307b2c04a2
number of CPUs detection. However, that was not mention at all, the problem was not reported, the patch has not been MFCed and the fix is mostly improper. Fix the original overflow (caused when 32 CPUs must be detected) by just using a different mathematical computation (it also makes more explicit the size of operands involved, which is good in the moment waiting for a more complete support for a large number of CPUs). PR: kern/148698 Submitted by: Joe Landers <jlanders at vmware dot com> Tested by: gianni MFC after: 10 days
670 lines
16 KiB
C
670 lines
16 KiB
C
/*-
|
|
* Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This module holds the global variables and machine independent functions
|
|
* used for the kernel SMP support.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/smp.h>
|
|
|
|
#include "opt_sched.h"
|
|
|
|
#ifdef SMP
|
|
volatile cpumask_t stopped_cpus;
|
|
volatile cpumask_t started_cpus;
|
|
cpumask_t idle_cpus_mask;
|
|
cpumask_t hlt_cpus_mask;
|
|
cpumask_t logical_cpus_mask;
|
|
|
|
void (*cpustop_restartfunc)(void);
|
|
#endif
|
|
/* This is used in modules that need to work in both SMP and UP. */
|
|
cpumask_t all_cpus;
|
|
|
|
int mp_ncpus;
|
|
/* export this for libkvm consumers. */
|
|
int mp_maxcpus = MAXCPU;
|
|
|
|
volatile int smp_started;
|
|
u_int mp_maxid;
|
|
|
|
SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD, NULL, "Kernel SMP");
|
|
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD, &mp_maxid, 0,
|
|
"Max CPU ID.");
|
|
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD, &mp_maxcpus, 0,
|
|
"Max number of CPUs that the system was compiled for.");
|
|
|
|
int smp_active = 0; /* are the APs allowed to run? */
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
|
|
"Number of Auxillary Processors (APs) that were successfully started");
|
|
|
|
int smp_disabled = 0; /* has smp been disabled? */
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN, &smp_disabled, 0,
|
|
"SMP has been disabled from the loader");
|
|
TUNABLE_INT("kern.smp.disabled", &smp_disabled);
|
|
|
|
int smp_cpus = 1; /* how many cpu's running */
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD, &smp_cpus, 0,
|
|
"Number of CPUs online");
|
|
|
|
int smp_topology = 0; /* Which topology we're using. */
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
|
|
"Topology override setting; 0 is default provided by hardware.");
|
|
TUNABLE_INT("kern.smp.topology", &smp_topology);
|
|
|
|
#ifdef SMP
|
|
/* Enable forwarding of a signal to a process running on a different CPU */
|
|
static int forward_signal_enabled = 1;
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
|
|
&forward_signal_enabled, 0,
|
|
"Forwarding of a signal to a process on a different CPU");
|
|
|
|
/* Variables needed for SMP rendezvous. */
|
|
static volatile int smp_rv_ncpus;
|
|
static void (*volatile smp_rv_setup_func)(void *arg);
|
|
static void (*volatile smp_rv_action_func)(void *arg);
|
|
static void (*volatile smp_rv_teardown_func)(void *arg);
|
|
static void *volatile smp_rv_func_arg;
|
|
static volatile int smp_rv_waiters[3];
|
|
|
|
/*
|
|
* Shared mutex to restrict busywaits between smp_rendezvous() and
|
|
* smp(_targeted)_tlb_shootdown(). A deadlock occurs if both of these
|
|
* functions trigger at once and cause multiple CPUs to busywait with
|
|
* interrupts disabled.
|
|
*/
|
|
struct mtx smp_ipi_mtx;
|
|
|
|
/*
|
|
* Let the MD SMP code initialize mp_maxid very early if it can.
|
|
*/
|
|
static void
|
|
mp_setmaxid(void *dummy)
|
|
{
|
|
cpu_mp_setmaxid();
|
|
}
|
|
SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
|
|
|
|
/*
|
|
* Call the MD SMP initialization code.
|
|
*/
|
|
static void
|
|
mp_start(void *dummy)
|
|
{
|
|
|
|
mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
|
|
|
|
/* Probe for MP hardware. */
|
|
if (smp_disabled != 0 || cpu_mp_probe() == 0) {
|
|
mp_ncpus = 1;
|
|
all_cpus = PCPU_GET(cpumask);
|
|
return;
|
|
}
|
|
|
|
cpu_mp_start();
|
|
printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
|
|
mp_ncpus);
|
|
cpu_mp_announce();
|
|
}
|
|
SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
|
|
|
|
void
|
|
forward_signal(struct thread *td)
|
|
{
|
|
int id;
|
|
|
|
/*
|
|
* signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
|
|
* this thread, so all we need to do is poke it if it is currently
|
|
* executing so that it executes ast().
|
|
*/
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
KASSERT(TD_IS_RUNNING(td),
|
|
("forward_signal: thread is not TDS_RUNNING"));
|
|
|
|
CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
|
|
|
|
if (!smp_started || cold || panicstr)
|
|
return;
|
|
if (!forward_signal_enabled)
|
|
return;
|
|
|
|
/* No need to IPI ourself. */
|
|
if (td == curthread)
|
|
return;
|
|
|
|
id = td->td_oncpu;
|
|
if (id == NOCPU)
|
|
return;
|
|
ipi_cpu(id, IPI_AST);
|
|
}
|
|
|
|
/*
|
|
* When called the executing CPU will send an IPI to all other CPUs
|
|
* requesting that they halt execution.
|
|
*
|
|
* Usually (but not necessarily) called with 'other_cpus' as its arg.
|
|
*
|
|
* - Signals all CPUs in map to stop.
|
|
* - Waits for each to stop.
|
|
*
|
|
* Returns:
|
|
* -1: error
|
|
* 0: NA
|
|
* 1: ok
|
|
*
|
|
* XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
|
|
* from executing at same time.
|
|
*/
|
|
static int
|
|
generic_stop_cpus(cpumask_t map, u_int type)
|
|
{
|
|
int i;
|
|
|
|
KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
|
|
("%s: invalid stop type", __func__));
|
|
|
|
if (!smp_started)
|
|
return 0;
|
|
|
|
CTR2(KTR_SMP, "stop_cpus(%x) with %u type", map, type);
|
|
|
|
/* send the stop IPI to all CPUs in map */
|
|
ipi_selected(map, type);
|
|
|
|
i = 0;
|
|
while ((stopped_cpus & map) != map) {
|
|
/* spin */
|
|
cpu_spinwait();
|
|
i++;
|
|
#ifdef DIAGNOSTIC
|
|
if (i == 100000) {
|
|
printf("timeout stopping cpus\n");
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
stop_cpus(cpumask_t map)
|
|
{
|
|
|
|
return (generic_stop_cpus(map, IPI_STOP));
|
|
}
|
|
|
|
int
|
|
stop_cpus_hard(cpumask_t map)
|
|
{
|
|
|
|
return (generic_stop_cpus(map, IPI_STOP_HARD));
|
|
}
|
|
|
|
#if defined(__amd64__)
|
|
/*
|
|
* When called the executing CPU will send an IPI to all other CPUs
|
|
* requesting that they halt execution.
|
|
*
|
|
* Usually (but not necessarily) called with 'other_cpus' as its arg.
|
|
*
|
|
* - Signals all CPUs in map to suspend.
|
|
* - Waits for each to suspend.
|
|
*
|
|
* Returns:
|
|
* -1: error
|
|
* 0: NA
|
|
* 1: ok
|
|
*
|
|
* XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
|
|
* from executing at same time.
|
|
*/
|
|
int
|
|
suspend_cpus(cpumask_t map)
|
|
{
|
|
int i;
|
|
|
|
if (!smp_started)
|
|
return (0);
|
|
|
|
CTR1(KTR_SMP, "suspend_cpus(%x)", map);
|
|
|
|
/* send the suspend IPI to all CPUs in map */
|
|
ipi_selected(map, IPI_SUSPEND);
|
|
|
|
i = 0;
|
|
while ((stopped_cpus & map) != map) {
|
|
/* spin */
|
|
cpu_spinwait();
|
|
i++;
|
|
#ifdef DIAGNOSTIC
|
|
if (i == 100000) {
|
|
printf("timeout suspending cpus\n");
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called by a CPU to restart stopped CPUs.
|
|
*
|
|
* Usually (but not necessarily) called with 'stopped_cpus' as its arg.
|
|
*
|
|
* - Signals all CPUs in map to restart.
|
|
* - Waits for each to restart.
|
|
*
|
|
* Returns:
|
|
* -1: error
|
|
* 0: NA
|
|
* 1: ok
|
|
*/
|
|
int
|
|
restart_cpus(cpumask_t map)
|
|
{
|
|
|
|
if (!smp_started)
|
|
return 0;
|
|
|
|
CTR1(KTR_SMP, "restart_cpus(%x)", map);
|
|
|
|
/* signal other cpus to restart */
|
|
atomic_store_rel_int(&started_cpus, map);
|
|
|
|
/* wait for each to clear its bit */
|
|
while ((stopped_cpus & map) != 0)
|
|
cpu_spinwait();
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* All-CPU rendezvous. CPUs are signalled, all execute the setup function
|
|
* (if specified), rendezvous, execute the action function (if specified),
|
|
* rendezvous again, execute the teardown function (if specified), and then
|
|
* resume.
|
|
*
|
|
* Note that the supplied external functions _must_ be reentrant and aware
|
|
* that they are running in parallel and in an unknown lock context.
|
|
*/
|
|
void
|
|
smp_rendezvous_action(void)
|
|
{
|
|
void* local_func_arg = smp_rv_func_arg;
|
|
void (*local_setup_func)(void*) = smp_rv_setup_func;
|
|
void (*local_action_func)(void*) = smp_rv_action_func;
|
|
void (*local_teardown_func)(void*) = smp_rv_teardown_func;
|
|
|
|
/* Ensure we have up-to-date values. */
|
|
atomic_add_acq_int(&smp_rv_waiters[0], 1);
|
|
while (smp_rv_waiters[0] < smp_rv_ncpus)
|
|
cpu_spinwait();
|
|
|
|
/* setup function */
|
|
if (local_setup_func != smp_no_rendevous_barrier) {
|
|
if (smp_rv_setup_func != NULL)
|
|
smp_rv_setup_func(smp_rv_func_arg);
|
|
|
|
/* spin on entry rendezvous */
|
|
atomic_add_int(&smp_rv_waiters[1], 1);
|
|
while (smp_rv_waiters[1] < smp_rv_ncpus)
|
|
cpu_spinwait();
|
|
}
|
|
|
|
/* action function */
|
|
if (local_action_func != NULL)
|
|
local_action_func(local_func_arg);
|
|
|
|
/* spin on exit rendezvous */
|
|
atomic_add_int(&smp_rv_waiters[2], 1);
|
|
if (local_teardown_func == smp_no_rendevous_barrier)
|
|
return;
|
|
while (smp_rv_waiters[2] < smp_rv_ncpus)
|
|
cpu_spinwait();
|
|
|
|
/* teardown function */
|
|
if (local_teardown_func != NULL)
|
|
local_teardown_func(local_func_arg);
|
|
}
|
|
|
|
void
|
|
smp_rendezvous_cpus(cpumask_t map,
|
|
void (* setup_func)(void *),
|
|
void (* action_func)(void *),
|
|
void (* teardown_func)(void *),
|
|
void *arg)
|
|
{
|
|
int i, ncpus = 0;
|
|
|
|
if (!smp_started) {
|
|
if (setup_func != NULL)
|
|
setup_func(arg);
|
|
if (action_func != NULL)
|
|
action_func(arg);
|
|
if (teardown_func != NULL)
|
|
teardown_func(arg);
|
|
return;
|
|
}
|
|
|
|
CPU_FOREACH(i) {
|
|
if (((1 << i) & map) != 0)
|
|
ncpus++;
|
|
}
|
|
if (ncpus == 0)
|
|
panic("ncpus is 0 with map=0x%x", map);
|
|
|
|
/* obtain rendezvous lock */
|
|
mtx_lock_spin(&smp_ipi_mtx);
|
|
|
|
/* set static function pointers */
|
|
smp_rv_ncpus = ncpus;
|
|
smp_rv_setup_func = setup_func;
|
|
smp_rv_action_func = action_func;
|
|
smp_rv_teardown_func = teardown_func;
|
|
smp_rv_func_arg = arg;
|
|
smp_rv_waiters[1] = 0;
|
|
smp_rv_waiters[2] = 0;
|
|
atomic_store_rel_int(&smp_rv_waiters[0], 0);
|
|
|
|
/* signal other processors, which will enter the IPI with interrupts off */
|
|
ipi_selected(map & ~(1 << curcpu), IPI_RENDEZVOUS);
|
|
|
|
/* Check if the current CPU is in the map */
|
|
if ((map & (1 << curcpu)) != 0)
|
|
smp_rendezvous_action();
|
|
|
|
if (teardown_func == smp_no_rendevous_barrier)
|
|
while (atomic_load_acq_int(&smp_rv_waiters[2]) < ncpus)
|
|
cpu_spinwait();
|
|
|
|
/* release lock */
|
|
mtx_unlock_spin(&smp_ipi_mtx);
|
|
}
|
|
|
|
void
|
|
smp_rendezvous(void (* setup_func)(void *),
|
|
void (* action_func)(void *),
|
|
void (* teardown_func)(void *),
|
|
void *arg)
|
|
{
|
|
smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
|
|
}
|
|
|
|
static struct cpu_group group[MAXCPU];
|
|
|
|
struct cpu_group *
|
|
smp_topo(void)
|
|
{
|
|
struct cpu_group *top;
|
|
|
|
/*
|
|
* Check for a fake topology request for debugging purposes.
|
|
*/
|
|
switch (smp_topology) {
|
|
case 1:
|
|
/* Dual core with no sharing. */
|
|
top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
|
|
break;
|
|
case 2:
|
|
/* No topology, all cpus are equal. */
|
|
top = smp_topo_none();
|
|
break;
|
|
case 3:
|
|
/* Dual core with shared L2. */
|
|
top = smp_topo_1level(CG_SHARE_L2, 2, 0);
|
|
break;
|
|
case 4:
|
|
/* quad core, shared l3 among each package, private l2. */
|
|
top = smp_topo_1level(CG_SHARE_L3, 4, 0);
|
|
break;
|
|
case 5:
|
|
/* quad core, 2 dualcore parts on each package share l2. */
|
|
top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
|
|
break;
|
|
case 6:
|
|
/* Single-core 2xHTT */
|
|
top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
|
|
break;
|
|
case 7:
|
|
/* quad core with a shared l3, 8 threads sharing L2. */
|
|
top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
|
|
CG_FLAG_SMT);
|
|
break;
|
|
default:
|
|
/* Default, ask the system what it wants. */
|
|
top = cpu_topo();
|
|
break;
|
|
}
|
|
/*
|
|
* Verify the returned topology.
|
|
*/
|
|
if (top->cg_count != mp_ncpus)
|
|
panic("Built bad topology at %p. CPU count %d != %d",
|
|
top, top->cg_count, mp_ncpus);
|
|
if (top->cg_mask != all_cpus)
|
|
panic("Built bad topology at %p. CPU mask 0x%X != 0x%X",
|
|
top, top->cg_mask, all_cpus);
|
|
return (top);
|
|
}
|
|
|
|
struct cpu_group *
|
|
smp_topo_none(void)
|
|
{
|
|
struct cpu_group *top;
|
|
|
|
top = &group[0];
|
|
top->cg_parent = NULL;
|
|
top->cg_child = NULL;
|
|
top->cg_mask = ~0U >> (32 - mp_ncpus);
|
|
top->cg_count = mp_ncpus;
|
|
top->cg_children = 0;
|
|
top->cg_level = CG_SHARE_NONE;
|
|
top->cg_flags = 0;
|
|
|
|
return (top);
|
|
}
|
|
|
|
static int
|
|
smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
|
|
int count, int flags, int start)
|
|
{
|
|
cpumask_t mask;
|
|
int i;
|
|
|
|
for (mask = 0, i = 0; i < count; i++, start++)
|
|
mask |= (1 << start);
|
|
child->cg_parent = parent;
|
|
child->cg_child = NULL;
|
|
child->cg_children = 0;
|
|
child->cg_level = share;
|
|
child->cg_count = count;
|
|
child->cg_flags = flags;
|
|
child->cg_mask = mask;
|
|
parent->cg_children++;
|
|
for (; parent != NULL; parent = parent->cg_parent) {
|
|
if ((parent->cg_mask & child->cg_mask) != 0)
|
|
panic("Duplicate children in %p. mask 0x%X child 0x%X",
|
|
parent, parent->cg_mask, child->cg_mask);
|
|
parent->cg_mask |= child->cg_mask;
|
|
parent->cg_count += child->cg_count;
|
|
}
|
|
|
|
return (start);
|
|
}
|
|
|
|
struct cpu_group *
|
|
smp_topo_1level(int share, int count, int flags)
|
|
{
|
|
struct cpu_group *child;
|
|
struct cpu_group *top;
|
|
int packages;
|
|
int cpu;
|
|
int i;
|
|
|
|
cpu = 0;
|
|
top = &group[0];
|
|
packages = mp_ncpus / count;
|
|
top->cg_child = child = &group[1];
|
|
top->cg_level = CG_SHARE_NONE;
|
|
for (i = 0; i < packages; i++, child++)
|
|
cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
|
|
return (top);
|
|
}
|
|
|
|
struct cpu_group *
|
|
smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
|
|
int l1flags)
|
|
{
|
|
struct cpu_group *top;
|
|
struct cpu_group *l1g;
|
|
struct cpu_group *l2g;
|
|
int cpu;
|
|
int i;
|
|
int j;
|
|
|
|
cpu = 0;
|
|
top = &group[0];
|
|
l2g = &group[1];
|
|
top->cg_child = l2g;
|
|
top->cg_level = CG_SHARE_NONE;
|
|
top->cg_children = mp_ncpus / (l2count * l1count);
|
|
l1g = l2g + top->cg_children;
|
|
for (i = 0; i < top->cg_children; i++, l2g++) {
|
|
l2g->cg_parent = top;
|
|
l2g->cg_child = l1g;
|
|
l2g->cg_level = l2share;
|
|
for (j = 0; j < l2count; j++, l1g++)
|
|
cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
|
|
l1flags, cpu);
|
|
}
|
|
return (top);
|
|
}
|
|
|
|
|
|
struct cpu_group *
|
|
smp_topo_find(struct cpu_group *top, int cpu)
|
|
{
|
|
struct cpu_group *cg;
|
|
cpumask_t mask;
|
|
int children;
|
|
int i;
|
|
|
|
mask = (1 << cpu);
|
|
cg = top;
|
|
for (;;) {
|
|
if ((cg->cg_mask & mask) == 0)
|
|
return (NULL);
|
|
if (cg->cg_children == 0)
|
|
return (cg);
|
|
children = cg->cg_children;
|
|
for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
|
|
if ((cg->cg_mask & mask) != 0)
|
|
break;
|
|
}
|
|
return (NULL);
|
|
}
|
|
#else /* !SMP */
|
|
|
|
void
|
|
smp_rendezvous_cpus(cpumask_t map,
|
|
void (*setup_func)(void *),
|
|
void (*action_func)(void *),
|
|
void (*teardown_func)(void *),
|
|
void *arg)
|
|
{
|
|
if (setup_func != NULL)
|
|
setup_func(arg);
|
|
if (action_func != NULL)
|
|
action_func(arg);
|
|
if (teardown_func != NULL)
|
|
teardown_func(arg);
|
|
}
|
|
|
|
void
|
|
smp_rendezvous(void (*setup_func)(void *),
|
|
void (*action_func)(void *),
|
|
void (*teardown_func)(void *),
|
|
void *arg)
|
|
{
|
|
|
|
if (setup_func != NULL)
|
|
setup_func(arg);
|
|
if (action_func != NULL)
|
|
action_func(arg);
|
|
if (teardown_func != NULL)
|
|
teardown_func(arg);
|
|
}
|
|
|
|
/*
|
|
* Provide dummy SMP support for UP kernels. Modules that need to use SMP
|
|
* APIs will still work using this dummy support.
|
|
*/
|
|
static void
|
|
mp_setvariables_for_up(void *dummy)
|
|
{
|
|
mp_ncpus = 1;
|
|
mp_maxid = PCPU_GET(cpuid);
|
|
all_cpus = PCPU_GET(cpumask);
|
|
KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
|
|
}
|
|
SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
|
|
mp_setvariables_for_up, NULL);
|
|
#endif /* SMP */
|
|
|
|
void
|
|
smp_no_rendevous_barrier(void *dummy)
|
|
{
|
|
#ifdef SMP
|
|
KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
|
|
#endif
|
|
}
|