freebsd-skq/usr.bin/make/cond.c
2005-04-01 12:31:15 +00:00

1229 lines
27 KiB
C

/*-
* Copyright (c) 1988, 1989, 1990, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (c) 1988, 1989 by Adam de Boor
* Copyright (c) 1989 by Berkeley Softworks
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)cond.c 8.2 (Berkeley) 1/2/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Functions to handle conditionals in a makefile.
*
* Interface:
* Cond_Eval Evaluate the conditional in the passed line.
*/
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
#include "buf.h"
#include "cond.h"
#include "dir.h"
#include "globals.h"
#include "GNode.h"
#include "make.h"
#include "parse.h"
#include "sprite.h"
#include "str.h"
#include "targ.h"
#include "util.h"
#include "var.h"
/*
* The parsing of conditional expressions is based on this grammar:
* E -> F || E
* E -> F
* F -> T && F
* F -> T
* T -> defined(variable)
* T -> make(target)
* T -> exists(file)
* T -> empty(varspec)
* T -> target(name)
* T -> symbol
* T -> $(varspec) op value
* T -> $(varspec) == "string"
* T -> $(varspec) != "string"
* T -> ( E )
* T -> ! T
* op -> == | != | > | < | >= | <=
*
* 'symbol' is some other symbol to which the default function (condDefProc)
* is applied.
*
* Tokens are scanned from the 'condExpr' string. The scanner (CondToken)
* will return And for '&' and '&&', Or for '|' and '||', Not for '!',
* LParen for '(', RParen for ')' and will evaluate the other terminal
* symbols, using either the default function or the function given in the
* terminal, and return the result as either True or False.
*
* All Non-Terminal functions (CondE, CondF and CondT) return Err on error.
*/
typedef enum {
And,
Or,
Not,
True,
False,
LParen,
RParen,
EndOfFile,
None,
Err
} Token;
typedef Boolean CondProc(int, char *);
/*-
* Structures to handle elegantly the different forms of #if's. The
* last two fields are stored in condInvert and condDefProc, respectively.
*/
static void CondPushBack(Token);
static int CondGetArg(char **, char **, const char *, Boolean);
static CondProc CondDoDefined;
static CondProc CondDoMake;
static CondProc CondDoExists;
static CondProc CondDoTarget;
static char *CondCvtArg(char *, double *);
static Token CondToken(Boolean);
static Token CondT(Boolean);
static Token CondF(Boolean);
static Token CondE(Boolean);
static struct If {
char *form; /* Form of if */
int formlen; /* Length of form */
Boolean doNot; /* TRUE if default function should be negated */
CondProc *defProc; /* Default function to apply */
} ifs[] = {
{ "ifdef", 5, FALSE, CondDoDefined },
{ "ifndef", 6, TRUE, CondDoDefined },
{ "ifmake", 6, FALSE, CondDoMake },
{ "ifnmake", 7, TRUE, CondDoMake },
{ "if", 2, FALSE, CondDoDefined },
{ NULL, 0, FALSE, NULL }
};
static Boolean condInvert; /* Invert the default function */
static CondProc *condDefProc; /* default function to apply */
static char *condExpr; /* The expression to parse */
static Token condPushBack = None; /* Single push-back token in parsing */
#define MAXIF 30 /* greatest depth of #if'ing */
static Boolean condStack[MAXIF]; /* Stack of conditionals's values */
static int condLineno[MAXIF]; /* Line numbers of the opening .if */
static int condTop = MAXIF; /* Top-most conditional */
static int skipIfLevel = 0; /* Depth of skipped conditionals */
static int skipIfLineno[MAXIF]; /* Line numbers of skipped .ifs */
static Boolean skipLine = FALSE; /* Whether the parse module is skipping
* lines */
/**
* CondPushBack
* Push back the most recent token read. We only need one level of
* this, so the thing is just stored in 'condPushback'.
*
* Side Effects:
* condPushback is overwritten.
*/
static void
CondPushBack(Token t)
{
condPushBack = t;
}
/**
* CondGetArg
* Find the argument of a built-in function. parens is set to TRUE
* if the arguments are bounded by parens.
*
* Results:
* The length of the argument and the address of the argument.
*
* Side Effects:
* The pointer is set to point to the closing parenthesis of the
* function call.
*/
static int
CondGetArg(char **linePtr, char **argPtr, const char *func, Boolean parens)
{
char *cp;
size_t argLen;
Buffer *buf;
cp = *linePtr;
if (parens) {
while (*cp != '(' && *cp != '\0') {
cp++;
}
if (*cp == '(') {
cp++;
}
}
if (*cp == '\0') {
/*
* No arguments whatsoever. Because 'make' and 'defined'
* aren't really "reserved words", we don't print a message.
* I think this is better than hitting the user with a warning
* message every time s/he uses the word 'make' or 'defined'
* at the beginning of a symbol...
*/
*argPtr = cp;
return (0);
}
while (*cp == ' ' || *cp == '\t') {
cp++;
}
/*
* Create a buffer for the argument and start it out at 16 characters
* long. Why 16? Why not?
*/
buf = Buf_Init(16);
while ((strchr(" \t)&|", *cp) == NULL) && (*cp != '\0')) {
if (*cp == '$') {
/*
* Parse the variable spec and install it as part of
* the argument if it's valid. We tell Var_Parse to
* complain on an undefined variable, so we don't do
* it too. Nor do we return an error, though perhaps
* we should...
*/
char *cp2;
size_t len = 0;
Boolean doFree;
cp2 = Var_Parse(cp, VAR_CMD, TRUE, &len, &doFree);
Buf_Append(buf, cp2);
if (doFree) {
free(cp2);
}
cp += len;
} else {
Buf_AddByte(buf, (Byte)*cp);
cp++;
}
}
Buf_AddByte(buf, (Byte)'\0');
*argPtr = (char *)Buf_GetAll(buf, &argLen);
Buf_Destroy(buf, FALSE);
while (*cp == ' ' || *cp == '\t') {
cp++;
}
if (parens && *cp != ')') {
Parse_Error(PARSE_WARNING,
"Missing closing parenthesis for %s()", func);
return (0);
} else if (parens) {
/*
* Advance pointer past close parenthesis.
*/
cp++;
}
*linePtr = cp;
return (argLen);
}
/**
* CondDoDefined
* Handle the 'defined' function for conditionals.
*
* Results:
* TRUE if the given variable is defined.
*/
static Boolean
CondDoDefined(int argLen, char *arg)
{
char savec = arg[argLen];
char *p1;
Boolean result;
arg[argLen] = '\0';
if (Var_Value(arg, VAR_CMD, &p1) != NULL) {
result = TRUE;
} else {
result = FALSE;
}
free(p1);
arg[argLen] = savec;
return (result);
}
/**
* CondDoMake
* Handle the 'make' function for conditionals.
*
* Results:
* TRUE if the given target is being made.
*/
static Boolean
CondDoMake(int argLen, char *arg)
{
char savec = arg[argLen];
Boolean result;
const LstNode *ln;
arg[argLen] = '\0';
result = FALSE;
LST_FOREACH(ln, &create) {
if (Str_Match(Lst_Datum(ln), arg)) {
result = TRUE;
break;
}
}
arg[argLen] = savec;
return (result);
}
/**
* CondDoExists
* See if the given file exists.
*
* Results:
* TRUE if the file exists and FALSE if it does not.
*/
static Boolean
CondDoExists(int argLen, char *arg)
{
char savec = arg[argLen];
Boolean result;
char *path;
arg[argLen] = '\0';
path = Path_FindFile(arg, &dirSearchPath);
if (path != NULL) {
result = TRUE;
free(path);
} else {
result = FALSE;
}
arg[argLen] = savec;
return (result);
}
/**
* CondDoTarget
* See if the given node exists and is an actual target.
*
* Results:
* TRUE if the node exists as a target and FALSE if it does not.
*/
static Boolean
CondDoTarget(int argLen, char *arg)
{
char savec = arg[argLen];
Boolean result;
GNode *gn;
arg[argLen] = '\0';
gn = Targ_FindNode(arg, TARG_NOCREATE);
if ((gn != NULL) && !OP_NOP(gn->type)) {
result = TRUE;
} else {
result = FALSE;
}
arg[argLen] = savec;
return (result);
}
/**
* CondCvtArg
* Convert the given number into a double. If the number begins
* with 0x, it is interpreted as a hexadecimal integer
* and converted to a double from there. All other strings just have
* strtod called on them.
*
* Results:
* Sets 'value' to double value of string.
* Returns address of the first character after the last valid
* character of the converted number.
*
* Side Effects:
* Can change 'value' even if string is not a valid number.
*/
static char *
CondCvtArg(char *str, double *value)
{
if ((*str == '0') && (str[1] == 'x')) {
long i;
for (str += 2, i = 0; ; str++) {
int x;
if (isdigit((unsigned char)*str))
x = *str - '0';
else if (isxdigit((unsigned char)*str))
x = 10 + *str -
isupper((unsigned char)*str) ? 'A' : 'a';
else {
*value = (double)i;
return (str);
}
i = (i << 4) + x;
}
} else {
char *eptr;
*value = strtod(str, &eptr);
return (eptr);
}
}
/**
* CondToken
* Return the next token from the input.
*
* Results:
* A Token for the next lexical token in the stream.
*
* Side Effects:
* condPushback will be set back to None if it is used.
*/
static Token
CondToken(Boolean doEval)
{
Token t;
if (condPushBack == None) {
while (*condExpr == ' ' || *condExpr == '\t') {
condExpr++;
}
switch (*condExpr) {
case '(':
t = LParen;
condExpr++;
break;
case ')':
t = RParen;
condExpr++;
break;
case '|':
if (condExpr[1] == '|') {
condExpr++;
}
condExpr++;
t = Or;
break;
case '&':
if (condExpr[1] == '&') {
condExpr++;
}
condExpr++;
t = And;
break;
case '!':
t = Not;
condExpr++;
break;
case '\n':
case '\0':
t = EndOfFile;
break;
case '$': {
char *lhs;
char *rhs;
const char *op;
size_t varSpecLen = 0;
Boolean doFree;
/*
* Parse the variable spec and skip over it, saving its
* value in lhs.
*/
t = Err;
lhs = Var_Parse(condExpr, VAR_CMD, doEval,
&varSpecLen, &doFree);
if (lhs == var_Error) {
/*
* Even if !doEval, we still report syntax
* errors, which is what getting var_Error
* back with !doEval means.
*/
return (Err);
}
condExpr += varSpecLen;
if (!isspace((unsigned char)*condExpr) &&
strchr("!=><", *condExpr) == NULL) {
Buffer *buf;
buf = Buf_Init(0);
Buf_Append(buf, lhs);
if (doFree)
free(lhs);
for (;*condExpr &&
!isspace((unsigned char)*condExpr);
condExpr++)
Buf_AddByte(buf, (Byte)*condExpr);
Buf_AddByte(buf, (Byte)'\0');
lhs = (char *)Buf_GetAll(buf, &varSpecLen);
Buf_Destroy(buf, FALSE);
doFree = TRUE;
}
/*
* Skip whitespace to get to the operator
*/
while (isspace((unsigned char)*condExpr))
condExpr++;
/*
* Make sure the operator is a valid one. If it isn't a
* known relational operator, pretend we got a
* != 0 comparison.
*/
op = condExpr;
switch (*condExpr) {
case '!':
case '=':
case '<':
case '>':
if (condExpr[1] == '=') {
condExpr += 2;
} else {
condExpr += 1;
}
break;
default:
op = "!=";
rhs = "0";
goto do_compare;
}
while (isspace((unsigned char)*condExpr)) {
condExpr++;
}
if (*condExpr == '\0') {
Parse_Error(PARSE_WARNING,
"Missing right-hand-side of operator");
goto error;
}
rhs = condExpr;
do_compare:
if (*rhs == '"') {
/*
* Doing a string comparison. Only allow == and
* != for * operators.
*/
char *string;
char *cp, *cp2;
int qt;
Buffer *buf;
do_string_compare:
if (((*op != '!') && (*op != '=')) ||
(op[1] != '=')) {
Parse_Error(PARSE_WARNING,
"String comparison operator should "
"be either == or !=");
goto error;
}
buf = Buf_Init(0);
qt = *rhs == '"' ? 1 : 0;
for (cp = &rhs[qt];
((qt && (*cp != '"')) ||
(!qt && strchr(" \t)", *cp) == NULL)) &&
(*cp != '\0'); cp++) {
if ((*cp == '\\') && (cp[1] != '\0')) {
/*
* Backslash escapes things --
* skip over next character, * if it exists.
*/
cp++;
Buf_AddByte(buf, (Byte)*cp);
} else if (*cp == '$') {
size_t len = 0;
Boolean freeIt;
cp2 = Var_Parse(cp, VAR_CMD,
doEval, &len, &freeIt);
if (cp2 != var_Error) {
Buf_Append(buf, cp2);
if (freeIt) {
free(cp2);
}
cp += len - 1;
} else {
Buf_AddByte(buf,
(Byte)*cp);
}
} else {
Buf_AddByte(buf, (Byte)*cp);
}
}
string = Buf_Peel(buf);
DEBUGF(COND, ("lhs = \"%s\", rhs = \"%s\", "
"op = %.2s\n", lhs, string, op));
/*
* Null-terminate rhs and perform the
* comparison. t is set to the result.
*/
if (*op == '=') {
t = strcmp(lhs, string) ? False : True;
} else {
t = strcmp(lhs, string) ? True : False;
}
free(string);
if (rhs == condExpr) {
if (!qt && *cp == ')')
condExpr = cp;
else
condExpr = cp + 1;
}
} else {
/*
* rhs is either a float or an integer.
* Convert both the lhs and the rhs to a
* double and compare the two.
*/
double left, right;
char *string;
if (*CondCvtArg(lhs, &left) != '\0')
goto do_string_compare;
if (*rhs == '$') {
size_t len = 0;
Boolean freeIt;
string = Var_Parse(rhs, VAR_CMD, doEval,
&len, &freeIt);
if (string == var_Error) {
right = 0.0;
} else {
if (*CondCvtArg(string,
&right) != '\0') {
if (freeIt)
free(string);
goto do_string_compare;
}
if (freeIt)
free(string);
if (rhs == condExpr)
condExpr += len;
}
} else {
char *c = CondCvtArg(rhs, &right);
if (c == rhs)
goto do_string_compare;
if (rhs == condExpr) {
/*
* Skip over the right-hand side
*/
condExpr = c;
}
}
DEBUGF(COND, ("left = %f, right = %f, "
"op = %.2s\n", left, right, op));
switch (op[0]) {
case '!':
if (op[1] != '=') {
Parse_Error(PARSE_WARNING,
"Unknown operator");
goto error;
}
t = (left != right ? True : False);
break;
case '=':
if (op[1] != '=') {
Parse_Error(PARSE_WARNING,
"Unknown operator");
goto error;
}
t = (left == right ? True : False);
break;
case '<':
if (op[1] == '=') {
t = (left <= right?True:False);
} else {
t = (left < right?True:False);
}
break;
case '>':
if (op[1] == '=') {
t = (left >= right?True:False);
} else {
t = (left > right?True:False);
}
break;
default:
break;
}
}
error:
if (doFree)
free(lhs);
break;
}
default: {
CondProc *evalProc;
Boolean invert = FALSE;
char *arg;
int arglen;
if (strncmp(condExpr, "defined", 7) == 0) {
/*
* Use CondDoDefined to evaluate the argument
* and CondGetArg to extract the argument from
* the 'function call'.
*/
evalProc = CondDoDefined;
condExpr += 7;
arglen = CondGetArg(&condExpr, &arg,
"defined", TRUE);
if (arglen == 0) {
condExpr -= 7;
goto use_default;
}
} else if (strncmp(condExpr, "make", 4) == 0) {
/*
* Use CondDoMake to evaluate the argument and
* CondGetArg to extract the argument from the
* 'function call'.
*/
evalProc = CondDoMake;
condExpr += 4;
arglen = CondGetArg(&condExpr, &arg,
"make", TRUE);
if (arglen == 0) {
condExpr -= 4;
goto use_default;
}
} else if (strncmp(condExpr, "exists", 6) == 0) {
/*
* Use CondDoExists to evaluate the argument and
* CondGetArg to extract the argument from the
* 'function call'.
*/
evalProc = CondDoExists;
condExpr += 6;
arglen = CondGetArg(&condExpr, &arg,
"exists", TRUE);
if (arglen == 0) {
condExpr -= 6;
goto use_default;
}
} else if (strncmp(condExpr, "empty", 5) == 0) {
/*
* Use Var_Parse to parse the spec in parens and
* return True if the resulting string is empty.
*/
size_t length;
Boolean doFree;
char *val;
condExpr += 5;
for (arglen = 0;
condExpr[arglen] != '(' &&
condExpr[arglen] != '\0'; arglen += 1)
continue;
if (condExpr[arglen] != '\0') {
length = 0;
val = Var_Parse(&condExpr[arglen - 1],
VAR_CMD, FALSE, &length, &doFree);
if (val == var_Error) {
t = Err;
} else {
/*
* A variable is empty when it
* just contains spaces...
* 4/15/92, christos
*/
char *p;
for (p = val;
*p &&
isspace((unsigned char)*p);
p++)
continue;
t = (*p == '\0') ? True : False;
}
if (doFree) {
free(val);
}
/*
* Advance condExpr to beyond the
* closing ). Note that we subtract
* one from arglen + length b/c length
* is calculated from
* condExpr[arglen - 1].
*/
condExpr += arglen + length - 1;
} else {
condExpr -= 5;
goto use_default;
}
break;
} else if (strncmp(condExpr, "target", 6) == 0) {
/*
* Use CondDoTarget to evaluate the argument and
* CondGetArg to extract the argument from the
* 'function call'.
*/
evalProc = CondDoTarget;
condExpr += 6;
arglen = CondGetArg(&condExpr, &arg,
"target", TRUE);
if (arglen == 0) {
condExpr -= 6;
goto use_default;
}
} else {
/*
* The symbol is itself the argument to the
* default function. We advance condExpr to
* the end of the symbol by hand (the next
* whitespace, closing paren or binary operator)
* and set to invert the evaluation
* function if condInvert is TRUE.
*/
use_default:
invert = condInvert;
evalProc = condDefProc;
arglen = CondGetArg(&condExpr, &arg, "", FALSE);
}
/*
* Evaluate the argument using the set function. If
* invert is TRUE, we invert the sense of the function.
*/
t = (!doEval || (* evalProc) (arglen, arg) ?
(invert ? False : True) :
(invert ? True : False));
free(arg);
break;
}
}
} else {
t = condPushBack;
condPushBack = None;
}
return (t);
}
/**
* CondT
* Parse a single term in the expression. This consists of a terminal
* symbol or Not and a terminal symbol (not including the binary
* operators):
* T -> defined(variable) | make(target) | exists(file) | symbol
* T -> ! T | ( E )
*
* Results:
* True, False or Err.
*
* Side Effects:
* Tokens are consumed.
*/
static Token
CondT(Boolean doEval)
{
Token t;
t = CondToken(doEval);
if (t == EndOfFile) {
/*
* If we reached the end of the expression, the expression
* is malformed...
*/
t = Err;
} else if (t == LParen) {
/*
* T -> ( E )
*/
t = CondE(doEval);
if (t != Err) {
if (CondToken(doEval) != RParen) {
t = Err;
}
}
} else if (t == Not) {
t = CondT(doEval);
if (t == True) {
t = False;
} else if (t == False) {
t = True;
}
}
return (t);
}
/**
* CondF --
* Parse a conjunctive factor (nice name, wot?)
* F -> T && F | T
*
* Results:
* True, False or Err
*
* Side Effects:
* Tokens are consumed.
*/
static Token
CondF(Boolean doEval)
{
Token l, o;
l = CondT(doEval);
if (l != Err) {
o = CondToken(doEval);
if (o == And) {
/*
* F -> T && F
*
* If T is False, the whole thing will be False, but
* we have to parse the r.h.s. anyway (to throw it
* away). If T is True, the result is the r.h.s.,
* be it an Err or no.
*/
if (l == True) {
l = CondF(doEval);
} else {
CondF(FALSE);
}
} else {
/*
* F -> T
*/
CondPushBack(o);
}
}
return (l);
}
/**
* CondE --
* Main expression production.
* E -> F || E | F
*
* Results:
* True, False or Err.
*
* Side Effects:
* Tokens are, of course, consumed.
*/
static Token
CondE(Boolean doEval)
{
Token l, o;
l = CondF(doEval);
if (l != Err) {
o = CondToken(doEval);
if (o == Or) {
/*
* E -> F || E
*
* A similar thing occurs for ||, except that here we
* make sure the l.h.s. is False before we bother to
* evaluate the r.h.s. Once again, if l is False, the
* result is the r.h.s. and once again if l is True,
* we parse the r.h.s. to throw it away.
*/
if (l == False) {
l = CondE(doEval);
} else {
CondE(FALSE);
}
} else {
/*
* E -> F
*/
CondPushBack(o);
}
}
return (l);
}
/**
* Cond_Eval --
* Evaluate the conditional in the passed line. The line
* looks like this:
* .<cond-type> <expr>
* where <cond-type> is any of if, ifmake, ifnmake, ifdef,
* ifndef, elif, elifmake, elifnmake, elifdef, elifndef
* and <expr> consists of &&, ||, !, make(target), defined(variable)
* and parenthetical groupings thereof.
*
* Results:
* COND_PARSE if should parse lines after the conditional
* COND_SKIP if should skip lines after the conditional
* COND_INVALID if not a valid conditional.
*/
int
Cond_Eval(char *line, int lineno)
{
struct If *ifp;
Boolean isElse;
Boolean value = FALSE;
int level; /* Level at which to report errors. */
level = PARSE_FATAL;
for (line++; *line == ' ' || *line == '\t'; line++) {
continue;
}
/*
* Find what type of if we're dealing with. The result is left
* in ifp and isElse is set TRUE if it's an elif line.
*/
if (line[0] == 'e' && line[1] == 'l') {
line += 2;
isElse = TRUE;
} else if (strncmp(line, "endif", 5) == 0) {
/*
* End of a conditional section. If skipIfLevel is non-zero,
* that conditional was skipped, so lines following it should
* also be skipped. Hence, we return COND_SKIP. Otherwise,
* the conditional was read so succeeding lines should be
* parsed (think about it...) so we return COND_PARSE, unless
* this endif isn't paired with a decent if.
*/
if (skipIfLevel != 0) {
skipIfLevel -= 1;
return (COND_SKIP);
} else {
if (condTop == MAXIF) {
Parse_Error(level, "if-less endif");
return (COND_INVALID);
} else {
skipLine = FALSE;
condTop += 1;
return (COND_PARSE);
}
}
} else {
isElse = FALSE;
}
/*
* Figure out what sort of conditional it is -- what its default
* function is, etc. -- by looking in the table of valid "ifs"
*/
for (ifp = ifs; ifp->form != NULL; ifp++) {
if (strncmp(ifp->form, line, ifp->formlen) == 0) {
break;
}
}
if (ifp->form == NULL) {
/*
* Nothing fit. If the first word on the line is actually
* "else", it's a valid conditional whose value is the inverse
* of the previous if we parsed.
*/
if (isElse && (line[0] == 's') && (line[1] == 'e')) {
if (condTop == MAXIF) {
Parse_Error(level, "if-less else");
return (COND_INVALID);
} else if (skipIfLevel == 0) {
value = !condStack[condTop];
lineno = condLineno[condTop];
} else {
return (COND_SKIP);
}
} else {
/*
* Not a valid conditional type. No error...
*/
return (COND_INVALID);
}
} else {
if (isElse) {
if (condTop == MAXIF) {
Parse_Error(level, "if-less elif");
return (COND_INVALID);
} else if (skipIfLevel != 0) {
/*
* If skipping this conditional, just ignore
* the whole thing. If we don't, the user
* might be employing a variable that's
* undefined, for which there's an enclosing
* ifdef that we're skipping...
*/
skipIfLineno[skipIfLevel - 1] = lineno;
return (COND_SKIP);
}
} else if (skipLine) {
/*
* Don't even try to evaluate a conditional that's
* not an else if we're skipping things...
*/
skipIfLineno[skipIfLevel] = lineno;
skipIfLevel += 1;
return (COND_SKIP);
}
/*
* Initialize file-global variables for parsing
*/
condDefProc = ifp->defProc;
condInvert = ifp->doNot;
line += ifp->formlen;
while (*line == ' ' || *line == '\t') {
line++;
}
condExpr = line;
condPushBack = None;
switch (CondE(TRUE)) {
case True:
if (CondToken(TRUE) == EndOfFile) {
value = TRUE;
break;
}
goto err;
/*FALLTHRU*/
case False:
if (CondToken(TRUE) == EndOfFile) {
value = FALSE;
break;
}
/*FALLTHRU*/
case Err:
err:
Parse_Error(level, "Malformed conditional (%s)", line);
return (COND_INVALID);
default:
break;
}
}
if (!isElse) {
condTop -= 1;
} else if ((skipIfLevel != 0) || condStack[condTop]) {
/*
* If this is an else-type conditional, it should only take
* effect if its corresponding if was evaluated and FALSE.
* If its if was TRUE or skipped, we return COND_SKIP (and
* start skipping in case we weren't already), leaving the
* stack unmolested so later elif's don't screw up...
*/
skipLine = TRUE;
return (COND_SKIP);
}
if (condTop < 0) {
/*
* This is the one case where we can definitely proclaim a fatal
* error. If we don't, we're hosed.
*/
Parse_Error(PARSE_FATAL, "Too many nested if's. %d max.",
MAXIF);
return (COND_INVALID);
} else {
condStack[condTop] = value;
condLineno[condTop] = lineno;
skipLine = !value;
return (value ? COND_PARSE : COND_SKIP);
}
}
/**
* Cond_End
* Make sure everything's clean at the end of a makefile.
*
* Side Effects:
* Parse_Error will be called if open conditionals are around.
*/
void
Cond_End(void)
{
int level;
if (condTop != MAXIF) {
Parse_Error(PARSE_FATAL, "%d open conditional%s:",
MAXIF - condTop + skipIfLevel,
MAXIF - condTop + skipIfLevel== 1 ? "" : "s");
for (level = skipIfLevel; level > 0; level--)
Parse_Error(PARSE_FATAL, "\t%*sat line %d (skipped)",
MAXIF - condTop + level + 1, "",
skipIfLineno[level - 1]);
for (level = condTop; level < MAXIF; level++)
Parse_Error(PARSE_FATAL, "\t%*sat line %d "
"(evaluated to %s)", MAXIF - level + skipIfLevel,
"", condLineno[level],
condStack[level] ? "true" : "false");
}
condTop = MAXIF;
}