
PQ_FREE,
(pindex + object->pg_color) & PQ_L2_MASK,
prefer_zero
);
return (m);
}
/*
* vm_page_alloc:
*
* Allocate and return a memory cell associated
* with this VM object/offset pair.
*
* page_req classes:
* VM_ALLOC_NORMAL normal process request
* VM_ALLOC_SYSTEM system *really* needs a page
* VM_ALLOC_INTERRUPT interrupt time request
* VM_ALLOC_ZERO zero page
*
* This routine may not block.
*
* Additional special handling is required when called from an
* interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with
* the page cache in this case.
*/
vm_page_t
vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
{
vm_page_t m = NULL;
boolean_t prefer_zero;
int s;
GIANT_REQUIRED;
KASSERT(!vm_page_lookup(object, pindex),
("vm_page_alloc: page already allocated"));
prefer_zero = (page_req & VM_ALLOC_ZERO) != 0 ? TRUE : FALSE;
page_req &= ~VM_ALLOC_ZERO;
/*
* The pager is allowed to eat deeper into the free page list.
*/
if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
page_req = VM_ALLOC_SYSTEM;
};
s = splvm();
loop:
if (cnt.v_free_count > cnt.v_free_reserved) {
/*
* Allocate from the free queue if there are plenty of pages
* in it.
*/
m = vm_page_select_free(object, pindex, prefer_zero);
} else if (
(page_req == VM_ALLOC_SYSTEM &&
cnt.v_cache_count == 0 &&
cnt.v_free_count > cnt.v_interrupt_free_min) ||
(page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
) {
/*
* Interrupt or system, dig deeper into the free list.
*/
m = vm_page_select_free(object, pindex, FALSE);
} else if (page_req != VM_ALLOC_INTERRUPT) {
/*
* Allocatable from cache (non-interrupt only). On success,
* we must free the page and try again, thus ensuring that
* cnt.v_*_free_min counters are replenished.
*/
m = vm_page_select_cache(object, pindex);
if (m == NULL) {
splx(s);
#if defined(DIAGNOSTIC)
if (cnt.v_cache_count > 0)
printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
#endif
vm_pageout_deficit++;
pagedaemon_wakeup();
return (NULL);
}
KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
vm_page_busy(m);
vm_page_protect(m, VM_PROT_NONE);
vm_page_free(m);
goto loop;
} else {
/*
* Not allocatable from cache from interrupt, give up.
*/
splx(s);
vm_pageout_deficit++;
pagedaemon_wakeup();
return (NULL);
}
/*
* At this point we had better have found a good page.
*/
KASSERT(
m != NULL,
("vm_page_alloc(): missing page on free queue\n")
);
/*
* Remove from free queue
*/
vm_pageq_remove_nowakeup(m);
/*
* Initialize structure. Only the PG_ZERO flag is inherited.
*/
if (m->flags & PG_ZERO) {
vm_page_zero_count--;
m->flags = PG_ZERO | PG_BUSY;
} else {
m->flags = PG_BUSY;
}
m->wire_count = 0;
m->hold_count = 0;
m->act_count = 0;
m->busy = 0;
m->valid = 0;
KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
/*
* vm_page_insert() is safe prior to the splx(). Note also that
* inserting a page here does not insert it into the pmap (which
* could cause us to block allocating memory). We cannot block
* anywhere.
*/
vm_page_insert(m, object, pindex);
/*
* Don't wakeup too often - wakeup the pageout daemon when
* we would be nearly out of memory.
*/
if (vm_paging_needed())
pagedaemon_wakeup();
splx(s);
return (m);
}
/*
* vm_wait: (also see VM_WAIT macro)
*
* Block until free pages are available for allocation
* - Called in various places before memory allocations.
*/
void
vm_wait(void)
{
int s;
s = splvm();
if (curproc == pageproc) {
vm_pageout_pages_needed = 1;
tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
} else {
if (!vm_pages_needed) {
vm_pages_needed = 1;
wakeup(&vm_pages_needed);
}
tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
}
splx(s);
}
/*
* vm_waitpfault: (also see VM_WAITPFAULT macro)
*
* Block until free pages are available for allocation
* - Called only in vm_fault so that processes page faulting
* can be easily tracked.
* - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
* processes will be able to grab memory first. Do not change
* this balance without careful testing first.
*/
void
vm_waitpfault(void)
{
int s;
s = splvm();
if (!vm_pages_needed) {
vm_pages_needed = 1;
wakeup(&vm_pages_needed);
}
tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
splx(s);
}
/*
* vm_page_activate:
*
* Put the specified page on the active list (if appropriate).
* Ensure that act_count is at least ACT_INIT but do not otherwise
* mess with it.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_activate(vm_page_t m)
{
int s;
GIANT_REQUIRED;
s = splvm();
if (m->queue != PQ_ACTIVE) {
if ((m->queue - m->pc) == PQ_CACHE)
cnt.v_reactivated++;
vm_pageq_remove(m);
if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
if (m->act_count < ACT_INIT)
m->act_count = ACT_INIT;
vm_pageq_enqueue(PQ_ACTIVE, m);
}
} else {
if (m->act_count < ACT_INIT)
m->act_count = ACT_INIT;
}
splx(s);
}
/*
* vm_page_free_wakeup:
*
* Helper routine for vm_page_free_toq() and vm_page_cache(). This
* routine is called when a page has been added to the cache or free
* queues.
*
* This routine may not block.
* This routine must be called at splvm()
*/
static __inline void
vm_page_free_wakeup(void)
{
/*
* if pageout daemon needs pages, then tell it that there are
* some free.
*/
if (vm_pageout_pages_needed &&
cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
wakeup(&vm_pageout_pages_needed);
vm_pageout_pages_needed = 0;
}
/*
* wakeup processes that are waiting on memory if we hit a
* high water mark. And wakeup scheduler process if we have
* lots of memory. this process will swapin processes.
*/
if (vm_pages_needed && !vm_page_count_min()) {
vm_pages_needed = 0;
wakeup(&cnt.v_free_count);
}
}
/*
* vm_page_free_toq:
*
* Returns the given page to the PQ_FREE list,
* disassociating it with any VM object.
*
* Object and page must be locked prior to entry.
* This routine may not block.
*/
void
vm_page_free_toq(vm_page_t m)
{
int s;
struct vpgqueues *pq;
vm_object_t object = m->object;
GIANT_REQUIRED;
s = splvm();
cnt.v_tfree++;
if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
printf(
"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
(u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
m->hold_count);
if ((m->queue - m->pc) == PQ_FREE)
panic("vm_page_free: freeing free page");
else
panic("vm_page_free: freeing busy page");
}
/*
* unqueue, then remove page. Note that we cannot destroy
* the page here because we do not want to call the pager's
* callback routine until after we've put the page on the
* appropriate free queue.
*/
vm_pageq_remove_nowakeup(m);
vm_page_remove(m);
/*
* If fictitious remove object association and
* return, otherwise delay object association removal.
*/
if ((m->flags & PG_FICTITIOUS) != 0) {
splx(s);
return;
}
m->valid = 0;
vm_page_undirty(m);
if (m->wire_count != 0) {
if (m->wire_count > 1) {
panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
m->wire_count, (long)m->pindex);
}
panic("vm_page_free: freeing wired page\n");
}
/*
* If we've exhausted the object's resident pages we want to free
* it up.
*/
if (object &&
(object->type == OBJT_VNODE) &&
((object->flags & OBJ_DEAD) == 0)
) {
struct vnode *vp = (struct vnode *)object->handle;
if (vp && VSHOULDFREE(vp))
vfree(vp);
}
/*
* Clear the UNMANAGED flag when freeing an unmanaged page.
*/
if (m->flags & PG_UNMANAGED) {
m->flags &= ~PG_UNMANAGED;
} else {
#ifdef __alpha__
pmap_page_is_free(m);
#endif
}
if (m->hold_count != 0) {
m->flags &= ~PG_ZERO;
m->queue = PQ_HOLD;
} else
m->queue = PQ_FREE + m->pc;
pq = &vm_page_queues[m->queue];
pq->lcnt++;
++(*pq->cnt);
/*
* Put zero'd pages on the end ( where we look for zero'd pages
* first ) and non-zerod pages at the head.
*/
if (m->flags & PG_ZERO) {
TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
++vm_page_zero_count;
} else {
TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
}
vm_page_free_wakeup();
splx(s);
}
/*
* vm_page_unmanage:
*
* Prevent PV management from being done on the page. The page is
* removed from the paging queues as if it were wired, and as a
* consequence of no longer being managed the pageout daemon will not
* touch it (since there is no way to locate the pte mappings for the
* page). madvise() calls that mess with the pmap will also no longer
* operate on the page.
*
* Beyond that the page is still reasonably 'normal'. Freeing the page
* will clear the flag.
*
* This routine is used by OBJT_PHYS objects - objects using unswappable
* physical memory as backing store rather then swap-backed memory and
* will eventually be extended to support 4MB unmanaged physical
* mappings.
*/
void
vm_page_unmanage(vm_page_t m)
{
int s;
s = splvm();
if ((m->flags & PG_UNMANAGED) == 0) {
if (m->wire_count == 0)
vm_pageq_remove(m);
}
vm_page_flag_set(m, PG_UNMANAGED);
splx(s);
}
/*
* vm_page_wire:
*
* Mark this page as wired down by yet
* another map, removing it from paging queues
* as necessary.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_wire(vm_page_t m)
{
int s;
/*
* Only bump the wire statistics if the page is not already wired,
* and only unqueue the page if it is on some queue (if it is unmanaged
* it is already off the queues).
*/
s = splvm();
if (m->wire_count == 0) {
if ((m->flags & PG_UNMANAGED) == 0)
vm_pageq_remove(m);
cnt.v_wire_count++;
}
m->wire_count++;
KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
splx(s);
vm_page_flag_set(m, PG_MAPPED);
}
/*
* vm_page_unwire:
*
* Release one wiring of this page, potentially
* enabling it to be paged again.
*
* Many pages placed on the inactive queue should actually go
* into the cache, but it is difficult to figure out which. What
* we do instead, if the inactive target is well met, is to put
* clean pages at the head of the inactive queue instead of the tail.
* This will cause them to be moved to the cache more quickly and
* if not actively re-referenced, freed more quickly. If we just
* stick these pages at the end of the inactive queue, heavy filesystem
* meta-data accesses can cause an unnecessary paging load on memory bound
* processes. This optimization causes one-time-use metadata to be
* reused more quickly.
*
* BUT, if we are in a low-memory situation we have no choice but to
* put clean pages on the cache queue.
*
* A number of routines use vm_page_unwire() to guarantee that the page
* will go into either the inactive or active queues, and will NEVER
* be placed in the cache - for example, just after dirtying a page.
* dirty pages in the cache are not allowed.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_unwire(vm_page_t m, int activate)
{
int s;
s = splvm();
if (m->wire_count > 0) {
m->wire_count--;
if (m->wire_count == 0) {
cnt.v_wire_count--;
if (m->flags & PG_UNMANAGED) {
;
} else if (activate)
vm_pageq_enqueue(PQ_ACTIVE, m);
else {
vm_page_flag_clear(m, PG_WINATCFLS);
vm_pageq_enqueue(PQ_INACTIVE, m);
}
}
} else {
panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
}
splx(s);
}
/*
* Move the specified page to the inactive queue. If the page has
* any associated swap, the swap is deallocated.
*
* Normally athead is 0 resulting in LRU operation. athead is set
* to 1 if we want this page to be 'as if it were placed in the cache',
* except without unmapping it from the process address space.
*
* This routine may not block.
*/
static __inline void
_vm_page_deactivate(vm_page_t m, int athead)
{
int s;
GIANT_REQUIRED;
/*
* Ignore if already inactive.
*/
if (m->queue == PQ_INACTIVE)
return;
s = splvm();
if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
if ((m->queue - m->pc) == PQ_CACHE)
cnt.v_reactivated++;
vm_page_flag_clear(m, PG_WINATCFLS);
vm_pageq_remove(m);
if (athead)
TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
else
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
m->queue = PQ_INACTIVE;
vm_page_queues[PQ_INACTIVE].lcnt++;
cnt.v_inactive_count++;
}
splx(s);
}
void
vm_page_deactivate(vm_page_t m)
{
_vm_page_deactivate(m, 0);
}
/*
* vm_page_try_to_cache:
*
* Returns 0 on failure, 1 on success
*/
int
vm_page_try_to_cache(vm_page_t m)
{
GIANT_REQUIRED;
if (m->dirty || m->hold_count || m->busy || m->wire_count ||
(m->flags & (PG_BUSY|PG_UNMANAGED))) {
return (0);
}
vm_page_test_dirty(m);
if (m->dirty)
return (0);
vm_page_cache(m);
return (1);
}
/*
* vm_page_try_to_free()
*
* Attempt to free the page. If we cannot free it, we do nothing.
* 1 is returned on success, 0 on failure.
*/
int
vm_page_try_to_free(vm_page_t m)
{
if (m->dirty || m->hold_count || m->busy || m->wire_count ||
(m->flags & (PG_BUSY|PG_UNMANAGED))) {
return (0);
}
vm_page_test_dirty(m);
if (m->dirty)
return (0);
vm_page_busy(m);
vm_page_protect(m, VM_PROT_NONE);
vm_page_free(m);
return (1);
}
/*
* vm_page_cache
*
* Put the specified page onto the page cache queue (if appropriate).
*
* This routine may not block.
*/
void
vm_page_cache(vm_page_t m)
{
int s;
GIANT_REQUIRED;
if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
printf("vm_page_cache: attempting to cache busy page\n");
return;
}
if ((m->queue - m->pc) == PQ_CACHE)
return;
/*
* Remove all pmaps and indicate that the page is not
* writeable or mapped.
*/
vm_page_protect(m, VM_PROT_NONE);
if (m->dirty != 0) {
panic("vm_page_cache: caching a dirty page, pindex: %ld",
(long)m->pindex);
}
s = splvm();
vm_pageq_remove_nowakeup(m);
vm_pageq_enqueue(PQ_CACHE + m->pc, m);
vm_page_free_wakeup();
splx(s);
}
/*
* vm_page_dontneed
*
* Cache, deactivate, or do nothing as appropriate. This routine
* is typically used by madvise() MADV_DONTNEED.
*
* Generally speaking we want to move the page into the cache so
* it gets reused quickly. However, this can result in a silly syndrome
* due to the page recycling too quickly. Small objects will not be
* fully cached. On the otherhand, if we move the page to the inactive
* queue we wind up with a problem whereby very large objects
* unnecessarily blow away our inactive and cache queues.
*
* The solution is to move the pages based on a fixed weighting. We
* either leave them alone, deactivate them, or move them to the cache,
* where moving them to the cache has the highest weighting.
* By forcing some pages into other queues we eventually force the
* system to balance the queues, potentially recovering other unrelated
* space from active. The idea is to not force this to happen too
* often.
*/
void
vm_page_dontneed(vm_page_t m)
{
static int dnweight;
int dnw;
int head;
GIANT_REQUIRED;
dnw = ++dnweight;
/*
* occassionally leave the page alone
*/
if ((dnw & 0x01F0) == 0 ||
m->queue == PQ_INACTIVE ||
m->queue - m->pc == PQ_CACHE
) {
if (m->act_count >= ACT_INIT)
--m->act_count;
return;
}
if (m->dirty == 0)
vm_page_test_dirty(m);
if (m->dirty || (dnw & 0x0070) == 0) {
/*
* Deactivate the page 3 times out of 32.
*/
head = 0;
} else {
/*
* Cache the page 28 times out of every 32. Note that
* the page is deactivated instead of cached, but placed
* at the head of the queue instead of the tail.
*/
head = 1;
}
_vm_page_deactivate(m, head);
}
/*
* Grab a page, waiting until we are waken up due to the page
* changing state. We keep on waiting, if the page continues
* to be in the object. If the page doesn't exist, allocate it.
*
* This routine may block.
*/
vm_page_t
vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
{
vm_page_t m;
int s, generation;
GIANT_REQUIRED;
retrylookup:
if ((m = vm_page_lookup(object, pindex)) != NULL) {
if (m->busy || (m->flags & PG_BUSY)) {
generation = object->generation;
s = splvm();
while ((object->generation == generation) &&
(m->busy || (m->flags & PG_BUSY))) {
vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
tsleep(m, PVM, "pgrbwt", 0);
if ((allocflags & VM_ALLOC_RETRY) == 0) {
splx(s);
return NULL;
}
}
splx(s);
goto retrylookup;
} else {
vm_page_busy(m);
return m;
}
}
m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
if (m == NULL) {
VM_WAIT;
if ((allocflags & VM_ALLOC_RETRY) == 0)
return NULL;
goto retrylookup;
}
return m;
}
/*
* Mapping function for valid bits or for dirty bits in
* a page. May not block.
*
* Inputs are required to range within a page.
*/
__inline int
vm_page_bits(int base, int size)
{
int first_bit;
int last_bit;
KASSERT(
base + size <= PAGE_SIZE,
("vm_page_bits: illegal base/size %d/%d", base, size)
);
if (size == 0) /* handle degenerate case */
return (0);
first_bit = base >> DEV_BSHIFT;
last_bit = (base + size - 1) >> DEV_BSHIFT;
return ((2 << last_bit) - (1 << first_bit));
}
/*
* vm_page_set_validclean:
*
* Sets portions of a page valid and clean. The arguments are expected
* to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
* of any partial chunks touched by the range. The invalid portion of
* such chunks will be zero'd.
*
* This routine may not block.
*
* (base + size) must be less then or equal to PAGE_SIZE.
*/
void
vm_page_set_validclean(vm_page_t m, int base, int size)
{
int pagebits;
int frag;
int endoff;
GIANT_REQUIRED;
if (size == 0) /* handle degenerate case */
return;
/*
* If the base is not DEV_BSIZE aligned and the valid
* bit is clear, we have to zero out a portion of the
* first block.
*/
if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
(m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, frag, base - frag);
/*
* If the ending offset is not DEV_BSIZE aligned and the
* valid bit is clear, we have to zero out a portion of
* the last block.
*/
endoff = base + size;
if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
(m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, endoff,
DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
/*
* Set valid, clear dirty bits. If validating the entire
* page we can safely clear the pmap modify bit. We also
* use this opportunity to clear the PG_NOSYNC flag. If a process
* takes a write fault on a MAP_NOSYNC memory area the flag will
* be set again.
*
* We set valid bits inclusive of any overlap, but we can only
* clear dirty bits for DEV_BSIZE chunks that are fully within
* the range.
*/
pagebits = vm_page_bits(base, size);
m->valid |= pagebits;
#if 0 /* NOT YET */
if ((frag = base & (DEV_BSIZE - 1)) != 0) {
frag = DEV_BSIZE - frag;
base += frag;
size -= frag;
if (size < 0)
size = 0;
}
pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
#endif
m->dirty &= ~pagebits;
if (base == 0 && size == PAGE_SIZE) {
pmap_clear_modify(m);
vm_page_flag_clear(m, PG_NOSYNC);
}
}
#if 0
void
vm_page_set_dirty(vm_page_t m, int base, int size)
{
m->dirty |= vm_page_bits(base, size);
}
#endif
void
vm_page_clear_dirty(vm_page_t m, int base, int size)
{
GIANT_REQUIRED;
m->dirty &= ~vm_page_bits(base, size);
}
/*
* vm_page_set_invalid:
*
* Invalidates DEV_BSIZE'd chunks within a page. Both the
* valid and dirty bits for the effected areas are cleared.
*
* May not block.
*/
void
vm_page_set_invalid(vm_page_t m, int base, int size)
{
int bits;
GIANT_REQUIRED;
bits = vm_page_bits(base, size);
m->valid &= ~bits;
m->dirty &= ~bits;
m->object->generation++;
}
/*
* vm_page_zero_invalid()
*
* The kernel assumes that the invalid portions of a page contain
* garbage, but such pages can be mapped into memory by user code.
* When this occurs, we must zero out the non-valid portions of the
* page so user code sees what it expects.
*
* Pages are most often semi-valid when the end of a file is mapped
* into memory and the file's size is not page aligned.
*/
void
vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
{
int b;
int i;
/*
* Scan the valid bits looking for invalid sections that
* must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
* valid bit may be set ) have already been zerod by
* vm_page_set_validclean().
*/
for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
if (i == (PAGE_SIZE / DEV_BSIZE) ||
(m->valid & (1 << i))
) {
if (i > b) {
pmap_zero_page_area(m,
b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
}
b = i + 1;
}
}
/*
* setvalid is TRUE when we can safely set the zero'd areas
* as being valid. We can do this if there are no cache consistancy
* issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
*/
if (setvalid)
m->valid = VM_PAGE_BITS_ALL;
}
/*
* vm_page_is_valid:
*
* Is (partial) page valid? Note that the case where size == 0
* will return FALSE in the degenerate case where the page is
* entirely invalid, and TRUE otherwise.
*
* May not block.
*/
int
vm_page_is_valid(vm_page_t m, int base, int size)
{
int bits = vm_page_bits(base, size);
if (m->valid && ((m->valid & bits) == bits))
return 1;
else
return 0;
}
/*
* update dirty bits from pmap/mmu. May not block.
*/
void
vm_page_test_dirty(vm_page_t m)
{
if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
vm_page_dirty(m);
}
}
int so_zerocp_fullpage = 0;
void
vm_page_cowfault(vm_page_t m)
{
vm_page_t mnew;
vm_object_t object;
vm_pindex_t pindex;
object = m->object;
pindex = m->pindex;
vm_page_busy(m);
retry_alloc:
vm_page_remove(m);
mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
if (mnew == NULL) {
vm_page_insert(m, object, pindex);
VM_WAIT;
goto retry_alloc;
}
if (m->cow == 0) {
/*
* check to see if we raced with an xmit complete when
* waiting to allocate a page. If so, put things back
* the way they were
*/
vm_page_busy(mnew);
vm_page_free(mnew);
vm_page_insert(m, object, pindex);
} else { /* clear COW & copy page */
if (so_zerocp_fullpage) {
mnew->valid = VM_PAGE_BITS_ALL;
} else {
vm_page_copy(m, mnew);
}
vm_page_dirty(mnew);
vm_page_flag_clear(mnew, PG_BUSY);
}
vm_page_wakeup(m); /*unbusy the page */
}
void
vm_page_cowclear(vm_page_t m)
{
/* XXX KDM find out if giant is required here. */
GIANT_REQUIRED;
if (m->cow) {
atomic_subtract_int(&m->cow, 1);
/*
* let vm_fault add back write permission lazily
*/
}
/*
* sf_buf_free() will free the page, so we needn't do it here
*/
}
void
vm_page_cowsetup(vm_page_t m)
{
/* XXX KDM find out if giant is required here */
GIANT_REQUIRED;
atomic_add_int(&m->cow, 1);
vm_page_protect(m, VM_PROT_READ);
}
#include "opt_ddb.h"
#ifdef DDB
#include <sys/kernel.h>
#include <ddb/ddb.h>
DB_SHOW_COMMAND(page, vm_page_print_page_info)
{
db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
}
DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
{
int i;
db_printf("PQ_FREE:");
for (i = 0; i < PQ_L2_SIZE; i++) {
db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
}
db_printf("\n");
db_printf("PQ_CACHE:");
for (i = 0; i < PQ_L2_SIZE; i++) {
db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
}
db_printf("\n");
db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
vm_page_queues[PQ_ACTIVE].lcnt,
vm_page_queues[PQ_INACTIVE].lcnt);
}
#endif /* DDB */