freebsd-skq/share/man/man4/netmap.4
luigi 41068e3dad It is 2014 and we have a new version of netmap.
Most relevant features:

- netmap emulation on any NIC, even those without native netmap support.

  On the ixgbe we have measured about 4Mpps/core/queue in this mode,
  which is still a lot more than with sockets/bpf.

- seamless interconnection of VALE switch, NICs and host stack.

  If you disable accelerations on your NIC (say em0)

        ifconfig em0 -txcsum -txcsum

  you can use the VALE switch to connect the NIC and the host stack:

        vale-ctl -h valeXX:em0

  allowing sharing the NIC with other netmap clients.

- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
  instead of pointers/count as before). This was unavoidable to support,
  in the future, multiple threads operating on the same rings.
  Netmap clients require very small source code changes to compile again.
      On the plus side, the new API should be easier to understand
  and the internals are a lot simpler.

The manual page has been updated extensively to reflect the current
features and give some examples.

This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00

973 lines
28 KiB
Groff

.\" Copyright (c) 2011-2014 Matteo Landi, Luigi Rizzo, Universita` di Pisa
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\" This document is derived in part from the enet man page (enet.4)
.\" distributed with 4.3BSD Unix.
.\"
.\" $FreeBSD$
.\"
.Dd January 4, 2014
.Dt NETMAP 4
.Os
.Sh NAME
.Nm netmap
.Nd a framework for fast packet I/O
.br
.Nm VALE
.Nd a fast VirtuAl Local Ethernet using the netmap API
.Sh SYNOPSIS
.Cd device netmap
.Sh DESCRIPTION
.Nm
is a framework for extremely fast and efficient packet I/O
for both userspace and kernel clients.
It runs on FreeBSD and Linux,
and includes
.Nm VALE ,
a very fast and modular in-kernel software switch/dataplane.
.Pp
.Nm
and
.Nm VALE
are one order of magnitude faster than sockets, bpf or
native switches based on
.Xr tun/tap 4 ,
reaching 14.88 Mpps with much less than one core on a 10 Gbit NIC,
and 20 Mpps per core for VALE ports.
.Pp
Userspace clients can dynamically switch NICs into
.Nm
mode and send and receive raw packets through
memory mapped buffers.
A selectable file descriptor supports
synchronization and blocking I/O.
.Pp
Similarly,
.Nm VALE
can dynamically create switch instances and ports,
providing high speed packet I/O between processes,
virtual machines, NICs and the host stack.
.Pp
For best performance,
.Nm
requires explicit support in device drivers;
however, the
.Nm
API can be emulated on top of unmodified device drivers,
at the price of reduced performance
(but still better than sockets or BPF/pcap).
.Pp
In the rest of this (long) manual page we document
various aspects of the
.Nm
and
.Nm VALE
architecture, features and usage.
.Pp
.Sh ARCHITECTURE
.Nm
supports raw packet I/O through a
.Em port ,
which can be connected to a physical interface
.Em ( NIC ) ,
to the host stack,
or to a
.Nm VALE
switch).
Ports use preallocated circular queues of buffers
.Em ( rings )
residing in an mmapped region.
There is one ring for each transmit/receive queue of a
NIC or virtual port.
An additional ring pair connects to the host stack.
.Pp
After binding a file descriptor to a port, a
.Nm
client can send or receive packets in batches through
the rings, and possibly implement zero-copy forwarding
between ports.
.Pp
All NICs operating in
.Nm
mode use the same memory region,
accessible to all processes who own
.Nm /dev/netmap
file descriptors bound to NICs.
.Nm VALE
ports instead use separate memory regions.
.Pp
.Sh ENTERING AND EXITING NETMAP MODE
Ports and rings are created and controlled through a file descriptor,
created by opening a special device
.Dl fd = open("/dev/netmap");
and then bound to a specific port with an
.Dl ioctl(fd, NIOCREGIF, (struct nmreq *)arg);
.Pp
.Nm
has multiple modes of operation controlled by the
.Vt struct nmreq
argument.
.Va arg.nr_name
specifies the port name, as follows:
.Bl -tag -width XXXX
.It Dv OS network interface name (e.g. 'em0', 'eth1', ... )
the data path of the NIC is disconnected from the host stack,
and the file descriptor is bound to the NIC (one or all queues),
or to the host stack;
.It Dv valeXXX:YYY (arbitrary XXX and YYY)
the file descriptor is bound to port YYY of a VALE switch called XXX,
both dynamically created if necessary.
The string cannot exceed IFNAMSIZ characters, and YYY cannot
be the name of any existing OS network interface.
.El
.Pp
On return,
.Va arg
indicates the size of the shared memory region,
and the number, size and location of all the
.Nm
data structures, which can be accessed by mmapping the memory
.Dl char *mem = mmap(0, arg.nr_memsize, fd);
.Pp
Non blocking I/O is done with special
.Xr ioctl 2
.Xr select 2
and
.Xr poll 2
on the file descriptor permit blocking I/O.
.Xr epoll 2
and
.Xr kqueue 2
are not supported on
.Nm
file descriptors.
.Pp
While a NIC is in
.Nm
mode, the OS will still believe the interface is up and running.
OS-generated packets for that NIC end up into a
.Nm
ring, and another ring is used to send packets into the OS network stack.
A
.Xr close 2
on the file descriptor removes the binding,
and returns the NIC to normal mode (reconnecting the data path
to the host stack), or destroys the virtual port.
.Pp
.Sh DATA STRUCTURES
The data structures in the mmapped memory region are detailed in
.Xr sys/net/netmap.h ,
which is the ultimate reference for the
.Nm
API. The main structures and fields are indicated below:
.Bl -tag -width XXX
.It Dv struct netmap_if (one per interface)
.Bd -literal
struct netmap_if {
...
const uint32_t ni_flags; /* properties */
...
const uint32_t ni_tx_rings; /* NIC tx rings */
const uint32_t ni_rx_rings; /* NIC rx rings */
const uint32_t ni_extra_tx_rings; /* extra tx rings */
const uint32_t ni_extra_rx_rings; /* extra rx rings */
...
};
.Ed
.Pp
Indicates the number of available rings
.Pa ( struct netmap_rings )
and their position in the mmapped region.
The number of tx and rx rings
.Pa ( ni_tx_rings , ni_rx_rings )
normally depends on the hardware.
NICs also have an extra tx/rx ring pair connected to the host stack.
.Em NIOCREGIF
can request additional tx/rx rings,
to be used between multiple processes/threads
accessing the same
.Nm
port.
.It Dv struct netmap_ring (one per ring)
.Bd -literal
struct netmap_ring {
...
const uint32_t num_slots; /* slots in each ring */
const uint32_t nr_buf_size; /* size of each buffer */
...
uint32_t head; /* (u) first buf owned by user */
uint32_t cur; /* (u) wakeup position */
const uint32_t tail; /* (k) first buf owned by kernel */
...
uint32_t flags;
struct timeval ts; /* (k) time of last rxsync() */
...
struct netmap_slot slot[0]; /* array of slots */
}
.Ed
.Pp
Implements transmit and receive rings, with read/write
pointers, metadata and and an array of
.Pa slots
describing the buffers.
.Pp
.It Dv struct netmap_slot (one per buffer)
.Bd -literal
struct netmap_slot {
uint32_t buf_idx; /* buffer index */
uint16_t len; /* packet length */
uint16_t flags; /* buf changed, etc. */
uint64_t ptr; /* address for indirect buffers */
};
.Ed
.Pp
Describes a packet buffer, which normally is identified by
an index and resides in the mmapped region.
.It Dv packet buffers
Fixed size (normally 2 KB) packet buffers allocated by the kernel.
.El
.Pp
The offset of the
.Pa struct netmap_if
in the mmapped region is indicated by the
.Pa nr_offset
field in the structure returned by
.Pa NIOCREGIF .
From there, all other objects are reachable through
relative references (offsets or indexes).
Macros and functions in <net/netmap_user.h>
help converting them into actual pointers:
.Pp
.Dl struct netmap_if *nifp = NETMAP_IF(mem, arg.nr_offset);
.Dl struct netmap_ring *txr = NETMAP_TXRING(nifp, ring_index);
.Dl struct netmap_ring *rxr = NETMAP_RXRING(nifp, ring_index);
.Pp
.Dl char *buf = NETMAP_BUF(ring, buffer_index);
.Sh RINGS, BUFFERS AND DATA I/O
.Va Rings
are circular queues of packets with three indexes/pointers
.Va ( head , cur , tail ) ;
one slot is always kept empty.
The ring size
.Va ( num_slots )
should not be assumed to be a power of two.
.br
(NOTE: older versions of netmap used head/count format to indicate
the content of a ring).
.Pp
.Va head
is the first slot available to userspace;
.br
.Va cur
is the wakeup point:
select/poll will unblock when
.Va tail
passes
.Va cur ;
.br
.Va tail
is the first slot reserved to the kernel.
.Pp
Slot indexes MUST only move forward;
for convenience, the function
.Dl nm_ring_next(ring, index)
returns the next index modulo the ring size.
.Pp
.Va head
and
.Va cur
are only modified by the user program;
.Va tail
is only modified by the kernel.
The kernel only reads/writes the
.Vt struct netmap_ring
slots and buffers
during the execution of a netmap-related system call.
The only exception are slots (and buffers) in the range
.Va tail\ . . . head-1 ,
that are explicitly assigned to the kernel.
.Pp
.Ss TRANSMIT RINGS
On transmit rings, after a
.Nm
system call, slots in the range
.Va head\ . . . tail-1
are available for transmission.
User code should fill the slots sequentially
and advance
.Va head
and
.Va cur
past slots ready to transmit.
.Va cur
may be moved further ahead if the user code needs
more slots before further transmissions (see
.Sx SCATTER GATHER I/O ) .
.Pp
At the next NIOCTXSYNC/select()/poll(),
slots up to
.Va head-1
are pushed to the port, and
.Va tail
may advance if further slots have become available.
Below is an example of the evolution of a TX ring:
.Pp
.Bd -literal
after the syscall, slots between cur and tail are (a)vailable
head=cur tail
| |
v v
TX [.....aaaaaaaaaaa.............]
user creates new packets to (T)ransmit
head=cur tail
| |
v v
TX [.....TTTTTaaaaaa.............]
NIOCTXSYNC/poll()/select() sends packets and reports new slots
head=cur tail
| |
v v
TX [..........aaaaaaaaaaa........]
.Ed
.Pp
select() and poll() wlll block if there is no space in the ring, i.e.
.Dl ring->cur == ring->tail
and return when new slots have become available.
.Pp
High speed applications may want to amortize the cost of system calls
by preparing as many packets as possible before issuing them.
.Pp
A transmit ring with pending transmissions has
.Dl ring->head != ring->tail + 1 (modulo the ring size).
The function
.Va int nm_tx_pending(ring)
implements this test.
.Pp
.Ss RECEIVE RINGS
On receive rings, after a
.Nm
system call, the slots in the range
.Va head\& . . . tail-1
contain received packets.
User code should process them and advance
.Va head
and
.Va cur
past slots it wants to return to the kernel.
.Va cur
may be moved further ahead if the user code wants to
wait for more packets
without returning all the previous slots to the kernel.
.Pp
At the next NIOCRXSYNC/select()/poll(),
slots up to
.Va head-1
are returned to the kernel for further receives, and
.Va tail
may advance to report new incoming packets.
.br
Below is an example of the evolution of an RX ring:
.Bd -literal
after the syscall, there are some (h)eld and some (R)eceived slots
head cur tail
| | |
v v v
RX [..hhhhhhRRRRRRRR..........]
user advances head and cur, releasing some slots and holding others
head cur tail
| | |
v v v
RX [..*****hhhRRRRRR...........]
NICRXSYNC/poll()/select() recovers slots and reports new packets
head cur tail
| | |
v v v
RX [.......hhhRRRRRRRRRRRR....]
.Ed
.Pp
.Sh SLOTS AND PACKET BUFFERS
Normally, packets should be stored in the netmap-allocated buffers
assigned to slots when ports are bound to a file descriptor.
One packet is fully contained in a single buffer.
.Pp
The following flags affect slot and buffer processing:
.Bl -tag -width XXX
.It NS_BUF_CHANGED
it MUST be used when the buf_idx in the slot is changed.
This can be used to implement
zero-copy forwarding, see
.Sx ZERO-COPY FORWARDING .
.Pp
.It NS_REPORT
reports when this buffer has been transmitted.
Normally,
.Nm
notifies transmit completions in batches, hence signals
can be delayed indefinitely. This flag helps detecting
when packets have been send and a file descriptor can be closed.
.It NS_FORWARD
When a ring is in 'transparent' mode (see
.Sx TRANSPARENT MODE ) ,
packets marked with this flags are forwarded to the other endpoint
at the next system call, thus restoring (in a selective way)
the connection between a NIC and the host stack.
.It NS_NO_LEARN
tells the forwarding code that the SRC MAC address for this
packet must not be used in the learning bridge code.
.It NS_INDIRECT
indicates that the packet's payload is in a user-supplied buffer,
whose user virtual address is in the 'ptr' field of the slot.
The size can reach 65535 bytes.
.br
This is only supported on the transmit ring of
.Nm VALE
ports, and it helps reducing data copies in the interconnection
of virtual machines.
.It NS_MOREFRAG
indicates that the packet continues with subsequent buffers;
the last buffer in a packet must have the flag clear.
.El
.Sh SCATTER GATHER I/O
Packets can span multiple slots if the
.Va NS_MOREFRAG
flag is set in all but the last slot.
The maximum length of a chain is 64 buffers.
This is normally used with
.Nm VALE
ports when connecting virtual machines, as they generate large
TSO segments that are not split unless they reach a physical device.
.Pp
NOTE: The length field always refers to the individual
fragment; there is no place with the total length of a packet.
.Pp
On receive rings the macro
.Va NS_RFRAGS(slot)
indicates the remaining number of slots for this packet,
including the current one.
Slots with a value greater than 1 also have NS_MOREFRAG set.
.Sh IOCTLS
.Nm
uses two ioctls (NIOCTXSYNC, NIOCRXSYNC)
for non-blocking I/O. They take no argument.
Two more ioctls (NIOCGINFO, NIOCREGIF) are used
to query and configure ports, with the following argument:
.Bd -literal
struct nmreq {
char nr_name[IFNAMSIZ]; /* (i) port name */
uint32_t nr_version; /* (i) API version */
uint32_t nr_offset; /* (o) nifp offset in mmap region */
uint32_t nr_memsize; /* (o) size of the mmap region */
uint32_t nr_tx_slots; /* (o) slots in tx rings */
uint32_t nr_rx_slots; /* (o) slots in rx rings */
uint16_t nr_tx_rings; /* (o) number of tx rings */
uint16_t nr_rx_rings; /* (o) number of tx rings */
uint16_t nr_ringid; /* (i) ring(s) we care about */
uint16_t nr_cmd; /* (i) special command */
uint16_t nr_arg1; /* (i) extra arguments */
uint16_t nr_arg2; /* (i) extra arguments */
...
};
.Ed
.Pp
A file descriptor obtained through
.Pa /dev/netmap
also supports the ioctl supported by network devices, see
.Xr netintro 4 .
.Pp
.Bl -tag -width XXXX
.It Dv NIOCGINFO
returns EINVAL if the named port does not support netmap.
Otherwise, it returns 0 and (advisory) information
about the port.
Note that all the information below can change before the
interface is actually put in netmap mode.
.Pp
.Bl -tag -width XX
.It Pa nr_memsize
indicates the size of the
.Nm
memory region. NICs in
.Nm
mode all share the same memory region,
whereas
.Nm VALE
ports have independent regions for each port.
.It Pa nr_tx_slots , nr_rx_slots
indicate the size of transmit and receive rings.
.It Pa nr_tx_rings , nr_rx_rings
indicate the number of transmit
and receive rings.
Both ring number and sizes may be configured at runtime
using interface-specific functions (e.g.
.Xr ethtool
).
.El
.It Dv NIOCREGIF
binds the port named in
.Va nr_name
to the file descriptor. For a physical device this also switches it into
.Nm
mode, disconnecting
it from the host stack.
Multiple file descriptors can be bound to the same port,
with proper synchronization left to the user.
.Pp
On return, it gives the same info as NIOCGINFO, and nr_ringid
indicates the identity of the rings controlled through the file
descriptor.
.Pp
.Va nr_ringid
selects which rings are controlled through this file descriptor.
Possible values are:
.Bl -tag -width XXXXX
.It 0
(default) all hardware rings
.It NETMAP_SW_RING
the ``host rings'', connecting to the host stack.
.It NETMAP_HW_RING | i
the i-th hardware ring .
.El
.Pp
By default, a
.Xr poll 2
or
.Xr select 2
call pushes out any pending packets on the transmit ring, even if
no write events are specified.
The feature can be disabled by or-ing
.Va NETMAP_NO_TX_SYNC
to the value written to
.Va nr_ringid.
When this feature is used,
packets are transmitted only on
.Va ioctl(NIOCTXSYNC)
or select()/poll() are called with a write event (POLLOUT/wfdset) or a full ring.
.Pp
When registering a virtual interface that is dynamically created to a
.Xr vale 4
switch, we can specify the desired number of rings (1 by default,
and currently up to 16) on it using nr_tx_rings and nr_rx_rings fields.
.It Dv NIOCTXSYNC
tells the hardware of new packets to transmit, and updates the
number of slots available for transmission.
.It Dv NIOCRXSYNC
tells the hardware of consumed packets, and asks for newly available
packets.
.El
.Sh SELECT AND POLL
.Xr select 2
and
.Xr poll 2
on a
.Nm
file descriptor process rings as indicated in
.Sx TRANSMIT RINGS
and
.Sx RECEIVE RINGS
when write (POLLOUT) and read (POLLIN) events are requested.
.Pp
Both block if no slots are available in the ring (
.Va ring->cur == ring->tail )
.Pp
Packets in transmit rings are normally pushed out even without
requesting write events. Passing the NETMAP_NO_TX_SYNC flag to
.Em NIOCREGIF
disables this feature.
.Sh LIBRARIES
The
.Nm
API is supposed to be used directly, both because of its simplicity and
for efficient integration with applications.
.Pp
For conveniency, the
.Va <net/netmap_user.h>
header provides a few macros and functions to ease creating
a file descriptor and doing I/O with a
.Nm
port. These are loosely modeled after the
.Xr pcap 3
API, to ease porting of libpcap-based applications to
.Nm .
To use these extra functions, programs should
.Dl #define NETMAP_WITH_LIBS
before
.Dl #include <net/netmap_user.h>
.Pp
The following functions are available:
.Bl -tag -width XXXXX
.It Va struct nm_desc_t * nm_open(const char *ifname, const char *ring_name, int flags, int ring_flags)
similar to
.Xr pcap_open ,
binds a file descriptor to a port.
.Bl -tag -width XX
.It Va ifname
is a port name, in the form "netmap:XXX" for a NIC and "valeXXX:YYY" for a
.Nm VALE
port.
.It Va flags
can be set to
.Va NETMAP_SW_RING
to bind to the host ring pair,
or to NETMAP_HW_RING to bind to a specific ring.
.Va ring_name
with NETMAP_HW_RING,
is interpreted as a string or an integer indicating the ring to use.
.It Va ring_flags
is copied directly into the ring flags, to specify additional parameters
such as NR_TIMESTAMP or NR_FORWARD.
.El
.It Va int nm_close(struct nm_desc_t *d)
closes the file descriptor, unmaps memory, frees resources.
.It Va int nm_inject(struct nm_desc_t *d, const void *buf, size_t size)
similar to pcap_inject(), pushes a packet to a ring, returns the size
of the packet is successful, or 0 on error;
.It Va int nm_dispatch(struct nm_desc_t *d, int cnt, nm_cb_t cb, u_char *arg)
similar to pcap_dispatch(), applies a callback to incoming packets
.It Va u_char * nm_nextpkt(struct nm_desc_t *d, struct nm_hdr_t *hdr)
similar to pcap_next(), fetches the next packet
.Pp
.El
.Sh SUPPORTED DEVICES
.Nm
natively supports the following devices:
.Pp
On FreeBSD:
.Xr em 4 ,
.Xr igb 4 ,
.Xr ixgbe 4 ,
.Xr lem 4 ,
.Xr re 4 .
.Pp
On Linux
.Xr e1000 4 ,
.Xr e1000e 4 ,
.Xr igb 4 ,
.Xr ixgbe 4 ,
.Xr mlx4 4 ,
.Xr forcedeth 4 ,
.Xr r8169 4 .
.Pp
NICs without native support can still be used in
.Nm
mode through emulation. Performance is inferior to native netmap
mode but still significantly higher than sockets, and approaching
that of in-kernel solutions such as Linux's
.Xr pktgen .
.Pp
Emulation is also available for devices with native netmap support,
which can be used for testing or performance comparison.
The sysctl variable
.Va dev.netmap.admode
globally controls how netmap mode is implemented.
.Sh SYSCTL VARIABLES AND MODULE PARAMETERS
Some aspect of the operation of
.Nm
are controlled through sysctl variables on FreeBSD
.Em ( dev.netmap.* )
and module parameters on Linux
.Em ( /sys/module/netmap_lin/parameters/* ) :
.Pp
.Bl -tag -width indent
.It Va dev.netmap.admode: 0
Controls the use of native or emulated adapter mode.
0 uses the best available option, 1 forces native and
fails if not available, 2 forces emulated hence never fails.
.It Va dev.netmap.generic_ringsize: 1024
Ring size used for emulated netmap mode
.It Va dev.netmap.generic_mit: 100000
Controls interrupt moderation for emulated mode
.It Va dev.netmap.mmap_unreg: 0
.It Va dev.netmap.fwd: 0
Forces NS_FORWARD mode
.It Va dev.netmap.flags: 0
.It Va dev.netmap.txsync_retry: 2
.It Va dev.netmap.no_pendintr: 1
Forces recovery of transmit buffers on system calls
.It Va dev.netmap.mitigate: 1
Propagates interrupt mitigation to user processes
.It Va dev.netmap.no_timestamp: 0
Disables the update of the timestamp in the netmap ring
.It Va dev.netmap.verbose: 0
Verbose kernel messages
.It Va dev.netmap.buf_num: 163840
.It Va dev.netmap.buf_size: 2048
.It Va dev.netmap.ring_num: 200
.It Va dev.netmap.ring_size: 36864
.It Va dev.netmap.if_num: 100
.It Va dev.netmap.if_size: 1024
Sizes and number of objects (netmap_if, netmap_ring, buffers)
for the global memory region. The only parameter worth modifying is
.Va dev.netmap.buf_num
as it impacts the total amount of memory used by netmap.
.It Va dev.netmap.buf_curr_num: 0
.It Va dev.netmap.buf_curr_size: 0
.It Va dev.netmap.ring_curr_num: 0
.It Va dev.netmap.ring_curr_size: 0
.It Va dev.netmap.if_curr_num: 0
.It Va dev.netmap.if_curr_size: 0
Actual values in use.
.It Va dev.netmap.bridge_batch: 1024
Batch size used when moving packets across a
.Nm VALE
switch. Values above 64 generally guarantee good
performance.
.El
.Sh SYSTEM CALLS
.Nm
uses
.Xr select 2
and
.Xr poll 2
to wake up processes when significant events occur, and
.Xr mmap 2
to map memory.
.Xr ioctl 2
is used to configure ports and
.Nm VALE switches .
.Pp
Applications may need to create threads and bind them to
specific cores to improve performance, using standard
OS primitives, see
.Xr pthread 3 .
In particular,
.Xr pthread_setaffinity_np 3
may be of use.
.Sh CAVEATS
No matter how fast the CPU and OS are,
achieving line rate on 10G and faster interfaces
requires hardware with sufficient performance.
Several NICs are unable to sustain line rate with
small packet sizes. Insufficient PCIe or memory bandwidth
can also cause reduced performance.
.Pp
Another frequent reason for low performance is the use
of flow control on the link: a slow receiver can limit
the transmit speed.
Be sure to disable flow control when running high
speed experiments.
.Pp
.Ss SPECIAL NIC FEATURES
.Nm
is orthogonal to some NIC features such as
multiqueue, schedulers, packet filters.
.Pp
Multiple transmit and receive rings are supported natively
and can be configured with ordinary OS tools,
such as
.Xr ethtool
or
device-specific sysctl variables.
The same goes for Receive Packet Steering (RPS)
and filtering of incoming traffic.
.Pp
.Nm
.Em does not use
features such as
.Em checksum offloading , TCP segmentation offloading ,
.Em encryption , VLAN encapsulation/decapsulation ,
etc. .
When using netmap to exchange packets with the host stack,
make sure to disable these features.
.Sh EXAMPLES
.Ss TEST PROGRAMS
.Nm
comes with a few programs that can be used for testing or
simple applications.
See the
.Va examples/
directory in
.Nm
distributions, or
.Va tools/tools/netmap/
directory in FreeBSD distributions.
.Pp
.Xr pkt-gen
is a general purpose traffic source/sink.
.Pp
As an example
.Dl pkt-gen -i ix0 -f tx -l 60
can generate an infinite stream of minimum size packets, and
.Dl pkt-gen -i ix0 -f rx
is a traffic sink.
Both print traffic statistics, to help monitor
how the system performs.
.Pp
.Xr pkt-gen
has many options can be uses to set packet sizes, addresses,
rates, and use multiple send/receive threads and cores.
.Pp
.Xr bridge
is another test program which interconnects two
.Nm
ports. It can be used for transparent forwarding between
interfaces, as in
.Dl bridge -i ix0 -i ix1
or even connect the NIC to the host stack using netmap
.Dl bridge -i ix0 -i ix0
.Ss USING THE NATIVE API
The following code implements a traffic generator
.Pp
.Bd -literal -compact
#include <net/netmap_user.h>
...
void sender(void)
{
struct netmap_if *nifp;
struct netmap_ring *ring;
struct nmreq nmr;
struct pollfd fds;
fd = open("/dev/netmap", O_RDWR);
bzero(&nmr, sizeof(nmr));
strcpy(nmr.nr_name, "ix0");
nmr.nm_version = NETMAP_API;
ioctl(fd, NIOCREGIF, &nmr);
p = mmap(0, nmr.nr_memsize, fd);
nifp = NETMAP_IF(p, nmr.nr_offset);
ring = NETMAP_TXRING(nifp, 0);
fds.fd = fd;
fds.events = POLLOUT;
for (;;) {
poll(&fds, 1, -1);
while (!nm_ring_empty(ring)) {
i = ring->cur;
buf = NETMAP_BUF(ring, ring->slot[i].buf_index);
... prepare packet in buf ...
ring->slot[i].len = ... packet length ...
ring->head = ring->cur = nm_ring_next(ring, i);
}
}
}
.Ed
.Ss HELPER FUNCTIONS
A simple receiver can be implemented using the helper functions
.Bd -literal -compact
#define NETMAP_WITH_LIBS
#include <net/netmap_user.h>
...
void receiver(void)
{
struct nm_desc_t *d;
struct pollfd fds;
u_char *buf;
struct nm_hdr_t h;
...
d = nm_open("netmap:ix0", NULL, 0, 0);
fds.fd = NETMAP_FD(d);
fds.events = POLLIN;
for (;;) {
poll(&fds, 1, -1);
while ( (buf = nm_nextpkt(d, &h)) )
consume_pkt(buf, h->len);
}
nm_close(d);
}
.Ed
.Ss ZERO-COPY FORWARDING
Since physical interfaces share the same memory region,
it is possible to do packet forwarding between ports
swapping buffers. The buffer from the transmit ring is used
to replenish the receive ring:
.Bd -literal -compact
uint32_t tmp;
struct netmap_slot *src, *dst;
...
src = &src_ring->slot[rxr->cur];
dst = &dst_ring->slot[txr->cur];
tmp = dst->buf_idx;
dst->buf_idx = src->buf_idx;
dst->len = src->len;
dst->flags = NS_BUF_CHANGED;
src->buf_idx = tmp;
src->flags = NS_BUF_CHANGED;
rxr->head = rxr->cur = nm_ring_next(rxr, rxr->cur);
txr->head = txr->cur = nm_ring_next(txr, txr->cur);
...
.Ed
.Ss ACCESSING THE HOST STACK
.Ss VALE SWITCH
A simple way to test the performance of a
.Nm VALE
switch is to attach a sender and a receiver to it,
e.g. running the following in two different terminals:
.Dl pkt-gen -i vale1:a -f rx # receiver
.Dl pkt-gen -i vale1:b -f tx # sender
.Pp
The following command attaches an interface and the host stack
to a switch:
.Dl vale-ctl -h vale2:em0
Other
.Nm
clients attached to the same switch can now communicate
with the network card or the host.
.Pp
.Sh SEE ALSO
.Pp
http://info.iet.unipi.it/~luigi/netmap/
.Pp
Luigi Rizzo, Revisiting network I/O APIs: the netmap framework,
Communications of the ACM, 55 (3), pp.45-51, March 2012
.Pp
Luigi Rizzo, netmap: a novel framework for fast packet I/O,
Usenix ATC'12, June 2012, Boston
.Sh AUTHORS
.An -nosplit
The
.Nm
framework has been originally designed and implemented at the
Universita` di Pisa in 2011 by
.An Luigi Rizzo ,
and further extended with help from
.An Matteo Landi ,
.An Gaetano Catalli ,
.An Giuseppe Lettieri ,
.An Vincenzo Maffione .
.Pp
.Nm
and
.Nm VALE
have been funded by the European Commission within FP7 Projects
CHANGE (257422) and OPENLAB (287581).
.Pp
.Ss SPECIAL MODES
When the device name has the form
.Dl valeXXX:ifname (ifname is an existing interface)
the physical interface
(and optionally the corrisponding host stack endpoint)
are connected or disconnected from the
.Nm VALE
switch named XXX.
In this case the
.Pa ioctl()
is only used only for configuration, typically through the
.Xr vale-ctl
command.
The file descriptor cannot be used for I/O, and should be
closed after issuing the
.Pa ioctl() .