freebsd-skq/sys/dev/mps/mps_sas.h
Kenneth D. Merry 653c521f8d Bring in a number of mps(4) driver fixes from LSI:
1.  Fixed timeout specification for the msleep in mps_wait_command().
    Added 30 second timeout for mps_wait_command() calls in mps_user.c.

2.  Make sure we call mps_detach_user() from the kldunload path.

3.  Raid Hotplug behavior change.

    The driver now removes a volume when it goes to a failed state,
    so we also need to add volume back to the OS when it goes to
    opitimal/degraded/online from failed/missing.

    Handle raid volume add and remove from the IR_Volume event.
4.  Added some more debugging information.

5.  Replace xpt_async(AC_LOST_DEVICE, path, NULL) with
    mpssas_rescan_target().

    This is to work around a panic in CAM that shows up when adding a
    drive with a rescan and removing another device from the driver thread
    with an AC_LOST_DEVICE async notification.

    This problem was encountered in testing with the LSI sas2ircu utility,
    which was used to create a RAID volume from physical disks.  The driver
    has to create the RAID volume target and remove the physical disk
    targets, and triggered a panic in the process.

    The CAM issue needs to be fully diagnosed and fixed, but this works
    around the issue for now.

6.  Fix some memory initialization issues in mps_free_command().

7.  Resolve the "devq freeze forever" issue.  This was caused by the
    internal read capacity command issued in the non-head version of the
    driver.  When the command completed with an error, the driver wasn't
    unfreezing thd device queue.

    The version in head uses the CAM infrastructure for getting the read
    capacity information, and therefore doesn't have the same issue.

8.  Bump the version to 13.00.00.00-fbsd. (this is very close to LSI's
    internal stable driver 13.00.00.00)

Submitted by:	Kashyap Desai <Kashyap.Desai@lsi.com>
MFC after:	3 days
2012-02-09 00:16:12 +00:00

165 lines
5.0 KiB
C

/*-
* Copyright (c) 2011 LSI Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* LSI MPT-Fusion Host Adapter FreeBSD
*
* $FreeBSD$
*/
struct mps_fw_event_work;
struct mpssas_lun {
SLIST_ENTRY(mpssas_lun) lun_link;
lun_id_t lun_id;
uint8_t eedp_formatted;
uint32_t eedp_block_size;
};
struct mpssas_target {
uint16_t handle;
uint8_t linkrate;
uint64_t devname;
uint32_t devinfo;
uint16_t encl_handle;
uint16_t encl_slot;
uint8_t flags;
#define MPSSAS_TARGET_INABORT (1 << 0)
#define MPSSAS_TARGET_INRESET (1 << 1)
#define MPSSAS_TARGET_INDIAGRESET (1 << 2)
#define MPSSAS_TARGET_INREMOVAL (1 << 3)
#define MPS_TARGET_FLAGS_RAID_COMPONENT (1 << 4)
#define MPS_TARGET_FLAGS_VOLUME (1 << 5)
#define MPSSAS_TARGET_INRECOVERY (MPSSAS_TARGET_INABORT | \
MPSSAS_TARGET_INRESET | MPSSAS_TARGET_INCHIPRESET)
#define MPSSAS_TARGET_ADD (1 << 29)
#define MPSSAS_TARGET_REMOVE (1 << 30)
uint16_t tid;
SLIST_HEAD(, mpssas_lun) luns;
TAILQ_HEAD(, mps_command) commands;
struct mps_command *tm;
TAILQ_HEAD(, mps_command) timedout_commands;
uint16_t exp_dev_handle;
uint16_t phy_num;
uint64_t sasaddr;
uint16_t parent_handle;
uint64_t parent_sasaddr;
uint32_t parent_devinfo;
struct sysctl_ctx_list sysctl_ctx;
struct sysctl_oid *sysctl_tree;
TAILQ_ENTRY(mpssas_target) sysctl_link;
uint64_t issued;
uint64_t completed;
unsigned int outstanding;
unsigned int timeouts;
unsigned int aborts;
unsigned int logical_unit_resets;
unsigned int target_resets;
};
struct mpssas_softc {
struct mps_softc *sc;
u_int flags;
#define MPSSAS_IN_DISCOVERY (1 << 0)
#define MPSSAS_IN_STARTUP (1 << 1)
#define MPSSAS_DISCOVERY_TIMEOUT_PENDING (1 << 2)
#define MPSSAS_QUEUE_FROZEN (1 << 3)
#define MPSSAS_SHUTDOWN (1 << 4)
#define MPSSAS_SCANTHREAD (1 << 5)
struct mpssas_target *targets;
struct cam_devq *devq;
struct cam_sim *sim;
struct cam_path *path;
struct intr_config_hook sas_ich;
struct callout discovery_callout;
u_int discovery_timeouts;
struct mps_event_handle *mpssas_eh;
u_int startup_refcount;
u_int tm_count;
struct proc *sysctl_proc;
TAILQ_HEAD(, ccb_hdr) ccb_scanq;
struct proc *rescan_thread;
struct taskqueue *ev_tq;
struct task ev_task;
TAILQ_HEAD(, mps_fw_event_work) ev_queue;
};
MALLOC_DECLARE(M_MPSSAS);
/*
* Abstracted so that the driver can be backwards and forwards compatible
* with future versions of CAM that will provide this functionality.
*/
#define MPS_SET_LUN(lun, ccblun) \
mpssas_set_lun(lun, ccblun)
static __inline int
mpssas_set_lun(uint8_t *lun, u_int ccblun)
{
uint64_t *newlun;
newlun = (uint64_t *)lun;
*newlun = 0;
if (ccblun <= 0xff) {
/* Peripheral device address method, LUN is 0 to 255 */
lun[1] = ccblun;
} else if (ccblun <= 0x3fff) {
/* Flat space address method, LUN is <= 16383 */
scsi_ulto2b(ccblun, lun);
lun[0] |= 0x40;
} else if (ccblun <= 0xffffff) {
/* Extended flat space address method, LUN is <= 16777215 */
scsi_ulto3b(ccblun, &lun[1]);
/* Extended Flat space address method */
lun[0] = 0xc0;
/* Length = 1, i.e. LUN is 3 bytes long */
lun[0] |= 0x10;
/* Extended Address Method */
lun[0] |= 0x02;
} else {
return (EINVAL);
}
return (0);
}
#define MPS_SET_SINGLE_LUN(req, lun) \
do { \
bzero((req)->LUN, 8); \
(req)->LUN[1] = lun; \
} while(0)
void mpssas_rescan_target(struct mps_softc *sc, struct mpssas_target *targ);
void mpssas_discovery_end(struct mpssas_softc *sassc);
void mpssas_startup_increment(struct mpssas_softc *sassc);
void mpssas_startup_decrement(struct mpssas_softc *sassc);
struct mps_command * mpssas_alloc_tm(struct mps_softc *sc);
void mpssas_free_tm(struct mps_softc *sc, struct mps_command *tm);
void mpssas_firmware_event_work(void *arg, int pending);