freebsd-skq/sys/dev/cxgbe/crypto/t4_crypto.c
jhb 5e70234bb6 Fix some incorrect sysctl pointers for some error stats.
The bad_session, sglist_error, and process_error sysctl nodes were
returning the value of the pad_error node instead of the appropriate
error counters.

Sponsored by:	Chelsio Communications
2017-09-14 21:06:08 +00:00

2235 lines
63 KiB
C

/*-
* Copyright (c) 2017 Chelsio Communications, Inc.
* All rights reserved.
* Written by: John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/sglist.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
#include "cryptodev_if.h"
#include "common/common.h"
#include "crypto/t4_crypto.h"
/*
* Requests consist of:
*
* +-------------------------------+
* | struct fw_crypto_lookaside_wr |
* +-------------------------------+
* | struct ulp_txpkt |
* +-------------------------------+
* | struct ulptx_idata |
* +-------------------------------+
* | struct cpl_tx_sec_pdu |
* +-------------------------------+
* | struct cpl_tls_tx_scmd_fmt |
* +-------------------------------+
* | key context header |
* +-------------------------------+
* | AES key | ----- For requests with AES
* +-------------------------------+ -
* | IPAD (16-byte aligned) | \
* +-------------------------------+ +---- For requests with HMAC
* | OPAD (16-byte aligned) | /
* +-------------------------------+ -
* | GMAC H | ----- For AES-GCM
* +-------------------------------+ -
* | struct cpl_rx_phys_dsgl | \
* +-------------------------------+ +---- Destination buffer for
* | PHYS_DSGL entries | / non-hash-only requests
* +-------------------------------+ -
* | 16 dummy bytes | ----- Only for hash-only requests
* +-------------------------------+
* | IV | ----- If immediate IV
* +-------------------------------+
* | Payload | ----- If immediate Payload
* +-------------------------------+ -
* | struct ulptx_sgl | \
* +-------------------------------+ +---- If payload via SGL
* | SGL entries | /
* +-------------------------------+ -
*
* Note that the key context must be padded to ensure 16-byte alignment.
* For HMAC requests, the key consists of the partial hash of the IPAD
* followed by the partial hash of the OPAD.
*
* Replies consist of:
*
* +-------------------------------+
* | struct cpl_fw6_pld |
* +-------------------------------+
* | hash digest | ----- For HMAC request with
* +-------------------------------+ 'hash_size' set in work request
*
* A 32-bit big-endian error status word is supplied in the last 4
* bytes of data[0] in the CPL_FW6_PLD message. bit 0 indicates a
* "MAC" error and bit 1 indicates a "PAD" error.
*
* The 64-bit 'cookie' field from the fw_crypto_lookaside_wr message
* in the request is returned in data[1] of the CPL_FW6_PLD message.
*
* For block cipher replies, the updated IV is supplied in data[2] and
* data[3] of the CPL_FW6_PLD message.
*
* For hash replies where the work request set 'hash_size' to request
* a copy of the hash in the reply, the hash digest is supplied
* immediately following the CPL_FW6_PLD message.
*/
/*
* The documentation for CPL_RX_PHYS_DSGL claims a maximum of 32
* SG entries.
*/
#define MAX_RX_PHYS_DSGL_SGE 32
#define DSGL_SGE_MAXLEN 65535
/*
* The adapter only supports requests with a total input or output
* length of 64k-1 or smaller. Longer requests either result in hung
* requests or incorrect results.
*/
#define MAX_REQUEST_SIZE 65535
static MALLOC_DEFINE(M_CCR, "ccr", "Chelsio T6 crypto");
struct ccr_session_hmac {
struct auth_hash *auth_hash;
int hash_len;
unsigned int partial_digest_len;
unsigned int auth_mode;
unsigned int mk_size;
char ipad[CHCR_HASH_MAX_BLOCK_SIZE_128];
char opad[CHCR_HASH_MAX_BLOCK_SIZE_128];
};
struct ccr_session_gmac {
int hash_len;
char ghash_h[GMAC_BLOCK_LEN];
};
struct ccr_session_blkcipher {
unsigned int cipher_mode;
unsigned int key_len;
unsigned int iv_len;
__be32 key_ctx_hdr;
char enckey[CHCR_AES_MAX_KEY_LEN];
char deckey[CHCR_AES_MAX_KEY_LEN];
};
struct ccr_session {
bool active;
int pending;
enum { HMAC, BLKCIPHER, AUTHENC, GCM } mode;
union {
struct ccr_session_hmac hmac;
struct ccr_session_gmac gmac;
};
struct ccr_session_blkcipher blkcipher;
};
struct ccr_softc {
struct adapter *adapter;
device_t dev;
uint32_t cid;
int tx_channel_id;
struct ccr_session *sessions;
int nsessions;
struct mtx lock;
bool detaching;
struct sge_wrq *txq;
struct sge_rxq *rxq;
/*
* Pre-allocate S/G lists used when preparing a work request.
* 'sg_crp' contains an sglist describing the entire buffer
* for a 'struct cryptop'. 'sg_ulptx' is used to describe
* the data the engine should DMA as input via ULPTX_SGL.
* 'sg_dsgl' is used to describe the destination that cipher
* text and a tag should be written to.
*/
struct sglist *sg_crp;
struct sglist *sg_ulptx;
struct sglist *sg_dsgl;
/* Statistics. */
uint64_t stats_blkcipher_encrypt;
uint64_t stats_blkcipher_decrypt;
uint64_t stats_hmac;
uint64_t stats_authenc_encrypt;
uint64_t stats_authenc_decrypt;
uint64_t stats_gcm_encrypt;
uint64_t stats_gcm_decrypt;
uint64_t stats_wr_nomem;
uint64_t stats_inflight;
uint64_t stats_mac_error;
uint64_t stats_pad_error;
uint64_t stats_bad_session;
uint64_t stats_sglist_error;
uint64_t stats_process_error;
};
/*
* Crypto requests involve two kind of scatter/gather lists.
*
* Non-hash-only requests require a PHYS_DSGL that describes the
* location to store the results of the encryption or decryption
* operation. This SGL uses a different format (PHYS_DSGL) and should
* exclude the crd_skip bytes at the start of the data as well as
* any AAD or IV. For authenticated encryption requests it should
* cover include the destination of the hash or tag.
*
* The input payload may either be supplied inline as immediate data,
* or via a standard ULP_TX SGL. This SGL should include AAD,
* ciphertext, and the hash or tag for authenticated decryption
* requests.
*
* These scatter/gather lists can describe different subsets of the
* buffer described by the crypto operation. ccr_populate_sglist()
* generates a scatter/gather list that covers the entire crypto
* operation buffer that is then used to construct the other
* scatter/gather lists.
*/
static int
ccr_populate_sglist(struct sglist *sg, struct cryptop *crp)
{
int error;
sglist_reset(sg);
if (crp->crp_flags & CRYPTO_F_IMBUF)
error = sglist_append_mbuf(sg, (struct mbuf *)crp->crp_buf);
else if (crp->crp_flags & CRYPTO_F_IOV)
error = sglist_append_uio(sg, (struct uio *)crp->crp_buf);
else
error = sglist_append(sg, crp->crp_buf, crp->crp_ilen);
return (error);
}
/*
* Segments in 'sg' larger than 'maxsegsize' are counted as multiple
* segments.
*/
static int
ccr_count_sgl(struct sglist *sg, int maxsegsize)
{
int i, nsegs;
nsegs = 0;
for (i = 0; i < sg->sg_nseg; i++)
nsegs += howmany(sg->sg_segs[i].ss_len, maxsegsize);
return (nsegs);
}
/* These functions deal with PHYS_DSGL for the reply buffer. */
static inline int
ccr_phys_dsgl_len(int nsegs)
{
int len;
len = (nsegs / 8) * sizeof(struct phys_sge_pairs);
if ((nsegs % 8) != 0) {
len += sizeof(uint16_t) * 8;
len += roundup2(nsegs % 8, 2) * sizeof(uint64_t);
}
return (len);
}
static void
ccr_write_phys_dsgl(struct ccr_softc *sc, void *dst, int nsegs)
{
struct sglist *sg;
struct cpl_rx_phys_dsgl *cpl;
struct phys_sge_pairs *sgl;
vm_paddr_t paddr;
size_t seglen;
u_int i, j;
sg = sc->sg_dsgl;
cpl = dst;
cpl->op_to_tid = htobe32(V_CPL_RX_PHYS_DSGL_OPCODE(CPL_RX_PHYS_DSGL) |
V_CPL_RX_PHYS_DSGL_ISRDMA(0));
cpl->pcirlxorder_to_noofsgentr = htobe32(
V_CPL_RX_PHYS_DSGL_PCIRLXORDER(0) |
V_CPL_RX_PHYS_DSGL_PCINOSNOOP(0) |
V_CPL_RX_PHYS_DSGL_PCITPHNTENB(0) | V_CPL_RX_PHYS_DSGL_DCAID(0) |
V_CPL_RX_PHYS_DSGL_NOOFSGENTR(nsegs));
cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR;
cpl->rss_hdr_int.qid = htobe16(sc->rxq->iq.abs_id);
cpl->rss_hdr_int.hash_val = 0;
sgl = (struct phys_sge_pairs *)(cpl + 1);
j = 0;
for (i = 0; i < sg->sg_nseg; i++) {
seglen = sg->sg_segs[i].ss_len;
paddr = sg->sg_segs[i].ss_paddr;
do {
sgl->addr[j] = htobe64(paddr);
if (seglen > DSGL_SGE_MAXLEN) {
sgl->len[j] = htobe16(DSGL_SGE_MAXLEN);
paddr += DSGL_SGE_MAXLEN;
seglen -= DSGL_SGE_MAXLEN;
} else {
sgl->len[j] = htobe16(seglen);
seglen = 0;
}
j++;
if (j == 8) {
sgl++;
j = 0;
}
} while (seglen != 0);
}
MPASS(j + 8 * (sgl - (struct phys_sge_pairs *)(cpl + 1)) == nsegs);
}
/* These functions deal with the ULPTX_SGL for input payload. */
static inline int
ccr_ulptx_sgl_len(int nsegs)
{
u_int n;
nsegs--; /* first segment is part of ulptx_sgl */
n = sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
return (roundup2(n, 16));
}
static void
ccr_write_ulptx_sgl(struct ccr_softc *sc, void *dst, int nsegs)
{
struct ulptx_sgl *usgl;
struct sglist *sg;
struct sglist_seg *ss;
int i;
sg = sc->sg_ulptx;
MPASS(nsegs == sg->sg_nseg);
ss = &sg->sg_segs[0];
usgl = dst;
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(nsegs));
usgl->len0 = htobe32(ss->ss_len);
usgl->addr0 = htobe64(ss->ss_paddr);
ss++;
for (i = 0; i < sg->sg_nseg - 1; i++) {
usgl->sge[i / 2].len[i & 1] = htobe32(ss->ss_len);
usgl->sge[i / 2].addr[i & 1] = htobe64(ss->ss_paddr);
ss++;
}
}
static bool
ccr_use_imm_data(u_int transhdr_len, u_int input_len)
{
if (input_len > CRYPTO_MAX_IMM_TX_PKT_LEN)
return (false);
if (roundup2(transhdr_len, 16) + roundup2(input_len, 16) >
SGE_MAX_WR_LEN)
return (false);
return (true);
}
static void
ccr_populate_wreq(struct ccr_softc *sc, struct chcr_wr *crwr, u_int kctx_len,
u_int wr_len, uint32_t sid, u_int imm_len, u_int sgl_len, u_int hash_size,
u_int iv_loc, struct cryptop *crp)
{
u_int cctx_size;
cctx_size = sizeof(struct _key_ctx) + kctx_len;
crwr->wreq.op_to_cctx_size = htobe32(
V_FW_CRYPTO_LOOKASIDE_WR_OPCODE(FW_CRYPTO_LOOKASIDE_WR) |
V_FW_CRYPTO_LOOKASIDE_WR_COMPL(0) |
V_FW_CRYPTO_LOOKASIDE_WR_IMM_LEN(imm_len) |
V_FW_CRYPTO_LOOKASIDE_WR_CCTX_LOC(1) |
V_FW_CRYPTO_LOOKASIDE_WR_CCTX_SIZE(cctx_size >> 4));
crwr->wreq.len16_pkd = htobe32(
V_FW_CRYPTO_LOOKASIDE_WR_LEN16(wr_len / 16));
crwr->wreq.session_id = htobe32(sid);
crwr->wreq.rx_chid_to_rx_q_id = htobe32(
V_FW_CRYPTO_LOOKASIDE_WR_RX_CHID(sc->tx_channel_id) |
V_FW_CRYPTO_LOOKASIDE_WR_LCB(0) |
V_FW_CRYPTO_LOOKASIDE_WR_PHASH(0) |
V_FW_CRYPTO_LOOKASIDE_WR_IV(iv_loc) |
V_FW_CRYPTO_LOOKASIDE_WR_FQIDX(0) |
V_FW_CRYPTO_LOOKASIDE_WR_TX_CH(0) |
V_FW_CRYPTO_LOOKASIDE_WR_RX_Q_ID(sc->rxq->iq.abs_id));
crwr->wreq.key_addr = 0;
crwr->wreq.pld_size_hash_size = htobe32(
V_FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE(sgl_len) |
V_FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE(hash_size));
crwr->wreq.cookie = htobe64((uintptr_t)crp);
crwr->ulptx.cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
V_ULP_TXPKT_DATAMODIFY(0) |
V_ULP_TXPKT_CHANNELID(sc->tx_channel_id) | V_ULP_TXPKT_DEST(0) |
V_ULP_TXPKT_FID(0) | V_ULP_TXPKT_RO(1));
crwr->ulptx.len = htobe32(
((wr_len - sizeof(struct fw_crypto_lookaside_wr)) / 16));
crwr->sc_imm.cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
V_ULP_TX_SC_MORE(imm_len != 0 ? 0 : 1));
crwr->sc_imm.len = htobe32(wr_len - offsetof(struct chcr_wr, sec_cpl) -
sgl_len);
}
static int
ccr_hmac(struct ccr_softc *sc, uint32_t sid, struct ccr_session *s,
struct cryptop *crp)
{
struct chcr_wr *crwr;
struct wrqe *wr;
struct auth_hash *axf;
struct cryptodesc *crd;
char *dst;
u_int hash_size_in_response, kctx_flits, kctx_len, transhdr_len, wr_len;
u_int imm_len, iopad_size;
int error, sgl_nsegs, sgl_len;
crd = crp->crp_desc;
/* Reject requests with too large of an input buffer. */
if (crd->crd_len > MAX_REQUEST_SIZE)
return (EFBIG);
axf = s->hmac.auth_hash;
/* PADs must be 128-bit aligned. */
iopad_size = roundup2(s->hmac.partial_digest_len, 16);
/*
* The 'key' part of the context includes the aligned IPAD and
* OPAD.
*/
kctx_len = iopad_size * 2;
hash_size_in_response = axf->hashsize;
transhdr_len = HASH_TRANSHDR_SIZE(kctx_len);
if (crd->crd_len == 0) {
imm_len = axf->blocksize;
sgl_nsegs = 0;
sgl_len = 0;
} else if (ccr_use_imm_data(transhdr_len, crd->crd_len)) {
imm_len = crd->crd_len;
sgl_nsegs = 0;
sgl_len = 0;
} else {
imm_len = 0;
sglist_reset(sc->sg_ulptx);
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crd->crd_skip, crd->crd_len);
if (error)
return (error);
sgl_nsegs = sc->sg_ulptx->sg_nseg;
sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
}
wr_len = roundup2(transhdr_len, 16) + roundup2(imm_len, 16) + sgl_len;
wr = alloc_wrqe(wr_len, sc->txq);
if (wr == NULL) {
sc->stats_wr_nomem++;
return (ENOMEM);
}
crwr = wrtod(wr);
memset(crwr, 0, wr_len);
ccr_populate_wreq(sc, crwr, kctx_len, wr_len, sid, imm_len, sgl_len,
hash_size_in_response, IV_NOP, crp);
/* XXX: Hardcodes SGE loopback channel of 0. */
crwr->sec_cpl.op_ivinsrtofst = htobe32(
V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
V_CPL_TX_SEC_PDU_IVINSRTOFST(0));
crwr->sec_cpl.pldlen = htobe32(crd->crd_len == 0 ? axf->blocksize :
crd->crd_len);
crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
V_CPL_TX_SEC_PDU_AUTHSTART(1) | V_CPL_TX_SEC_PDU_AUTHSTOP(0));
/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
crwr->sec_cpl.seqno_numivs = htobe32(
V_SCMD_SEQ_NO_CTRL(0) |
V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) |
V_SCMD_CIPH_MODE(CHCR_SCMD_CIPHER_MODE_NOP) |
V_SCMD_AUTH_MODE(s->hmac.auth_mode) |
V_SCMD_HMAC_CTRL(CHCR_SCMD_HMAC_CTRL_NO_TRUNC));
crwr->sec_cpl.ivgen_hdrlen = htobe32(
V_SCMD_LAST_FRAG(0) |
V_SCMD_MORE_FRAGS(crd->crd_len == 0 ? 1 : 0) | V_SCMD_MAC_ONLY(1));
memcpy(crwr->key_ctx.key, s->hmac.ipad, s->hmac.partial_digest_len);
memcpy(crwr->key_ctx.key + iopad_size, s->hmac.opad,
s->hmac.partial_digest_len);
/* XXX: F_KEY_CONTEXT_SALT_PRESENT set, but 'salt' not set. */
kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16;
crwr->key_ctx.ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) |
V_KEY_CONTEXT_OPAD_PRESENT(1) | V_KEY_CONTEXT_SALT_PRESENT(1) |
V_KEY_CONTEXT_CK_SIZE(CHCR_KEYCTX_NO_KEY) |
V_KEY_CONTEXT_MK_SIZE(s->hmac.mk_size) | V_KEY_CONTEXT_VALID(1));
dst = (char *)(crwr + 1) + kctx_len + DUMMY_BYTES;
if (crd->crd_len == 0) {
dst[0] = 0x80;
*(uint64_t *)(dst + axf->blocksize - sizeof(uint64_t)) =
htobe64(axf->blocksize << 3);
} else if (imm_len != 0)
crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip,
crd->crd_len, dst);
else
ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
/* XXX: TODO backpressure */
t4_wrq_tx(sc->adapter, wr);
return (0);
}
static int
ccr_hmac_done(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp,
const struct cpl_fw6_pld *cpl, int error)
{
struct cryptodesc *crd;
crd = crp->crp_desc;
if (error == 0) {
crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
s->hmac.hash_len, (c_caddr_t)(cpl + 1));
}
return (error);
}
static int
ccr_blkcipher(struct ccr_softc *sc, uint32_t sid, struct ccr_session *s,
struct cryptop *crp)
{
char iv[CHCR_MAX_CRYPTO_IV_LEN];
struct chcr_wr *crwr;
struct wrqe *wr;
struct cryptodesc *crd;
char *dst;
u_int iv_loc, kctx_len, key_half, op_type, transhdr_len, wr_len;
u_int imm_len;
int dsgl_nsegs, dsgl_len;
int sgl_nsegs, sgl_len;
int error;
crd = crp->crp_desc;
if (s->blkcipher.key_len == 0 || crd->crd_len == 0)
return (EINVAL);
if (crd->crd_alg == CRYPTO_AES_CBC &&
(crd->crd_len % AES_BLOCK_LEN) != 0)
return (EINVAL);
/* Reject requests with too large of an input buffer. */
if (crd->crd_len > MAX_REQUEST_SIZE)
return (EFBIG);
iv_loc = IV_NOP;
if (crd->crd_flags & CRD_F_ENCRYPT) {
op_type = CHCR_ENCRYPT_OP;
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crd->crd_iv, s->blkcipher.iv_len);
else
arc4rand(iv, s->blkcipher.iv_len, 0);
iv_loc = IV_IMMEDIATE;
if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject, s->blkcipher.iv_len, iv);
} else {
op_type = CHCR_DECRYPT_OP;
if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
memcpy(iv, crd->crd_iv, s->blkcipher.iv_len);
iv_loc = IV_IMMEDIATE;
} else
iv_loc = IV_DSGL;
}
sglist_reset(sc->sg_dsgl);
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crd->crd_skip,
crd->crd_len);
if (error)
return (error);
dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN);
if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE)
return (EFBIG);
dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs);
/* The 'key' must be 128-bit aligned. */
kctx_len = roundup2(s->blkcipher.key_len, 16);
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len);
if (ccr_use_imm_data(transhdr_len, crd->crd_len +
s->blkcipher.iv_len)) {
imm_len = crd->crd_len;
if (iv_loc == IV_DSGL) {
crypto_copydata(crp->crp_flags, crp->crp_buf,
crd->crd_inject, s->blkcipher.iv_len, iv);
iv_loc = IV_IMMEDIATE;
}
sgl_nsegs = 0;
sgl_len = 0;
} else {
imm_len = 0;
sglist_reset(sc->sg_ulptx);
if (iv_loc == IV_DSGL) {
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crd->crd_inject, s->blkcipher.iv_len);
if (error)
return (error);
}
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crd->crd_skip, crd->crd_len);
if (error)
return (error);
sgl_nsegs = sc->sg_ulptx->sg_nseg;
sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
}
wr_len = roundup2(transhdr_len, 16) + roundup2(imm_len, 16) + sgl_len;
if (iv_loc == IV_IMMEDIATE)
wr_len += s->blkcipher.iv_len;
wr = alloc_wrqe(wr_len, sc->txq);
if (wr == NULL) {
sc->stats_wr_nomem++;
return (ENOMEM);
}
crwr = wrtod(wr);
memset(crwr, 0, wr_len);
ccr_populate_wreq(sc, crwr, kctx_len, wr_len, sid, imm_len, sgl_len, 0,
iv_loc, crp);
/* XXX: Hardcodes SGE loopback channel of 0. */
crwr->sec_cpl.op_ivinsrtofst = htobe32(
V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
V_CPL_TX_SEC_PDU_IVINSRTOFST(1));
crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + crd->crd_len);
crwr->sec_cpl.aadstart_cipherstop_hi = htobe32(
V_CPL_TX_SEC_PDU_CIPHERSTART(s->blkcipher.iv_len + 1) |
V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0));
crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0));
/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
crwr->sec_cpl.seqno_numivs = htobe32(
V_SCMD_SEQ_NO_CTRL(0) |
V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) |
V_SCMD_ENC_DEC_CTRL(op_type) |
V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) |
V_SCMD_AUTH_MODE(CHCR_SCMD_AUTH_MODE_NOP) |
V_SCMD_HMAC_CTRL(CHCR_SCMD_HMAC_CTRL_NOP) |
V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) |
V_SCMD_NUM_IVS(0));
crwr->sec_cpl.ivgen_hdrlen = htobe32(
V_SCMD_IV_GEN_CTRL(0) |
V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) |
V_SCMD_AADIVDROP(1) | V_SCMD_HDR_LEN(dsgl_len));
crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr;
switch (crd->crd_alg) {
case CRYPTO_AES_CBC:
if (crd->crd_flags & CRD_F_ENCRYPT)
memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
s->blkcipher.key_len);
else
memcpy(crwr->key_ctx.key, s->blkcipher.deckey,
s->blkcipher.key_len);
break;
case CRYPTO_AES_ICM:
memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
s->blkcipher.key_len);
break;
case CRYPTO_AES_XTS:
key_half = s->blkcipher.key_len / 2;
memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half,
key_half);
if (crd->crd_flags & CRD_F_ENCRYPT)
memcpy(crwr->key_ctx.key + key_half,
s->blkcipher.enckey, key_half);
else
memcpy(crwr->key_ctx.key + key_half,
s->blkcipher.deckey, key_half);
break;
}
dst = (char *)(crwr + 1) + kctx_len;
ccr_write_phys_dsgl(sc, dst, dsgl_nsegs);
dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len;
if (iv_loc == IV_IMMEDIATE) {
memcpy(dst, iv, s->blkcipher.iv_len);
dst += s->blkcipher.iv_len;
}
if (imm_len != 0)
crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip,
crd->crd_len, dst);
else
ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
/* XXX: TODO backpressure */
t4_wrq_tx(sc->adapter, wr);
return (0);
}
static int
ccr_blkcipher_done(struct ccr_softc *sc, struct ccr_session *s,
struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error)
{
/*
* The updated IV to permit chained requests is at
* cpl->data[2], but OCF doesn't permit chained requests.
*/
return (error);
}
/*
* 'hashsize' is the length of a full digest. 'authsize' is the
* requested digest length for this operation which may be less
* than 'hashsize'.
*/
static int
ccr_hmac_ctrl(unsigned int hashsize, unsigned int authsize)
{
if (authsize == 10)
return (CHCR_SCMD_HMAC_CTRL_TRUNC_RFC4366);
if (authsize == 12)
return (CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT);
if (authsize == hashsize / 2)
return (CHCR_SCMD_HMAC_CTRL_DIV2);
return (CHCR_SCMD_HMAC_CTRL_NO_TRUNC);
}
static int
ccr_authenc(struct ccr_softc *sc, uint32_t sid, struct ccr_session *s,
struct cryptop *crp, struct cryptodesc *crda, struct cryptodesc *crde)
{
char iv[CHCR_MAX_CRYPTO_IV_LEN];
struct chcr_wr *crwr;
struct wrqe *wr;
struct auth_hash *axf;
char *dst;
u_int iv_loc, kctx_len, key_half, op_type, transhdr_len, wr_len;
u_int hash_size_in_response, imm_len, iopad_size;
u_int aad_start, aad_len, aad_stop;
u_int auth_start, auth_stop, auth_insert;
u_int cipher_start, cipher_stop;
u_int hmac_ctrl, input_len;
int dsgl_nsegs, dsgl_len;
int sgl_nsegs, sgl_len;
int error;
/*
* If there is a need in the future, requests with an empty
* payload could be supported as HMAC-only requests.
*/
if (s->blkcipher.key_len == 0 || crde->crd_len == 0)
return (EINVAL);
if (crde->crd_alg == CRYPTO_AES_CBC &&
(crde->crd_len % AES_BLOCK_LEN) != 0)
return (EINVAL);
/*
* AAD is only permitted before the cipher/plain text, not
* after.
*/
if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip)
return (EINVAL);
axf = s->hmac.auth_hash;
hash_size_in_response = s->hmac.hash_len;
/*
* The IV is always stored at the start of the buffer even
* though it may be duplicated in the payload. The crypto
* engine doesn't work properly if the IV offset points inside
* of the AAD region, so a second copy is always required.
*/
iv_loc = IV_IMMEDIATE;
if (crde->crd_flags & CRD_F_ENCRYPT) {
op_type = CHCR_ENCRYPT_OP;
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
else
arc4rand(iv, s->blkcipher.iv_len, 0);
if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(crp->crp_flags, crp->crp_buf,
crde->crd_inject, s->blkcipher.iv_len, iv);
} else {
op_type = CHCR_DECRYPT_OP;
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
else
crypto_copydata(crp->crp_flags, crp->crp_buf,
crde->crd_inject, s->blkcipher.iv_len, iv);
}
/*
* The output buffer consists of the cipher text followed by
* the hash when encrypting. For decryption it only contains
* the plain text.
*/
if (op_type == CHCR_ENCRYPT_OP) {
if (crde->crd_len + hash_size_in_response > MAX_REQUEST_SIZE)
return (EFBIG);
} else {
if (crde->crd_len > MAX_REQUEST_SIZE)
return (EFBIG);
}
sglist_reset(sc->sg_dsgl);
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip,
crde->crd_len);
if (error)
return (error);
if (op_type == CHCR_ENCRYPT_OP) {
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp,
crda->crd_inject, hash_size_in_response);
if (error)
return (error);
}
dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN);
if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE)
return (EFBIG);
dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs);
/* PADs must be 128-bit aligned. */
iopad_size = roundup2(s->hmac.partial_digest_len, 16);
/*
* The 'key' part of the key context consists of the key followed
* by the IPAD and OPAD.
*/
kctx_len = roundup2(s->blkcipher.key_len, 16) + iopad_size * 2;
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len);
/*
* The input buffer consists of the IV, any AAD, and then the
* cipher/plain text. For decryption requests the hash is
* appended after the cipher text.
*/
if (crda->crd_skip < crde->crd_skip) {
if (crda->crd_skip + crda->crd_len > crde->crd_skip)
aad_len = (crde->crd_skip - crda->crd_skip);
else
aad_len = crda->crd_len;
} else
aad_len = 0;
input_len = aad_len + crde->crd_len;
/*
* The firmware hangs if sent a request which is a
* bit smaller than MAX_REQUEST_SIZE. In particular, the
* firmware appears to require 512 - 16 bytes of spare room
* along with the size of the hash even if the hash isn't
* included in the input buffer.
*/
if (input_len + roundup2(axf->hashsize, 16) + (512 - 16) >
MAX_REQUEST_SIZE)
return (EFBIG);
if (op_type == CHCR_DECRYPT_OP)
input_len += hash_size_in_response;
if (ccr_use_imm_data(transhdr_len, s->blkcipher.iv_len + input_len)) {
imm_len = input_len;
sgl_nsegs = 0;
sgl_len = 0;
} else {
imm_len = 0;
sglist_reset(sc->sg_ulptx);
if (aad_len != 0) {
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crda->crd_skip, aad_len);
if (error)
return (error);
}
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crde->crd_skip, crde->crd_len);
if (error)
return (error);
if (op_type == CHCR_DECRYPT_OP) {
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crda->crd_inject, hash_size_in_response);
if (error)
return (error);
}
sgl_nsegs = sc->sg_ulptx->sg_nseg;
sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
}
/*
* Any auth-only data before the cipher region is marked as AAD.
* Auth-data that overlaps with the cipher region is placed in
* the auth section.
*/
if (aad_len != 0) {
aad_start = s->blkcipher.iv_len + 1;
aad_stop = aad_start + aad_len - 1;
} else {
aad_start = 0;
aad_stop = 0;
}
cipher_start = s->blkcipher.iv_len + aad_len + 1;
if (op_type == CHCR_DECRYPT_OP)
cipher_stop = hash_size_in_response;
else
cipher_stop = 0;
if (aad_len == crda->crd_len) {
auth_start = 0;
auth_stop = 0;
} else {
if (aad_len != 0)
auth_start = cipher_start;
else
auth_start = s->blkcipher.iv_len + crda->crd_skip -
crde->crd_skip + 1;
auth_stop = (crde->crd_skip + crde->crd_len) -
(crda->crd_skip + crda->crd_len) + cipher_stop;
}
if (op_type == CHCR_DECRYPT_OP)
auth_insert = hash_size_in_response;
else
auth_insert = 0;
wr_len = roundup2(transhdr_len, 16) + roundup2(imm_len, 16) + sgl_len;
if (iv_loc == IV_IMMEDIATE)
wr_len += s->blkcipher.iv_len;
wr = alloc_wrqe(wr_len, sc->txq);
if (wr == NULL) {
sc->stats_wr_nomem++;
return (ENOMEM);
}
crwr = wrtod(wr);
memset(crwr, 0, wr_len);
ccr_populate_wreq(sc, crwr, kctx_len, wr_len, sid, imm_len, sgl_len,
op_type == CHCR_DECRYPT_OP ? hash_size_in_response : 0, iv_loc,
crp);
/* XXX: Hardcodes SGE loopback channel of 0. */
crwr->sec_cpl.op_ivinsrtofst = htobe32(
V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
V_CPL_TX_SEC_PDU_IVINSRTOFST(1));
crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + input_len);
crwr->sec_cpl.aadstart_cipherstop_hi = htobe32(
V_CPL_TX_SEC_PDU_AADSTART(aad_start) |
V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) |
V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) |
V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(cipher_stop >> 4));
crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(cipher_stop & 0xf) |
V_CPL_TX_SEC_PDU_AUTHSTART(auth_start) |
V_CPL_TX_SEC_PDU_AUTHSTOP(auth_stop) |
V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert));
/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
hmac_ctrl = ccr_hmac_ctrl(axf->hashsize, hash_size_in_response);
crwr->sec_cpl.seqno_numivs = htobe32(
V_SCMD_SEQ_NO_CTRL(0) |
V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) |
V_SCMD_ENC_DEC_CTRL(op_type) |
V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) |
V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) |
V_SCMD_AUTH_MODE(s->hmac.auth_mode) |
V_SCMD_HMAC_CTRL(hmac_ctrl) |
V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) |
V_SCMD_NUM_IVS(0));
crwr->sec_cpl.ivgen_hdrlen = htobe32(
V_SCMD_IV_GEN_CTRL(0) |
V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) |
V_SCMD_AADIVDROP(1) | V_SCMD_HDR_LEN(dsgl_len));
crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr;
switch (crde->crd_alg) {
case CRYPTO_AES_CBC:
if (crde->crd_flags & CRD_F_ENCRYPT)
memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
s->blkcipher.key_len);
else
memcpy(crwr->key_ctx.key, s->blkcipher.deckey,
s->blkcipher.key_len);
break;
case CRYPTO_AES_ICM:
memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
s->blkcipher.key_len);
break;
case CRYPTO_AES_XTS:
key_half = s->blkcipher.key_len / 2;
memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half,
key_half);
if (crde->crd_flags & CRD_F_ENCRYPT)
memcpy(crwr->key_ctx.key + key_half,
s->blkcipher.enckey, key_half);
else
memcpy(crwr->key_ctx.key + key_half,
s->blkcipher.deckey, key_half);
break;
}
dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16);
memcpy(dst, s->hmac.ipad, s->hmac.partial_digest_len);
memcpy(dst + iopad_size, s->hmac.opad, s->hmac.partial_digest_len);
dst = (char *)(crwr + 1) + kctx_len;
ccr_write_phys_dsgl(sc, dst, dsgl_nsegs);
dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len;
if (iv_loc == IV_IMMEDIATE) {
memcpy(dst, iv, s->blkcipher.iv_len);
dst += s->blkcipher.iv_len;
}
if (imm_len != 0) {
if (aad_len != 0) {
crypto_copydata(crp->crp_flags, crp->crp_buf,
crda->crd_skip, aad_len, dst);
dst += aad_len;
}
crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip,
crde->crd_len, dst);
dst += crde->crd_len;
if (op_type == CHCR_DECRYPT_OP)
crypto_copydata(crp->crp_flags, crp->crp_buf,
crda->crd_inject, hash_size_in_response, dst);
} else
ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
/* XXX: TODO backpressure */
t4_wrq_tx(sc->adapter, wr);
return (0);
}
static int
ccr_authenc_done(struct ccr_softc *sc, struct ccr_session *s,
struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error)
{
struct cryptodesc *crd;
/*
* The updated IV to permit chained requests is at
* cpl->data[2], but OCF doesn't permit chained requests.
*
* For a decryption request, the hardware may do a verification
* of the HMAC which will fail if the existing HMAC isn't in the
* buffer. If that happens, clear the error and copy the HMAC
* from the CPL reply into the buffer.
*
* For encryption requests, crd should be the cipher request
* which will have CRD_F_ENCRYPT set. For decryption
* requests, crp_desc will be the HMAC request which should
* not have this flag set.
*/
crd = crp->crp_desc;
if (error == EBADMSG && !CHK_PAD_ERR_BIT(be64toh(cpl->data[0])) &&
!(crd->crd_flags & CRD_F_ENCRYPT)) {
crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
s->hmac.hash_len, (c_caddr_t)(cpl + 1));
error = 0;
}
return (error);
}
static int
ccr_gcm(struct ccr_softc *sc, uint32_t sid, struct ccr_session *s,
struct cryptop *crp, struct cryptodesc *crda, struct cryptodesc *crde)
{
char iv[CHCR_MAX_CRYPTO_IV_LEN];
struct chcr_wr *crwr;
struct wrqe *wr;
char *dst;
u_int iv_len, iv_loc, kctx_len, op_type, transhdr_len, wr_len;
u_int hash_size_in_response, imm_len;
u_int aad_start, aad_stop, cipher_start, cipher_stop, auth_insert;
u_int hmac_ctrl, input_len;
int dsgl_nsegs, dsgl_len;
int sgl_nsegs, sgl_len;
int error;
if (s->blkcipher.key_len == 0)
return (EINVAL);
/*
* AAD is only permitted before the cipher/plain text, not
* after.
*/
if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip)
return (EINVAL);
hash_size_in_response = s->gmac.hash_len;
/*
* The IV is always stored at the start of the buffer even
* though it may be duplicated in the payload. The crypto
* engine doesn't work properly if the IV offset points inside
* of the AAD region, so a second copy is always required.
*
* The IV for GCM is further complicated in that IPSec
* provides a full 16-byte IV (including the counter), whereas
* the /dev/crypto interface sometimes provides a full 16-byte
* IV (if no IV is provided in the ioctl) and sometimes a
* 12-byte IV (if the IV was explicit). For now the driver
* always assumes a 12-byte IV and initializes the low 4 byte
* counter to 1.
*/
iv_loc = IV_IMMEDIATE;
if (crde->crd_flags & CRD_F_ENCRYPT) {
op_type = CHCR_ENCRYPT_OP;
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
else
arc4rand(iv, s->blkcipher.iv_len, 0);
if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(crp->crp_flags, crp->crp_buf,
crde->crd_inject, s->blkcipher.iv_len, iv);
} else {
op_type = CHCR_DECRYPT_OP;
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
else
crypto_copydata(crp->crp_flags, crp->crp_buf,
crde->crd_inject, s->blkcipher.iv_len, iv);
}
/*
* If the input IV is 12 bytes, append an explicit counter of
* 1.
*/
if (s->blkcipher.iv_len == 12) {
*(uint32_t *)&iv[12] = htobe32(1);
iv_len = AES_BLOCK_LEN;
} else
iv_len = s->blkcipher.iv_len;
/*
* The output buffer consists of the cipher text followed by
* the tag when encrypting. For decryption it only contains
* the plain text.
*/
if (op_type == CHCR_ENCRYPT_OP) {
if (crde->crd_len + hash_size_in_response > MAX_REQUEST_SIZE)
return (EFBIG);
} else {
if (crde->crd_len > MAX_REQUEST_SIZE)
return (EFBIG);
}
sglist_reset(sc->sg_dsgl);
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip,
crde->crd_len);
if (error)
return (error);
if (op_type == CHCR_ENCRYPT_OP) {
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp,
crda->crd_inject, hash_size_in_response);
if (error)
return (error);
}
dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN);
if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE)
return (EFBIG);
dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs);
/*
* The 'key' part of the key context consists of the key followed
* by the Galois hash key.
*/
kctx_len = roundup2(s->blkcipher.key_len, 16) + GMAC_BLOCK_LEN;
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len);
/*
* The input buffer consists of the IV, any AAD, and then the
* cipher/plain text. For decryption requests the hash is
* appended after the cipher text.
*/
input_len = crda->crd_len + crde->crd_len;
if (op_type == CHCR_DECRYPT_OP)
input_len += hash_size_in_response;
if (input_len > MAX_REQUEST_SIZE)
return (EFBIG);
if (ccr_use_imm_data(transhdr_len, iv_len + input_len)) {
imm_len = input_len;
sgl_nsegs = 0;
sgl_len = 0;
} else {
imm_len = 0;
sglist_reset(sc->sg_ulptx);
if (crda->crd_len != 0) {
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crda->crd_skip, crda->crd_len);
if (error)
return (error);
}
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crde->crd_skip, crde->crd_len);
if (error)
return (error);
if (op_type == CHCR_DECRYPT_OP) {
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crda->crd_inject, hash_size_in_response);
if (error)
return (error);
}
sgl_nsegs = sc->sg_ulptx->sg_nseg;
sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
}
if (crda->crd_len != 0) {
aad_start = iv_len + 1;
aad_stop = aad_start + crda->crd_len - 1;
} else {
aad_start = 0;
aad_stop = 0;
}
cipher_start = iv_len + crda->crd_len + 1;
if (op_type == CHCR_DECRYPT_OP)
cipher_stop = hash_size_in_response;
else
cipher_stop = 0;
if (op_type == CHCR_DECRYPT_OP)
auth_insert = hash_size_in_response;
else
auth_insert = 0;
wr_len = roundup2(transhdr_len, 16) + roundup2(imm_len, 16) + sgl_len;
if (iv_loc == IV_IMMEDIATE)
wr_len += iv_len;
wr = alloc_wrqe(wr_len, sc->txq);
if (wr == NULL) {
sc->stats_wr_nomem++;
return (ENOMEM);
}
crwr = wrtod(wr);
memset(crwr, 0, wr_len);
ccr_populate_wreq(sc, crwr, kctx_len, wr_len, sid, imm_len, sgl_len,
0, iv_loc, crp);
/* XXX: Hardcodes SGE loopback channel of 0. */
crwr->sec_cpl.op_ivinsrtofst = htobe32(
V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
V_CPL_TX_SEC_PDU_IVINSRTOFST(1));
crwr->sec_cpl.pldlen = htobe32(iv_len + input_len);
/*
* NB: cipherstop is explicitly set to 0. On encrypt it
* should normally be set to 0 anyway (as the encrypt crd ends
* at the end of the input). However, for decrypt the cipher
* ends before the tag in the AUTHENC case (and authstop is
* set to stop before the tag), but for GCM the cipher still
* runs to the end of the buffer. Not sure if this is
* intentional or a firmware quirk, but it is required for
* working tag validation with GCM decryption.
*/
crwr->sec_cpl.aadstart_cipherstop_hi = htobe32(
V_CPL_TX_SEC_PDU_AADSTART(aad_start) |
V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) |
V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) |
V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0));
crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0) |
V_CPL_TX_SEC_PDU_AUTHSTART(cipher_start) |
V_CPL_TX_SEC_PDU_AUTHSTOP(cipher_stop) |
V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert));
/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
hmac_ctrl = ccr_hmac_ctrl(AES_GMAC_HASH_LEN, hash_size_in_response);
crwr->sec_cpl.seqno_numivs = htobe32(
V_SCMD_SEQ_NO_CTRL(0) |
V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) |
V_SCMD_ENC_DEC_CTRL(op_type) |
V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) |
V_SCMD_CIPH_MODE(CHCR_SCMD_CIPHER_MODE_AES_GCM) |
V_SCMD_AUTH_MODE(CHCR_SCMD_AUTH_MODE_GHASH) |
V_SCMD_HMAC_CTRL(hmac_ctrl) |
V_SCMD_IV_SIZE(iv_len / 2) |
V_SCMD_NUM_IVS(0));
crwr->sec_cpl.ivgen_hdrlen = htobe32(
V_SCMD_IV_GEN_CTRL(0) |
V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) |
V_SCMD_AADIVDROP(1) | V_SCMD_HDR_LEN(dsgl_len));
crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr;
memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len);
dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16);
memcpy(dst, s->gmac.ghash_h, GMAC_BLOCK_LEN);
dst = (char *)(crwr + 1) + kctx_len;
ccr_write_phys_dsgl(sc, dst, dsgl_nsegs);
dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len;
if (iv_loc == IV_IMMEDIATE) {
memcpy(dst, iv, iv_len);
dst += iv_len;
}
if (imm_len != 0) {
if (crda->crd_len != 0) {
crypto_copydata(crp->crp_flags, crp->crp_buf,
crda->crd_skip, crda->crd_len, dst);
dst += crda->crd_len;
}
crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip,
crde->crd_len, dst);
dst += crde->crd_len;
if (op_type == CHCR_DECRYPT_OP)
crypto_copydata(crp->crp_flags, crp->crp_buf,
crda->crd_inject, hash_size_in_response, dst);
} else
ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
/* XXX: TODO backpressure */
t4_wrq_tx(sc->adapter, wr);
return (0);
}
static int
ccr_gcm_done(struct ccr_softc *sc, struct ccr_session *s,
struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error)
{
/*
* The updated IV to permit chained requests is at
* cpl->data[2], but OCF doesn't permit chained requests.
*
* Note that the hardware should always verify the GMAC hash.
*/
return (error);
}
/*
* Handle a GCM request with an empty payload by performing the
* operation in software. Derived from swcr_authenc().
*/
static void
ccr_gcm_soft(struct ccr_session *s, struct cryptop *crp,
struct cryptodesc *crda, struct cryptodesc *crde)
{
struct aes_gmac_ctx gmac_ctx;
char block[GMAC_BLOCK_LEN];
char digest[GMAC_DIGEST_LEN];
char iv[AES_BLOCK_LEN];
int i, len;
/*
* This assumes a 12-byte IV from the crp. See longer comment
* above in ccr_gcm() for more details.
*/
if (crde->crd_flags & CRD_F_ENCRYPT) {
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, 12);
else
arc4rand(iv, 12, 0);
} else {
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, 12);
else
crypto_copydata(crp->crp_flags, crp->crp_buf,
crde->crd_inject, 12, iv);
}
*(uint32_t *)&iv[12] = htobe32(1);
/* Initialize the MAC. */
AES_GMAC_Init(&gmac_ctx);
AES_GMAC_Setkey(&gmac_ctx, s->blkcipher.enckey, s->blkcipher.key_len);
AES_GMAC_Reinit(&gmac_ctx, iv, sizeof(iv));
/* MAC the AAD. */
for (i = 0; i < crda->crd_len; i += sizeof(block)) {
len = imin(crda->crd_len - i, sizeof(block));
crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_skip +
i, len, block);
bzero(block + len, sizeof(block) - len);
AES_GMAC_Update(&gmac_ctx, block, sizeof(block));
}
/* Length block. */
bzero(block, sizeof(block));
((uint32_t *)block)[1] = htobe32(crda->crd_len * 8);
AES_GMAC_Update(&gmac_ctx, block, sizeof(block));
AES_GMAC_Final(digest, &gmac_ctx);
if (crde->crd_flags & CRD_F_ENCRYPT) {
crypto_copyback(crp->crp_flags, crp->crp_buf, crda->crd_inject,
sizeof(digest), digest);
crp->crp_etype = 0;
} else {
char digest2[GMAC_DIGEST_LEN];
crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_inject,
sizeof(digest2), digest2);
if (timingsafe_bcmp(digest, digest2, sizeof(digest)) == 0)
crp->crp_etype = 0;
else
crp->crp_etype = EBADMSG;
}
crypto_done(crp);
}
static void
ccr_identify(driver_t *driver, device_t parent)
{
struct adapter *sc;
sc = device_get_softc(parent);
if (sc->cryptocaps & FW_CAPS_CONFIG_CRYPTO_LOOKASIDE &&
device_find_child(parent, "ccr", -1) == NULL)
device_add_child(parent, "ccr", -1);
}
static int
ccr_probe(device_t dev)
{
device_set_desc(dev, "Chelsio Crypto Accelerator");
return (BUS_PROBE_DEFAULT);
}
static void
ccr_sysctls(struct ccr_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
ctx = device_get_sysctl_ctx(sc->dev);
/*
* dev.ccr.X.
*/
oid = device_get_sysctl_tree(sc->dev);
children = SYSCTL_CHILDREN(oid);
/*
* dev.ccr.X.stats.
*/
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "statistics");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "hmac", CTLFLAG_RD,
&sc->stats_hmac, 0, "HMAC requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_encrypt", CTLFLAG_RD,
&sc->stats_blkcipher_encrypt, 0,
"Cipher encryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_decrypt", CTLFLAG_RD,
&sc->stats_blkcipher_decrypt, 0,
"Cipher decryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_encrypt", CTLFLAG_RD,
&sc->stats_authenc_encrypt, 0,
"Combined AES+HMAC encryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_decrypt", CTLFLAG_RD,
&sc->stats_authenc_decrypt, 0,
"Combined AES+HMAC decryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_encrypt", CTLFLAG_RD,
&sc->stats_gcm_encrypt, 0, "AES-GCM encryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_decrypt", CTLFLAG_RD,
&sc->stats_gcm_decrypt, 0, "AES-GCM decryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "wr_nomem", CTLFLAG_RD,
&sc->stats_wr_nomem, 0, "Work request memory allocation failures");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "inflight", CTLFLAG_RD,
&sc->stats_inflight, 0, "Requests currently pending");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "mac_error", CTLFLAG_RD,
&sc->stats_mac_error, 0, "MAC errors");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "pad_error", CTLFLAG_RD,
&sc->stats_pad_error, 0, "Padding errors");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "bad_session", CTLFLAG_RD,
&sc->stats_bad_session, 0, "Requests with invalid session ID");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sglist_error", CTLFLAG_RD,
&sc->stats_sglist_error, 0,
"Requests for which DMA mapping failed");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "process_error", CTLFLAG_RD,
&sc->stats_process_error, 0, "Requests failed during queueing");
}
static int
ccr_attach(device_t dev)
{
struct ccr_softc *sc;
int32_t cid;
/*
* TODO: Crypto requests will panic if the parent device isn't
* initialized so that the queues are up and running. Need to
* figure out how to handle that correctly, maybe just reject
* requests if the adapter isn't fully initialized?
*/
sc = device_get_softc(dev);
sc->dev = dev;
sc->adapter = device_get_softc(device_get_parent(dev));
sc->txq = &sc->adapter->sge.ctrlq[0];
sc->rxq = &sc->adapter->sge.rxq[0];
cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
if (cid < 0) {
device_printf(dev, "could not get crypto driver id\n");
return (ENXIO);
}
sc->cid = cid;
sc->adapter->ccr_softc = sc;
/* XXX: TODO? */
sc->tx_channel_id = 0;
mtx_init(&sc->lock, "ccr", NULL, MTX_DEF);
sc->sg_crp = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
sc->sg_ulptx = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
sc->sg_dsgl = sglist_alloc(MAX_RX_PHYS_DSGL_SGE, M_WAITOK);
ccr_sysctls(sc);
crypto_register(cid, CRYPTO_SHA1_HMAC, 0, 0);
crypto_register(cid, CRYPTO_SHA2_256_HMAC, 0, 0);
crypto_register(cid, CRYPTO_SHA2_384_HMAC, 0, 0);
crypto_register(cid, CRYPTO_SHA2_512_HMAC, 0, 0);
crypto_register(cid, CRYPTO_AES_CBC, 0, 0);
crypto_register(cid, CRYPTO_AES_ICM, 0, 0);
crypto_register(cid, CRYPTO_AES_NIST_GCM_16, 0, 0);
crypto_register(cid, CRYPTO_AES_128_NIST_GMAC, 0, 0);
crypto_register(cid, CRYPTO_AES_192_NIST_GMAC, 0, 0);
crypto_register(cid, CRYPTO_AES_256_NIST_GMAC, 0, 0);
crypto_register(cid, CRYPTO_AES_XTS, 0, 0);
return (0);
}
static int
ccr_detach(device_t dev)
{
struct ccr_softc *sc;
int i;
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
for (i = 0; i < sc->nsessions; i++) {
if (sc->sessions[i].active || sc->sessions[i].pending != 0) {
mtx_unlock(&sc->lock);
return (EBUSY);
}
}
sc->detaching = true;
mtx_unlock(&sc->lock);
crypto_unregister_all(sc->cid);
free(sc->sessions, M_CCR);
mtx_destroy(&sc->lock);
sglist_free(sc->sg_dsgl);
sglist_free(sc->sg_ulptx);
sglist_free(sc->sg_crp);
sc->adapter->ccr_softc = NULL;
return (0);
}
static void
ccr_copy_partial_hash(void *dst, int cri_alg, union authctx *auth_ctx)
{
uint32_t *u32;
uint64_t *u64;
u_int i;
u32 = (uint32_t *)dst;
u64 = (uint64_t *)dst;
switch (cri_alg) {
case CRYPTO_SHA1_HMAC:
for (i = 0; i < SHA1_HASH_LEN / 4; i++)
u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]);
break;
case CRYPTO_SHA2_256_HMAC:
for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
u32[i] = htobe32(auth_ctx->sha256ctx.state[i]);
break;
case CRYPTO_SHA2_384_HMAC:
for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
u64[i] = htobe64(auth_ctx->sha384ctx.state[i]);
break;
case CRYPTO_SHA2_512_HMAC:
for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
u64[i] = htobe64(auth_ctx->sha512ctx.state[i]);
break;
}
}
static void
ccr_init_hmac_digest(struct ccr_session *s, int cri_alg, char *key,
int klen)
{
union authctx auth_ctx;
struct auth_hash *axf;
u_int i;
/*
* If the key is larger than the block size, use the digest of
* the key as the key instead.
*/
axf = s->hmac.auth_hash;
klen /= 8;
if (klen > axf->blocksize) {
axf->Init(&auth_ctx);
axf->Update(&auth_ctx, key, klen);
axf->Final(s->hmac.ipad, &auth_ctx);
klen = axf->hashsize;
} else
memcpy(s->hmac.ipad, key, klen);
memset(s->hmac.ipad + klen, 0, axf->blocksize);
memcpy(s->hmac.opad, s->hmac.ipad, axf->blocksize);
for (i = 0; i < axf->blocksize; i++) {
s->hmac.ipad[i] ^= HMAC_IPAD_VAL;
s->hmac.opad[i] ^= HMAC_OPAD_VAL;
}
/*
* Hash the raw ipad and opad and store the partial result in
* the same buffer.
*/
axf->Init(&auth_ctx);
axf->Update(&auth_ctx, s->hmac.ipad, axf->blocksize);
ccr_copy_partial_hash(s->hmac.ipad, cri_alg, &auth_ctx);
axf->Init(&auth_ctx);
axf->Update(&auth_ctx, s->hmac.opad, axf->blocksize);
ccr_copy_partial_hash(s->hmac.opad, cri_alg, &auth_ctx);
}
/*
* Borrowed from AES_GMAC_Setkey().
*/
static void
ccr_init_gmac_hash(struct ccr_session *s, char *key, int klen)
{
static char zeroes[GMAC_BLOCK_LEN];
uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)];
int rounds;
rounds = rijndaelKeySetupEnc(keysched, key, klen);
rijndaelEncrypt(keysched, rounds, zeroes, s->gmac.ghash_h);
}
static int
ccr_aes_check_keylen(int alg, int klen)
{
switch (klen) {
case 128:
case 192:
if (alg == CRYPTO_AES_XTS)
return (EINVAL);
break;
case 256:
break;
case 512:
if (alg != CRYPTO_AES_XTS)
return (EINVAL);
break;
default:
return (EINVAL);
}
return (0);
}
/*
* Borrowed from cesa_prep_aes_key(). We should perhaps have a public
* function to generate this instead.
*
* NB: The crypto engine wants the words in the decryption key in reverse
* order.
*/
static void
ccr_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
{
uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
uint32_t *dkey;
int i;
rijndaelKeySetupEnc(ek, enc_key, kbits);
dkey = dec_key;
dkey += (kbits / 8) / 4;
switch (kbits) {
case 128:
for (i = 0; i < 4; i++)
*--dkey = htobe32(ek[4 * 10 + i]);
break;
case 192:
for (i = 0; i < 2; i++)
*--dkey = htobe32(ek[4 * 11 + 2 + i]);
for (i = 0; i < 4; i++)
*--dkey = htobe32(ek[4 * 12 + i]);
break;
case 256:
for (i = 0; i < 4; i++)
*--dkey = htobe32(ek[4 * 13 + i]);
for (i = 0; i < 4; i++)
*--dkey = htobe32(ek[4 * 14 + i]);
break;
}
MPASS(dkey == dec_key);
}
static void
ccr_aes_setkey(struct ccr_session *s, int alg, const void *key, int klen)
{
unsigned int ck_size, iopad_size, kctx_flits, kctx_len, kbits, mk_size;
unsigned int opad_present;
if (alg == CRYPTO_AES_XTS)
kbits = klen / 2;
else
kbits = klen;
switch (kbits) {
case 128:
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
break;
case 192:
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
break;
case 256:
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
break;
default:
panic("should not get here");
}
s->blkcipher.key_len = klen / 8;
memcpy(s->blkcipher.enckey, key, s->blkcipher.key_len);
switch (alg) {
case CRYPTO_AES_CBC:
case CRYPTO_AES_XTS:
ccr_aes_getdeckey(s->blkcipher.deckey, key, kbits);
break;
}
kctx_len = roundup2(s->blkcipher.key_len, 16);
switch (s->mode) {
case AUTHENC:
mk_size = s->hmac.mk_size;
opad_present = 1;
iopad_size = roundup2(s->hmac.partial_digest_len, 16);
kctx_len += iopad_size * 2;
break;
case GCM:
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
opad_present = 0;
kctx_len += GMAC_BLOCK_LEN;
break;
default:
mk_size = CHCR_KEYCTX_NO_KEY;
opad_present = 0;
break;
}
kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16;
s->blkcipher.key_ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) |
V_KEY_CONTEXT_DUAL_CK(alg == CRYPTO_AES_XTS) |
V_KEY_CONTEXT_OPAD_PRESENT(opad_present) |
V_KEY_CONTEXT_SALT_PRESENT(1) | V_KEY_CONTEXT_CK_SIZE(ck_size) |
V_KEY_CONTEXT_MK_SIZE(mk_size) | V_KEY_CONTEXT_VALID(1));
}
static int
ccr_newsession(device_t dev, uint32_t *sidp, struct cryptoini *cri)
{
struct ccr_softc *sc;
struct ccr_session *s;
struct auth_hash *auth_hash;
struct cryptoini *c, *hash, *cipher;
unsigned int auth_mode, cipher_mode, iv_len, mk_size;
unsigned int partial_digest_len;
int error, i, sess;
bool gcm_hash;
if (sidp == NULL || cri == NULL)
return (EINVAL);
gcm_hash = false;
cipher = NULL;
hash = NULL;
auth_hash = NULL;
auth_mode = CHCR_SCMD_AUTH_MODE_NOP;
cipher_mode = CHCR_SCMD_CIPHER_MODE_NOP;
iv_len = 0;
mk_size = 0;
partial_digest_len = 0;
for (c = cri; c != NULL; c = c->cri_next) {
switch (c->cri_alg) {
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
if (hash)
return (EINVAL);
hash = c;
switch (c->cri_alg) {
case CRYPTO_SHA1_HMAC:
auth_hash = &auth_hash_hmac_sha1;
auth_mode = CHCR_SCMD_AUTH_MODE_SHA1;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160;
partial_digest_len = SHA1_HASH_LEN;
break;
case CRYPTO_SHA2_256_HMAC:
auth_hash = &auth_hash_hmac_sha2_256;
auth_mode = CHCR_SCMD_AUTH_MODE_SHA256;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
partial_digest_len = SHA2_256_HASH_LEN;
break;
case CRYPTO_SHA2_384_HMAC:
auth_hash = &auth_hash_hmac_sha2_384;
auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_384;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
partial_digest_len = SHA2_512_HASH_LEN;
break;
case CRYPTO_SHA2_512_HMAC:
auth_hash = &auth_hash_hmac_sha2_512;
auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_512;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
partial_digest_len = SHA2_512_HASH_LEN;
break;
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
gcm_hash = true;
auth_mode = CHCR_SCMD_AUTH_MODE_GHASH;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
break;
}
break;
case CRYPTO_AES_CBC:
case CRYPTO_AES_ICM:
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_XTS:
if (cipher)
return (EINVAL);
cipher = c;
switch (c->cri_alg) {
case CRYPTO_AES_CBC:
cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CBC;
iv_len = AES_BLOCK_LEN;
break;
case CRYPTO_AES_ICM:
cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CTR;
iv_len = AES_BLOCK_LEN;
break;
case CRYPTO_AES_NIST_GCM_16:
cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_GCM;
iv_len = AES_GCM_IV_LEN;
break;
case CRYPTO_AES_XTS:
cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_XTS;
iv_len = AES_BLOCK_LEN;
break;
}
if (c->cri_key != NULL) {
error = ccr_aes_check_keylen(c->cri_alg,
c->cri_klen);
if (error)
return (error);
}
break;
default:
return (EINVAL);
}
}
if (gcm_hash != (cipher_mode == CHCR_SCMD_CIPHER_MODE_AES_GCM))
return (EINVAL);
if (hash == NULL && cipher == NULL)
return (EINVAL);
if (hash != NULL && hash->cri_key == NULL)
return (EINVAL);
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
if (sc->detaching) {
mtx_unlock(&sc->lock);
return (ENXIO);
}
sess = -1;
for (i = 0; i < sc->nsessions; i++) {
if (!sc->sessions[i].active && sc->sessions[i].pending == 0) {
sess = i;
break;
}
}
if (sess == -1) {
s = malloc(sizeof(*s) * (sc->nsessions + 1), M_CCR,
M_NOWAIT | M_ZERO);
if (s == NULL) {
mtx_unlock(&sc->lock);
return (ENOMEM);
}
if (sc->sessions != NULL)
memcpy(s, sc->sessions, sizeof(*s) * sc->nsessions);
sess = sc->nsessions;
free(sc->sessions, M_CCR);
sc->sessions = s;
sc->nsessions++;
}
s = &sc->sessions[sess];
if (gcm_hash)
s->mode = GCM;
else if (hash != NULL && cipher != NULL)
s->mode = AUTHENC;
else if (hash != NULL)
s->mode = HMAC;
else {
MPASS(cipher != NULL);
s->mode = BLKCIPHER;
}
if (gcm_hash) {
if (hash->cri_mlen == 0)
s->gmac.hash_len = AES_GMAC_HASH_LEN;
else
s->gmac.hash_len = hash->cri_mlen;
ccr_init_gmac_hash(s, hash->cri_key, hash->cri_klen);
} else if (hash != NULL) {
s->hmac.auth_hash = auth_hash;
s->hmac.auth_mode = auth_mode;
s->hmac.mk_size = mk_size;
s->hmac.partial_digest_len = partial_digest_len;
if (hash->cri_mlen == 0)
s->hmac.hash_len = auth_hash->hashsize;
else
s->hmac.hash_len = hash->cri_mlen;
ccr_init_hmac_digest(s, hash->cri_alg, hash->cri_key,
hash->cri_klen);
}
if (cipher != NULL) {
s->blkcipher.cipher_mode = cipher_mode;
s->blkcipher.iv_len = iv_len;
if (cipher->cri_key != NULL)
ccr_aes_setkey(s, cipher->cri_alg, cipher->cri_key,
cipher->cri_klen);
}
s->active = true;
mtx_unlock(&sc->lock);
*sidp = sess;
return (0);
}
static int
ccr_freesession(device_t dev, uint64_t tid)
{
struct ccr_softc *sc;
uint32_t sid;
int error;
sc = device_get_softc(dev);
sid = CRYPTO_SESID2LID(tid);
mtx_lock(&sc->lock);
if (sid >= sc->nsessions || !sc->sessions[sid].active)
error = EINVAL;
else {
if (sc->sessions[sid].pending != 0)
device_printf(dev,
"session %d freed with %d pending requests\n", sid,
sc->sessions[sid].pending);
sc->sessions[sid].active = false;
error = 0;
}
mtx_unlock(&sc->lock);
return (error);
}
static int
ccr_process(device_t dev, struct cryptop *crp, int hint)
{
struct ccr_softc *sc;
struct ccr_session *s;
struct cryptodesc *crd, *crda, *crde;
uint32_t sid;
int error;
if (crp == NULL)
return (EINVAL);
crd = crp->crp_desc;
sid = CRYPTO_SESID2LID(crp->crp_sid);
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
if (sid >= sc->nsessions || !sc->sessions[sid].active) {
sc->stats_bad_session++;
error = EINVAL;
goto out;
}
error = ccr_populate_sglist(sc->sg_crp, crp);
if (error) {
sc->stats_sglist_error++;
goto out;
}
s = &sc->sessions[sid];
switch (s->mode) {
case HMAC:
if (crd->crd_flags & CRD_F_KEY_EXPLICIT)
ccr_init_hmac_digest(s, crd->crd_alg, crd->crd_key,
crd->crd_klen);
error = ccr_hmac(sc, sid, s, crp);
if (error == 0)
sc->stats_hmac++;
break;
case BLKCIPHER:
if (crd->crd_flags & CRD_F_KEY_EXPLICIT) {
error = ccr_aes_check_keylen(crd->crd_alg,
crd->crd_klen);
if (error)
break;
ccr_aes_setkey(s, crd->crd_alg, crd->crd_key,
crd->crd_klen);
}
error = ccr_blkcipher(sc, sid, s, crp);
if (error == 0) {
if (crd->crd_flags & CRD_F_ENCRYPT)
sc->stats_blkcipher_encrypt++;
else
sc->stats_blkcipher_decrypt++;
}
break;
case AUTHENC:
error = 0;
switch (crd->crd_alg) {
case CRYPTO_AES_CBC:
case CRYPTO_AES_ICM:
case CRYPTO_AES_XTS:
/* Only encrypt-then-authenticate supported. */
crde = crd;
crda = crd->crd_next;
if (!(crde->crd_flags & CRD_F_ENCRYPT)) {
error = EINVAL;
break;
}
break;
default:
crda = crd;
crde = crd->crd_next;
if (crde->crd_flags & CRD_F_ENCRYPT) {
error = EINVAL;
break;
}
break;
}
if (error)
break;
if (crda->crd_flags & CRD_F_KEY_EXPLICIT)
ccr_init_hmac_digest(s, crda->crd_alg, crda->crd_key,
crda->crd_klen);
if (crde->crd_flags & CRD_F_KEY_EXPLICIT) {
error = ccr_aes_check_keylen(crde->crd_alg,
crde->crd_klen);
if (error)
break;
ccr_aes_setkey(s, crde->crd_alg, crde->crd_key,
crde->crd_klen);
}
error = ccr_authenc(sc, sid, s, crp, crda, crde);
if (error == 0) {
if (crde->crd_flags & CRD_F_ENCRYPT)
sc->stats_authenc_encrypt++;
else
sc->stats_authenc_decrypt++;
}
break;
case GCM:
error = 0;
if (crd->crd_alg == CRYPTO_AES_NIST_GCM_16) {
crde = crd;
crda = crd->crd_next;
} else {
crda = crd;
crde = crd->crd_next;
}
if (crda->crd_flags & CRD_F_KEY_EXPLICIT)
ccr_init_gmac_hash(s, crda->crd_key, crda->crd_klen);
if (crde->crd_flags & CRD_F_KEY_EXPLICIT) {
error = ccr_aes_check_keylen(crde->crd_alg,
crde->crd_klen);
if (error)
break;
ccr_aes_setkey(s, crde->crd_alg, crde->crd_key,
crde->crd_klen);
}
if (crde->crd_len == 0) {
mtx_unlock(&sc->lock);
ccr_gcm_soft(s, crp, crda, crde);
return (0);
}
error = ccr_gcm(sc, sid, s, crp, crda, crde);
if (error == 0) {
if (crde->crd_flags & CRD_F_ENCRYPT)
sc->stats_gcm_encrypt++;
else
sc->stats_gcm_decrypt++;
}
break;
}
if (error == 0) {
s->pending++;
sc->stats_inflight++;
} else
sc->stats_process_error++;
out:
mtx_unlock(&sc->lock);
if (error) {
crp->crp_etype = error;
crypto_done(crp);
}
return (0);
}
static int
do_cpl6_fw_pld(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
struct ccr_softc *sc = iq->adapter->ccr_softc;
struct ccr_session *s;
const struct cpl_fw6_pld *cpl;
struct cryptop *crp;
uint32_t sid, status;
int error;
if (m != NULL)
cpl = mtod(m, const void *);
else
cpl = (const void *)(rss + 1);
crp = (struct cryptop *)(uintptr_t)be64toh(cpl->data[1]);
sid = CRYPTO_SESID2LID(crp->crp_sid);
status = be64toh(cpl->data[0]);
if (CHK_MAC_ERR_BIT(status) || CHK_PAD_ERR_BIT(status))
error = EBADMSG;
else
error = 0;
mtx_lock(&sc->lock);
MPASS(sid < sc->nsessions);
s = &sc->sessions[sid];
s->pending--;
sc->stats_inflight--;
switch (s->mode) {
case HMAC:
error = ccr_hmac_done(sc, s, crp, cpl, error);
break;
case BLKCIPHER:
error = ccr_blkcipher_done(sc, s, crp, cpl, error);
break;
case AUTHENC:
error = ccr_authenc_done(sc, s, crp, cpl, error);
break;
case GCM:
error = ccr_gcm_done(sc, s, crp, cpl, error);
break;
}
if (error == EBADMSG) {
if (CHK_MAC_ERR_BIT(status))
sc->stats_mac_error++;
if (CHK_PAD_ERR_BIT(status))
sc->stats_pad_error++;
}
mtx_unlock(&sc->lock);
crp->crp_etype = error;
crypto_done(crp);
m_freem(m);
return (0);
}
static int
ccr_modevent(module_t mod, int cmd, void *arg)
{
switch (cmd) {
case MOD_LOAD:
t4_register_cpl_handler(CPL_FW6_PLD, do_cpl6_fw_pld);
return (0);
case MOD_UNLOAD:
t4_register_cpl_handler(CPL_FW6_PLD, NULL);
return (0);
default:
return (EOPNOTSUPP);
}
}
static device_method_t ccr_methods[] = {
DEVMETHOD(device_identify, ccr_identify),
DEVMETHOD(device_probe, ccr_probe),
DEVMETHOD(device_attach, ccr_attach),
DEVMETHOD(device_detach, ccr_detach),
DEVMETHOD(cryptodev_newsession, ccr_newsession),
DEVMETHOD(cryptodev_freesession, ccr_freesession),
DEVMETHOD(cryptodev_process, ccr_process),
DEVMETHOD_END
};
static driver_t ccr_driver = {
"ccr",
ccr_methods,
sizeof(struct ccr_softc)
};
static devclass_t ccr_devclass;
DRIVER_MODULE(ccr, t6nex, ccr_driver, ccr_devclass, ccr_modevent, NULL);
MODULE_VERSION(ccr, 1);
MODULE_DEPEND(ccr, crypto, 1, 1, 1);
MODULE_DEPEND(ccr, t6nex, 1, 1, 1);