freebsd-skq/sys/dev/acpi_support/acpi_hp.c
hselasky 49c137f7be Fix multiple incorrect SYSCTL arguments in the kernel:
- Wrong integer type was specified.

- Wrong or missing "access" specifier. The "access" specifier
sometimes included the SYSCTL type, which it should not, except for
procedural SYSCTL nodes.

- Logical OR where binary OR was expected.

- Properly assert the "access" argument passed to all SYSCTL macros,
using the CTASSERT macro. This applies to both static- and dynamically
created SYSCTLs.

- Properly assert the the data type for both static and dynamic
SYSCTLs. In the case of static SYSCTLs we only assert that the data
pointed to by the SYSCTL data pointer has the correct size, hence
there is no easy way to assert types in the C language outside a
C-function.

- Rewrote some code which doesn't pass a constant "access" specifier
when creating dynamic SYSCTL nodes, which is now a requirement.

- Updated "EXAMPLES" section in SYSCTL manual page.

MFC after:	3 days
Sponsored by:	Mellanox Technologies
2014-10-21 07:31:21 +00:00

1215 lines
33 KiB
C

/*-
* Copyright (c) 2009 Michael Gmelin <freebsd@grem.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for extra ACPI-controlled features found on HP laptops
* that use a WMI enabled BIOS (e.g. HP Compaq 8510p and 6510p).
* Allows to control and read status of integrated hardware and read
* BIOS settings through CMI.
* Inspired by the hp-wmi driver, which implements a subset of these
* features (hotkeys) on Linux.
*
* HP CMI whitepaper:
* http://h20331.www2.hp.com/Hpsub/downloads/cmi_whitepaper.pdf
* wmi-hp for Linux:
* http://www.kernel.org
* WMI and ACPI:
* http://www.microsoft.com/whdc/system/pnppwr/wmi/wmi-acpi.mspx
*/
#include "opt_acpi.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/sbuf.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
#include "acpi_wmi_if.h"
#define _COMPONENT ACPI_OEM
ACPI_MODULE_NAME("HP")
#define ACPI_HP_WMI_EVENT_GUID "95F24279-4D7B-4334-9387-ACCDC67EF61C"
#define ACPI_HP_WMI_BIOS_GUID "5FB7F034-2C63-45E9-BE91-3D44E2C707E4"
#define ACPI_HP_WMI_CMI_GUID "2D114B49-2DFB-4130-B8FE-4A3C09E75133"
#define ACPI_HP_WMI_DISPLAY_COMMAND 0x1
#define ACPI_HP_WMI_HDDTEMP_COMMAND 0x2
#define ACPI_HP_WMI_ALS_COMMAND 0x3
#define ACPI_HP_WMI_DOCK_COMMAND 0x4
#define ACPI_HP_WMI_WIRELESS_COMMAND 0x5
#define ACPI_HP_METHOD_WLAN_ENABLED 1
#define ACPI_HP_METHOD_WLAN_RADIO 2
#define ACPI_HP_METHOD_WLAN_ON_AIR 3
#define ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON 4
#define ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF 5
#define ACPI_HP_METHOD_BLUETOOTH_ENABLED 6
#define ACPI_HP_METHOD_BLUETOOTH_RADIO 7
#define ACPI_HP_METHOD_BLUETOOTH_ON_AIR 8
#define ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON 9
#define ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF 10
#define ACPI_HP_METHOD_WWAN_ENABLED 11
#define ACPI_HP_METHOD_WWAN_RADIO 12
#define ACPI_HP_METHOD_WWAN_ON_AIR 13
#define ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON 14
#define ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF 15
#define ACPI_HP_METHOD_ALS 16
#define ACPI_HP_METHOD_DISPLAY 17
#define ACPI_HP_METHOD_HDDTEMP 18
#define ACPI_HP_METHOD_DOCK 19
#define ACPI_HP_METHOD_CMI_DETAIL 20
#define ACPI_HP_METHOD_VERBOSE 21
#define HP_MASK_WWAN_ON_AIR 0x1000000
#define HP_MASK_BLUETOOTH_ON_AIR 0x10000
#define HP_MASK_WLAN_ON_AIR 0x100
#define HP_MASK_WWAN_RADIO 0x8000000
#define HP_MASK_BLUETOOTH_RADIO 0x80000
#define HP_MASK_WLAN_RADIO 0x800
#define HP_MASK_WWAN_ENABLED 0x2000000
#define HP_MASK_BLUETOOTH_ENABLED 0x20000
#define HP_MASK_WLAN_ENABLED 0x200
#define ACPI_HP_CMI_DETAIL_PATHS 0x01
#define ACPI_HP_CMI_DETAIL_ENUMS 0x02
#define ACPI_HP_CMI_DETAIL_FLAGS 0x04
#define ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE 0x08
struct acpi_hp_inst_seq_pair {
UINT32 sequence; /* sequence number as suggested by cmi bios */
UINT8 instance; /* object instance on guid */
};
struct acpi_hp_softc {
device_t dev;
device_t wmi_dev;
int has_notify; /* notification GUID found */
int has_cmi; /* CMI GUID found */
int cmi_detail; /* CMI detail level
(set by sysctl) */
int verbose; /* add debug output */
int wlan_enable_if_radio_on; /* set by sysctl */
int wlan_disable_if_radio_off; /* set by sysctl */
int bluetooth_enable_if_radio_on; /* set by sysctl */
int bluetooth_disable_if_radio_off; /* set by sysctl */
int wwan_enable_if_radio_on; /* set by sysctl */
int wwan_disable_if_radio_off; /* set by sysctl */
int was_wlan_on_air; /* last known WLAN
on air status */
int was_bluetooth_on_air; /* last known BT
on air status */
int was_wwan_on_air; /* last known WWAN
on air status */
struct sysctl_ctx_list *sysctl_ctx;
struct sysctl_oid *sysctl_tree;
struct cdev *hpcmi_dev_t; /* hpcmi device handle */
struct sbuf hpcmi_sbuf; /* /dev/hpcmi output sbuf */
pid_t hpcmi_open_pid; /* pid operating on
/dev/hpcmi */
int hpcmi_bufptr; /* current pointer position
in /dev/hpcmi output buffer
*/
int cmi_order_size; /* size of cmi_order list */
struct acpi_hp_inst_seq_pair cmi_order[128]; /* list of CMI
instances ordered by BIOS suggested sequence */
};
static struct {
char *name;
int method;
char *description;
int flag_rdonly;
} acpi_hp_sysctls[] = {
{
.name = "wlan_enabled",
.method = ACPI_HP_METHOD_WLAN_ENABLED,
.description = "Enable/Disable WLAN (WiFi)",
},
{
.name = "wlan_radio",
.method = ACPI_HP_METHOD_WLAN_RADIO,
.description = "WLAN radio status",
.flag_rdonly = 1
},
{
.name = "wlan_on_air",
.method = ACPI_HP_METHOD_WLAN_ON_AIR,
.description = "WLAN radio ready to use (enabled and radio)",
.flag_rdonly = 1
},
{
.name = "wlan_enable_if_radio_on",
.method = ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON,
.description = "Enable WLAN if radio is turned on",
},
{
.name = "wlan_disable_if_radio_off",
.method = ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF,
.description = "Disable WLAN if radio is turned off",
},
{
.name = "bt_enabled",
.method = ACPI_HP_METHOD_BLUETOOTH_ENABLED,
.description = "Enable/Disable Bluetooth",
},
{
.name = "bt_radio",
.method = ACPI_HP_METHOD_BLUETOOTH_RADIO,
.description = "Bluetooth radio status",
.flag_rdonly = 1
},
{
.name = "bt_on_air",
.method = ACPI_HP_METHOD_BLUETOOTH_ON_AIR,
.description = "Bluetooth radio ready to use"
" (enabled and radio)",
.flag_rdonly = 1
},
{
.name = "bt_enable_if_radio_on",
.method = ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON,
.description = "Enable bluetooth if radio is turned on",
},
{
.name = "bt_disable_if_radio_off",
.method = ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF,
.description = "Disable bluetooth if radio is turned off",
},
{
.name = "wwan_enabled",
.method = ACPI_HP_METHOD_WWAN_ENABLED,
.description = "Enable/Disable WWAN (UMTS)",
},
{
.name = "wwan_radio",
.method = ACPI_HP_METHOD_WWAN_RADIO,
.description = "WWAN radio status",
.flag_rdonly = 1
},
{
.name = "wwan_on_air",
.method = ACPI_HP_METHOD_WWAN_ON_AIR,
.description = "WWAN radio ready to use (enabled and radio)",
.flag_rdonly = 1
},
{
.name = "wwan_enable_if_radio_on",
.method = ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON,
.description = "Enable WWAN if radio is turned on",
},
{
.name = "wwan_disable_if_radio_off",
.method = ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF,
.description = "Disable WWAN if radio is turned off",
},
{
.name = "als_enabled",
.method = ACPI_HP_METHOD_ALS,
.description = "Enable/Disable ALS (Ambient light sensor)",
},
{
.name = "display",
.method = ACPI_HP_METHOD_DISPLAY,
.description = "Display status",
.flag_rdonly = 1
},
{
.name = "hdd_temperature",
.method = ACPI_HP_METHOD_HDDTEMP,
.description = "HDD temperature",
.flag_rdonly = 1
},
{
.name = "is_docked",
.method = ACPI_HP_METHOD_DOCK,
.description = "Docking station status",
.flag_rdonly = 1
},
{
.name = "cmi_detail",
.method = ACPI_HP_METHOD_CMI_DETAIL,
.description = "Details shown in CMI output "
"(cat /dev/hpcmi)",
},
{
.name = "verbose",
.method = ACPI_HP_METHOD_VERBOSE,
.description = "Verbosity level",
},
{ NULL, 0, NULL, 0 }
};
ACPI_SERIAL_DECL(hp, "HP ACPI-WMI Mapping");
static void acpi_hp_identify(driver_t *driver, device_t parent);
static int acpi_hp_probe(device_t dev);
static int acpi_hp_attach(device_t dev);
static int acpi_hp_detach(device_t dev);
static void acpi_hp_evaluate_auto_on_off(struct acpi_hp_softc* sc);
static int acpi_hp_sysctl(SYSCTL_HANDLER_ARGS);
static int acpi_hp_sysctl_set(struct acpi_hp_softc *sc, int method,
int arg, int oldarg);
static int acpi_hp_sysctl_get(struct acpi_hp_softc *sc, int method);
static int acpi_hp_exec_wmi_command(device_t wmi_dev, int command,
int is_write, int val);
static void acpi_hp_notify(ACPI_HANDLE h, UINT32 notify, void *context);
static int acpi_hp_get_cmi_block(device_t wmi_dev, const char* guid,
UINT8 instance, char* outbuf, size_t outsize,
UINT32* sequence, int detail);
static void acpi_hp_hex_decode(char* buffer);
static d_open_t acpi_hp_hpcmi_open;
static d_close_t acpi_hp_hpcmi_close;
static d_read_t acpi_hp_hpcmi_read;
/* handler /dev/hpcmi device */
static struct cdevsw hpcmi_cdevsw = {
.d_version = D_VERSION,
.d_open = acpi_hp_hpcmi_open,
.d_close = acpi_hp_hpcmi_close,
.d_read = acpi_hp_hpcmi_read,
.d_name = "hpcmi",
};
static device_method_t acpi_hp_methods[] = {
DEVMETHOD(device_identify, acpi_hp_identify),
DEVMETHOD(device_probe, acpi_hp_probe),
DEVMETHOD(device_attach, acpi_hp_attach),
DEVMETHOD(device_detach, acpi_hp_detach),
DEVMETHOD_END
};
static driver_t acpi_hp_driver = {
"acpi_hp",
acpi_hp_methods,
sizeof(struct acpi_hp_softc),
};
static devclass_t acpi_hp_devclass;
DRIVER_MODULE(acpi_hp, acpi_wmi, acpi_hp_driver, acpi_hp_devclass,
0, 0);
MODULE_DEPEND(acpi_hp, acpi_wmi, 1, 1, 1);
MODULE_DEPEND(acpi_hp, acpi, 1, 1, 1);
static void
acpi_hp_evaluate_auto_on_off(struct acpi_hp_softc *sc)
{
int wireless;
int new_wlan_status;
int new_bluetooth_status;
int new_wwan_status;
wireless = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
new_wlan_status = -1;
new_bluetooth_status = -1;
new_wwan_status = -1;
if (sc->verbose)
device_printf(sc->wmi_dev, "Wireless status is %x\n", wireless);
if (sc->wlan_disable_if_radio_off && !(wireless & HP_MASK_WLAN_RADIO)
&& (wireless & HP_MASK_WLAN_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x100);
new_wlan_status = 0;
}
else if (sc->wlan_enable_if_radio_on && (wireless & HP_MASK_WLAN_RADIO)
&& !(wireless & HP_MASK_WLAN_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x101);
new_wlan_status = 1;
}
if (sc->bluetooth_disable_if_radio_off &&
!(wireless & HP_MASK_BLUETOOTH_RADIO) &&
(wireless & HP_MASK_BLUETOOTH_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x200);
new_bluetooth_status = 0;
}
else if (sc->bluetooth_enable_if_radio_on &&
(wireless & HP_MASK_BLUETOOTH_RADIO) &&
!(wireless & HP_MASK_BLUETOOTH_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x202);
new_bluetooth_status = 1;
}
if (sc->wwan_disable_if_radio_off &&
!(wireless & HP_MASK_WWAN_RADIO) &&
(wireless & HP_MASK_WWAN_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x400);
new_wwan_status = 0;
}
else if (sc->wwan_enable_if_radio_on &&
(wireless & HP_MASK_WWAN_RADIO) &&
!(wireless & HP_MASK_WWAN_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x404);
new_wwan_status = 1;
}
if (new_wlan_status == -1) {
new_wlan_status = (wireless & HP_MASK_WLAN_ON_AIR);
if ((new_wlan_status?1:0) != sc->was_wlan_on_air) {
sc->was_wlan_on_air = sc->was_wlan_on_air?0:1;
if (sc->verbose)
device_printf(sc->wmi_dev,
"WLAN on air changed to %i "
"(new_wlan_status is %i)\n",
sc->was_wlan_on_air, new_wlan_status);
acpi_UserNotify("HP", ACPI_ROOT_OBJECT,
0xc0+sc->was_wlan_on_air);
}
}
if (new_bluetooth_status == -1) {
new_bluetooth_status = (wireless & HP_MASK_BLUETOOTH_ON_AIR);
if ((new_bluetooth_status?1:0) != sc->was_bluetooth_on_air) {
sc->was_bluetooth_on_air = sc->was_bluetooth_on_air?
0:1;
if (sc->verbose)
device_printf(sc->wmi_dev,
"BLUETOOTH on air changed"
" to %i (new_bluetooth_status is %i)\n",
sc->was_bluetooth_on_air,
new_bluetooth_status);
acpi_UserNotify("HP", ACPI_ROOT_OBJECT,
0xd0+sc->was_bluetooth_on_air);
}
}
if (new_wwan_status == -1) {
new_wwan_status = (wireless & HP_MASK_WWAN_ON_AIR);
if ((new_wwan_status?1:0) != sc->was_wwan_on_air) {
sc->was_wwan_on_air = sc->was_wwan_on_air?0:1;
if (sc->verbose)
device_printf(sc->wmi_dev,
"WWAN on air changed to %i"
" (new_wwan_status is %i)\n",
sc->was_wwan_on_air, new_wwan_status);
acpi_UserNotify("HP", ACPI_ROOT_OBJECT,
0xe0+sc->was_wwan_on_air);
}
}
}
static void
acpi_hp_identify(driver_t *driver, device_t parent)
{
/* Don't do anything if driver is disabled. */
if (acpi_disabled("hp"))
return;
/* Add only a single device instance. */
if (device_find_child(parent, "acpi_hp", -1) != NULL)
return;
if (BUS_ADD_CHILD(parent, 0, "acpi_hp", -1) == NULL)
device_printf(parent, "add acpi_hp child failed\n");
}
static int
acpi_hp_probe(device_t dev)
{
device_set_desc(dev, "HP ACPI-WMI Mapping");
return (0);
}
static int
acpi_hp_attach(device_t dev)
{
struct acpi_hp_softc *sc;
int arg;
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
sc = device_get_softc(dev);
sc->dev = dev;
sc->has_notify = 0;
sc->has_cmi = 0;
sc->bluetooth_enable_if_radio_on = 0;
sc->bluetooth_disable_if_radio_off = 0;
sc->wlan_enable_if_radio_on = 0;
sc->wlan_disable_if_radio_off = 0;
sc->wlan_enable_if_radio_on = 0;
sc->wlan_disable_if_radio_off = 0;
sc->was_wlan_on_air = 0;
sc->was_bluetooth_on_air = 0;
sc->was_wwan_on_air = 0;
sc->cmi_detail = 0;
sc->cmi_order_size = -1;
sc->verbose = 0;
memset(sc->cmi_order, 0, sizeof(sc->cmi_order));
sc->wmi_dev = device_get_parent(dev);
if (!ACPI_WMI_PROVIDES_GUID_STRING(sc->wmi_dev,
ACPI_HP_WMI_BIOS_GUID)) {
device_printf(dev,
"WMI device does not provide the HP BIOS GUID\n");
return (EINVAL);
}
if (ACPI_WMI_PROVIDES_GUID_STRING(sc->wmi_dev,
ACPI_HP_WMI_EVENT_GUID)) {
device_printf(dev,
"HP event GUID detected, installing event handler\n");
if (ACPI_WMI_INSTALL_EVENT_HANDLER(sc->wmi_dev,
ACPI_HP_WMI_EVENT_GUID, acpi_hp_notify, dev)) {
device_printf(dev,
"Could not install notification handler!\n");
}
else {
sc->has_notify = 1;
}
}
if ((sc->has_cmi =
ACPI_WMI_PROVIDES_GUID_STRING(sc->wmi_dev, ACPI_HP_WMI_CMI_GUID)
)) {
device_printf(dev, "HP CMI GUID detected\n");
}
if (sc->has_cmi) {
sc->hpcmi_dev_t = make_dev(&hpcmi_cdevsw, 0, UID_ROOT,
GID_WHEEL, 0644, "hpcmi");
sc->hpcmi_dev_t->si_drv1 = sc;
sc->hpcmi_open_pid = 0;
sc->hpcmi_bufptr = -1;
}
ACPI_SERIAL_BEGIN(hp);
sc->sysctl_ctx = device_get_sysctl_ctx(dev);
sc->sysctl_tree = device_get_sysctl_tree(dev);
for (int i = 0; acpi_hp_sysctls[i].name != NULL; ++i) {
arg = 0;
if ((!sc->has_notify &&
(acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON ||
acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF ||
acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON ||
acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF ||
acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON ||
acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF)) ||
(arg = acpi_hp_sysctl_get(sc,
acpi_hp_sysctls[i].method)) < 0) {
continue;
}
if (acpi_hp_sysctls[i].method == ACPI_HP_METHOD_WLAN_ON_AIR) {
sc->was_wlan_on_air = arg;
}
else if (acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_BLUETOOTH_ON_AIR) {
sc->was_bluetooth_on_air = arg;
}
else if (acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_WWAN_ON_AIR) {
sc->was_wwan_on_air = arg;
}
if (acpi_hp_sysctls[i].flag_rdonly != 0) {
SYSCTL_ADD_PROC(sc->sysctl_ctx,
SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
acpi_hp_sysctls[i].name, CTLTYPE_INT | CTLFLAG_RD,
sc, i, acpi_hp_sysctl, "I",
acpi_hp_sysctls[i].description);
} else {
SYSCTL_ADD_PROC(sc->sysctl_ctx,
SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
acpi_hp_sysctls[i].name, CTLTYPE_INT | CTLFLAG_RW,
sc, i, acpi_hp_sysctl, "I",
acpi_hp_sysctls[i].description);
}
}
ACPI_SERIAL_END(hp);
return (0);
}
static int
acpi_hp_detach(device_t dev)
{
struct acpi_hp_softc *sc;
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
sc = device_get_softc(dev);
if (sc->has_cmi && sc->hpcmi_open_pid != 0)
return (EBUSY);
if (sc->has_notify)
ACPI_WMI_REMOVE_EVENT_HANDLER(dev, ACPI_HP_WMI_EVENT_GUID);
if (sc->has_cmi) {
if (sc->hpcmi_bufptr != -1) {
sbuf_delete(&sc->hpcmi_sbuf);
sc->hpcmi_bufptr = -1;
}
sc->hpcmi_open_pid = 0;
destroy_dev(sc->hpcmi_dev_t);
}
return (0);
}
static int
acpi_hp_sysctl(SYSCTL_HANDLER_ARGS)
{
struct acpi_hp_softc *sc;
int arg;
int oldarg;
int error = 0;
int function;
int method;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
sc = (struct acpi_hp_softc *)oidp->oid_arg1;
function = oidp->oid_arg2;
method = acpi_hp_sysctls[function].method;
ACPI_SERIAL_BEGIN(hp);
arg = acpi_hp_sysctl_get(sc, method);
oldarg = arg;
error = sysctl_handle_int(oidp, &arg, 0, req);
if (!error && req->newptr != NULL) {
error = acpi_hp_sysctl_set(sc, method, arg, oldarg);
}
ACPI_SERIAL_END(hp);
return (error);
}
static int
acpi_hp_sysctl_get(struct acpi_hp_softc *sc, int method)
{
int val = 0;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
ACPI_SERIAL_ASSERT(hp);
switch (method) {
case ACPI_HP_METHOD_WLAN_ENABLED:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WLAN_ENABLED) != 0);
break;
case ACPI_HP_METHOD_WLAN_RADIO:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WLAN_RADIO) != 0);
break;
case ACPI_HP_METHOD_WLAN_ON_AIR:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WLAN_ON_AIR) != 0);
break;
case ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON:
val = sc->wlan_enable_if_radio_on;
break;
case ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF:
val = sc->wlan_disable_if_radio_off;
break;
case ACPI_HP_METHOD_BLUETOOTH_ENABLED:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_BLUETOOTH_ENABLED) != 0);
break;
case ACPI_HP_METHOD_BLUETOOTH_RADIO:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_BLUETOOTH_RADIO) != 0);
break;
case ACPI_HP_METHOD_BLUETOOTH_ON_AIR:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_BLUETOOTH_ON_AIR) != 0);
break;
case ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON:
val = sc->bluetooth_enable_if_radio_on;
break;
case ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF:
val = sc->bluetooth_disable_if_radio_off;
break;
case ACPI_HP_METHOD_WWAN_ENABLED:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WWAN_ENABLED) != 0);
break;
case ACPI_HP_METHOD_WWAN_RADIO:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WWAN_RADIO) != 0);
break;
case ACPI_HP_METHOD_WWAN_ON_AIR:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WWAN_ON_AIR) != 0);
break;
case ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON:
val = sc->wwan_enable_if_radio_on;
break;
case ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF:
val = sc->wwan_disable_if_radio_off;
break;
case ACPI_HP_METHOD_ALS:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_ALS_COMMAND, 0, 0);
break;
case ACPI_HP_METHOD_DISPLAY:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_DISPLAY_COMMAND, 0, 0);
break;
case ACPI_HP_METHOD_HDDTEMP:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_HDDTEMP_COMMAND, 0, 0);
break;
case ACPI_HP_METHOD_DOCK:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_DOCK_COMMAND, 0, 0);
break;
case ACPI_HP_METHOD_CMI_DETAIL:
val = sc->cmi_detail;
break;
case ACPI_HP_METHOD_VERBOSE:
val = sc->verbose;
break;
}
return (val);
}
static int
acpi_hp_sysctl_set(struct acpi_hp_softc *sc, int method, int arg, int oldarg)
{
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
ACPI_SERIAL_ASSERT(hp);
if (method != ACPI_HP_METHOD_CMI_DETAIL &&
method != ACPI_HP_METHOD_VERBOSE)
arg = arg?1:0;
if (arg != oldarg) {
switch (method) {
case ACPI_HP_METHOD_WLAN_ENABLED:
return (acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1,
arg?0x101:0x100));
case ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON:
sc->wlan_enable_if_radio_on = arg;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF:
sc->wlan_disable_if_radio_off = arg;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_BLUETOOTH_ENABLED:
return (acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1,
arg?0x202:0x200));
case ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON:
sc->bluetooth_enable_if_radio_on = arg;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF:
sc->bluetooth_disable_if_radio_off = arg?1:0;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_WWAN_ENABLED:
return (acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1,
arg?0x404:0x400));
case ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON:
sc->wwan_enable_if_radio_on = arg?1:0;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF:
sc->wwan_disable_if_radio_off = arg?1:0;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_ALS:
return (acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_ALS_COMMAND, 1,
arg?1:0));
case ACPI_HP_METHOD_CMI_DETAIL:
sc->cmi_detail = arg;
if ((arg & ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE) !=
(oldarg & ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE)) {
sc->cmi_order_size = -1;
}
break;
case ACPI_HP_METHOD_VERBOSE:
sc->verbose = arg;
break;
}
}
return (0);
}
static __inline void
acpi_hp_free_buffer(ACPI_BUFFER* buf) {
if (buf && buf->Pointer) {
AcpiOsFree(buf->Pointer);
}
}
static void
acpi_hp_notify(ACPI_HANDLE h, UINT32 notify, void *context)
{
device_t dev = context;
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, notify);
struct acpi_hp_softc *sc = device_get_softc(dev);
ACPI_BUFFER response = { ACPI_ALLOCATE_BUFFER, NULL };
ACPI_OBJECT *obj;
ACPI_WMI_GET_EVENT_DATA(sc->wmi_dev, notify, &response);
obj = (ACPI_OBJECT*) response.Pointer;
if (obj && obj->Type == ACPI_TYPE_BUFFER && obj->Buffer.Length == 8) {
if (*((UINT8 *) obj->Buffer.Pointer) == 0x5) {
acpi_hp_evaluate_auto_on_off(sc);
}
}
acpi_hp_free_buffer(&response);
}
static int
acpi_hp_exec_wmi_command(device_t wmi_dev, int command, int is_write, int val)
{
UINT32 params[5] = { 0x55434553,
is_write?2:1,
command,
is_write?4:0,
val};
UINT32* result;
ACPI_OBJECT *obj;
ACPI_BUFFER in = { sizeof(params), &params };
ACPI_BUFFER out = { ACPI_ALLOCATE_BUFFER, NULL };
int retval;
if (ACPI_FAILURE(ACPI_WMI_EVALUATE_CALL(wmi_dev, ACPI_HP_WMI_BIOS_GUID,
0, 0x3, &in, &out))) {
acpi_hp_free_buffer(&out);
return (-EINVAL);
}
obj = out.Pointer;
if (!obj || obj->Type != ACPI_TYPE_BUFFER) {
acpi_hp_free_buffer(&out);
return (-EINVAL);
}
result = (UINT32*) obj->Buffer.Pointer;
retval = result[2];
if (result[1] > 0) {
retval = result[1];
}
acpi_hp_free_buffer(&out);
return (retval);
}
static __inline char*
acpi_hp_get_string_from_object(ACPI_OBJECT* obj, char* dst, size_t size) {
int length;
dst[0] = 0;
if (obj->Type == ACPI_TYPE_STRING) {
length = obj->String.Length+1;
if (length > size) {
length = size - 1;
}
strlcpy(dst, obj->String.Pointer, length);
acpi_hp_hex_decode(dst);
}
return (dst);
}
/*
* Read BIOS Setting block in instance "instance".
* The block returned is ACPI_TYPE_PACKAGE which should contain the following
* elements:
* Index Meaning
* 0 Setting Name [string]
* 1 Value (comma separated, asterisk marks the current value) [string]
* 2 Path within the bios hierarchy [string]
* 3 IsReadOnly [int]
* 4 DisplayInUI [int]
* 5 RequiresPhysicalPresence [int]
* 6 Sequence for ordering within the bios settings (absolute) [int]
* 7 Length of prerequisites array [int]
* 8..8+[7] PrerequisiteN [string]
* 9+[7] Current value (in case of enum) [string] / Array length [int]
* 10+[7] Enum length [int] / Array values
* 11+[7]ff Enum value at index x [string]
*/
static int
acpi_hp_get_cmi_block(device_t wmi_dev, const char* guid, UINT8 instance,
char* outbuf, size_t outsize, UINT32* sequence, int detail)
{
ACPI_OBJECT *obj;
ACPI_BUFFER out = { ACPI_ALLOCATE_BUFFER, NULL };
int i;
int outlen;
int size = 255;
int has_enums = 0;
int valuebase = 0;
char string_buffer[size];
int enumbase;
outlen = 0;
outbuf[0] = 0;
if (ACPI_FAILURE(ACPI_WMI_GET_BLOCK(wmi_dev, guid, instance, &out))) {
acpi_hp_free_buffer(&out);
return (-EINVAL);
}
obj = out.Pointer;
if (!obj || obj->Type != ACPI_TYPE_PACKAGE) {
acpi_hp_free_buffer(&out);
return (-EINVAL);
}
if (obj->Package.Count >= 8 &&
obj->Package.Elements[7].Type == ACPI_TYPE_INTEGER) {
valuebase = 8 + obj->Package.Elements[7].Integer.Value;
}
/* check if this matches our expectations based on limited knowledge */
if (valuebase > 7 && obj->Package.Count > valuebase + 1 &&
obj->Package.Elements[0].Type == ACPI_TYPE_STRING &&
obj->Package.Elements[1].Type == ACPI_TYPE_STRING &&
obj->Package.Elements[2].Type == ACPI_TYPE_STRING &&
obj->Package.Elements[3].Type == ACPI_TYPE_INTEGER &&
obj->Package.Elements[4].Type == ACPI_TYPE_INTEGER &&
obj->Package.Elements[5].Type == ACPI_TYPE_INTEGER &&
obj->Package.Elements[6].Type == ACPI_TYPE_INTEGER &&
obj->Package.Elements[valuebase].Type == ACPI_TYPE_STRING &&
obj->Package.Elements[valuebase+1].Type == ACPI_TYPE_INTEGER &&
obj->Package.Count > valuebase +
obj->Package.Elements[valuebase+1].Integer.Value
) {
enumbase = valuebase + 1;
if (detail & ACPI_HP_CMI_DETAIL_PATHS) {
strlcat(outbuf, acpi_hp_get_string_from_object(
&obj->Package.Elements[2], string_buffer, size),
outsize);
outlen += 48;
while (strlen(outbuf) < outlen)
strlcat(outbuf, " ", outsize);
}
strlcat(outbuf, acpi_hp_get_string_from_object(
&obj->Package.Elements[0], string_buffer, size),
outsize);
outlen += 43;
while (strlen(outbuf) < outlen)
strlcat(outbuf, " ", outsize);
strlcat(outbuf, acpi_hp_get_string_from_object(
&obj->Package.Elements[valuebase], string_buffer,
size),
outsize);
outlen += 21;
while (strlen(outbuf) < outlen)
strlcat(outbuf, " ", outsize);
for (i = 0; i < strlen(outbuf); ++i)
if (outbuf[i] == '\\')
outbuf[i] = '/';
if (detail & ACPI_HP_CMI_DETAIL_ENUMS) {
for (i = enumbase + 1; i < enumbase + 1 +
obj->Package.Elements[enumbase].Integer.Value;
++i) {
acpi_hp_get_string_from_object(
&obj->Package.Elements[i], string_buffer,
size);
if (strlen(string_buffer) > 1 ||
(strlen(string_buffer) == 1 &&
string_buffer[0] != ' ')) {
if (has_enums)
strlcat(outbuf, "/", outsize);
else
strlcat(outbuf, " (", outsize);
strlcat(outbuf, string_buffer, outsize);
has_enums = 1;
}
}
}
if (has_enums)
strlcat(outbuf, ")", outsize);
if (detail & ACPI_HP_CMI_DETAIL_FLAGS) {
strlcat(outbuf, obj->Package.Elements[3].Integer.Value?
" [ReadOnly]":"", outsize);
strlcat(outbuf, obj->Package.Elements[4].Integer.Value?
"":" [NOUI]", outsize);
strlcat(outbuf, obj->Package.Elements[5].Integer.Value?
" [RPP]":"", outsize);
}
*sequence = (UINT32) obj->Package.Elements[6].Integer.Value;
}
acpi_hp_free_buffer(&out);
return (0);
}
/*
* Convert given two digit hex string (hexin) to an UINT8 referenced
* by byteout.
* Return != 0 if the was a problem (invalid input)
*/
static __inline int acpi_hp_hex_to_int(const UINT8 *hexin, UINT8 *byteout)
{
unsigned int hi;
unsigned int lo;
hi = hexin[0];
lo = hexin[1];
if ('0' <= hi && hi <= '9')
hi -= '0';
else if ('A' <= hi && hi <= 'F')
hi -= ('A' - 10);
else if ('a' <= hi && hi <= 'f')
hi -= ('a' - 10);
else
return (1);
if ('0' <= lo && lo <= '9')
lo -= '0';
else if ('A' <= lo && lo <= 'F')
lo -= ('A' - 10);
else if ('a' <= lo && lo <= 'f')
lo -= ('a' - 10);
else
return (1);
*byteout = (hi << 4) + lo;
return (0);
}
static void
acpi_hp_hex_decode(char* buffer)
{
int i;
int length = strlen(buffer);
UINT8 *uin;
UINT8 uout;
if (((int)length/2)*2 == length || length < 10) return;
for (i = 0; i<length; ++i) {
if (!((i+1)%3)) {
if (buffer[i] != ' ')
return;
}
else
if (!((buffer[i] >= '0' && buffer[i] <= '9') ||
(buffer[i] >= 'A' && buffer[i] <= 'F')))
return;
}
for (i = 0; i<length; i += 3) {
uin = &buffer[i];
uout = 0;
acpi_hp_hex_to_int(uin, &uout);
buffer[i/3] = (char) uout;
}
buffer[(length+1)/3] = 0;
}
/*
* open hpcmi device
*/
static int
acpi_hp_hpcmi_open(struct cdev* dev, int flags, int mode, struct thread *td)
{
struct acpi_hp_softc *sc;
int ret;
if (dev == NULL || dev->si_drv1 == NULL)
return (EBADF);
sc = dev->si_drv1;
ACPI_SERIAL_BEGIN(hp);
if (sc->hpcmi_open_pid != 0) {
ret = EBUSY;
}
else {
if (sbuf_new(&sc->hpcmi_sbuf, NULL, 4096, SBUF_AUTOEXTEND)
== NULL) {
ret = ENXIO;
} else {
sc->hpcmi_open_pid = td->td_proc->p_pid;
sc->hpcmi_bufptr = 0;
ret = 0;
}
}
ACPI_SERIAL_END(hp);
return (ret);
}
/*
* close hpcmi device
*/
static int
acpi_hp_hpcmi_close(struct cdev* dev, int flags, int mode, struct thread *td)
{
struct acpi_hp_softc *sc;
int ret;
if (dev == NULL || dev->si_drv1 == NULL)
return (EBADF);
sc = dev->si_drv1;
ACPI_SERIAL_BEGIN(hp);
if (sc->hpcmi_open_pid == 0) {
ret = EBADF;
}
else {
if (sc->hpcmi_bufptr != -1) {
sbuf_delete(&sc->hpcmi_sbuf);
sc->hpcmi_bufptr = -1;
}
sc->hpcmi_open_pid = 0;
ret = 0;
}
ACPI_SERIAL_END(hp);
return (ret);
}
/*
* Read from hpcmi bios information
*/
static int
acpi_hp_hpcmi_read(struct cdev *dev, struct uio *buf, int flag)
{
struct acpi_hp_softc *sc;
int pos, i, l, ret;
UINT8 instance;
UINT8 maxInstance;
UINT32 sequence;
int linesize = 1025;
char line[linesize];
if (dev == NULL || dev->si_drv1 == NULL)
return (EBADF);
sc = dev->si_drv1;
ACPI_SERIAL_BEGIN(hp);
if (sc->hpcmi_open_pid != buf->uio_td->td_proc->p_pid
|| sc->hpcmi_bufptr == -1) {
ret = EBADF;
}
else {
if (!sbuf_done(&sc->hpcmi_sbuf)) {
if (sc->cmi_order_size < 0) {
maxInstance = sc->has_cmi;
if (!(sc->cmi_detail &
ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE) &&
maxInstance > 0) {
maxInstance--;
}
sc->cmi_order_size = 0;
for (instance = 0; instance < maxInstance;
++instance) {
if (acpi_hp_get_cmi_block(sc->wmi_dev,
ACPI_HP_WMI_CMI_GUID, instance,
line, linesize, &sequence,
sc->cmi_detail)) {
instance = maxInstance;
}
else {
pos = sc->cmi_order_size;
for (i=0;
i<sc->cmi_order_size && i<127;
++i) {
if (sc->cmi_order[i].sequence > sequence) {
pos = i;
break;
}
}
for (i=sc->cmi_order_size;
i>pos;
--i) {
sc->cmi_order[i].sequence =
sc->cmi_order[i-1].sequence;
sc->cmi_order[i].instance =
sc->cmi_order[i-1].instance;
}
sc->cmi_order[pos].sequence =
sequence;
sc->cmi_order[pos].instance =
instance;
sc->cmi_order_size++;
}
}
}
for (i=0; i<sc->cmi_order_size; ++i) {
if (!acpi_hp_get_cmi_block(sc->wmi_dev,
ACPI_HP_WMI_CMI_GUID,
sc->cmi_order[i].instance, line, linesize,
&sequence, sc->cmi_detail)) {
sbuf_printf(&sc->hpcmi_sbuf, "%s\n", line);
}
}
sbuf_finish(&sc->hpcmi_sbuf);
}
if (sbuf_len(&sc->hpcmi_sbuf) <= 0) {
sbuf_delete(&sc->hpcmi_sbuf);
sc->hpcmi_bufptr = -1;
sc->hpcmi_open_pid = 0;
ret = ENOMEM;
} else {
l = min(buf->uio_resid, sbuf_len(&sc->hpcmi_sbuf) -
sc->hpcmi_bufptr);
ret = (l > 0)?uiomove(sbuf_data(&sc->hpcmi_sbuf) +
sc->hpcmi_bufptr, l, buf) : 0;
sc->hpcmi_bufptr += l;
}
}
ACPI_SERIAL_END(hp);
return (ret);
}