ngie 631df11d04 Integrate capsicum-test into the FreeBSD test suite
This change takes capsicum-test from upstream and applies some local changes to make the
tests work on FreeBSD when executed via Kyua.

The local modifications are as follows:
1. Make `OpenatTest.WithFlag` pass with the new dot-dot lookup behavior in FreeBSD 12.x+.
2. capsicum-test references a set of helper binaries: `mini-me`, `mini-me.noexec`, and
   `mini-me.setuid`, as part of the execve/fexecve tests, via execve, fexecve, and open.
   It achieves this upstream by assuming `mini-me*` is in the current directory, however,
   in order for Kyua to execute `capsicum-test`, it needs to provide a full path to
   `mini-me*`. In order to achieve this, I made `capsicum-test` cache the executable's
   path from argv[0] in main(..) and use the cached value to compute the path to
   `mini-me*` as part of the execve/fexecve testcases.
3. The capsicum-test test suite assumes that it's always being run on CAPABILITIES enabled
   kernels. However, there's a chance that the test will be run on a host without a
   CAPABILITIES enabled kernel, so we must check for the support before running the tests.
   The way to achieve this is to add the relevant `feature_present("security_capabilities")`
   check to SetupEnvironment::SetUp() and skip the tests when the support is not available.
   While here, add a check for `kern.trap_enotcap` being enabled. As noted by markj@ in
   https://github.com/google/capsicum-test/issues/23, this sysctl being enabled can trigger
   non-deterministic failures. Therefore, the tests should be skipped if this sysctl is
   enabled.

All local changes have been submitted to the capsicum-test project
(https://github.com/google/capsicum-test) and are in various stages of review.
Please see the following pull requests for more details:
1. https://github.com/google/capsicum-test/pull/35
2. https://github.com/google/capsicum-test/pull/41
3. https://github.com/google/capsicum-test/pull/42

Reviewed by:	asomers
Discussed with:	emaste, markj
Approved by:	emaste (mentor)
MFC after:	2 months
Differential Revision: https://reviews.freebsd.org/D19758
2019-04-01 21:24:50 +00:00

978 lines
27 KiB
C++

// Tests for the process descriptor API for Linux.
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <iomanip>
#include <map>
#include "capsicum.h"
#include "syscalls.h"
#include "capsicum-test.h"
#ifndef __WALL
// Linux requires __WALL in order for waitpid(specific_pid,...) to
// see and reap any specific pid. Define this to nothing for platforms
// (FreeBSD) where it doesn't exist, to reduce macroing.
#define __WALL 0
#endif
// TODO(drysdale): it would be nice to use proper synchronization between
// processes, rather than synchronization-via-sleep; faster too.
//------------------------------------------------
// Utilities for the tests.
static pid_t pdwait4_(int pd, int *status, int options, struct rusage *ru) {
#ifdef HAVE_PDWAIT4
return pdwait4(pd, status, options, ru);
#else
// Simulate pdwait4() with wait4(pdgetpid()); this won't work in capability mode.
pid_t pid = -1;
int rc = pdgetpid(pd, &pid);
if (rc < 0) {
return rc;
}
options |= __WALL;
return wait4(pid, status, options, ru);
#endif
}
static void print_rusage(FILE *f, struct rusage *ru) {
fprintf(f, " User CPU time=%ld.%06ld\n", (long)ru->ru_utime.tv_sec, (long)ru->ru_utime.tv_usec);
fprintf(f, " System CPU time=%ld.%06ld\n", (long)ru->ru_stime.tv_sec, (long)ru->ru_stime.tv_usec);
fprintf(f, " Max RSS=%ld\n", ru->ru_maxrss);
}
static void print_stat(FILE *f, const struct stat *stat) {
fprintf(f,
"{ .st_dev=%ld, st_ino=%ld, st_mode=%04o, st_nlink=%ld, st_uid=%d, st_gid=%d,\n"
" .st_rdev=%ld, .st_size=%ld, st_blksize=%ld, .st_block=%ld,\n "
#ifdef HAVE_STAT_BIRTHTIME
".st_birthtime=%ld, "
#endif
".st_atime=%ld, .st_mtime=%ld, .st_ctime=%ld}\n",
(long)stat->st_dev, (long)stat->st_ino, stat->st_mode,
(long)stat->st_nlink, stat->st_uid, stat->st_gid,
(long)stat->st_rdev, (long)stat->st_size, (long)stat->st_blksize,
(long)stat->st_blocks,
#ifdef HAVE_STAT_BIRTHTIME
(long)stat->st_birthtime,
#endif
(long)stat->st_atime, (long)stat->st_mtime, (long)stat->st_ctime);
}
static std::map<int,bool> had_signal;
static void handle_signal(int x) {
had_signal[x] = true;
}
// Check that the given child process terminates as expected.
void CheckChildFinished(pid_t pid, bool signaled=false) {
// Wait for the child to finish.
int rc;
int status = 0;
do {
rc = waitpid(pid, &status, __WALL);
if (rc < 0) {
fprintf(stderr, "Warning: waitpid error %s (%d)\n", strerror(errno), errno);
ADD_FAILURE() << "Failed to wait for child";
break;
} else if (rc == pid) {
break;
}
} while (true);
EXPECT_EQ(pid, rc);
if (rc == pid) {
if (signaled) {
EXPECT_TRUE(WIFSIGNALED(status));
} else {
EXPECT_TRUE(WIFEXITED(status)) << std::hex << status;
EXPECT_EQ(0, WEXITSTATUS(status));
}
}
}
//------------------------------------------------
// Basic tests of process descriptor functionality
TEST(Pdfork, Simple) {
int pd = -1;
pid_t parent = getpid_();
int pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: check pid values.
EXPECT_EQ(-1, pd);
EXPECT_NE(parent, getpid_());
EXPECT_EQ(parent, getppid());
sleep(1);
exit(0);
}
usleep(100); // ensure the child has a chance to run
EXPECT_NE(-1, pd);
EXPECT_PID_ALIVE(pid);
int pid_got;
EXPECT_OK(pdgetpid(pd, &pid_got));
EXPECT_EQ(pid, pid_got);
// Wait long enough for the child to exit().
sleep(2);
EXPECT_PID_ZOMBIE(pid);
// Wait for the the child.
int status;
struct rusage ru;
memset(&ru, 0, sizeof(ru));
int waitrc = pdwait4_(pd, &status, 0, &ru);
EXPECT_EQ(pid, waitrc);
if (verbose) {
fprintf(stderr, "For pd %d pid %d:\n", pd, pid);
print_rusage(stderr, &ru);
}
EXPECT_PID_GONE(pid);
// Can only pdwait4(pd) once (as initial call reaps zombie).
memset(&ru, 0, sizeof(ru));
EXPECT_EQ(-1, pdwait4_(pd, &status, 0, &ru));
EXPECT_EQ(ECHILD, errno);
EXPECT_OK(close(pd));
}
TEST(Pdfork, InvalidFlag) {
int pd = -1;
int pid = pdfork(&pd, PD_DAEMON<<5);
if (pid == 0) {
exit(1);
}
EXPECT_EQ(-1, pid);
EXPECT_EQ(EINVAL, errno);
if (pid > 0) waitpid(pid, NULL, __WALL);
}
TEST(Pdfork, TimeCheck) {
time_t now = time(NULL); // seconds since epoch
EXPECT_NE(-1, now);
if (verbose) fprintf(stderr, "Calling pdfork around %ld\n", (long)(long)now);
int pd = -1;
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: check we didn't get a valid process descriptor then exit.
EXPECT_EQ(-1, pdgetpid(pd, &pid));
EXPECT_EQ(EBADF, errno);
exit(HasFailure());
}
#ifdef HAVE_PROCDESC_FSTAT
// Parent process. Ensure that [acm]times have been set correctly.
struct stat stat;
memset(&stat, 0, sizeof(stat));
EXPECT_OK(fstat(pd, &stat));
if (verbose) print_stat(stderr, &stat);
#ifdef HAVE_STAT_BIRTHTIME
EXPECT_GE(now, stat.st_birthtime);
EXPECT_EQ(stat.st_birthtime, stat.st_atime);
#endif
EXPECT_LT((now - stat.st_atime), 2);
EXPECT_EQ(stat.st_atime, stat.st_ctime);
EXPECT_EQ(stat.st_ctime, stat.st_mtime);
#endif
// Wait for the child to finish.
pid_t pd_pid = -1;
EXPECT_OK(pdgetpid(pd, &pd_pid));
EXPECT_EQ(pid, pd_pid);
CheckChildFinished(pid);
}
TEST(Pdfork, UseDescriptor) {
int pd = -1;
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: immediately exit
exit(0);
}
CheckChildFinished(pid);
}
TEST(Pdfork, NonProcessDescriptor) {
int fd = open("/etc/passwd", O_RDONLY);
EXPECT_OK(fd);
// pd*() operations should fail on a non-process descriptor.
EXPECT_EQ(-1, pdkill(fd, SIGUSR1));
int status;
EXPECT_EQ(-1, pdwait4_(fd, &status, 0, NULL));
pid_t pid;
EXPECT_EQ(-1, pdgetpid(fd, &pid));
close(fd);
}
static void *SubThreadMain(void *) {
while (true) {
if (verbose) fprintf(stderr, " subthread: \"I aten't dead\"\n");
usleep(100000);
}
return NULL;
}
static void *ThreadMain(void *) {
int pd;
pid_t child = pdfork(&pd, 0);
if (child == 0) {
// Child: start a subthread then loop
pthread_t child_subthread;
EXPECT_OK(pthread_create(&child_subthread, NULL, SubThreadMain, NULL));
while (true) {
if (verbose) fprintf(stderr, " pdforked process %d: \"I aten't dead\"\n", getpid());
usleep(100000);
}
exit(0);
}
if (verbose) fprintf(stderr, " thread generated pd %d\n", pd);
sleep(2);
// Pass the process descriptor back to the main thread.
return reinterpret_cast<void *>(pd);
}
TEST(Pdfork, FromThread) {
// Fire off a new thread to do all of the creation work.
pthread_t child_thread;
EXPECT_OK(pthread_create(&child_thread, NULL, ThreadMain, NULL));
void *data;
EXPECT_OK(pthread_join(child_thread, &data));
int pd = reinterpret_cast<intptr_t>(data);
if (verbose) fprintf(stderr, "retrieved pd %d from terminated thread\n", pd);
// Kill and reap.
pid_t pid;
EXPECT_OK(pdgetpid(pd, &pid));
EXPECT_OK(pdkill(pd, SIGKILL));
int status;
EXPECT_EQ(pid, pdwait4_(pd, &status, 0, NULL));
EXPECT_TRUE(WIFSIGNALED(status));
}
//------------------------------------------------
// More complicated tests.
// Test fixture that pdfork()s off a child process, which terminates
// when it receives anything on a pipe.
class PipePdforkBase : public ::testing::Test {
public:
PipePdforkBase(int pdfork_flags) : pd_(-1), pid_(-1) {
had_signal.clear();
int pipes[2];
EXPECT_OK(pipe(pipes));
pipe_ = pipes[1];
int parent = getpid_();
if (verbose) fprintf(stderr, "[%d] about to pdfork()\n", getpid_());
int rc = pdfork(&pd_, pdfork_flags);
EXPECT_OK(rc);
if (rc == 0) {
// Child process: blocking-read an int from the pipe then exit with that value.
EXPECT_NE(parent, getpid_());
EXPECT_EQ(parent, getppid());
if (verbose) fprintf(stderr, " [%d] child of %d waiting for value on pipe\n", getpid_(), getppid());
read(pipes[0], &rc, sizeof(rc));
if (verbose) fprintf(stderr, " [%d] got value %d on pipe, exiting\n", getpid_(), rc);
exit(rc);
}
pid_ = rc;
usleep(100); // ensure the child has a chance to run
}
~PipePdforkBase() {
// Terminate by any means necessary.
if (pd_ > 0) {
pdkill(pd_, SIGKILL);
close(pd_);
}
if (pid_ > 0) {
kill(pid_, SIGKILL);
waitpid(pid_, NULL, __WALL|WNOHANG);
}
// Check signal expectations.
EXPECT_FALSE(had_signal[SIGCHLD]);
}
int TerminateChild() {
// Tell the child to exit.
int zero = 0;
if (verbose) fprintf(stderr, "[%d] write 0 to pipe\n", getpid_());
return write(pipe_, &zero, sizeof(zero));
}
protected:
int pd_;
int pipe_;
pid_t pid_;
};
class PipePdfork : public PipePdforkBase {
public:
PipePdfork() : PipePdforkBase(0) {}
};
class PipePdforkDaemon : public PipePdforkBase {
public:
PipePdforkDaemon() : PipePdforkBase(PD_DAEMON) {}
};
// Can we poll a process descriptor?
TEST_F(PipePdfork, Poll) {
// Poll the process descriptor, nothing happening.
struct pollfd fdp;
fdp.fd = pd_;
fdp.events = POLLIN | POLLERR | POLLHUP;
fdp.revents = 0;
EXPECT_EQ(0, poll(&fdp, 1, 0));
TerminateChild();
// Poll again, should have activity on the process descriptor.
EXPECT_EQ(1, poll(&fdp, 1, 2000));
EXPECT_TRUE(fdp.revents & POLLHUP);
// Poll a third time, still have POLLHUP.
fdp.revents = 0;
EXPECT_EQ(1, poll(&fdp, 1, 0));
EXPECT_TRUE(fdp.revents & POLLHUP);
}
// Can multiple processes poll on the same descriptor?
TEST_F(PipePdfork, PollMultiple) {
int child = fork();
EXPECT_OK(child);
if (child == 0) {
// Child: wait to give time for setup, then write to the pipe (which will
// induce exit of the pdfork()ed process) and exit.
sleep(1);
TerminateChild();
exit(0);
}
usleep(100); // ensure the child has a chance to run
// Fork again
int doppel = fork();
EXPECT_OK(doppel);
// We now have:
// pid A: main process, here
// |--pid B: pdfork()ed process, blocked on read()
// |--pid C: fork()ed process, in sleep(1) above
// +--pid D: doppel process, here
// Both A and D execute the following code.
// First, check no activity on the process descriptor yet.
struct pollfd fdp;
fdp.fd = pd_;
fdp.events = POLLIN | POLLERR | POLLHUP;
fdp.revents = 0;
EXPECT_EQ(0, poll(&fdp, 1, 0));
// Now, wait (indefinitely) for activity on the process descriptor.
// We expect:
// - pid C will finish its sleep, write to the pipe and exit
// - pid B will unblock from read(), and exit
// - this will generate an event on the process descriptor...
// - ...in both process A and process D.
EXPECT_EQ(1, poll(&fdp, 1, 2000));
EXPECT_TRUE(fdp.revents & POLLHUP);
if (doppel == 0) {
// Child: process D exits.
exit(0);
} else {
// Parent: wait on process D.
int rc = 0;
waitpid(doppel, &rc, __WALL);
EXPECT_TRUE(WIFEXITED(rc));
EXPECT_EQ(0, WEXITSTATUS(rc));
// Also wait on process B.
CheckChildFinished(child);
}
}
// Check that exit status/rusage for a dead pdfork()ed child can be retrieved
// via any process descriptor, multiple times.
TEST_F(PipePdfork, MultipleRetrieveExitStatus) {
EXPECT_PID_ALIVE(pid_);
int pd_copy = dup(pd_);
EXPECT_LT(0, TerminateChild());
int status;
struct rusage ru;
memset(&ru, 0, sizeof(ru));
int waitrc = pdwait4_(pd_copy, &status, 0, &ru);
EXPECT_EQ(pid_, waitrc);
if (verbose) {
fprintf(stderr, "For pd %d -> pid %d:\n", pd_, pid_);
print_rusage(stderr, &ru);
}
EXPECT_PID_GONE(pid_);
#ifdef NOTYET
// Child has been reaped, so original process descriptor dangles but
// still has access to rusage information.
memset(&ru, 0, sizeof(ru));
EXPECT_EQ(0, pdwait4_(pd_, &status, 0, &ru));
#endif
close(pd_copy);
}
TEST_F(PipePdfork, ChildExit) {
EXPECT_PID_ALIVE(pid_);
EXPECT_LT(0, TerminateChild());
EXPECT_PID_DEAD(pid_);
int status;
int rc = pdwait4_(pd_, &status, 0, NULL);
EXPECT_OK(rc);
EXPECT_EQ(pid_, rc);
pid_ = 0;
}
#ifdef HAVE_PROC_FDINFO
TEST_F(PipePdfork, FdInfo) {
char buffer[1024];
sprintf(buffer, "/proc/%d/fdinfo/%d", getpid_(), pd_);
int procfd = open(buffer, O_RDONLY);
EXPECT_OK(procfd);
EXPECT_OK(read(procfd, buffer, sizeof(buffer)));
// The fdinfo should include the file pos of the underlying file
EXPECT_NE((char*)NULL, strstr(buffer, "pos:\t0")) << buffer;
// ...and the underlying pid
char pidline[256];
sprintf(pidline, "pid:\t%d", pid_);
EXPECT_NE((char*)NULL, strstr(buffer, pidline)) << buffer;
close(procfd);
}
#endif
// Closing a normal process descriptor terminates the underlying process.
TEST_F(PipePdfork, Close) {
sighandler_t original = signal(SIGCHLD, handle_signal);
EXPECT_PID_ALIVE(pid_);
int status;
EXPECT_EQ(0, waitpid(pid_, &status, __WALL|WNOHANG));
EXPECT_OK(close(pd_));
pd_ = -1;
EXPECT_FALSE(had_signal[SIGCHLD]);
EXPECT_PID_DEAD(pid_);
#ifdef __FreeBSD__
EXPECT_EQ(-1, waitpid(pid_, NULL, __WALL));
EXPECT_EQ(errno, ECHILD);
#else
// Having closed the process descriptor means that pdwait4(pd) now doesn't work.
int rc = pdwait4_(pd_, &status, 0, NULL);
EXPECT_EQ(-1, rc);
EXPECT_EQ(EBADF, errno);
// Closing all process descriptors means the the child can only be reaped via pid.
EXPECT_EQ(pid_, waitpid(pid_, &status, __WALL|WNOHANG));
#endif
signal(SIGCHLD, original);
}
TEST_F(PipePdfork, CloseLast) {
sighandler_t original = signal(SIGCHLD, handle_signal);
// Child should only die when last process descriptor is closed.
EXPECT_PID_ALIVE(pid_);
int pd_other = dup(pd_);
EXPECT_OK(close(pd_));
pd_ = -1;
EXPECT_PID_ALIVE(pid_);
int status;
EXPECT_EQ(0, waitpid(pid_, &status, __WALL|WNOHANG));
// Can no longer pdwait4() the closed process descriptor...
EXPECT_EQ(-1, pdwait4_(pd_, &status, WNOHANG, NULL));
EXPECT_EQ(EBADF, errno);
// ...but can pdwait4() the still-open process descriptor.
errno = 0;
EXPECT_EQ(0, pdwait4_(pd_other, &status, WNOHANG, NULL));
EXPECT_EQ(0, errno);
EXPECT_OK(close(pd_other));
EXPECT_PID_DEAD(pid_);
EXPECT_FALSE(had_signal[SIGCHLD]);
signal(SIGCHLD, original);
}
FORK_TEST(Pdfork, OtherUser) {
REQUIRE_ROOT();
int pd;
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child process: loop forever.
while (true) usleep(100000);
}
usleep(100);
// Now that the second process has been pdfork()ed, change euid.
setuid(other_uid);
if (verbose) fprintf(stderr, "uid=%d euid=%d\n", getuid(), geteuid());
// Fail to kill child with normal PID operation.
EXPECT_EQ(-1, kill(pid, SIGKILL));
EXPECT_EQ(EPERM, errno);
EXPECT_PID_ALIVE(pid);
// Succeed with pdkill though.
EXPECT_OK(pdkill(pd, SIGKILL));
EXPECT_PID_ZOMBIE(pid);
int status;
int rc = pdwait4_(pd, &status, WNOHANG, NULL);
EXPECT_OK(rc);
EXPECT_EQ(pid, rc);
EXPECT_TRUE(WIFSIGNALED(status));
}
TEST_F(PipePdfork, WaitPidThenPd) {
TerminateChild();
int status;
// If we waitpid(pid) first...
int rc = waitpid(pid_, &status, __WALL);
EXPECT_OK(rc);
EXPECT_EQ(pid_, rc);
#ifdef NOTYET
// ...the zombie is reaped but we can still subsequently pdwait4(pd).
EXPECT_EQ(0, pdwait4_(pd_, &status, 0, NULL));
#endif
}
TEST_F(PipePdfork, WaitPdThenPid) {
TerminateChild();
int status;
// If we pdwait4(pd) first...
int rc = pdwait4_(pd_, &status, 0, NULL);
EXPECT_OK(rc);
EXPECT_EQ(pid_, rc);
// ...the zombie is reaped and cannot subsequently waitpid(pid).
EXPECT_EQ(-1, waitpid(pid_, &status, __WALL));
EXPECT_EQ(ECHILD, errno);
}
// Setting PD_DAEMON prevents close() from killing the child.
TEST_F(PipePdforkDaemon, Close) {
EXPECT_OK(close(pd_));
pd_ = -1;
EXPECT_PID_ALIVE(pid_);
// Can still explicitly kill it via the pid.
if (pid_ > 0) {
EXPECT_OK(kill(pid_, SIGKILL));
EXPECT_PID_DEAD(pid_);
}
}
static void TestPdkill(pid_t pid, int pd) {
EXPECT_PID_ALIVE(pid);
// SIGCONT is ignored by default.
EXPECT_OK(pdkill(pd, SIGCONT));
EXPECT_PID_ALIVE(pid);
// SIGINT isn't
EXPECT_OK(pdkill(pd, SIGINT));
EXPECT_PID_DEAD(pid);
// pdkill() on zombie is no-op.
errno = 0;
EXPECT_EQ(0, pdkill(pd, SIGINT));
EXPECT_EQ(0, errno);
// pdkill() on reaped process gives -ESRCH.
CheckChildFinished(pid, true);
EXPECT_EQ(-1, pdkill(pd, SIGINT));
EXPECT_EQ(ESRCH, errno);
}
TEST_F(PipePdfork, Pdkill) {
TestPdkill(pid_, pd_);
}
TEST_F(PipePdforkDaemon, Pdkill) {
TestPdkill(pid_, pd_);
}
TEST(Pdfork, PdkillOtherSignal) {
int pd = -1;
int pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: watch for SIGUSR1 forever.
had_signal.clear();
signal(SIGUSR1, handle_signal);
while (!had_signal[SIGUSR1]) {
usleep(100000);
}
exit(123);
}
sleep(1);
// Send an invalid signal.
EXPECT_EQ(-1, pdkill(pd, 0xFFFF));
EXPECT_EQ(EINVAL, errno);
// Send an expected SIGUSR1 to the pdfork()ed child.
EXPECT_PID_ALIVE(pid);
pdkill(pd, SIGUSR1);
EXPECT_PID_DEAD(pid);
// Child's exit status confirms whether it received the signal.
int status;
int rc = waitpid(pid, &status, __WALL);
EXPECT_OK(rc);
EXPECT_EQ(pid, rc);
EXPECT_TRUE(WIFEXITED(status)) << "0x" << std::hex << rc;
EXPECT_EQ(123, WEXITSTATUS(status));
}
pid_t PdforkParentDeath(int pdfork_flags) {
// Set up:
// pid A: main process, here
// +--pid B: fork()ed process, sleep(4)s then exits
// +--pid C: pdfork()ed process, looping forever
int sock_fds[2];
EXPECT_OK(socketpair(AF_UNIX, SOCK_STREAM, 0, sock_fds));
if (verbose) fprintf(stderr, "[%d] parent about to fork()...\n", getpid_());
pid_t child = fork();
EXPECT_OK(child);
if (child == 0) {
int pd;
if (verbose) fprintf(stderr, " [%d] child about to pdfork()...\n", getpid_());
pid_t grandchild = pdfork(&pd, pdfork_flags);
if (grandchild == 0) {
while (true) {
if (verbose) fprintf(stderr, " [%d] grandchild: \"I aten't dead\"\n", getpid_());
sleep(1);
}
}
if (verbose) fprintf(stderr, " [%d] pdfork()ed grandchild %d, sending ID to parent\n", getpid_(), grandchild);
// send grandchild pid to parent
write(sock_fds[1], &grandchild, sizeof(grandchild));
sleep(4);
if (verbose) fprintf(stderr, " [%d] child terminating\n", getpid_());
exit(0);
}
if (verbose) fprintf(stderr, "[%d] fork()ed child is %d\n", getpid_(), child);
pid_t grandchild;
read(sock_fds[0], &grandchild, sizeof(grandchild));
if (verbose) fprintf(stderr, "[%d] receive grandchild id %d\n", getpid_(), grandchild);
EXPECT_PID_ALIVE(child);
EXPECT_PID_ALIVE(grandchild);
sleep(6);
// Child dies, closing its process descriptor for the grandchild.
EXPECT_PID_DEAD(child);
CheckChildFinished(child);
return grandchild;
}
TEST(Pdfork, Bagpuss) {
// "And of course when Bagpuss goes to sleep, all his friends go to sleep too"
pid_t grandchild = PdforkParentDeath(0);
// By default: child death => closed process descriptor => grandchild death.
EXPECT_PID_DEAD(grandchild);
}
TEST(Pdfork, BagpussDaemon) {
pid_t grandchild = PdforkParentDeath(PD_DAEMON);
// With PD_DAEMON: child death => closed process descriptor => no effect on grandchild.
EXPECT_PID_ALIVE(grandchild);
if (grandchild > 0) {
EXPECT_OK(kill(grandchild, SIGKILL));
}
}
// The exit of a pdfork()ed process should not generate SIGCHLD.
TEST_F(PipePdfork, NoSigchld) {
had_signal.clear();
sighandler_t original = signal(SIGCHLD, handle_signal);
TerminateChild();
int rc = 0;
// Can waitpid() for the specific pid of the pdfork()ed child.
EXPECT_EQ(pid_, waitpid(pid_, &rc, __WALL));
EXPECT_TRUE(WIFEXITED(rc)) << "0x" << std::hex << rc;
EXPECT_FALSE(had_signal[SIGCHLD]);
signal(SIGCHLD, original);
}
// The exit of a pdfork()ed process whose process descriptors have
// all been closed should generate SIGCHLD. The child process needs
// PD_DAEMON to survive the closure of the process descriptors.
TEST_F(PipePdforkDaemon, NoPDSigchld) {
had_signal.clear();
sighandler_t original = signal(SIGCHLD, handle_signal);
EXPECT_OK(close(pd_));
TerminateChild();
#ifdef __FreeBSD__
EXPECT_EQ(-1, waitpid(pid_, NULL, __WALL));
EXPECT_EQ(errno, ECHILD);
#else
int rc = 0;
// Can waitpid() for the specific pid of the pdfork()ed child.
EXPECT_EQ(pid_, waitpid(pid_, &rc, __WALL));
EXPECT_TRUE(WIFEXITED(rc)) << "0x" << std::hex << rc;
#endif
EXPECT_FALSE(had_signal[SIGCHLD]);
signal(SIGCHLD, original);
}
#ifdef HAVE_PROCDESC_FSTAT
TEST_F(PipePdfork, ModeBits) {
// Owner rwx bits indicate liveness of child
struct stat stat;
memset(&stat, 0, sizeof(stat));
EXPECT_OK(fstat(pd_, &stat));
if (verbose) print_stat(stderr, &stat);
EXPECT_EQ(S_IRWXU, (long)(stat.st_mode & S_IRWXU));
TerminateChild();
usleep(100000);
memset(&stat, 0, sizeof(stat));
EXPECT_OK(fstat(pd_, &stat));
if (verbose) print_stat(stderr, &stat);
EXPECT_EQ(0, (int)(stat.st_mode & S_IRWXU));
}
#endif
TEST_F(PipePdfork, WildcardWait) {
// TODO(FreeBSD): make wildcard wait ignore pdfork()ed children
// https://bugs.freebsd.org/201054
TerminateChild();
sleep(1); // Ensure child is truly dead.
// Wildcard waitpid(-1) should not see the pdfork()ed child because
// there is still a process descriptor for it.
int rc;
EXPECT_EQ(-1, waitpid(-1, &rc, WNOHANG));
EXPECT_EQ(ECHILD, errno);
EXPECT_OK(close(pd_));
pd_ = -1;
}
FORK_TEST(Pdfork, Pdkill) {
had_signal.clear();
int pd;
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: set a SIGINT handler and sleep.
had_signal.clear();
signal(SIGINT, handle_signal);
if (verbose) fprintf(stderr, "[%d] child about to sleep(10)\n", getpid_());
int left = sleep(10);
if (verbose) fprintf(stderr, "[%d] child slept, %d sec left, had[SIGINT]=%d\n",
getpid_(), left, had_signal[SIGINT]);
// Expect this sleep to be interrupted by the signal (and so left > 0).
exit(left == 0);
}
// Parent: get child's PID.
pid_t pd_pid;
EXPECT_OK(pdgetpid(pd, &pd_pid));
EXPECT_EQ(pid, pd_pid);
// Interrupt the child after a second.
sleep(1);
EXPECT_OK(pdkill(pd, SIGINT));
// Make sure the child finished properly (caught signal then exited).
CheckChildFinished(pid);
}
FORK_TEST(Pdfork, PdkillSignal) {
int pd;
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: sleep. No SIGINT handler.
if (verbose) fprintf(stderr, "[%d] child about to sleep(10)\n", getpid_());
int left = sleep(10);
if (verbose) fprintf(stderr, "[%d] child slept, %d sec left\n", getpid_(), left);
exit(99);
}
// Kill the child (as it doesn't handle SIGINT).
sleep(1);
EXPECT_OK(pdkill(pd, SIGINT));
// Make sure the child finished properly (terminated by signal).
CheckChildFinished(pid, true);
}
//------------------------------------------------
// Test interactions with other parts of Capsicum:
// - capability mode
// - capabilities
FORK_TEST(Pdfork, DaemonUnrestricted) {
EXPECT_OK(cap_enter());
int fd;
// Capability mode leaves pdfork() available, with and without flag.
int rc;
rc = pdfork(&fd, PD_DAEMON);
EXPECT_OK(rc);
if (rc == 0) {
// Child: immediately terminate.
exit(0);
}
rc = pdfork(&fd, 0);
EXPECT_OK(rc);
if (rc == 0) {
// Child: immediately terminate.
exit(0);
}
}
TEST(Pdfork, MissingRights) {
pid_t parent = getpid_();
int pd = -1;
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: loop forever.
EXPECT_NE(parent, getpid_());
while (true) sleep(1);
}
// Create two capabilities from the process descriptor.
cap_rights_t r_ro;
cap_rights_init(&r_ro, CAP_READ, CAP_LOOKUP);
int cap_incapable = dup(pd);
EXPECT_OK(cap_incapable);
EXPECT_OK(cap_rights_limit(cap_incapable, &r_ro));
cap_rights_t r_pdall;
cap_rights_init(&r_pdall, CAP_PDGETPID, CAP_PDWAIT, CAP_PDKILL);
int cap_capable = dup(pd);
EXPECT_OK(cap_capable);
EXPECT_OK(cap_rights_limit(cap_capable, &r_pdall));
pid_t other_pid;
EXPECT_NOTCAPABLE(pdgetpid(cap_incapable, &other_pid));
EXPECT_NOTCAPABLE(pdkill(cap_incapable, SIGINT));
int status;
EXPECT_NOTCAPABLE(pdwait4_(cap_incapable, &status, 0, NULL));
EXPECT_OK(pdgetpid(cap_capable, &other_pid));
EXPECT_EQ(pid, other_pid);
EXPECT_OK(pdkill(cap_capable, SIGINT));
int rc = pdwait4_(pd, &status, 0, NULL);
EXPECT_OK(rc);
EXPECT_EQ(pid, rc);
}
//------------------------------------------------
// Passing process descriptors between processes.
TEST_F(PipePdfork, PassProcessDescriptor) {
int sock_fds[2];
EXPECT_OK(socketpair(AF_UNIX, SOCK_STREAM, 0, sock_fds));
struct msghdr mh;
mh.msg_name = NULL; // No address needed
mh.msg_namelen = 0;
char buffer1[1024];
struct iovec iov[1];
iov[0].iov_base = buffer1;
iov[0].iov_len = sizeof(buffer1);
mh.msg_iov = iov;
mh.msg_iovlen = 1;
char buffer2[1024];
mh.msg_control = buffer2;
mh.msg_controllen = sizeof(buffer2);
struct cmsghdr *cmptr;
if (verbose) fprintf(stderr, "[%d] about to fork()\n", getpid_());
pid_t child2 = fork();
if (child2 == 0) {
// Child: close our copy of the original process descriptor.
close(pd_);
// Child: wait to receive process descriptor over socket
if (verbose) fprintf(stderr, " [%d] child of %d waiting for process descriptor on socket\n", getpid_(), getppid());
int rc = recvmsg(sock_fds[0], &mh, 0);
EXPECT_OK(rc);
EXPECT_LE(CMSG_LEN(sizeof(int)), mh.msg_controllen);
cmptr = CMSG_FIRSTHDR(&mh);
int pd = *(int*)CMSG_DATA(cmptr);
EXPECT_EQ(CMSG_LEN(sizeof(int)), cmptr->cmsg_len);
cmptr = CMSG_NXTHDR(&mh, cmptr);
EXPECT_TRUE(cmptr == NULL);
if (verbose) fprintf(stderr, " [%d] got process descriptor %d on socket\n", getpid_(), pd);
// Child: confirm we can do pd*() operations on the process descriptor
pid_t other;
EXPECT_OK(pdgetpid(pd, &other));
if (verbose) fprintf(stderr, " [%d] process descriptor %d is pid %d\n", getpid_(), pd, other);
sleep(2);
if (verbose) fprintf(stderr, " [%d] close process descriptor %d\n", getpid_(), pd);
close(pd);
// Last process descriptor closed, expect death
EXPECT_PID_DEAD(other);
exit(HasFailure());
}
usleep(1000); // Ensure subprocess runs
// Send the process descriptor over the pipe to the sub-process
mh.msg_controllen = CMSG_LEN(sizeof(int));
cmptr = CMSG_FIRSTHDR(&mh);
cmptr->cmsg_level = SOL_SOCKET;
cmptr->cmsg_type = SCM_RIGHTS;
cmptr->cmsg_len = CMSG_LEN(sizeof(int));
*(int *)CMSG_DATA(cmptr) = pd_;
buffer1[0] = 0;
iov[0].iov_len = 1;
sleep(1);
if (verbose) fprintf(stderr, "[%d] send process descriptor %d on socket\n", getpid_(), pd_);
int rc = sendmsg(sock_fds[1], &mh, 0);
EXPECT_OK(rc);
if (verbose) fprintf(stderr, "[%d] close process descriptor %d\n", getpid_(), pd_);
close(pd_); // Not last open process descriptor
// wait for child2
int status;
EXPECT_EQ(child2, waitpid(child2, &status, __WALL));
rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1;
EXPECT_EQ(0, rc);
// confirm death all round
EXPECT_PID_DEAD(child2);
EXPECT_PID_DEAD(pid_);
}