e508bf1279
saves an average of about 8 cycles or 5% on A64 (amd64 and i386 -- more in cycles but about the same percentage on i386, and more with old versions of gcc) with good CFLAGS and some parallelism in the caller. As usual, it takes a couple more multiplications so it will be slower on old machines. Convert to __FBSDID().
71 lines
2.3 KiB
C
71 lines
2.3 KiB
C
|
|
/* @(#)k_sin.c 1.3 95/01/18 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/* __kernel_sin( x, y, iy)
|
|
* kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
|
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
* Input y is the tail of x.
|
|
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
|
*
|
|
* Algorithm
|
|
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
|
* 2. Callers must return sin(-0) = -0 without calling here since our
|
|
* odd polynomial is not evaluated in a way that preserves -0.
|
|
* Callers may do the optimization sin(x) ~ x for tiny x.
|
|
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
|
* [0,pi/4]
|
|
* 3 13
|
|
* sin(x) ~ x + S1*x + ... + S6*x
|
|
* where
|
|
*
|
|
* |sin(x) 2 4 6 8 10 12 | -58
|
|
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
|
* | x |
|
|
*
|
|
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
|
* ~ sin(x) + (1-x*x/2)*y
|
|
* For better accuracy, let
|
|
* 3 2 2 2 2
|
|
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
|
* then 3 2
|
|
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
|
|
static const double
|
|
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
|
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
|
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
|
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
|
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
|
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
|
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
|
|
|
double
|
|
__kernel_sin(double x, double y, int iy)
|
|
{
|
|
double z,r,v,w;
|
|
|
|
z = x*x;
|
|
w = z*z;
|
|
r = S2+z*(S3+z*S4) + z*w*(S5+z*S6);
|
|
v = z*x;
|
|
if(iy==0) return x+v*(S1+z*r);
|
|
else return x-((z*(half*y-v*r)-y)-v*S1);
|
|
}
|