99f31e6669
Submitted by: Ryan Libby <rlibby@gmail.com> Reviewed by: mav MFC after: 2 weeks Sponsored by: Dell EMC Isilon Differential Revision: https://reviews.freebsd.org/D7985
5408 lines
139 KiB
C
5408 lines
139 KiB
C
/*-
|
|
* Implementation of the Common Access Method Transport (XPT) layer.
|
|
*
|
|
* Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
|
|
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/types.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/time.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/kthread.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_queue.h>
|
|
#include <cam/cam_sim.h>
|
|
#include <cam/cam_xpt.h>
|
|
#include <cam/cam_xpt_sim.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
#include <cam/cam_xpt_internal.h>
|
|
#include <cam/cam_debug.h>
|
|
#include <cam/cam_compat.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_message.h>
|
|
#include <cam/scsi/scsi_pass.h>
|
|
|
|
#include <machine/md_var.h> /* geometry translation */
|
|
#include <machine/stdarg.h> /* for xpt_print below */
|
|
|
|
#include "opt_cam.h"
|
|
|
|
/*
|
|
* This is the maximum number of high powered commands (e.g. start unit)
|
|
* that can be outstanding at a particular time.
|
|
*/
|
|
#ifndef CAM_MAX_HIGHPOWER
|
|
#define CAM_MAX_HIGHPOWER 4
|
|
#endif
|
|
|
|
/* Datastructures internal to the xpt layer */
|
|
MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
|
|
MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
|
|
MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
|
|
MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
|
|
|
|
/* Object for defering XPT actions to a taskqueue */
|
|
struct xpt_task {
|
|
struct task task;
|
|
void *data1;
|
|
uintptr_t data2;
|
|
};
|
|
|
|
struct xpt_softc {
|
|
uint32_t xpt_generation;
|
|
|
|
/* number of high powered commands that can go through right now */
|
|
struct mtx xpt_highpower_lock;
|
|
STAILQ_HEAD(highpowerlist, cam_ed) highpowerq;
|
|
int num_highpower;
|
|
|
|
/* queue for handling async rescan requests. */
|
|
TAILQ_HEAD(, ccb_hdr) ccb_scanq;
|
|
int buses_to_config;
|
|
int buses_config_done;
|
|
|
|
/* Registered busses */
|
|
TAILQ_HEAD(,cam_eb) xpt_busses;
|
|
u_int bus_generation;
|
|
|
|
struct intr_config_hook *xpt_config_hook;
|
|
|
|
int boot_delay;
|
|
struct callout boot_callout;
|
|
|
|
struct mtx xpt_topo_lock;
|
|
struct mtx xpt_lock;
|
|
struct taskqueue *xpt_taskq;
|
|
};
|
|
|
|
typedef enum {
|
|
DM_RET_COPY = 0x01,
|
|
DM_RET_FLAG_MASK = 0x0f,
|
|
DM_RET_NONE = 0x00,
|
|
DM_RET_STOP = 0x10,
|
|
DM_RET_DESCEND = 0x20,
|
|
DM_RET_ERROR = 0x30,
|
|
DM_RET_ACTION_MASK = 0xf0
|
|
} dev_match_ret;
|
|
|
|
typedef enum {
|
|
XPT_DEPTH_BUS,
|
|
XPT_DEPTH_TARGET,
|
|
XPT_DEPTH_DEVICE,
|
|
XPT_DEPTH_PERIPH
|
|
} xpt_traverse_depth;
|
|
|
|
struct xpt_traverse_config {
|
|
xpt_traverse_depth depth;
|
|
void *tr_func;
|
|
void *tr_arg;
|
|
};
|
|
|
|
typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
|
|
typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
|
|
typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
|
|
typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
|
|
typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
|
|
|
|
/* Transport layer configuration information */
|
|
static struct xpt_softc xsoftc;
|
|
|
|
MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
|
|
|
|
SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
|
|
&xsoftc.boot_delay, 0, "Bus registration wait time");
|
|
SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
|
|
&xsoftc.xpt_generation, 0, "CAM peripheral generation count");
|
|
|
|
struct cam_doneq {
|
|
struct mtx_padalign cam_doneq_mtx;
|
|
STAILQ_HEAD(, ccb_hdr) cam_doneq;
|
|
int cam_doneq_sleep;
|
|
};
|
|
|
|
static struct cam_doneq cam_doneqs[MAXCPU];
|
|
static int cam_num_doneqs;
|
|
static struct proc *cam_proc;
|
|
|
|
SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
|
|
&cam_num_doneqs, 0, "Number of completion queues/threads");
|
|
|
|
struct cam_periph *xpt_periph;
|
|
|
|
static periph_init_t xpt_periph_init;
|
|
|
|
static struct periph_driver xpt_driver =
|
|
{
|
|
xpt_periph_init, "xpt",
|
|
TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
|
|
CAM_PERIPH_DRV_EARLY
|
|
};
|
|
|
|
PERIPHDRIVER_DECLARE(xpt, xpt_driver);
|
|
|
|
static d_open_t xptopen;
|
|
static d_close_t xptclose;
|
|
static d_ioctl_t xptioctl;
|
|
static d_ioctl_t xptdoioctl;
|
|
|
|
static struct cdevsw xpt_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_flags = 0,
|
|
.d_open = xptopen,
|
|
.d_close = xptclose,
|
|
.d_ioctl = xptioctl,
|
|
.d_name = "xpt",
|
|
};
|
|
|
|
/* Storage for debugging datastructures */
|
|
struct cam_path *cam_dpath;
|
|
u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
|
|
SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
|
|
&cam_dflags, 0, "Enabled debug flags");
|
|
u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
|
|
SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
|
|
&cam_debug_delay, 0, "Delay in us after each debug message");
|
|
|
|
/* Our boot-time initialization hook */
|
|
static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
|
|
|
|
static moduledata_t cam_moduledata = {
|
|
"cam",
|
|
cam_module_event_handler,
|
|
NULL
|
|
};
|
|
|
|
static int xpt_init(void *);
|
|
|
|
DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
|
|
MODULE_VERSION(cam, 1);
|
|
|
|
|
|
static void xpt_async_bcast(struct async_list *async_head,
|
|
u_int32_t async_code,
|
|
struct cam_path *path,
|
|
void *async_arg);
|
|
static path_id_t xptnextfreepathid(void);
|
|
static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
|
|
static union ccb *xpt_get_ccb(struct cam_periph *periph);
|
|
static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
|
|
static void xpt_run_allocq(struct cam_periph *periph, int sleep);
|
|
static void xpt_run_allocq_task(void *context, int pending);
|
|
static void xpt_run_devq(struct cam_devq *devq);
|
|
static timeout_t xpt_release_devq_timeout;
|
|
static void xpt_release_simq_timeout(void *arg) __unused;
|
|
static void xpt_acquire_bus(struct cam_eb *bus);
|
|
static void xpt_release_bus(struct cam_eb *bus);
|
|
static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
|
|
static int xpt_release_devq_device(struct cam_ed *dev, u_int count,
|
|
int run_queue);
|
|
static struct cam_et*
|
|
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
|
|
static void xpt_acquire_target(struct cam_et *target);
|
|
static void xpt_release_target(struct cam_et *target);
|
|
static struct cam_eb*
|
|
xpt_find_bus(path_id_t path_id);
|
|
static struct cam_et*
|
|
xpt_find_target(struct cam_eb *bus, target_id_t target_id);
|
|
static struct cam_ed*
|
|
xpt_find_device(struct cam_et *target, lun_id_t lun_id);
|
|
static void xpt_config(void *arg);
|
|
static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
|
|
u_int32_t new_priority);
|
|
static xpt_devicefunc_t xptpassannouncefunc;
|
|
static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
|
|
static void xptpoll(struct cam_sim *sim);
|
|
static void camisr_runqueue(void);
|
|
static void xpt_done_process(struct ccb_hdr *ccb_h);
|
|
static void xpt_done_td(void *);
|
|
static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
|
|
u_int num_patterns, struct cam_eb *bus);
|
|
static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
|
|
u_int num_patterns,
|
|
struct cam_ed *device);
|
|
static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
|
|
u_int num_patterns,
|
|
struct cam_periph *periph);
|
|
static xpt_busfunc_t xptedtbusfunc;
|
|
static xpt_targetfunc_t xptedttargetfunc;
|
|
static xpt_devicefunc_t xptedtdevicefunc;
|
|
static xpt_periphfunc_t xptedtperiphfunc;
|
|
static xpt_pdrvfunc_t xptplistpdrvfunc;
|
|
static xpt_periphfunc_t xptplistperiphfunc;
|
|
static int xptedtmatch(struct ccb_dev_match *cdm);
|
|
static int xptperiphlistmatch(struct ccb_dev_match *cdm);
|
|
static int xptbustraverse(struct cam_eb *start_bus,
|
|
xpt_busfunc_t *tr_func, void *arg);
|
|
static int xpttargettraverse(struct cam_eb *bus,
|
|
struct cam_et *start_target,
|
|
xpt_targetfunc_t *tr_func, void *arg);
|
|
static int xptdevicetraverse(struct cam_et *target,
|
|
struct cam_ed *start_device,
|
|
xpt_devicefunc_t *tr_func, void *arg);
|
|
static int xptperiphtraverse(struct cam_ed *device,
|
|
struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func, void *arg);
|
|
static int xptpdrvtraverse(struct periph_driver **start_pdrv,
|
|
xpt_pdrvfunc_t *tr_func, void *arg);
|
|
static int xptpdperiphtraverse(struct periph_driver **pdrv,
|
|
struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func,
|
|
void *arg);
|
|
static xpt_busfunc_t xptdefbusfunc;
|
|
static xpt_targetfunc_t xptdeftargetfunc;
|
|
static xpt_devicefunc_t xptdefdevicefunc;
|
|
static xpt_periphfunc_t xptdefperiphfunc;
|
|
static void xpt_finishconfig_task(void *context, int pending);
|
|
static void xpt_dev_async_default(u_int32_t async_code,
|
|
struct cam_eb *bus,
|
|
struct cam_et *target,
|
|
struct cam_ed *device,
|
|
void *async_arg);
|
|
static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
|
|
struct cam_et *target,
|
|
lun_id_t lun_id);
|
|
static xpt_devicefunc_t xptsetasyncfunc;
|
|
static xpt_busfunc_t xptsetasyncbusfunc;
|
|
static cam_status xptregister(struct cam_periph *periph,
|
|
void *arg);
|
|
static const char * xpt_action_name(uint32_t action);
|
|
static __inline int device_is_queued(struct cam_ed *device);
|
|
|
|
static __inline int
|
|
xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
|
|
{
|
|
int retval;
|
|
|
|
mtx_assert(&devq->send_mtx, MA_OWNED);
|
|
if ((dev->ccbq.queue.entries > 0) &&
|
|
(dev->ccbq.dev_openings > 0) &&
|
|
(dev->ccbq.queue.qfrozen_cnt == 0)) {
|
|
/*
|
|
* The priority of a device waiting for controller
|
|
* resources is that of the highest priority CCB
|
|
* enqueued.
|
|
*/
|
|
retval =
|
|
xpt_schedule_dev(&devq->send_queue,
|
|
&dev->devq_entry,
|
|
CAMQ_GET_PRIO(&dev->ccbq.queue));
|
|
} else {
|
|
retval = 0;
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
static __inline int
|
|
device_is_queued(struct cam_ed *device)
|
|
{
|
|
return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
|
|
}
|
|
|
|
static void
|
|
xpt_periph_init()
|
|
{
|
|
make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
|
|
}
|
|
|
|
static int
|
|
xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
|
|
{
|
|
|
|
/*
|
|
* Only allow read-write access.
|
|
*/
|
|
if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
|
|
return(EPERM);
|
|
|
|
/*
|
|
* We don't allow nonblocking access.
|
|
*/
|
|
if ((flags & O_NONBLOCK) != 0) {
|
|
printf("%s: can't do nonblocking access\n", devtoname(dev));
|
|
return(ENODEV);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
|
|
{
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Don't automatically grab the xpt softc lock here even though this is going
|
|
* through the xpt device. The xpt device is really just a back door for
|
|
* accessing other devices and SIMs, so the right thing to do is to grab
|
|
* the appropriate SIM lock once the bus/SIM is located.
|
|
*/
|
|
static int
|
|
xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
|
|
{
|
|
int error;
|
|
|
|
if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
|
|
error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
|
|
{
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
switch(cmd) {
|
|
/*
|
|
* For the transport layer CAMIOCOMMAND ioctl, we really only want
|
|
* to accept CCB types that don't quite make sense to send through a
|
|
* passthrough driver. XPT_PATH_INQ is an exception to this, as stated
|
|
* in the CAM spec.
|
|
*/
|
|
case CAMIOCOMMAND: {
|
|
union ccb *ccb;
|
|
union ccb *inccb;
|
|
struct cam_eb *bus;
|
|
|
|
inccb = (union ccb *)addr;
|
|
|
|
bus = xpt_find_bus(inccb->ccb_h.path_id);
|
|
if (bus == NULL)
|
|
return (EINVAL);
|
|
|
|
switch (inccb->ccb_h.func_code) {
|
|
case XPT_SCAN_BUS:
|
|
case XPT_RESET_BUS:
|
|
if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
|
|
inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
|
|
xpt_release_bus(bus);
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
case XPT_SCAN_TGT:
|
|
if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
|
|
inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
|
|
xpt_release_bus(bus);
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch(inccb->ccb_h.func_code) {
|
|
case XPT_SCAN_BUS:
|
|
case XPT_RESET_BUS:
|
|
case XPT_PATH_INQ:
|
|
case XPT_ENG_INQ:
|
|
case XPT_SCAN_LUN:
|
|
case XPT_SCAN_TGT:
|
|
|
|
ccb = xpt_alloc_ccb();
|
|
|
|
/*
|
|
* Create a path using the bus, target, and lun the
|
|
* user passed in.
|
|
*/
|
|
if (xpt_create_path(&ccb->ccb_h.path, NULL,
|
|
inccb->ccb_h.path_id,
|
|
inccb->ccb_h.target_id,
|
|
inccb->ccb_h.target_lun) !=
|
|
CAM_REQ_CMP){
|
|
error = EINVAL;
|
|
xpt_free_ccb(ccb);
|
|
break;
|
|
}
|
|
/* Ensure all of our fields are correct */
|
|
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
|
|
inccb->ccb_h.pinfo.priority);
|
|
xpt_merge_ccb(ccb, inccb);
|
|
xpt_path_lock(ccb->ccb_h.path);
|
|
cam_periph_runccb(ccb, NULL, 0, 0, NULL);
|
|
xpt_path_unlock(ccb->ccb_h.path);
|
|
bcopy(ccb, inccb, sizeof(union ccb));
|
|
xpt_free_path(ccb->ccb_h.path);
|
|
xpt_free_ccb(ccb);
|
|
break;
|
|
|
|
case XPT_DEBUG: {
|
|
union ccb ccb;
|
|
|
|
/*
|
|
* This is an immediate CCB, so it's okay to
|
|
* allocate it on the stack.
|
|
*/
|
|
|
|
/*
|
|
* Create a path using the bus, target, and lun the
|
|
* user passed in.
|
|
*/
|
|
if (xpt_create_path(&ccb.ccb_h.path, NULL,
|
|
inccb->ccb_h.path_id,
|
|
inccb->ccb_h.target_id,
|
|
inccb->ccb_h.target_lun) !=
|
|
CAM_REQ_CMP){
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/* Ensure all of our fields are correct */
|
|
xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
|
|
inccb->ccb_h.pinfo.priority);
|
|
xpt_merge_ccb(&ccb, inccb);
|
|
xpt_action(&ccb);
|
|
bcopy(&ccb, inccb, sizeof(union ccb));
|
|
xpt_free_path(ccb.ccb_h.path);
|
|
break;
|
|
|
|
}
|
|
case XPT_DEV_MATCH: {
|
|
struct cam_periph_map_info mapinfo;
|
|
struct cam_path *old_path;
|
|
|
|
/*
|
|
* We can't deal with physical addresses for this
|
|
* type of transaction.
|
|
*/
|
|
if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
|
|
CAM_DATA_VADDR) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Save this in case the caller had it set to
|
|
* something in particular.
|
|
*/
|
|
old_path = inccb->ccb_h.path;
|
|
|
|
/*
|
|
* We really don't need a path for the matching
|
|
* code. The path is needed because of the
|
|
* debugging statements in xpt_action(). They
|
|
* assume that the CCB has a valid path.
|
|
*/
|
|
inccb->ccb_h.path = xpt_periph->path;
|
|
|
|
bzero(&mapinfo, sizeof(mapinfo));
|
|
|
|
/*
|
|
* Map the pattern and match buffers into kernel
|
|
* virtual address space.
|
|
*/
|
|
error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
|
|
|
|
if (error) {
|
|
inccb->ccb_h.path = old_path;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This is an immediate CCB, we can send it on directly.
|
|
*/
|
|
xpt_action(inccb);
|
|
|
|
/*
|
|
* Map the buffers back into user space.
|
|
*/
|
|
cam_periph_unmapmem(inccb, &mapinfo);
|
|
|
|
inccb->ccb_h.path = old_path;
|
|
|
|
error = 0;
|
|
break;
|
|
}
|
|
default:
|
|
error = ENOTSUP;
|
|
break;
|
|
}
|
|
xpt_release_bus(bus);
|
|
break;
|
|
}
|
|
/*
|
|
* This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
|
|
* with the periphal driver name and unit name filled in. The other
|
|
* fields don't really matter as input. The passthrough driver name
|
|
* ("pass"), and unit number are passed back in the ccb. The current
|
|
* device generation number, and the index into the device peripheral
|
|
* driver list, and the status are also passed back. Note that
|
|
* since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
|
|
* we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
|
|
* (or rather should be) impossible for the device peripheral driver
|
|
* list to change since we look at the whole thing in one pass, and
|
|
* we do it with lock protection.
|
|
*
|
|
*/
|
|
case CAMGETPASSTHRU: {
|
|
union ccb *ccb;
|
|
struct cam_periph *periph;
|
|
struct periph_driver **p_drv;
|
|
char *name;
|
|
u_int unit;
|
|
int base_periph_found;
|
|
|
|
ccb = (union ccb *)addr;
|
|
unit = ccb->cgdl.unit_number;
|
|
name = ccb->cgdl.periph_name;
|
|
base_periph_found = 0;
|
|
|
|
/*
|
|
* Sanity check -- make sure we don't get a null peripheral
|
|
* driver name.
|
|
*/
|
|
if (*ccb->cgdl.periph_name == '\0') {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Keep the list from changing while we traverse it */
|
|
xpt_lock_buses();
|
|
|
|
/* first find our driver in the list of drivers */
|
|
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
|
|
if (strcmp((*p_drv)->driver_name, name) == 0)
|
|
break;
|
|
|
|
if (*p_drv == NULL) {
|
|
xpt_unlock_buses();
|
|
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
|
|
*ccb->cgdl.periph_name = '\0';
|
|
ccb->cgdl.unit_number = 0;
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Run through every peripheral instance of this driver
|
|
* and check to see whether it matches the unit passed
|
|
* in by the user. If it does, get out of the loops and
|
|
* find the passthrough driver associated with that
|
|
* peripheral driver.
|
|
*/
|
|
for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
|
|
periph = TAILQ_NEXT(periph, unit_links)) {
|
|
|
|
if (periph->unit_number == unit)
|
|
break;
|
|
}
|
|
/*
|
|
* If we found the peripheral driver that the user passed
|
|
* in, go through all of the peripheral drivers for that
|
|
* particular device and look for a passthrough driver.
|
|
*/
|
|
if (periph != NULL) {
|
|
struct cam_ed *device;
|
|
int i;
|
|
|
|
base_periph_found = 1;
|
|
device = periph->path->device;
|
|
for (i = 0, periph = SLIST_FIRST(&device->periphs);
|
|
periph != NULL;
|
|
periph = SLIST_NEXT(periph, periph_links), i++) {
|
|
/*
|
|
* Check to see whether we have a
|
|
* passthrough device or not.
|
|
*/
|
|
if (strcmp(periph->periph_name, "pass") == 0) {
|
|
/*
|
|
* Fill in the getdevlist fields.
|
|
*/
|
|
strcpy(ccb->cgdl.periph_name,
|
|
periph->periph_name);
|
|
ccb->cgdl.unit_number =
|
|
periph->unit_number;
|
|
if (SLIST_NEXT(periph, periph_links))
|
|
ccb->cgdl.status =
|
|
CAM_GDEVLIST_MORE_DEVS;
|
|
else
|
|
ccb->cgdl.status =
|
|
CAM_GDEVLIST_LAST_DEVICE;
|
|
ccb->cgdl.generation =
|
|
device->generation;
|
|
ccb->cgdl.index = i;
|
|
/*
|
|
* Fill in some CCB header fields
|
|
* that the user may want.
|
|
*/
|
|
ccb->ccb_h.path_id =
|
|
periph->path->bus->path_id;
|
|
ccb->ccb_h.target_id =
|
|
periph->path->target->target_id;
|
|
ccb->ccb_h.target_lun =
|
|
periph->path->device->lun_id;
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the periph is null here, one of two things has
|
|
* happened. The first possibility is that we couldn't
|
|
* find the unit number of the particular peripheral driver
|
|
* that the user is asking about. e.g. the user asks for
|
|
* the passthrough driver for "da11". We find the list of
|
|
* "da" peripherals all right, but there is no unit 11.
|
|
* The other possibility is that we went through the list
|
|
* of peripheral drivers attached to the device structure,
|
|
* but didn't find one with the name "pass". Either way,
|
|
* we return ENOENT, since we couldn't find something.
|
|
*/
|
|
if (periph == NULL) {
|
|
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
|
|
*ccb->cgdl.periph_name = '\0';
|
|
ccb->cgdl.unit_number = 0;
|
|
error = ENOENT;
|
|
/*
|
|
* It is unfortunate that this is even necessary,
|
|
* but there are many, many clueless users out there.
|
|
* If this is true, the user is looking for the
|
|
* passthrough driver, but doesn't have one in his
|
|
* kernel.
|
|
*/
|
|
if (base_periph_found == 1) {
|
|
printf("xptioctl: pass driver is not in the "
|
|
"kernel\n");
|
|
printf("xptioctl: put \"device pass\" in "
|
|
"your kernel config file\n");
|
|
}
|
|
}
|
|
xpt_unlock_buses();
|
|
break;
|
|
}
|
|
default:
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
|
|
return(error);
|
|
}
|
|
|
|
static int
|
|
cam_module_event_handler(module_t mod, int what, void *arg)
|
|
{
|
|
int error;
|
|
|
|
switch (what) {
|
|
case MOD_LOAD:
|
|
if ((error = xpt_init(NULL)) != 0)
|
|
return (error);
|
|
break;
|
|
case MOD_UNLOAD:
|
|
return EBUSY;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct xpt_proto *
|
|
xpt_proto_find(cam_proto proto)
|
|
{
|
|
struct xpt_proto **pp;
|
|
|
|
SET_FOREACH(pp, cam_xpt_proto_set) {
|
|
if ((*pp)->proto == proto)
|
|
return *pp;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
|
|
if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
|
|
xpt_free_path(done_ccb->ccb_h.path);
|
|
xpt_free_ccb(done_ccb);
|
|
} else {
|
|
done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
|
|
(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
|
|
}
|
|
xpt_release_boot();
|
|
}
|
|
|
|
/* thread to handle bus rescans */
|
|
static void
|
|
xpt_scanner_thread(void *dummy)
|
|
{
|
|
union ccb *ccb;
|
|
struct cam_path path;
|
|
|
|
xpt_lock_buses();
|
|
for (;;) {
|
|
if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
|
|
msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
|
|
"-", 0);
|
|
if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
|
|
TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
|
|
xpt_unlock_buses();
|
|
|
|
/*
|
|
* Since lock can be dropped inside and path freed
|
|
* by completion callback even before return here,
|
|
* take our own path copy for reference.
|
|
*/
|
|
xpt_copy_path(&path, ccb->ccb_h.path);
|
|
xpt_path_lock(&path);
|
|
xpt_action(ccb);
|
|
xpt_path_unlock(&path);
|
|
xpt_release_path(&path);
|
|
|
|
xpt_lock_buses();
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_rescan(union ccb *ccb)
|
|
{
|
|
struct ccb_hdr *hdr;
|
|
|
|
/* Prepare request */
|
|
if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
|
|
ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
|
|
ccb->ccb_h.func_code = XPT_SCAN_BUS;
|
|
else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
|
|
ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
|
|
ccb->ccb_h.func_code = XPT_SCAN_TGT;
|
|
else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
|
|
ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
|
|
ccb->ccb_h.func_code = XPT_SCAN_LUN;
|
|
else {
|
|
xpt_print(ccb->ccb_h.path, "illegal scan path\n");
|
|
xpt_free_path(ccb->ccb_h.path);
|
|
xpt_free_ccb(ccb);
|
|
return;
|
|
}
|
|
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
|
|
("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
|
|
xpt_action_name(ccb->ccb_h.func_code)));
|
|
|
|
ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
|
|
ccb->ccb_h.cbfcnp = xpt_rescan_done;
|
|
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
|
|
/* Don't make duplicate entries for the same paths. */
|
|
xpt_lock_buses();
|
|
if (ccb->ccb_h.ppriv_ptr1 == NULL) {
|
|
TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
|
|
if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
|
|
wakeup(&xsoftc.ccb_scanq);
|
|
xpt_unlock_buses();
|
|
xpt_print(ccb->ccb_h.path, "rescan already queued\n");
|
|
xpt_free_path(ccb->ccb_h.path);
|
|
xpt_free_ccb(ccb);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
|
|
xsoftc.buses_to_config++;
|
|
wakeup(&xsoftc.ccb_scanq);
|
|
xpt_unlock_buses();
|
|
}
|
|
|
|
/* Functions accessed by the peripheral drivers */
|
|
static int
|
|
xpt_init(void *dummy)
|
|
{
|
|
struct cam_sim *xpt_sim;
|
|
struct cam_path *path;
|
|
struct cam_devq *devq;
|
|
cam_status status;
|
|
int error, i;
|
|
|
|
TAILQ_INIT(&xsoftc.xpt_busses);
|
|
TAILQ_INIT(&xsoftc.ccb_scanq);
|
|
STAILQ_INIT(&xsoftc.highpowerq);
|
|
xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
|
|
|
|
mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
|
|
mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
|
|
xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
|
|
taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
|
|
|
|
#ifdef CAM_BOOT_DELAY
|
|
/*
|
|
* Override this value at compile time to assist our users
|
|
* who don't use loader to boot a kernel.
|
|
*/
|
|
xsoftc.boot_delay = CAM_BOOT_DELAY;
|
|
#endif
|
|
/*
|
|
* The xpt layer is, itself, the equivalent of a SIM.
|
|
* Allow 16 ccbs in the ccb pool for it. This should
|
|
* give decent parallelism when we probe busses and
|
|
* perform other XPT functions.
|
|
*/
|
|
devq = cam_simq_alloc(16);
|
|
xpt_sim = cam_sim_alloc(xptaction,
|
|
xptpoll,
|
|
"xpt",
|
|
/*softc*/NULL,
|
|
/*unit*/0,
|
|
/*mtx*/&xsoftc.xpt_lock,
|
|
/*max_dev_transactions*/0,
|
|
/*max_tagged_dev_transactions*/0,
|
|
devq);
|
|
if (xpt_sim == NULL)
|
|
return (ENOMEM);
|
|
|
|
mtx_lock(&xsoftc.xpt_lock);
|
|
if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
printf("xpt_init: xpt_bus_register failed with status %#x,"
|
|
" failing attach\n", status);
|
|
return (EINVAL);
|
|
}
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
|
|
/*
|
|
* Looking at the XPT from the SIM layer, the XPT is
|
|
* the equivalent of a peripheral driver. Allocate
|
|
* a peripheral driver entry for us.
|
|
*/
|
|
if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
|
|
printf("xpt_init: xpt_create_path failed with status %#x,"
|
|
" failing attach\n", status);
|
|
return (EINVAL);
|
|
}
|
|
xpt_path_lock(path);
|
|
cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
|
|
path, NULL, 0, xpt_sim);
|
|
xpt_path_unlock(path);
|
|
xpt_free_path(path);
|
|
|
|
if (cam_num_doneqs < 1)
|
|
cam_num_doneqs = 1 + mp_ncpus / 6;
|
|
else if (cam_num_doneqs > MAXCPU)
|
|
cam_num_doneqs = MAXCPU;
|
|
for (i = 0; i < cam_num_doneqs; i++) {
|
|
mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
|
|
MTX_DEF);
|
|
STAILQ_INIT(&cam_doneqs[i].cam_doneq);
|
|
error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
|
|
&cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
|
|
if (error != 0) {
|
|
cam_num_doneqs = i;
|
|
break;
|
|
}
|
|
}
|
|
if (cam_num_doneqs < 1) {
|
|
printf("xpt_init: Cannot init completion queues "
|
|
"- failing attach\n");
|
|
return (ENOMEM);
|
|
}
|
|
/*
|
|
* Register a callback for when interrupts are enabled.
|
|
*/
|
|
xsoftc.xpt_config_hook =
|
|
(struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
|
|
M_CAMXPT, M_NOWAIT | M_ZERO);
|
|
if (xsoftc.xpt_config_hook == NULL) {
|
|
printf("xpt_init: Cannot malloc config hook "
|
|
"- failing attach\n");
|
|
return (ENOMEM);
|
|
}
|
|
xsoftc.xpt_config_hook->ich_func = xpt_config;
|
|
if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
|
|
free (xsoftc.xpt_config_hook, M_CAMXPT);
|
|
printf("xpt_init: config_intrhook_establish failed "
|
|
"- failing attach\n");
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static cam_status
|
|
xptregister(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct cam_sim *xpt_sim;
|
|
|
|
if (periph == NULL) {
|
|
printf("xptregister: periph was NULL!!\n");
|
|
return(CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
xpt_sim = (struct cam_sim *)arg;
|
|
xpt_sim->softc = periph;
|
|
xpt_periph = periph;
|
|
periph->softc = NULL;
|
|
|
|
return(CAM_REQ_CMP);
|
|
}
|
|
|
|
int32_t
|
|
xpt_add_periph(struct cam_periph *periph)
|
|
{
|
|
struct cam_ed *device;
|
|
int32_t status;
|
|
|
|
TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
|
|
device = periph->path->device;
|
|
status = CAM_REQ_CMP;
|
|
if (device != NULL) {
|
|
mtx_lock(&device->target->bus->eb_mtx);
|
|
device->generation++;
|
|
SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
|
|
mtx_unlock(&device->target->bus->eb_mtx);
|
|
atomic_add_32(&xsoftc.xpt_generation, 1);
|
|
}
|
|
|
|
return (status);
|
|
}
|
|
|
|
void
|
|
xpt_remove_periph(struct cam_periph *periph)
|
|
{
|
|
struct cam_ed *device;
|
|
|
|
device = periph->path->device;
|
|
if (device != NULL) {
|
|
mtx_lock(&device->target->bus->eb_mtx);
|
|
device->generation++;
|
|
SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
|
|
mtx_unlock(&device->target->bus->eb_mtx);
|
|
atomic_add_32(&xsoftc.xpt_generation, 1);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
xpt_announce_periph(struct cam_periph *periph, char *announce_string)
|
|
{
|
|
struct cam_path *path = periph->path;
|
|
struct xpt_proto *proto;
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
periph->flags |= CAM_PERIPH_ANNOUNCED;
|
|
|
|
printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
|
|
periph->periph_name, periph->unit_number,
|
|
path->bus->sim->sim_name,
|
|
path->bus->sim->unit_number,
|
|
path->bus->sim->bus_id,
|
|
path->bus->path_id,
|
|
path->target->target_id,
|
|
(uintmax_t)path->device->lun_id);
|
|
printf("%s%d: ", periph->periph_name, periph->unit_number);
|
|
proto = xpt_proto_find(path->device->protocol);
|
|
if (proto)
|
|
proto->ops->announce(path->device);
|
|
else
|
|
printf("%s%d: Unknown protocol device %d\n",
|
|
periph->periph_name, periph->unit_number,
|
|
path->device->protocol);
|
|
if (path->device->serial_num_len > 0) {
|
|
/* Don't wrap the screen - print only the first 60 chars */
|
|
printf("%s%d: Serial Number %.60s\n", periph->periph_name,
|
|
periph->unit_number, path->device->serial_num);
|
|
}
|
|
/* Announce transport details. */
|
|
path->bus->xport->ops->announce(periph);
|
|
/* Announce command queueing. */
|
|
if (path->device->inq_flags & SID_CmdQue
|
|
|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
|
|
printf("%s%d: Command Queueing enabled\n",
|
|
periph->periph_name, periph->unit_number);
|
|
}
|
|
/* Announce caller's details if they've passed in. */
|
|
if (announce_string != NULL)
|
|
printf("%s%d: %s\n", periph->periph_name,
|
|
periph->unit_number, announce_string);
|
|
}
|
|
|
|
void
|
|
xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
|
|
{
|
|
if (quirks != 0) {
|
|
printf("%s%d: quirks=0x%b\n", periph->periph_name,
|
|
periph->unit_number, quirks, bit_string);
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_denounce_periph(struct cam_periph *periph)
|
|
{
|
|
struct cam_path *path = periph->path;
|
|
struct xpt_proto *proto;
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
|
|
periph->periph_name, periph->unit_number,
|
|
path->bus->sim->sim_name,
|
|
path->bus->sim->unit_number,
|
|
path->bus->sim->bus_id,
|
|
path->bus->path_id,
|
|
path->target->target_id,
|
|
(uintmax_t)path->device->lun_id);
|
|
printf("%s%d: ", periph->periph_name, periph->unit_number);
|
|
proto = xpt_proto_find(path->device->protocol);
|
|
if (proto)
|
|
proto->ops->denounce(path->device);
|
|
else
|
|
printf("%s%d: Unknown protocol device %d\n",
|
|
periph->periph_name, periph->unit_number,
|
|
path->device->protocol);
|
|
if (path->device->serial_num_len > 0)
|
|
printf(" s/n %.60s", path->device->serial_num);
|
|
printf(" detached\n");
|
|
}
|
|
|
|
|
|
int
|
|
xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
|
|
{
|
|
int ret = -1, l;
|
|
struct ccb_dev_advinfo cdai;
|
|
struct scsi_vpd_id_descriptor *idd;
|
|
|
|
xpt_path_assert(path, MA_OWNED);
|
|
|
|
memset(&cdai, 0, sizeof(cdai));
|
|
xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
|
|
cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
|
|
cdai.bufsiz = len;
|
|
|
|
if (!strcmp(attr, "GEOM::ident"))
|
|
cdai.buftype = CDAI_TYPE_SERIAL_NUM;
|
|
else if (!strcmp(attr, "GEOM::physpath"))
|
|
cdai.buftype = CDAI_TYPE_PHYS_PATH;
|
|
else if (strcmp(attr, "GEOM::lunid") == 0 ||
|
|
strcmp(attr, "GEOM::lunname") == 0) {
|
|
cdai.buftype = CDAI_TYPE_SCSI_DEVID;
|
|
cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
|
|
} else
|
|
goto out;
|
|
|
|
cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
|
|
if (cdai.buf == NULL) {
|
|
ret = ENOMEM;
|
|
goto out;
|
|
}
|
|
xpt_action((union ccb *)&cdai); /* can only be synchronous */
|
|
if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
|
|
cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
|
|
if (cdai.provsiz == 0)
|
|
goto out;
|
|
if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
|
|
if (strcmp(attr, "GEOM::lunid") == 0) {
|
|
idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
|
|
cdai.provsiz, scsi_devid_is_lun_naa);
|
|
if (idd == NULL)
|
|
idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
|
|
cdai.provsiz, scsi_devid_is_lun_eui64);
|
|
} else
|
|
idd = NULL;
|
|
if (idd == NULL)
|
|
idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
|
|
cdai.provsiz, scsi_devid_is_lun_t10);
|
|
if (idd == NULL)
|
|
idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
|
|
cdai.provsiz, scsi_devid_is_lun_name);
|
|
if (idd == NULL)
|
|
goto out;
|
|
ret = 0;
|
|
if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
|
|
if (idd->length < len) {
|
|
for (l = 0; l < idd->length; l++)
|
|
buf[l] = idd->identifier[l] ?
|
|
idd->identifier[l] : ' ';
|
|
buf[l] = 0;
|
|
} else
|
|
ret = EFAULT;
|
|
} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
|
|
l = strnlen(idd->identifier, idd->length);
|
|
if (l < len) {
|
|
bcopy(idd->identifier, buf, l);
|
|
buf[l] = 0;
|
|
} else
|
|
ret = EFAULT;
|
|
} else {
|
|
if (idd->length * 2 < len) {
|
|
for (l = 0; l < idd->length; l++)
|
|
sprintf(buf + l * 2, "%02x",
|
|
idd->identifier[l]);
|
|
} else
|
|
ret = EFAULT;
|
|
}
|
|
} else {
|
|
ret = 0;
|
|
if (strlcpy(buf, cdai.buf, len) >= len)
|
|
ret = EFAULT;
|
|
}
|
|
|
|
out:
|
|
if (cdai.buf != NULL)
|
|
free(cdai.buf, M_CAMXPT);
|
|
return ret;
|
|
}
|
|
|
|
static dev_match_ret
|
|
xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
|
|
struct cam_eb *bus)
|
|
{
|
|
dev_match_ret retval;
|
|
u_int i;
|
|
|
|
retval = DM_RET_NONE;
|
|
|
|
/*
|
|
* If we aren't given something to match against, that's an error.
|
|
*/
|
|
if (bus == NULL)
|
|
return(DM_RET_ERROR);
|
|
|
|
/*
|
|
* If there are no match entries, then this bus matches no
|
|
* matter what.
|
|
*/
|
|
if ((patterns == NULL) || (num_patterns == 0))
|
|
return(DM_RET_DESCEND | DM_RET_COPY);
|
|
|
|
for (i = 0; i < num_patterns; i++) {
|
|
struct bus_match_pattern *cur_pattern;
|
|
|
|
/*
|
|
* If the pattern in question isn't for a bus node, we
|
|
* aren't interested. However, we do indicate to the
|
|
* calling routine that we should continue descending the
|
|
* tree, since the user wants to match against lower-level
|
|
* EDT elements.
|
|
*/
|
|
if (patterns[i].type != DEV_MATCH_BUS) {
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
|
|
retval |= DM_RET_DESCEND;
|
|
continue;
|
|
}
|
|
|
|
cur_pattern = &patterns[i].pattern.bus_pattern;
|
|
|
|
/*
|
|
* If they want to match any bus node, we give them any
|
|
* device node.
|
|
*/
|
|
if (cur_pattern->flags == BUS_MATCH_ANY) {
|
|
/* set the copy flag */
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* If we've already decided on an action, go ahead
|
|
* and return.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Not sure why someone would do this...
|
|
*/
|
|
if (cur_pattern->flags == BUS_MATCH_NONE)
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
|
|
&& (cur_pattern->path_id != bus->path_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
|
|
&& (cur_pattern->bus_id != bus->sim->bus_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
|
|
&& (cur_pattern->unit_number != bus->sim->unit_number))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
|
|
&& (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
|
|
DEV_IDLEN) != 0))
|
|
continue;
|
|
|
|
/*
|
|
* If we get to this point, the user definitely wants
|
|
* information on this bus. So tell the caller to copy the
|
|
* data out.
|
|
*/
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* If the return action has been set to descend, then we
|
|
* know that we've already seen a non-bus matching
|
|
* expression, therefore we need to further descend the tree.
|
|
* This won't change by continuing around the loop, so we
|
|
* go ahead and return. If we haven't seen a non-bus
|
|
* matching expression, we keep going around the loop until
|
|
* we exhaust the matching expressions. We'll set the stop
|
|
* flag once we fall out of the loop.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* If the return action hasn't been set to descend yet, that means
|
|
* we haven't seen anything other than bus matching patterns. So
|
|
* tell the caller to stop descending the tree -- the user doesn't
|
|
* want to match against lower level tree elements.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
|
|
retval |= DM_RET_STOP;
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static dev_match_ret
|
|
xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
|
|
struct cam_ed *device)
|
|
{
|
|
dev_match_ret retval;
|
|
u_int i;
|
|
|
|
retval = DM_RET_NONE;
|
|
|
|
/*
|
|
* If we aren't given something to match against, that's an error.
|
|
*/
|
|
if (device == NULL)
|
|
return(DM_RET_ERROR);
|
|
|
|
/*
|
|
* If there are no match entries, then this device matches no
|
|
* matter what.
|
|
*/
|
|
if ((patterns == NULL) || (num_patterns == 0))
|
|
return(DM_RET_DESCEND | DM_RET_COPY);
|
|
|
|
for (i = 0; i < num_patterns; i++) {
|
|
struct device_match_pattern *cur_pattern;
|
|
struct scsi_vpd_device_id *device_id_page;
|
|
|
|
/*
|
|
* If the pattern in question isn't for a device node, we
|
|
* aren't interested.
|
|
*/
|
|
if (patterns[i].type != DEV_MATCH_DEVICE) {
|
|
if ((patterns[i].type == DEV_MATCH_PERIPH)
|
|
&& ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
|
|
retval |= DM_RET_DESCEND;
|
|
continue;
|
|
}
|
|
|
|
cur_pattern = &patterns[i].pattern.device_pattern;
|
|
|
|
/* Error out if mutually exclusive options are specified. */
|
|
if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
|
|
== (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
|
|
return(DM_RET_ERROR);
|
|
|
|
/*
|
|
* If they want to match any device node, we give them any
|
|
* device node.
|
|
*/
|
|
if (cur_pattern->flags == DEV_MATCH_ANY)
|
|
goto copy_dev_node;
|
|
|
|
/*
|
|
* Not sure why someone would do this...
|
|
*/
|
|
if (cur_pattern->flags == DEV_MATCH_NONE)
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
|
|
&& (cur_pattern->path_id != device->target->bus->path_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
|
|
&& (cur_pattern->target_id != device->target->target_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
|
|
&& (cur_pattern->target_lun != device->lun_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
|
|
&& (cam_quirkmatch((caddr_t)&device->inq_data,
|
|
(caddr_t)&cur_pattern->data.inq_pat,
|
|
1, sizeof(cur_pattern->data.inq_pat),
|
|
scsi_static_inquiry_match) == NULL))
|
|
continue;
|
|
|
|
device_id_page = (struct scsi_vpd_device_id *)device->device_id;
|
|
if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
|
|
&& (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
|
|
|| scsi_devid_match((uint8_t *)device_id_page->desc_list,
|
|
device->device_id_len
|
|
- SVPD_DEVICE_ID_HDR_LEN,
|
|
cur_pattern->data.devid_pat.id,
|
|
cur_pattern->data.devid_pat.id_len) != 0))
|
|
continue;
|
|
|
|
copy_dev_node:
|
|
/*
|
|
* If we get to this point, the user definitely wants
|
|
* information on this device. So tell the caller to copy
|
|
* the data out.
|
|
*/
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* If the return action has been set to descend, then we
|
|
* know that we've already seen a peripheral matching
|
|
* expression, therefore we need to further descend the tree.
|
|
* This won't change by continuing around the loop, so we
|
|
* go ahead and return. If we haven't seen a peripheral
|
|
* matching expression, we keep going around the loop until
|
|
* we exhaust the matching expressions. We'll set the stop
|
|
* flag once we fall out of the loop.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* If the return action hasn't been set to descend yet, that means
|
|
* we haven't seen any peripheral matching patterns. So tell the
|
|
* caller to stop descending the tree -- the user doesn't want to
|
|
* match against lower level tree elements.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
|
|
retval |= DM_RET_STOP;
|
|
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Match a single peripheral against any number of match patterns.
|
|
*/
|
|
static dev_match_ret
|
|
xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
|
|
struct cam_periph *periph)
|
|
{
|
|
dev_match_ret retval;
|
|
u_int i;
|
|
|
|
/*
|
|
* If we aren't given something to match against, that's an error.
|
|
*/
|
|
if (periph == NULL)
|
|
return(DM_RET_ERROR);
|
|
|
|
/*
|
|
* If there are no match entries, then this peripheral matches no
|
|
* matter what.
|
|
*/
|
|
if ((patterns == NULL) || (num_patterns == 0))
|
|
return(DM_RET_STOP | DM_RET_COPY);
|
|
|
|
/*
|
|
* There aren't any nodes below a peripheral node, so there's no
|
|
* reason to descend the tree any further.
|
|
*/
|
|
retval = DM_RET_STOP;
|
|
|
|
for (i = 0; i < num_patterns; i++) {
|
|
struct periph_match_pattern *cur_pattern;
|
|
|
|
/*
|
|
* If the pattern in question isn't for a peripheral, we
|
|
* aren't interested.
|
|
*/
|
|
if (patterns[i].type != DEV_MATCH_PERIPH)
|
|
continue;
|
|
|
|
cur_pattern = &patterns[i].pattern.periph_pattern;
|
|
|
|
/*
|
|
* If they want to match on anything, then we will do so.
|
|
*/
|
|
if (cur_pattern->flags == PERIPH_MATCH_ANY) {
|
|
/* set the copy flag */
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* We've already set the return action to stop,
|
|
* since there are no nodes below peripherals in
|
|
* the tree.
|
|
*/
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Not sure why someone would do this...
|
|
*/
|
|
if (cur_pattern->flags == PERIPH_MATCH_NONE)
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
|
|
&& (cur_pattern->path_id != periph->path->bus->path_id))
|
|
continue;
|
|
|
|
/*
|
|
* For the target and lun id's, we have to make sure the
|
|
* target and lun pointers aren't NULL. The xpt peripheral
|
|
* has a wildcard target and device.
|
|
*/
|
|
if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
|
|
&& ((periph->path->target == NULL)
|
|
||(cur_pattern->target_id != periph->path->target->target_id)))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
|
|
&& ((periph->path->device == NULL)
|
|
|| (cur_pattern->target_lun != periph->path->device->lun_id)))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
|
|
&& (cur_pattern->unit_number != periph->unit_number))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
|
|
&& (strncmp(cur_pattern->periph_name, periph->periph_name,
|
|
DEV_IDLEN) != 0))
|
|
continue;
|
|
|
|
/*
|
|
* If we get to this point, the user definitely wants
|
|
* information on this peripheral. So tell the caller to
|
|
* copy the data out.
|
|
*/
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* The return action has already been set to stop, since
|
|
* peripherals don't have any nodes below them in the EDT.
|
|
*/
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* If we get to this point, the peripheral that was passed in
|
|
* doesn't match any of the patterns.
|
|
*/
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptedtbusfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
struct cam_et *target;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
/*
|
|
* If our position is for something deeper in the tree, that means
|
|
* that we've already seen this node. So, we keep going down.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target != NULL))
|
|
retval = DM_RET_DESCEND;
|
|
else
|
|
retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
|
|
|
|
/*
|
|
* If we got an error, bail out of the search.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this bus out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
|
|
|
|
cdm->pos.cookie.bus = bus;
|
|
cdm->pos.generations[CAM_BUS_GENERATION]=
|
|
xsoftc.bus_generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_BUS;
|
|
cdm->matches[j].result.bus_result.path_id = bus->path_id;
|
|
cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
|
|
cdm->matches[j].result.bus_result.unit_number =
|
|
bus->sim->unit_number;
|
|
strncpy(cdm->matches[j].result.bus_result.dev_name,
|
|
bus->sim->sim_name, DEV_IDLEN);
|
|
}
|
|
|
|
/*
|
|
* If the user is only interested in busses, there's no
|
|
* reason to descend to the next level in the tree.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
|
|
return(1);
|
|
|
|
/*
|
|
* If there is a target generation recorded, check it to
|
|
* make sure the target list hasn't changed.
|
|
*/
|
|
mtx_lock(&bus->eb_mtx);
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target != NULL)) {
|
|
if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
|
|
bus->generation)) {
|
|
mtx_unlock(&bus->eb_mtx);
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return (0);
|
|
}
|
|
target = (struct cam_et *)cdm->pos.cookie.target;
|
|
target->refcount++;
|
|
} else
|
|
target = NULL;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
|
|
return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptedttargetfunc(struct cam_et *target, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
struct cam_eb *bus;
|
|
struct cam_ed *device;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
bus = target->bus;
|
|
|
|
/*
|
|
* If there is a device list generation recorded, check it to
|
|
* make sure the device list hasn't changed.
|
|
*/
|
|
mtx_lock(&bus->eb_mtx);
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target == target)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.cookie.device != NULL)) {
|
|
if (cdm->pos.generations[CAM_DEV_GENERATION] !=
|
|
target->generation) {
|
|
mtx_unlock(&bus->eb_mtx);
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
device = (struct cam_ed *)cdm->pos.cookie.device;
|
|
device->refcount++;
|
|
} else
|
|
device = NULL;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
|
|
return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptedtdevicefunc(struct cam_ed *device, void *arg)
|
|
{
|
|
struct cam_eb *bus;
|
|
struct cam_periph *periph;
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
bus = device->target->bus;
|
|
|
|
/*
|
|
* If our position is for something deeper in the tree, that means
|
|
* that we've already seen this node. So, we keep going down.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.cookie.device == device)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.cookie.periph != NULL))
|
|
retval = DM_RET_DESCEND;
|
|
else
|
|
retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
|
|
device);
|
|
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this device out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
|
|
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
|
|
|
|
cdm->pos.cookie.bus = device->target->bus;
|
|
cdm->pos.generations[CAM_BUS_GENERATION]=
|
|
xsoftc.bus_generation;
|
|
cdm->pos.cookie.target = device->target;
|
|
cdm->pos.generations[CAM_TARGET_GENERATION] =
|
|
device->target->bus->generation;
|
|
cdm->pos.cookie.device = device;
|
|
cdm->pos.generations[CAM_DEV_GENERATION] =
|
|
device->target->generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_DEVICE;
|
|
cdm->matches[j].result.device_result.path_id =
|
|
device->target->bus->path_id;
|
|
cdm->matches[j].result.device_result.target_id =
|
|
device->target->target_id;
|
|
cdm->matches[j].result.device_result.target_lun =
|
|
device->lun_id;
|
|
cdm->matches[j].result.device_result.protocol =
|
|
device->protocol;
|
|
bcopy(&device->inq_data,
|
|
&cdm->matches[j].result.device_result.inq_data,
|
|
sizeof(struct scsi_inquiry_data));
|
|
bcopy(&device->ident_data,
|
|
&cdm->matches[j].result.device_result.ident_data,
|
|
sizeof(struct ata_params));
|
|
|
|
/* Let the user know whether this device is unconfigured */
|
|
if (device->flags & CAM_DEV_UNCONFIGURED)
|
|
cdm->matches[j].result.device_result.flags =
|
|
DEV_RESULT_UNCONFIGURED;
|
|
else
|
|
cdm->matches[j].result.device_result.flags =
|
|
DEV_RESULT_NOFLAG;
|
|
}
|
|
|
|
/*
|
|
* If the user isn't interested in peripherals, don't descend
|
|
* the tree any further.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
|
|
return(1);
|
|
|
|
/*
|
|
* If there is a peripheral list generation recorded, make sure
|
|
* it hasn't changed.
|
|
*/
|
|
xpt_lock_buses();
|
|
mtx_lock(&bus->eb_mtx);
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target == device->target)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.cookie.device == device)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.cookie.periph != NULL)) {
|
|
if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
|
|
device->generation) {
|
|
mtx_unlock(&bus->eb_mtx);
|
|
xpt_unlock_buses();
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
periph = (struct cam_periph *)cdm->pos.cookie.periph;
|
|
periph->refcount++;
|
|
} else
|
|
periph = NULL;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
xpt_unlock_buses();
|
|
|
|
return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptedtperiphfunc(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
|
|
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this peripheral out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
|
|
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
|
|
CAM_DEV_POS_PERIPH;
|
|
|
|
cdm->pos.cookie.bus = periph->path->bus;
|
|
cdm->pos.generations[CAM_BUS_GENERATION]=
|
|
xsoftc.bus_generation;
|
|
cdm->pos.cookie.target = periph->path->target;
|
|
cdm->pos.generations[CAM_TARGET_GENERATION] =
|
|
periph->path->bus->generation;
|
|
cdm->pos.cookie.device = periph->path->device;
|
|
cdm->pos.generations[CAM_DEV_GENERATION] =
|
|
periph->path->target->generation;
|
|
cdm->pos.cookie.periph = periph;
|
|
cdm->pos.generations[CAM_PERIPH_GENERATION] =
|
|
periph->path->device->generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_PERIPH;
|
|
cdm->matches[j].result.periph_result.path_id =
|
|
periph->path->bus->path_id;
|
|
cdm->matches[j].result.periph_result.target_id =
|
|
periph->path->target->target_id;
|
|
cdm->matches[j].result.periph_result.target_lun =
|
|
periph->path->device->lun_id;
|
|
cdm->matches[j].result.periph_result.unit_number =
|
|
periph->unit_number;
|
|
strncpy(cdm->matches[j].result.periph_result.periph_name,
|
|
periph->periph_name, DEV_IDLEN);
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptedtmatch(struct ccb_dev_match *cdm)
|
|
{
|
|
struct cam_eb *bus;
|
|
int ret;
|
|
|
|
cdm->num_matches = 0;
|
|
|
|
/*
|
|
* Check the bus list generation. If it has changed, the user
|
|
* needs to reset everything and start over.
|
|
*/
|
|
xpt_lock_buses();
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus != NULL)) {
|
|
if (cdm->pos.generations[CAM_BUS_GENERATION] !=
|
|
xsoftc.bus_generation) {
|
|
xpt_unlock_buses();
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
bus = (struct cam_eb *)cdm->pos.cookie.bus;
|
|
bus->refcount++;
|
|
} else
|
|
bus = NULL;
|
|
xpt_unlock_buses();
|
|
|
|
ret = xptbustraverse(bus, xptedtbusfunc, cdm);
|
|
|
|
/*
|
|
* If we get back 0, that means that we had to stop before fully
|
|
* traversing the EDT. It also means that one of the subroutines
|
|
* has set the status field to the proper value. If we get back 1,
|
|
* we've fully traversed the EDT and copied out any matching entries.
|
|
*/
|
|
if (ret == 1)
|
|
cdm->status = CAM_DEV_MATCH_LAST;
|
|
|
|
return(ret);
|
|
}
|
|
|
|
static int
|
|
xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct ccb_dev_match *cdm;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
xpt_lock_buses();
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
|
|
&& (cdm->pos.cookie.pdrv == pdrv)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.cookie.periph != NULL)) {
|
|
if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
|
|
(*pdrv)->generation) {
|
|
xpt_unlock_buses();
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
periph = (struct cam_periph *)cdm->pos.cookie.periph;
|
|
periph->refcount++;
|
|
} else
|
|
periph = NULL;
|
|
xpt_unlock_buses();
|
|
|
|
return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptplistperiphfunc(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
|
|
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this peripheral out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
struct periph_driver **pdrv;
|
|
|
|
pdrv = NULL;
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
|
|
CAM_DEV_POS_PERIPH;
|
|
|
|
/*
|
|
* This may look a bit non-sensical, but it is
|
|
* actually quite logical. There are very few
|
|
* peripheral drivers, and bloating every peripheral
|
|
* structure with a pointer back to its parent
|
|
* peripheral driver linker set entry would cost
|
|
* more in the long run than doing this quick lookup.
|
|
*/
|
|
for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
|
|
if (strcmp((*pdrv)->driver_name,
|
|
periph->periph_name) == 0)
|
|
break;
|
|
}
|
|
|
|
if (*pdrv == NULL) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
cdm->pos.cookie.pdrv = pdrv;
|
|
/*
|
|
* The periph generation slot does double duty, as
|
|
* does the periph pointer slot. They are used for
|
|
* both edt and pdrv lookups and positioning.
|
|
*/
|
|
cdm->pos.cookie.periph = periph;
|
|
cdm->pos.generations[CAM_PERIPH_GENERATION] =
|
|
(*pdrv)->generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_PERIPH;
|
|
cdm->matches[j].result.periph_result.path_id =
|
|
periph->path->bus->path_id;
|
|
|
|
/*
|
|
* The transport layer peripheral doesn't have a target or
|
|
* lun.
|
|
*/
|
|
if (periph->path->target)
|
|
cdm->matches[j].result.periph_result.target_id =
|
|
periph->path->target->target_id;
|
|
else
|
|
cdm->matches[j].result.periph_result.target_id =
|
|
CAM_TARGET_WILDCARD;
|
|
|
|
if (periph->path->device)
|
|
cdm->matches[j].result.periph_result.target_lun =
|
|
periph->path->device->lun_id;
|
|
else
|
|
cdm->matches[j].result.periph_result.target_lun =
|
|
CAM_LUN_WILDCARD;
|
|
|
|
cdm->matches[j].result.periph_result.unit_number =
|
|
periph->unit_number;
|
|
strncpy(cdm->matches[j].result.periph_result.periph_name,
|
|
periph->periph_name, DEV_IDLEN);
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptperiphlistmatch(struct ccb_dev_match *cdm)
|
|
{
|
|
int ret;
|
|
|
|
cdm->num_matches = 0;
|
|
|
|
/*
|
|
* At this point in the edt traversal function, we check the bus
|
|
* list generation to make sure that no busses have been added or
|
|
* removed since the user last sent a XPT_DEV_MATCH ccb through.
|
|
* For the peripheral driver list traversal function, however, we
|
|
* don't have to worry about new peripheral driver types coming or
|
|
* going; they're in a linker set, and therefore can't change
|
|
* without a recompile.
|
|
*/
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
|
|
&& (cdm->pos.cookie.pdrv != NULL))
|
|
ret = xptpdrvtraverse(
|
|
(struct periph_driver **)cdm->pos.cookie.pdrv,
|
|
xptplistpdrvfunc, cdm);
|
|
else
|
|
ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
|
|
|
|
/*
|
|
* If we get back 0, that means that we had to stop before fully
|
|
* traversing the peripheral driver tree. It also means that one of
|
|
* the subroutines has set the status field to the proper value. If
|
|
* we get back 1, we've fully traversed the EDT and copied out any
|
|
* matching entries.
|
|
*/
|
|
if (ret == 1)
|
|
cdm->status = CAM_DEV_MATCH_LAST;
|
|
|
|
return(ret);
|
|
}
|
|
|
|
static int
|
|
xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_eb *bus, *next_bus;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
if (start_bus)
|
|
bus = start_bus;
|
|
else {
|
|
xpt_lock_buses();
|
|
bus = TAILQ_FIRST(&xsoftc.xpt_busses);
|
|
if (bus == NULL) {
|
|
xpt_unlock_buses();
|
|
return (retval);
|
|
}
|
|
bus->refcount++;
|
|
xpt_unlock_buses();
|
|
}
|
|
for (; bus != NULL; bus = next_bus) {
|
|
retval = tr_func(bus, arg);
|
|
if (retval == 0) {
|
|
xpt_release_bus(bus);
|
|
break;
|
|
}
|
|
xpt_lock_buses();
|
|
next_bus = TAILQ_NEXT(bus, links);
|
|
if (next_bus)
|
|
next_bus->refcount++;
|
|
xpt_unlock_buses();
|
|
xpt_release_bus(bus);
|
|
}
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
|
|
xpt_targetfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_et *target, *next_target;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
if (start_target)
|
|
target = start_target;
|
|
else {
|
|
mtx_lock(&bus->eb_mtx);
|
|
target = TAILQ_FIRST(&bus->et_entries);
|
|
if (target == NULL) {
|
|
mtx_unlock(&bus->eb_mtx);
|
|
return (retval);
|
|
}
|
|
target->refcount++;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
}
|
|
for (; target != NULL; target = next_target) {
|
|
retval = tr_func(target, arg);
|
|
if (retval == 0) {
|
|
xpt_release_target(target);
|
|
break;
|
|
}
|
|
mtx_lock(&bus->eb_mtx);
|
|
next_target = TAILQ_NEXT(target, links);
|
|
if (next_target)
|
|
next_target->refcount++;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
xpt_release_target(target);
|
|
}
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
|
|
xpt_devicefunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_eb *bus;
|
|
struct cam_ed *device, *next_device;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
bus = target->bus;
|
|
if (start_device)
|
|
device = start_device;
|
|
else {
|
|
mtx_lock(&bus->eb_mtx);
|
|
device = TAILQ_FIRST(&target->ed_entries);
|
|
if (device == NULL) {
|
|
mtx_unlock(&bus->eb_mtx);
|
|
return (retval);
|
|
}
|
|
device->refcount++;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
}
|
|
for (; device != NULL; device = next_device) {
|
|
mtx_lock(&device->device_mtx);
|
|
retval = tr_func(device, arg);
|
|
mtx_unlock(&device->device_mtx);
|
|
if (retval == 0) {
|
|
xpt_release_device(device);
|
|
break;
|
|
}
|
|
mtx_lock(&bus->eb_mtx);
|
|
next_device = TAILQ_NEXT(device, links);
|
|
if (next_device)
|
|
next_device->refcount++;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
xpt_release_device(device);
|
|
}
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_eb *bus;
|
|
struct cam_periph *periph, *next_periph;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
bus = device->target->bus;
|
|
if (start_periph)
|
|
periph = start_periph;
|
|
else {
|
|
xpt_lock_buses();
|
|
mtx_lock(&bus->eb_mtx);
|
|
periph = SLIST_FIRST(&device->periphs);
|
|
while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
|
|
periph = SLIST_NEXT(periph, periph_links);
|
|
if (periph == NULL) {
|
|
mtx_unlock(&bus->eb_mtx);
|
|
xpt_unlock_buses();
|
|
return (retval);
|
|
}
|
|
periph->refcount++;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
xpt_unlock_buses();
|
|
}
|
|
for (; periph != NULL; periph = next_periph) {
|
|
retval = tr_func(periph, arg);
|
|
if (retval == 0) {
|
|
cam_periph_release_locked(periph);
|
|
break;
|
|
}
|
|
xpt_lock_buses();
|
|
mtx_lock(&bus->eb_mtx);
|
|
next_periph = SLIST_NEXT(periph, periph_links);
|
|
while (next_periph != NULL &&
|
|
(next_periph->flags & CAM_PERIPH_FREE) != 0)
|
|
next_periph = SLIST_NEXT(next_periph, periph_links);
|
|
if (next_periph)
|
|
next_periph->refcount++;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
xpt_unlock_buses();
|
|
cam_periph_release_locked(periph);
|
|
}
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptpdrvtraverse(struct periph_driver **start_pdrv,
|
|
xpt_pdrvfunc_t *tr_func, void *arg)
|
|
{
|
|
struct periph_driver **pdrv;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
/*
|
|
* We don't traverse the peripheral driver list like we do the
|
|
* other lists, because it is a linker set, and therefore cannot be
|
|
* changed during runtime. If the peripheral driver list is ever
|
|
* re-done to be something other than a linker set (i.e. it can
|
|
* change while the system is running), the list traversal should
|
|
* be modified to work like the other traversal functions.
|
|
*/
|
|
for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
|
|
*pdrv != NULL; pdrv++) {
|
|
retval = tr_func(pdrv, arg);
|
|
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptpdperiphtraverse(struct periph_driver **pdrv,
|
|
struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_periph *periph, *next_periph;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
if (start_periph)
|
|
periph = start_periph;
|
|
else {
|
|
xpt_lock_buses();
|
|
periph = TAILQ_FIRST(&(*pdrv)->units);
|
|
while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
|
|
periph = TAILQ_NEXT(periph, unit_links);
|
|
if (periph == NULL) {
|
|
xpt_unlock_buses();
|
|
return (retval);
|
|
}
|
|
periph->refcount++;
|
|
xpt_unlock_buses();
|
|
}
|
|
for (; periph != NULL; periph = next_periph) {
|
|
cam_periph_lock(periph);
|
|
retval = tr_func(periph, arg);
|
|
cam_periph_unlock(periph);
|
|
if (retval == 0) {
|
|
cam_periph_release(periph);
|
|
break;
|
|
}
|
|
xpt_lock_buses();
|
|
next_periph = TAILQ_NEXT(periph, unit_links);
|
|
while (next_periph != NULL &&
|
|
(next_periph->flags & CAM_PERIPH_FREE) != 0)
|
|
next_periph = TAILQ_NEXT(next_periph, unit_links);
|
|
if (next_periph)
|
|
next_periph->refcount++;
|
|
xpt_unlock_buses();
|
|
cam_periph_release(periph);
|
|
}
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptdefbusfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
if (tr_config->depth == XPT_DEPTH_BUS) {
|
|
xpt_busfunc_t *tr_func;
|
|
|
|
tr_func = (xpt_busfunc_t *)tr_config->tr_func;
|
|
|
|
return(tr_func(bus, tr_config->tr_arg));
|
|
} else
|
|
return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptdeftargetfunc(struct cam_et *target, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
if (tr_config->depth == XPT_DEPTH_TARGET) {
|
|
xpt_targetfunc_t *tr_func;
|
|
|
|
tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
|
|
|
|
return(tr_func(target, tr_config->tr_arg));
|
|
} else
|
|
return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptdefdevicefunc(struct cam_ed *device, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
if (tr_config->depth == XPT_DEPTH_DEVICE) {
|
|
xpt_devicefunc_t *tr_func;
|
|
|
|
tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
|
|
|
|
return(tr_func(device, tr_config->tr_arg));
|
|
} else
|
|
return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptdefperiphfunc(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
xpt_periphfunc_t *tr_func;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
|
|
|
|
/*
|
|
* Unlike the other default functions, we don't check for depth
|
|
* here. The peripheral driver level is the last level in the EDT,
|
|
* so if we're here, we should execute the function in question.
|
|
*/
|
|
return(tr_func(periph, tr_config->tr_arg));
|
|
}
|
|
|
|
/*
|
|
* Execute the given function for every bus in the EDT.
|
|
*/
|
|
static int
|
|
xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
|
|
{
|
|
struct xpt_traverse_config tr_config;
|
|
|
|
tr_config.depth = XPT_DEPTH_BUS;
|
|
tr_config.tr_func = tr_func;
|
|
tr_config.tr_arg = arg;
|
|
|
|
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
|
|
}
|
|
|
|
/*
|
|
* Execute the given function for every device in the EDT.
|
|
*/
|
|
static int
|
|
xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
|
|
{
|
|
struct xpt_traverse_config tr_config;
|
|
|
|
tr_config.depth = XPT_DEPTH_DEVICE;
|
|
tr_config.tr_func = tr_func;
|
|
tr_config.tr_arg = arg;
|
|
|
|
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
|
|
}
|
|
|
|
static int
|
|
xptsetasyncfunc(struct cam_ed *device, void *arg)
|
|
{
|
|
struct cam_path path;
|
|
struct ccb_getdev cgd;
|
|
struct ccb_setasync *csa = (struct ccb_setasync *)arg;
|
|
|
|
/*
|
|
* Don't report unconfigured devices (Wildcard devs,
|
|
* devices only for target mode, device instances
|
|
* that have been invalidated but are waiting for
|
|
* their last reference count to be released).
|
|
*/
|
|
if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
|
|
return (1);
|
|
|
|
xpt_compile_path(&path,
|
|
NULL,
|
|
device->target->bus->path_id,
|
|
device->target->target_id,
|
|
device->lun_id);
|
|
xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
|
|
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action((union ccb *)&cgd);
|
|
csa->callback(csa->callback_arg,
|
|
AC_FOUND_DEVICE,
|
|
&path, &cgd);
|
|
xpt_release_path(&path);
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct cam_path path;
|
|
struct ccb_pathinq cpi;
|
|
struct ccb_setasync *csa = (struct ccb_setasync *)arg;
|
|
|
|
xpt_compile_path(&path, /*periph*/NULL,
|
|
bus->path_id,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD);
|
|
xpt_path_lock(&path);
|
|
xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
csa->callback(csa->callback_arg,
|
|
AC_PATH_REGISTERED,
|
|
&path, &cpi);
|
|
xpt_path_unlock(&path);
|
|
xpt_release_path(&path);
|
|
|
|
return(1);
|
|
}
|
|
|
|
void
|
|
xpt_action(union ccb *start_ccb)
|
|
{
|
|
|
|
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
|
|
("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
|
|
xpt_action_name(start_ccb->ccb_h.func_code)));
|
|
|
|
start_ccb->ccb_h.status = CAM_REQ_INPROG;
|
|
(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
|
|
}
|
|
|
|
void
|
|
xpt_action_default(union ccb *start_ccb)
|
|
{
|
|
struct cam_path *path;
|
|
struct cam_sim *sim;
|
|
int lock;
|
|
|
|
path = start_ccb->ccb_h.path;
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE,
|
|
("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
|
|
xpt_action_name(start_ccb->ccb_h.func_code)));
|
|
|
|
switch (start_ccb->ccb_h.func_code) {
|
|
case XPT_SCSI_IO:
|
|
{
|
|
struct cam_ed *device;
|
|
|
|
/*
|
|
* For the sake of compatibility with SCSI-1
|
|
* devices that may not understand the identify
|
|
* message, we include lun information in the
|
|
* second byte of all commands. SCSI-1 specifies
|
|
* that luns are a 3 bit value and reserves only 3
|
|
* bits for lun information in the CDB. Later
|
|
* revisions of the SCSI spec allow for more than 8
|
|
* luns, but have deprecated lun information in the
|
|
* CDB. So, if the lun won't fit, we must omit.
|
|
*
|
|
* Also be aware that during initial probing for devices,
|
|
* the inquiry information is unknown but initialized to 0.
|
|
* This means that this code will be exercised while probing
|
|
* devices with an ANSI revision greater than 2.
|
|
*/
|
|
device = path->device;
|
|
if (device->protocol_version <= SCSI_REV_2
|
|
&& start_ccb->ccb_h.target_lun < 8
|
|
&& (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
|
|
|
|
start_ccb->csio.cdb_io.cdb_bytes[1] |=
|
|
start_ccb->ccb_h.target_lun << 5;
|
|
}
|
|
start_ccb->csio.scsi_status = SCSI_STATUS_OK;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case XPT_TARGET_IO:
|
|
case XPT_CONT_TARGET_IO:
|
|
start_ccb->csio.sense_resid = 0;
|
|
start_ccb->csio.resid = 0;
|
|
/* FALLTHROUGH */
|
|
case XPT_ATA_IO:
|
|
if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
|
|
start_ccb->ataio.resid = 0;
|
|
/* FALLTHROUGH */
|
|
case XPT_NVME_IO:
|
|
if (start_ccb->ccb_h.func_code == XPT_NVME_IO)
|
|
start_ccb->nvmeio.resid = 0;
|
|
/* FALLTHROUGH */
|
|
case XPT_RESET_DEV:
|
|
case XPT_ENG_EXEC:
|
|
case XPT_SMP_IO:
|
|
{
|
|
struct cam_devq *devq;
|
|
|
|
devq = path->bus->sim->devq;
|
|
mtx_lock(&devq->send_mtx);
|
|
cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
|
|
if (xpt_schedule_devq(devq, path->device) != 0)
|
|
xpt_run_devq(devq);
|
|
mtx_unlock(&devq->send_mtx);
|
|
break;
|
|
}
|
|
case XPT_CALC_GEOMETRY:
|
|
/* Filter out garbage */
|
|
if (start_ccb->ccg.block_size == 0
|
|
|| start_ccb->ccg.volume_size == 0) {
|
|
start_ccb->ccg.cylinders = 0;
|
|
start_ccb->ccg.heads = 0;
|
|
start_ccb->ccg.secs_per_track = 0;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
#if defined(PC98) || defined(__sparc64__)
|
|
/*
|
|
* In a PC-98 system, geometry translation depens on
|
|
* the "real" device geometry obtained from mode page 4.
|
|
* SCSI geometry translation is performed in the
|
|
* initialization routine of the SCSI BIOS and the result
|
|
* stored in host memory. If the translation is available
|
|
* in host memory, use it. If not, rely on the default
|
|
* translation the device driver performs.
|
|
* For sparc64, we may need adjust the geometry of large
|
|
* disks in order to fit the limitations of the 16-bit
|
|
* fields of the VTOC8 disk label.
|
|
*/
|
|
if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
#endif
|
|
goto call_sim;
|
|
case XPT_ABORT:
|
|
{
|
|
union ccb* abort_ccb;
|
|
|
|
abort_ccb = start_ccb->cab.abort_ccb;
|
|
if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
|
|
struct cam_ed *device;
|
|
struct cam_devq *devq;
|
|
|
|
device = abort_ccb->ccb_h.path->device;
|
|
devq = device->sim->devq;
|
|
|
|
mtx_lock(&devq->send_mtx);
|
|
if (abort_ccb->ccb_h.pinfo.index > 0) {
|
|
cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
|
|
abort_ccb->ccb_h.status =
|
|
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
|
|
xpt_freeze_devq_device(device, 1);
|
|
mtx_unlock(&devq->send_mtx);
|
|
xpt_done(abort_ccb);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
mtx_unlock(&devq->send_mtx);
|
|
|
|
if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
|
|
&& (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
|
|
/*
|
|
* We've caught this ccb en route to
|
|
* the SIM. Flag it for abort and the
|
|
* SIM will do so just before starting
|
|
* real work on the CCB.
|
|
*/
|
|
abort_ccb->ccb_h.status =
|
|
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
|
|
xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
}
|
|
if (XPT_FC_IS_QUEUED(abort_ccb)
|
|
&& (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
|
|
/*
|
|
* It's already completed but waiting
|
|
* for our SWI to get to it.
|
|
*/
|
|
start_ccb->ccb_h.status = CAM_UA_ABORT;
|
|
break;
|
|
}
|
|
/*
|
|
* If we weren't able to take care of the abort request
|
|
* in the XPT, pass the request down to the SIM for processing.
|
|
*/
|
|
}
|
|
/* FALLTHROUGH */
|
|
case XPT_ACCEPT_TARGET_IO:
|
|
case XPT_EN_LUN:
|
|
case XPT_IMMED_NOTIFY:
|
|
case XPT_NOTIFY_ACK:
|
|
case XPT_RESET_BUS:
|
|
case XPT_IMMEDIATE_NOTIFY:
|
|
case XPT_NOTIFY_ACKNOWLEDGE:
|
|
case XPT_GET_SIM_KNOB_OLD:
|
|
case XPT_GET_SIM_KNOB:
|
|
case XPT_SET_SIM_KNOB:
|
|
case XPT_GET_TRAN_SETTINGS:
|
|
case XPT_SET_TRAN_SETTINGS:
|
|
case XPT_PATH_INQ:
|
|
call_sim:
|
|
sim = path->bus->sim;
|
|
lock = (mtx_owned(sim->mtx) == 0);
|
|
if (lock)
|
|
CAM_SIM_LOCK(sim);
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE,
|
|
("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code));
|
|
(*(sim->sim_action))(sim, start_ccb);
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE,
|
|
("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status));
|
|
if (lock)
|
|
CAM_SIM_UNLOCK(sim);
|
|
break;
|
|
case XPT_PATH_STATS:
|
|
start_ccb->cpis.last_reset = path->bus->last_reset;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
case XPT_GDEV_TYPE:
|
|
{
|
|
struct cam_ed *dev;
|
|
|
|
dev = path->device;
|
|
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
|
|
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
|
|
} else {
|
|
struct ccb_getdev *cgd;
|
|
|
|
cgd = &start_ccb->cgd;
|
|
cgd->protocol = dev->protocol;
|
|
cgd->inq_data = dev->inq_data;
|
|
cgd->ident_data = dev->ident_data;
|
|
cgd->inq_flags = dev->inq_flags;
|
|
cgd->nvme_data = dev->nvme_data;
|
|
cgd->nvme_cdata = dev->nvme_cdata;
|
|
cgd->ccb_h.status = CAM_REQ_CMP;
|
|
cgd->serial_num_len = dev->serial_num_len;
|
|
if ((dev->serial_num_len > 0)
|
|
&& (dev->serial_num != NULL))
|
|
bcopy(dev->serial_num, cgd->serial_num,
|
|
dev->serial_num_len);
|
|
}
|
|
break;
|
|
}
|
|
case XPT_GDEV_STATS:
|
|
{
|
|
struct cam_ed *dev;
|
|
|
|
dev = path->device;
|
|
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
|
|
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
|
|
} else {
|
|
struct ccb_getdevstats *cgds;
|
|
struct cam_eb *bus;
|
|
struct cam_et *tar;
|
|
struct cam_devq *devq;
|
|
|
|
cgds = &start_ccb->cgds;
|
|
bus = path->bus;
|
|
tar = path->target;
|
|
devq = bus->sim->devq;
|
|
mtx_lock(&devq->send_mtx);
|
|
cgds->dev_openings = dev->ccbq.dev_openings;
|
|
cgds->dev_active = dev->ccbq.dev_active;
|
|
cgds->allocated = dev->ccbq.allocated;
|
|
cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
|
|
cgds->held = cgds->allocated - cgds->dev_active -
|
|
cgds->queued;
|
|
cgds->last_reset = tar->last_reset;
|
|
cgds->maxtags = dev->maxtags;
|
|
cgds->mintags = dev->mintags;
|
|
if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
|
|
cgds->last_reset = bus->last_reset;
|
|
mtx_unlock(&devq->send_mtx);
|
|
cgds->ccb_h.status = CAM_REQ_CMP;
|
|
}
|
|
break;
|
|
}
|
|
case XPT_GDEVLIST:
|
|
{
|
|
struct cam_periph *nperiph;
|
|
struct periph_list *periph_head;
|
|
struct ccb_getdevlist *cgdl;
|
|
u_int i;
|
|
struct cam_ed *device;
|
|
int found;
|
|
|
|
|
|
found = 0;
|
|
|
|
/*
|
|
* Don't want anyone mucking with our data.
|
|
*/
|
|
device = path->device;
|
|
periph_head = &device->periphs;
|
|
cgdl = &start_ccb->cgdl;
|
|
|
|
/*
|
|
* Check and see if the list has changed since the user
|
|
* last requested a list member. If so, tell them that the
|
|
* list has changed, and therefore they need to start over
|
|
* from the beginning.
|
|
*/
|
|
if ((cgdl->index != 0) &&
|
|
(cgdl->generation != device->generation)) {
|
|
cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Traverse the list of peripherals and attempt to find
|
|
* the requested peripheral.
|
|
*/
|
|
for (nperiph = SLIST_FIRST(periph_head), i = 0;
|
|
(nperiph != NULL) && (i <= cgdl->index);
|
|
nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
|
|
if (i == cgdl->index) {
|
|
strncpy(cgdl->periph_name,
|
|
nperiph->periph_name,
|
|
DEV_IDLEN);
|
|
cgdl->unit_number = nperiph->unit_number;
|
|
found = 1;
|
|
}
|
|
}
|
|
if (found == 0) {
|
|
cgdl->status = CAM_GDEVLIST_ERROR;
|
|
break;
|
|
}
|
|
|
|
if (nperiph == NULL)
|
|
cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
|
|
else
|
|
cgdl->status = CAM_GDEVLIST_MORE_DEVS;
|
|
|
|
cgdl->index++;
|
|
cgdl->generation = device->generation;
|
|
|
|
cgdl->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
case XPT_DEV_MATCH:
|
|
{
|
|
dev_pos_type position_type;
|
|
struct ccb_dev_match *cdm;
|
|
|
|
cdm = &start_ccb->cdm;
|
|
|
|
/*
|
|
* There are two ways of getting at information in the EDT.
|
|
* The first way is via the primary EDT tree. It starts
|
|
* with a list of busses, then a list of targets on a bus,
|
|
* then devices/luns on a target, and then peripherals on a
|
|
* device/lun. The "other" way is by the peripheral driver
|
|
* lists. The peripheral driver lists are organized by
|
|
* peripheral driver. (obviously) So it makes sense to
|
|
* use the peripheral driver list if the user is looking
|
|
* for something like "da1", or all "da" devices. If the
|
|
* user is looking for something on a particular bus/target
|
|
* or lun, it's generally better to go through the EDT tree.
|
|
*/
|
|
|
|
if (cdm->pos.position_type != CAM_DEV_POS_NONE)
|
|
position_type = cdm->pos.position_type;
|
|
else {
|
|
u_int i;
|
|
|
|
position_type = CAM_DEV_POS_NONE;
|
|
|
|
for (i = 0; i < cdm->num_patterns; i++) {
|
|
if ((cdm->patterns[i].type == DEV_MATCH_BUS)
|
|
||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
|
|
position_type = CAM_DEV_POS_EDT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cdm->num_patterns == 0)
|
|
position_type = CAM_DEV_POS_EDT;
|
|
else if (position_type == CAM_DEV_POS_NONE)
|
|
position_type = CAM_DEV_POS_PDRV;
|
|
}
|
|
|
|
switch(position_type & CAM_DEV_POS_TYPEMASK) {
|
|
case CAM_DEV_POS_EDT:
|
|
xptedtmatch(cdm);
|
|
break;
|
|
case CAM_DEV_POS_PDRV:
|
|
xptperiphlistmatch(cdm);
|
|
break;
|
|
default:
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
break;
|
|
}
|
|
|
|
if (cdm->status == CAM_DEV_MATCH_ERROR)
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
else
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
|
|
break;
|
|
}
|
|
case XPT_SASYNC_CB:
|
|
{
|
|
struct ccb_setasync *csa;
|
|
struct async_node *cur_entry;
|
|
struct async_list *async_head;
|
|
u_int32_t added;
|
|
|
|
csa = &start_ccb->csa;
|
|
added = csa->event_enable;
|
|
async_head = &path->device->asyncs;
|
|
|
|
/*
|
|
* If there is already an entry for us, simply
|
|
* update it.
|
|
*/
|
|
cur_entry = SLIST_FIRST(async_head);
|
|
while (cur_entry != NULL) {
|
|
if ((cur_entry->callback_arg == csa->callback_arg)
|
|
&& (cur_entry->callback == csa->callback))
|
|
break;
|
|
cur_entry = SLIST_NEXT(cur_entry, links);
|
|
}
|
|
|
|
if (cur_entry != NULL) {
|
|
/*
|
|
* If the request has no flags set,
|
|
* remove the entry.
|
|
*/
|
|
added &= ~cur_entry->event_enable;
|
|
if (csa->event_enable == 0) {
|
|
SLIST_REMOVE(async_head, cur_entry,
|
|
async_node, links);
|
|
xpt_release_device(path->device);
|
|
free(cur_entry, M_CAMXPT);
|
|
} else {
|
|
cur_entry->event_enable = csa->event_enable;
|
|
}
|
|
csa->event_enable = added;
|
|
} else {
|
|
cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
|
|
M_NOWAIT);
|
|
if (cur_entry == NULL) {
|
|
csa->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
break;
|
|
}
|
|
cur_entry->event_enable = csa->event_enable;
|
|
cur_entry->event_lock =
|
|
mtx_owned(path->bus->sim->mtx) ? 1 : 0;
|
|
cur_entry->callback_arg = csa->callback_arg;
|
|
cur_entry->callback = csa->callback;
|
|
SLIST_INSERT_HEAD(async_head, cur_entry, links);
|
|
xpt_acquire_device(path->device);
|
|
}
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
case XPT_REL_SIMQ:
|
|
{
|
|
struct ccb_relsim *crs;
|
|
struct cam_ed *dev;
|
|
|
|
crs = &start_ccb->crs;
|
|
dev = path->device;
|
|
if (dev == NULL) {
|
|
|
|
crs->ccb_h.status = CAM_DEV_NOT_THERE;
|
|
break;
|
|
}
|
|
|
|
if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
|
|
|
|
/* Don't ever go below one opening */
|
|
if (crs->openings > 0) {
|
|
xpt_dev_ccbq_resize(path, crs->openings);
|
|
if (bootverbose) {
|
|
xpt_print(path,
|
|
"number of openings is now %d\n",
|
|
crs->openings);
|
|
}
|
|
}
|
|
}
|
|
|
|
mtx_lock(&dev->sim->devq->send_mtx);
|
|
if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
|
|
|
|
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
|
|
|
|
/*
|
|
* Just extend the old timeout and decrement
|
|
* the freeze count so that a single timeout
|
|
* is sufficient for releasing the queue.
|
|
*/
|
|
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
|
|
callout_stop(&dev->callout);
|
|
} else {
|
|
|
|
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
}
|
|
|
|
callout_reset_sbt(&dev->callout,
|
|
SBT_1MS * crs->release_timeout, 0,
|
|
xpt_release_devq_timeout, dev, 0);
|
|
|
|
dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
|
|
|
|
}
|
|
|
|
if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
|
|
|
|
if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
|
|
/*
|
|
* Decrement the freeze count so that a single
|
|
* completion is still sufficient to unfreeze
|
|
* the queue.
|
|
*/
|
|
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
|
|
} else {
|
|
|
|
dev->flags |= CAM_DEV_REL_ON_COMPLETE;
|
|
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
}
|
|
}
|
|
|
|
if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
|
|
|
|
if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
|
|
|| (dev->ccbq.dev_active == 0)) {
|
|
|
|
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
|
|
} else {
|
|
|
|
dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
|
|
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
}
|
|
}
|
|
mtx_unlock(&dev->sim->devq->send_mtx);
|
|
|
|
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
|
|
xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
|
|
start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
case XPT_DEBUG: {
|
|
struct cam_path *oldpath;
|
|
|
|
/* Check that all request bits are supported. */
|
|
if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
|
|
start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
|
|
break;
|
|
}
|
|
|
|
cam_dflags = CAM_DEBUG_NONE;
|
|
if (cam_dpath != NULL) {
|
|
oldpath = cam_dpath;
|
|
cam_dpath = NULL;
|
|
xpt_free_path(oldpath);
|
|
}
|
|
if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
|
|
if (xpt_create_path(&cam_dpath, NULL,
|
|
start_ccb->ccb_h.path_id,
|
|
start_ccb->ccb_h.target_id,
|
|
start_ccb->ccb_h.target_lun) !=
|
|
CAM_REQ_CMP) {
|
|
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
} else {
|
|
cam_dflags = start_ccb->cdbg.flags;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_print(cam_dpath, "debugging flags now %x\n",
|
|
cam_dflags);
|
|
}
|
|
} else
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
case XPT_NOOP:
|
|
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
|
|
xpt_freeze_devq(path, 1);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
case XPT_REPROBE_LUN:
|
|
xpt_async(AC_INQ_CHANGED, path, NULL);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(start_ccb);
|
|
break;
|
|
default:
|
|
case XPT_SDEV_TYPE:
|
|
case XPT_TERM_IO:
|
|
case XPT_ENG_INQ:
|
|
/* XXX Implement */
|
|
xpt_print_path(start_ccb->ccb_h.path);
|
|
printf("%s: CCB type %#x %s not supported\n", __func__,
|
|
start_ccb->ccb_h.func_code,
|
|
xpt_action_name(start_ccb->ccb_h.func_code));
|
|
start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
|
|
if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
|
|
xpt_done(start_ccb);
|
|
}
|
|
break;
|
|
}
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE,
|
|
("xpt_action_default: func= %#x %s status %#x\n",
|
|
start_ccb->ccb_h.func_code,
|
|
xpt_action_name(start_ccb->ccb_h.func_code),
|
|
start_ccb->ccb_h.status));
|
|
}
|
|
|
|
void
|
|
xpt_polled_action(union ccb *start_ccb)
|
|
{
|
|
u_int32_t timeout;
|
|
struct cam_sim *sim;
|
|
struct cam_devq *devq;
|
|
struct cam_ed *dev;
|
|
|
|
timeout = start_ccb->ccb_h.timeout * 10;
|
|
sim = start_ccb->ccb_h.path->bus->sim;
|
|
devq = sim->devq;
|
|
dev = start_ccb->ccb_h.path->device;
|
|
|
|
mtx_unlock(&dev->device_mtx);
|
|
|
|
/*
|
|
* Steal an opening so that no other queued requests
|
|
* can get it before us while we simulate interrupts.
|
|
*/
|
|
mtx_lock(&devq->send_mtx);
|
|
dev->ccbq.dev_openings--;
|
|
while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
|
|
(--timeout > 0)) {
|
|
mtx_unlock(&devq->send_mtx);
|
|
DELAY(100);
|
|
CAM_SIM_LOCK(sim);
|
|
(*(sim->sim_poll))(sim);
|
|
CAM_SIM_UNLOCK(sim);
|
|
camisr_runqueue();
|
|
mtx_lock(&devq->send_mtx);
|
|
}
|
|
dev->ccbq.dev_openings++;
|
|
mtx_unlock(&devq->send_mtx);
|
|
|
|
if (timeout != 0) {
|
|
xpt_action(start_ccb);
|
|
while(--timeout > 0) {
|
|
CAM_SIM_LOCK(sim);
|
|
(*(sim->sim_poll))(sim);
|
|
CAM_SIM_UNLOCK(sim);
|
|
camisr_runqueue();
|
|
if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
|
|
!= CAM_REQ_INPROG)
|
|
break;
|
|
DELAY(100);
|
|
}
|
|
if (timeout == 0) {
|
|
/*
|
|
* XXX Is it worth adding a sim_timeout entry
|
|
* point so we can attempt recovery? If
|
|
* this is only used for dumps, I don't think
|
|
* it is.
|
|
*/
|
|
start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
|
|
}
|
|
} else {
|
|
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
}
|
|
|
|
mtx_lock(&dev->device_mtx);
|
|
}
|
|
|
|
/*
|
|
* Schedule a peripheral driver to receive a ccb when its
|
|
* target device has space for more transactions.
|
|
*/
|
|
void
|
|
xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
|
|
{
|
|
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
if (new_priority < periph->scheduled_priority) {
|
|
periph->scheduled_priority = new_priority;
|
|
xpt_run_allocq(periph, 0);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Schedule a device to run on a given queue.
|
|
* If the device was inserted as a new entry on the queue,
|
|
* return 1 meaning the device queue should be run. If we
|
|
* were already queued, implying someone else has already
|
|
* started the queue, return 0 so the caller doesn't attempt
|
|
* to run the queue.
|
|
*/
|
|
static int
|
|
xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
|
|
u_int32_t new_priority)
|
|
{
|
|
int retval;
|
|
u_int32_t old_priority;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
|
|
|
|
old_priority = pinfo->priority;
|
|
|
|
/*
|
|
* Are we already queued?
|
|
*/
|
|
if (pinfo->index != CAM_UNQUEUED_INDEX) {
|
|
/* Simply reorder based on new priority */
|
|
if (new_priority < old_priority) {
|
|
camq_change_priority(queue, pinfo->index,
|
|
new_priority);
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("changed priority to %d\n",
|
|
new_priority));
|
|
retval = 1;
|
|
} else
|
|
retval = 0;
|
|
} else {
|
|
/* New entry on the queue */
|
|
if (new_priority < old_priority)
|
|
pinfo->priority = new_priority;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("Inserting onto queue\n"));
|
|
pinfo->generation = ++queue->generation;
|
|
camq_insert(queue, pinfo);
|
|
retval = 1;
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
static void
|
|
xpt_run_allocq_task(void *context, int pending)
|
|
{
|
|
struct cam_periph *periph = context;
|
|
|
|
cam_periph_lock(periph);
|
|
periph->flags &= ~CAM_PERIPH_RUN_TASK;
|
|
xpt_run_allocq(periph, 1);
|
|
cam_periph_unlock(periph);
|
|
cam_periph_release(periph);
|
|
}
|
|
|
|
static void
|
|
xpt_run_allocq(struct cam_periph *periph, int sleep)
|
|
{
|
|
struct cam_ed *device;
|
|
union ccb *ccb;
|
|
uint32_t prio;
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
if (periph->periph_allocating)
|
|
return;
|
|
periph->periph_allocating = 1;
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
|
|
device = periph->path->device;
|
|
ccb = NULL;
|
|
restart:
|
|
while ((prio = min(periph->scheduled_priority,
|
|
periph->immediate_priority)) != CAM_PRIORITY_NONE &&
|
|
(periph->periph_allocated - (ccb != NULL ? 1 : 0) <
|
|
device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
|
|
|
|
if (ccb == NULL &&
|
|
(ccb = xpt_get_ccb_nowait(periph)) == NULL) {
|
|
if (sleep) {
|
|
ccb = xpt_get_ccb(periph);
|
|
goto restart;
|
|
}
|
|
if (periph->flags & CAM_PERIPH_RUN_TASK)
|
|
break;
|
|
cam_periph_doacquire(periph);
|
|
periph->flags |= CAM_PERIPH_RUN_TASK;
|
|
taskqueue_enqueue(xsoftc.xpt_taskq,
|
|
&periph->periph_run_task);
|
|
break;
|
|
}
|
|
xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
|
|
if (prio == periph->immediate_priority) {
|
|
periph->immediate_priority = CAM_PRIORITY_NONE;
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("waking cam_periph_getccb()\n"));
|
|
SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
|
|
periph_links.sle);
|
|
wakeup(&periph->ccb_list);
|
|
} else {
|
|
periph->scheduled_priority = CAM_PRIORITY_NONE;
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("calling periph_start()\n"));
|
|
periph->periph_start(periph, ccb);
|
|
}
|
|
ccb = NULL;
|
|
}
|
|
if (ccb != NULL)
|
|
xpt_release_ccb(ccb);
|
|
periph->periph_allocating = 0;
|
|
}
|
|
|
|
static void
|
|
xpt_run_devq(struct cam_devq *devq)
|
|
{
|
|
int lock;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
|
|
|
|
devq->send_queue.qfrozen_cnt++;
|
|
while ((devq->send_queue.entries > 0)
|
|
&& (devq->send_openings > 0)
|
|
&& (devq->send_queue.qfrozen_cnt <= 1)) {
|
|
struct cam_ed *device;
|
|
union ccb *work_ccb;
|
|
struct cam_sim *sim;
|
|
struct xpt_proto *proto;
|
|
|
|
device = (struct cam_ed *)camq_remove(&devq->send_queue,
|
|
CAMQ_HEAD);
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("running device %p\n", device));
|
|
|
|
work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
|
|
if (work_ccb == NULL) {
|
|
printf("device on run queue with no ccbs???\n");
|
|
continue;
|
|
}
|
|
|
|
if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
|
|
|
|
mtx_lock(&xsoftc.xpt_highpower_lock);
|
|
if (xsoftc.num_highpower <= 0) {
|
|
/*
|
|
* We got a high power command, but we
|
|
* don't have any available slots. Freeze
|
|
* the device queue until we have a slot
|
|
* available.
|
|
*/
|
|
xpt_freeze_devq_device(device, 1);
|
|
STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
|
|
highpowerq_entry);
|
|
|
|
mtx_unlock(&xsoftc.xpt_highpower_lock);
|
|
continue;
|
|
} else {
|
|
/*
|
|
* Consume a high power slot while
|
|
* this ccb runs.
|
|
*/
|
|
xsoftc.num_highpower--;
|
|
}
|
|
mtx_unlock(&xsoftc.xpt_highpower_lock);
|
|
}
|
|
cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
|
|
cam_ccbq_send_ccb(&device->ccbq, work_ccb);
|
|
devq->send_openings--;
|
|
devq->send_active++;
|
|
xpt_schedule_devq(devq, device);
|
|
mtx_unlock(&devq->send_mtx);
|
|
|
|
if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
|
|
/*
|
|
* The client wants to freeze the queue
|
|
* after this CCB is sent.
|
|
*/
|
|
xpt_freeze_devq(work_ccb->ccb_h.path, 1);
|
|
}
|
|
|
|
/* In Target mode, the peripheral driver knows best... */
|
|
if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
|
|
if ((device->inq_flags & SID_CmdQue) != 0
|
|
&& work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
|
|
work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
|
|
else
|
|
/*
|
|
* Clear this in case of a retried CCB that
|
|
* failed due to a rejected tag.
|
|
*/
|
|
work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
|
|
}
|
|
|
|
KASSERT(device == work_ccb->ccb_h.path->device,
|
|
("device (%p) / path->device (%p) mismatch",
|
|
device, work_ccb->ccb_h.path->device));
|
|
proto = xpt_proto_find(device->protocol);
|
|
if (proto && proto->ops->debug_out)
|
|
proto->ops->debug_out(work_ccb);
|
|
|
|
/*
|
|
* Device queues can be shared among multiple SIM instances
|
|
* that reside on different busses. Use the SIM from the
|
|
* queued device, rather than the one from the calling bus.
|
|
*/
|
|
sim = device->sim;
|
|
lock = (mtx_owned(sim->mtx) == 0);
|
|
if (lock)
|
|
CAM_SIM_LOCK(sim);
|
|
work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms
|
|
(*(sim->sim_action))(sim, work_ccb);
|
|
if (lock)
|
|
CAM_SIM_UNLOCK(sim);
|
|
mtx_lock(&devq->send_mtx);
|
|
}
|
|
devq->send_queue.qfrozen_cnt--;
|
|
}
|
|
|
|
/*
|
|
* This function merges stuff from the slave ccb into the master ccb, while
|
|
* keeping important fields in the master ccb constant.
|
|
*/
|
|
void
|
|
xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
|
|
{
|
|
|
|
/*
|
|
* Pull fields that are valid for peripheral drivers to set
|
|
* into the master CCB along with the CCB "payload".
|
|
*/
|
|
master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
|
|
master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
|
|
master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
|
|
master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
|
|
bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
|
|
sizeof(union ccb) - sizeof(struct ccb_hdr));
|
|
}
|
|
|
|
void
|
|
xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
|
|
u_int32_t priority, u_int32_t flags)
|
|
{
|
|
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
|
|
ccb_h->pinfo.priority = priority;
|
|
ccb_h->path = path;
|
|
ccb_h->path_id = path->bus->path_id;
|
|
if (path->target)
|
|
ccb_h->target_id = path->target->target_id;
|
|
else
|
|
ccb_h->target_id = CAM_TARGET_WILDCARD;
|
|
if (path->device) {
|
|
ccb_h->target_lun = path->device->lun_id;
|
|
ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
|
|
} else {
|
|
ccb_h->target_lun = CAM_TARGET_WILDCARD;
|
|
}
|
|
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
|
|
ccb_h->flags = flags;
|
|
ccb_h->xflags = 0;
|
|
}
|
|
|
|
void
|
|
xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
|
|
{
|
|
xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
|
|
}
|
|
|
|
/* Path manipulation functions */
|
|
cam_status
|
|
xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
|
|
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
|
|
{
|
|
struct cam_path *path;
|
|
cam_status status;
|
|
|
|
path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
|
|
|
|
if (path == NULL) {
|
|
status = CAM_RESRC_UNAVAIL;
|
|
return(status);
|
|
}
|
|
status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
|
|
if (status != CAM_REQ_CMP) {
|
|
free(path, M_CAMPATH);
|
|
path = NULL;
|
|
}
|
|
*new_path_ptr = path;
|
|
return (status);
|
|
}
|
|
|
|
cam_status
|
|
xpt_create_path_unlocked(struct cam_path **new_path_ptr,
|
|
struct cam_periph *periph, path_id_t path_id,
|
|
target_id_t target_id, lun_id_t lun_id)
|
|
{
|
|
|
|
return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
|
|
lun_id));
|
|
}
|
|
|
|
cam_status
|
|
xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
|
|
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
|
|
{
|
|
struct cam_eb *bus;
|
|
struct cam_et *target;
|
|
struct cam_ed *device;
|
|
cam_status status;
|
|
|
|
status = CAM_REQ_CMP; /* Completed without error */
|
|
target = NULL; /* Wildcarded */
|
|
device = NULL; /* Wildcarded */
|
|
|
|
/*
|
|
* We will potentially modify the EDT, so block interrupts
|
|
* that may attempt to create cam paths.
|
|
*/
|
|
bus = xpt_find_bus(path_id);
|
|
if (bus == NULL) {
|
|
status = CAM_PATH_INVALID;
|
|
} else {
|
|
xpt_lock_buses();
|
|
mtx_lock(&bus->eb_mtx);
|
|
target = xpt_find_target(bus, target_id);
|
|
if (target == NULL) {
|
|
/* Create one */
|
|
struct cam_et *new_target;
|
|
|
|
new_target = xpt_alloc_target(bus, target_id);
|
|
if (new_target == NULL) {
|
|
status = CAM_RESRC_UNAVAIL;
|
|
} else {
|
|
target = new_target;
|
|
}
|
|
}
|
|
xpt_unlock_buses();
|
|
if (target != NULL) {
|
|
device = xpt_find_device(target, lun_id);
|
|
if (device == NULL) {
|
|
/* Create one */
|
|
struct cam_ed *new_device;
|
|
|
|
new_device =
|
|
(*(bus->xport->ops->alloc_device))(bus,
|
|
target,
|
|
lun_id);
|
|
if (new_device == NULL) {
|
|
status = CAM_RESRC_UNAVAIL;
|
|
} else {
|
|
device = new_device;
|
|
}
|
|
}
|
|
}
|
|
mtx_unlock(&bus->eb_mtx);
|
|
}
|
|
|
|
/*
|
|
* Only touch the user's data if we are successful.
|
|
*/
|
|
if (status == CAM_REQ_CMP) {
|
|
new_path->periph = perph;
|
|
new_path->bus = bus;
|
|
new_path->target = target;
|
|
new_path->device = device;
|
|
CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
|
|
} else {
|
|
if (device != NULL)
|
|
xpt_release_device(device);
|
|
if (target != NULL)
|
|
xpt_release_target(target);
|
|
if (bus != NULL)
|
|
xpt_release_bus(bus);
|
|
}
|
|
return (status);
|
|
}
|
|
|
|
cam_status
|
|
xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
|
|
{
|
|
struct cam_path *new_path;
|
|
|
|
new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
|
|
if (new_path == NULL)
|
|
return(CAM_RESRC_UNAVAIL);
|
|
xpt_copy_path(new_path, path);
|
|
*new_path_ptr = new_path;
|
|
return (CAM_REQ_CMP);
|
|
}
|
|
|
|
void
|
|
xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
|
|
{
|
|
|
|
*new_path = *path;
|
|
if (path->bus != NULL)
|
|
xpt_acquire_bus(path->bus);
|
|
if (path->target != NULL)
|
|
xpt_acquire_target(path->target);
|
|
if (path->device != NULL)
|
|
xpt_acquire_device(path->device);
|
|
}
|
|
|
|
void
|
|
xpt_release_path(struct cam_path *path)
|
|
{
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
|
|
if (path->device != NULL) {
|
|
xpt_release_device(path->device);
|
|
path->device = NULL;
|
|
}
|
|
if (path->target != NULL) {
|
|
xpt_release_target(path->target);
|
|
path->target = NULL;
|
|
}
|
|
if (path->bus != NULL) {
|
|
xpt_release_bus(path->bus);
|
|
path->bus = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_free_path(struct cam_path *path)
|
|
{
|
|
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
|
|
xpt_release_path(path);
|
|
free(path, M_CAMPATH);
|
|
}
|
|
|
|
void
|
|
xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
|
|
uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
|
|
{
|
|
|
|
xpt_lock_buses();
|
|
if (bus_ref) {
|
|
if (path->bus)
|
|
*bus_ref = path->bus->refcount;
|
|
else
|
|
*bus_ref = 0;
|
|
}
|
|
if (periph_ref) {
|
|
if (path->periph)
|
|
*periph_ref = path->periph->refcount;
|
|
else
|
|
*periph_ref = 0;
|
|
}
|
|
xpt_unlock_buses();
|
|
if (target_ref) {
|
|
if (path->target)
|
|
*target_ref = path->target->refcount;
|
|
else
|
|
*target_ref = 0;
|
|
}
|
|
if (device_ref) {
|
|
if (path->device)
|
|
*device_ref = path->device->refcount;
|
|
else
|
|
*device_ref = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return -1 for failure, 0 for exact match, 1 for match with wildcards
|
|
* in path1, 2 for match with wildcards in path2.
|
|
*/
|
|
int
|
|
xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
|
|
{
|
|
int retval = 0;
|
|
|
|
if (path1->bus != path2->bus) {
|
|
if (path1->bus->path_id == CAM_BUS_WILDCARD)
|
|
retval = 1;
|
|
else if (path2->bus->path_id == CAM_BUS_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
if (path1->target != path2->target) {
|
|
if (path1->target->target_id == CAM_TARGET_WILDCARD) {
|
|
if (retval == 0)
|
|
retval = 1;
|
|
} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
if (path1->device != path2->device) {
|
|
if (path1->device->lun_id == CAM_LUN_WILDCARD) {
|
|
if (retval == 0)
|
|
retval = 1;
|
|
} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
int
|
|
xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
|
|
{
|
|
int retval = 0;
|
|
|
|
if (path->bus != dev->target->bus) {
|
|
if (path->bus->path_id == CAM_BUS_WILDCARD)
|
|
retval = 1;
|
|
else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
if (path->target != dev->target) {
|
|
if (path->target->target_id == CAM_TARGET_WILDCARD) {
|
|
if (retval == 0)
|
|
retval = 1;
|
|
} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
if (path->device != dev) {
|
|
if (path->device->lun_id == CAM_LUN_WILDCARD) {
|
|
if (retval == 0)
|
|
retval = 1;
|
|
} else if (dev->lun_id == CAM_LUN_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
void
|
|
xpt_print_path(struct cam_path *path)
|
|
{
|
|
|
|
if (path == NULL)
|
|
printf("(nopath): ");
|
|
else {
|
|
if (path->periph != NULL)
|
|
printf("(%s%d:", path->periph->periph_name,
|
|
path->periph->unit_number);
|
|
else
|
|
printf("(noperiph:");
|
|
|
|
if (path->bus != NULL)
|
|
printf("%s%d:%d:", path->bus->sim->sim_name,
|
|
path->bus->sim->unit_number,
|
|
path->bus->sim->bus_id);
|
|
else
|
|
printf("nobus:");
|
|
|
|
if (path->target != NULL)
|
|
printf("%d:", path->target->target_id);
|
|
else
|
|
printf("X:");
|
|
|
|
if (path->device != NULL)
|
|
printf("%jx): ", (uintmax_t)path->device->lun_id);
|
|
else
|
|
printf("X): ");
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_print_device(struct cam_ed *device)
|
|
{
|
|
|
|
if (device == NULL)
|
|
printf("(nopath): ");
|
|
else {
|
|
printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
|
|
device->sim->unit_number,
|
|
device->sim->bus_id,
|
|
device->target->target_id,
|
|
(uintmax_t)device->lun_id);
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_print(struct cam_path *path, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
xpt_print_path(path);
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
int
|
|
xpt_path_string(struct cam_path *path, char *str, size_t str_len)
|
|
{
|
|
struct sbuf sb;
|
|
|
|
sbuf_new(&sb, str, str_len, 0);
|
|
|
|
if (path == NULL)
|
|
sbuf_printf(&sb, "(nopath): ");
|
|
else {
|
|
if (path->periph != NULL)
|
|
sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
|
|
path->periph->unit_number);
|
|
else
|
|
sbuf_printf(&sb, "(noperiph:");
|
|
|
|
if (path->bus != NULL)
|
|
sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
|
|
path->bus->sim->unit_number,
|
|
path->bus->sim->bus_id);
|
|
else
|
|
sbuf_printf(&sb, "nobus:");
|
|
|
|
if (path->target != NULL)
|
|
sbuf_printf(&sb, "%d:", path->target->target_id);
|
|
else
|
|
sbuf_printf(&sb, "X:");
|
|
|
|
if (path->device != NULL)
|
|
sbuf_printf(&sb, "%jx): ",
|
|
(uintmax_t)path->device->lun_id);
|
|
else
|
|
sbuf_printf(&sb, "X): ");
|
|
}
|
|
sbuf_finish(&sb);
|
|
|
|
return(sbuf_len(&sb));
|
|
}
|
|
|
|
path_id_t
|
|
xpt_path_path_id(struct cam_path *path)
|
|
{
|
|
return(path->bus->path_id);
|
|
}
|
|
|
|
target_id_t
|
|
xpt_path_target_id(struct cam_path *path)
|
|
{
|
|
if (path->target != NULL)
|
|
return (path->target->target_id);
|
|
else
|
|
return (CAM_TARGET_WILDCARD);
|
|
}
|
|
|
|
lun_id_t
|
|
xpt_path_lun_id(struct cam_path *path)
|
|
{
|
|
if (path->device != NULL)
|
|
return (path->device->lun_id);
|
|
else
|
|
return (CAM_LUN_WILDCARD);
|
|
}
|
|
|
|
struct cam_sim *
|
|
xpt_path_sim(struct cam_path *path)
|
|
{
|
|
|
|
return (path->bus->sim);
|
|
}
|
|
|
|
struct cam_periph*
|
|
xpt_path_periph(struct cam_path *path)
|
|
{
|
|
|
|
return (path->periph);
|
|
}
|
|
|
|
/*
|
|
* Release a CAM control block for the caller. Remit the cost of the structure
|
|
* to the device referenced by the path. If the this device had no 'credits'
|
|
* and peripheral drivers have registered async callbacks for this notification
|
|
* call them now.
|
|
*/
|
|
void
|
|
xpt_release_ccb(union ccb *free_ccb)
|
|
{
|
|
struct cam_ed *device;
|
|
struct cam_periph *periph;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
|
|
xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
|
|
device = free_ccb->ccb_h.path->device;
|
|
periph = free_ccb->ccb_h.path->periph;
|
|
|
|
xpt_free_ccb(free_ccb);
|
|
periph->periph_allocated--;
|
|
cam_ccbq_release_opening(&device->ccbq);
|
|
xpt_run_allocq(periph, 0);
|
|
}
|
|
|
|
/* Functions accessed by SIM drivers */
|
|
|
|
static struct xpt_xport_ops xport_default_ops = {
|
|
.alloc_device = xpt_alloc_device_default,
|
|
.action = xpt_action_default,
|
|
.async = xpt_dev_async_default,
|
|
};
|
|
static struct xpt_xport xport_default = {
|
|
.xport = XPORT_UNKNOWN,
|
|
.name = "unknown",
|
|
.ops = &xport_default_ops,
|
|
};
|
|
|
|
CAM_XPT_XPORT(xport_default);
|
|
|
|
/*
|
|
* A sim structure, listing the SIM entry points and instance
|
|
* identification info is passed to xpt_bus_register to hook the SIM
|
|
* into the CAM framework. xpt_bus_register creates a cam_eb entry
|
|
* for this new bus and places it in the array of busses and assigns
|
|
* it a path_id. The path_id may be influenced by "hard wiring"
|
|
* information specified by the user. Once interrupt services are
|
|
* available, the bus will be probed.
|
|
*/
|
|
int32_t
|
|
xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
|
|
{
|
|
struct cam_eb *new_bus;
|
|
struct cam_eb *old_bus;
|
|
struct ccb_pathinq cpi;
|
|
struct cam_path *path;
|
|
cam_status status;
|
|
|
|
mtx_assert(sim->mtx, MA_OWNED);
|
|
|
|
sim->bus_id = bus;
|
|
new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
|
|
M_CAMXPT, M_NOWAIT|M_ZERO);
|
|
if (new_bus == NULL) {
|
|
/* Couldn't satisfy request */
|
|
return (CAM_RESRC_UNAVAIL);
|
|
}
|
|
|
|
mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
|
|
TAILQ_INIT(&new_bus->et_entries);
|
|
cam_sim_hold(sim);
|
|
new_bus->sim = sim;
|
|
timevalclear(&new_bus->last_reset);
|
|
new_bus->flags = 0;
|
|
new_bus->refcount = 1; /* Held until a bus_deregister event */
|
|
new_bus->generation = 0;
|
|
|
|
xpt_lock_buses();
|
|
sim->path_id = new_bus->path_id =
|
|
xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
|
|
old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
|
|
while (old_bus != NULL
|
|
&& old_bus->path_id < new_bus->path_id)
|
|
old_bus = TAILQ_NEXT(old_bus, links);
|
|
if (old_bus != NULL)
|
|
TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
|
|
else
|
|
TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
|
|
xsoftc.bus_generation++;
|
|
xpt_unlock_buses();
|
|
|
|
/*
|
|
* Set a default transport so that a PATH_INQ can be issued to
|
|
* the SIM. This will then allow for probing and attaching of
|
|
* a more appropriate transport.
|
|
*/
|
|
new_bus->xport = &xport_default;
|
|
|
|
status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
if (status != CAM_REQ_CMP) {
|
|
xpt_release_bus(new_bus);
|
|
free(path, M_CAMXPT);
|
|
return (CAM_RESRC_UNAVAIL);
|
|
}
|
|
|
|
xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
|
|
if (cpi.ccb_h.status == CAM_REQ_CMP) {
|
|
struct xpt_xport **xpt;
|
|
|
|
SET_FOREACH(xpt, cam_xpt_xport_set) {
|
|
if ((*xpt)->xport == cpi.transport) {
|
|
new_bus->xport = *xpt;
|
|
break;
|
|
}
|
|
}
|
|
if (new_bus->xport == NULL) {
|
|
xpt_print_path(path);
|
|
printf("No transport found for %d\n", cpi.transport);
|
|
xpt_release_bus(new_bus);
|
|
free(path, M_CAMXPT);
|
|
return (CAM_RESRC_UNAVAIL);
|
|
}
|
|
}
|
|
|
|
/* Notify interested parties */
|
|
if (sim->path_id != CAM_XPT_PATH_ID) {
|
|
|
|
xpt_async(AC_PATH_REGISTERED, path, &cpi);
|
|
if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
|
|
union ccb *scan_ccb;
|
|
|
|
/* Initiate bus rescan. */
|
|
scan_ccb = xpt_alloc_ccb_nowait();
|
|
if (scan_ccb != NULL) {
|
|
scan_ccb->ccb_h.path = path;
|
|
scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
|
|
scan_ccb->crcn.flags = 0;
|
|
xpt_rescan(scan_ccb);
|
|
} else {
|
|
xpt_print(path,
|
|
"Can't allocate CCB to scan bus\n");
|
|
xpt_free_path(path);
|
|
}
|
|
} else
|
|
xpt_free_path(path);
|
|
} else
|
|
xpt_free_path(path);
|
|
return (CAM_SUCCESS);
|
|
}
|
|
|
|
int32_t
|
|
xpt_bus_deregister(path_id_t pathid)
|
|
{
|
|
struct cam_path bus_path;
|
|
cam_status status;
|
|
|
|
status = xpt_compile_path(&bus_path, NULL, pathid,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
if (status != CAM_REQ_CMP)
|
|
return (status);
|
|
|
|
xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
|
|
xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
|
|
|
|
/* Release the reference count held while registered. */
|
|
xpt_release_bus(bus_path.bus);
|
|
xpt_release_path(&bus_path);
|
|
|
|
return (CAM_REQ_CMP);
|
|
}
|
|
|
|
static path_id_t
|
|
xptnextfreepathid(void)
|
|
{
|
|
struct cam_eb *bus;
|
|
path_id_t pathid;
|
|
const char *strval;
|
|
|
|
mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
|
|
pathid = 0;
|
|
bus = TAILQ_FIRST(&xsoftc.xpt_busses);
|
|
retry:
|
|
/* Find an unoccupied pathid */
|
|
while (bus != NULL && bus->path_id <= pathid) {
|
|
if (bus->path_id == pathid)
|
|
pathid++;
|
|
bus = TAILQ_NEXT(bus, links);
|
|
}
|
|
|
|
/*
|
|
* Ensure that this pathid is not reserved for
|
|
* a bus that may be registered in the future.
|
|
*/
|
|
if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
|
|
++pathid;
|
|
/* Start the search over */
|
|
goto retry;
|
|
}
|
|
return (pathid);
|
|
}
|
|
|
|
static path_id_t
|
|
xptpathid(const char *sim_name, int sim_unit, int sim_bus)
|
|
{
|
|
path_id_t pathid;
|
|
int i, dunit, val;
|
|
char buf[32];
|
|
const char *dname;
|
|
|
|
pathid = CAM_XPT_PATH_ID;
|
|
snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
|
|
if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
|
|
return (pathid);
|
|
i = 0;
|
|
while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
|
|
if (strcmp(dname, "scbus")) {
|
|
/* Avoid a bit of foot shooting. */
|
|
continue;
|
|
}
|
|
if (dunit < 0) /* unwired?! */
|
|
continue;
|
|
if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
|
|
if (sim_bus == val) {
|
|
pathid = dunit;
|
|
break;
|
|
}
|
|
} else if (sim_bus == 0) {
|
|
/* Unspecified matches bus 0 */
|
|
pathid = dunit;
|
|
break;
|
|
} else {
|
|
printf("Ambiguous scbus configuration for %s%d "
|
|
"bus %d, cannot wire down. The kernel "
|
|
"config entry for scbus%d should "
|
|
"specify a controller bus.\n"
|
|
"Scbus will be assigned dynamically.\n",
|
|
sim_name, sim_unit, sim_bus, dunit);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pathid == CAM_XPT_PATH_ID)
|
|
pathid = xptnextfreepathid();
|
|
return (pathid);
|
|
}
|
|
|
|
static const char *
|
|
xpt_async_string(u_int32_t async_code)
|
|
{
|
|
|
|
switch (async_code) {
|
|
case AC_BUS_RESET: return ("AC_BUS_RESET");
|
|
case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
|
|
case AC_SCSI_AEN: return ("AC_SCSI_AEN");
|
|
case AC_SENT_BDR: return ("AC_SENT_BDR");
|
|
case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
|
|
case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
|
|
case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
|
|
case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
|
|
case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
|
|
case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
|
|
case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
|
|
case AC_CONTRACT: return ("AC_CONTRACT");
|
|
case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
|
|
case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
|
|
}
|
|
return ("AC_UNKNOWN");
|
|
}
|
|
|
|
static int
|
|
xpt_async_size(u_int32_t async_code)
|
|
{
|
|
|
|
switch (async_code) {
|
|
case AC_BUS_RESET: return (0);
|
|
case AC_UNSOL_RESEL: return (0);
|
|
case AC_SCSI_AEN: return (0);
|
|
case AC_SENT_BDR: return (0);
|
|
case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
|
|
case AC_PATH_DEREGISTERED: return (0);
|
|
case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
|
|
case AC_LOST_DEVICE: return (0);
|
|
case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
|
|
case AC_INQ_CHANGED: return (0);
|
|
case AC_GETDEV_CHANGED: return (0);
|
|
case AC_CONTRACT: return (sizeof(struct ac_contract));
|
|
case AC_ADVINFO_CHANGED: return (-1);
|
|
case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
xpt_async_process_dev(struct cam_ed *device, void *arg)
|
|
{
|
|
union ccb *ccb = arg;
|
|
struct cam_path *path = ccb->ccb_h.path;
|
|
void *async_arg = ccb->casync.async_arg_ptr;
|
|
u_int32_t async_code = ccb->casync.async_code;
|
|
int relock;
|
|
|
|
if (path->device != device
|
|
&& path->device->lun_id != CAM_LUN_WILDCARD
|
|
&& device->lun_id != CAM_LUN_WILDCARD)
|
|
return (1);
|
|
|
|
/*
|
|
* The async callback could free the device.
|
|
* If it is a broadcast async, it doesn't hold
|
|
* device reference, so take our own reference.
|
|
*/
|
|
xpt_acquire_device(device);
|
|
|
|
/*
|
|
* If async for specific device is to be delivered to
|
|
* the wildcard client, take the specific device lock.
|
|
* XXX: We may need a way for client to specify it.
|
|
*/
|
|
if ((device->lun_id == CAM_LUN_WILDCARD &&
|
|
path->device->lun_id != CAM_LUN_WILDCARD) ||
|
|
(device->target->target_id == CAM_TARGET_WILDCARD &&
|
|
path->target->target_id != CAM_TARGET_WILDCARD) ||
|
|
(device->target->bus->path_id == CAM_BUS_WILDCARD &&
|
|
path->target->bus->path_id != CAM_BUS_WILDCARD)) {
|
|
mtx_unlock(&device->device_mtx);
|
|
xpt_path_lock(path);
|
|
relock = 1;
|
|
} else
|
|
relock = 0;
|
|
|
|
(*(device->target->bus->xport->ops->async))(async_code,
|
|
device->target->bus, device->target, device, async_arg);
|
|
xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
|
|
|
|
if (relock) {
|
|
xpt_path_unlock(path);
|
|
mtx_lock(&device->device_mtx);
|
|
}
|
|
xpt_release_device(device);
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
xpt_async_process_tgt(struct cam_et *target, void *arg)
|
|
{
|
|
union ccb *ccb = arg;
|
|
struct cam_path *path = ccb->ccb_h.path;
|
|
|
|
if (path->target != target
|
|
&& path->target->target_id != CAM_TARGET_WILDCARD
|
|
&& target->target_id != CAM_TARGET_WILDCARD)
|
|
return (1);
|
|
|
|
if (ccb->casync.async_code == AC_SENT_BDR) {
|
|
/* Update our notion of when the last reset occurred */
|
|
microtime(&target->last_reset);
|
|
}
|
|
|
|
return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
|
|
}
|
|
|
|
static void
|
|
xpt_async_process(struct cam_periph *periph, union ccb *ccb)
|
|
{
|
|
struct cam_eb *bus;
|
|
struct cam_path *path;
|
|
void *async_arg;
|
|
u_int32_t async_code;
|
|
|
|
path = ccb->ccb_h.path;
|
|
async_code = ccb->casync.async_code;
|
|
async_arg = ccb->casync.async_arg_ptr;
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
|
|
("xpt_async(%s)\n", xpt_async_string(async_code)));
|
|
bus = path->bus;
|
|
|
|
if (async_code == AC_BUS_RESET) {
|
|
/* Update our notion of when the last reset occurred */
|
|
microtime(&bus->last_reset);
|
|
}
|
|
|
|
xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
|
|
|
|
/*
|
|
* If this wasn't a fully wildcarded async, tell all
|
|
* clients that want all async events.
|
|
*/
|
|
if (bus != xpt_periph->path->bus) {
|
|
xpt_path_lock(xpt_periph->path);
|
|
xpt_async_process_dev(xpt_periph->path->device, ccb);
|
|
xpt_path_unlock(xpt_periph->path);
|
|
}
|
|
|
|
if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
|
|
xpt_release_devq(path, 1, TRUE);
|
|
else
|
|
xpt_release_simq(path->bus->sim, TRUE);
|
|
if (ccb->casync.async_arg_size > 0)
|
|
free(async_arg, M_CAMXPT);
|
|
xpt_free_path(path);
|
|
xpt_free_ccb(ccb);
|
|
}
|
|
|
|
static void
|
|
xpt_async_bcast(struct async_list *async_head,
|
|
u_int32_t async_code,
|
|
struct cam_path *path, void *async_arg)
|
|
{
|
|
struct async_node *cur_entry;
|
|
int lock;
|
|
|
|
cur_entry = SLIST_FIRST(async_head);
|
|
while (cur_entry != NULL) {
|
|
struct async_node *next_entry;
|
|
/*
|
|
* Grab the next list entry before we call the current
|
|
* entry's callback. This is because the callback function
|
|
* can delete its async callback entry.
|
|
*/
|
|
next_entry = SLIST_NEXT(cur_entry, links);
|
|
if ((cur_entry->event_enable & async_code) != 0) {
|
|
lock = cur_entry->event_lock;
|
|
if (lock)
|
|
CAM_SIM_LOCK(path->device->sim);
|
|
cur_entry->callback(cur_entry->callback_arg,
|
|
async_code, path,
|
|
async_arg);
|
|
if (lock)
|
|
CAM_SIM_UNLOCK(path->device->sim);
|
|
}
|
|
cur_entry = next_entry;
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
|
|
{
|
|
union ccb *ccb;
|
|
int size;
|
|
|
|
ccb = xpt_alloc_ccb_nowait();
|
|
if (ccb == NULL) {
|
|
xpt_print(path, "Can't allocate CCB to send %s\n",
|
|
xpt_async_string(async_code));
|
|
return;
|
|
}
|
|
|
|
if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
|
|
xpt_print(path, "Can't allocate path to send %s\n",
|
|
xpt_async_string(async_code));
|
|
xpt_free_ccb(ccb);
|
|
return;
|
|
}
|
|
ccb->ccb_h.path->periph = NULL;
|
|
ccb->ccb_h.func_code = XPT_ASYNC;
|
|
ccb->ccb_h.cbfcnp = xpt_async_process;
|
|
ccb->ccb_h.flags |= CAM_UNLOCKED;
|
|
ccb->casync.async_code = async_code;
|
|
ccb->casync.async_arg_size = 0;
|
|
size = xpt_async_size(async_code);
|
|
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
|
|
("xpt_async: func %#x %s aync_code %d %s\n",
|
|
ccb->ccb_h.func_code,
|
|
xpt_action_name(ccb->ccb_h.func_code),
|
|
async_code,
|
|
xpt_async_string(async_code)));
|
|
if (size > 0 && async_arg != NULL) {
|
|
ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
|
|
if (ccb->casync.async_arg_ptr == NULL) {
|
|
xpt_print(path, "Can't allocate argument to send %s\n",
|
|
xpt_async_string(async_code));
|
|
xpt_free_path(ccb->ccb_h.path);
|
|
xpt_free_ccb(ccb);
|
|
return;
|
|
}
|
|
memcpy(ccb->casync.async_arg_ptr, async_arg, size);
|
|
ccb->casync.async_arg_size = size;
|
|
} else if (size < 0) {
|
|
ccb->casync.async_arg_ptr = async_arg;
|
|
ccb->casync.async_arg_size = size;
|
|
}
|
|
if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
|
|
xpt_freeze_devq(path, 1);
|
|
else
|
|
xpt_freeze_simq(path->bus->sim, 1);
|
|
xpt_done(ccb);
|
|
}
|
|
|
|
static void
|
|
xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
|
|
struct cam_et *target, struct cam_ed *device,
|
|
void *async_arg)
|
|
{
|
|
|
|
/*
|
|
* We only need to handle events for real devices.
|
|
*/
|
|
if (target->target_id == CAM_TARGET_WILDCARD
|
|
|| device->lun_id == CAM_LUN_WILDCARD)
|
|
return;
|
|
|
|
printf("%s called\n", __func__);
|
|
}
|
|
|
|
static uint32_t
|
|
xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
|
|
{
|
|
struct cam_devq *devq;
|
|
uint32_t freeze;
|
|
|
|
devq = dev->sim->devq;
|
|
mtx_assert(&devq->send_mtx, MA_OWNED);
|
|
CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
|
|
("xpt_freeze_devq_device(%d) %u->%u\n", count,
|
|
dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
|
|
freeze = (dev->ccbq.queue.qfrozen_cnt += count);
|
|
/* Remove frozen device from sendq. */
|
|
if (device_is_queued(dev))
|
|
camq_remove(&devq->send_queue, dev->devq_entry.index);
|
|
return (freeze);
|
|
}
|
|
|
|
u_int32_t
|
|
xpt_freeze_devq(struct cam_path *path, u_int count)
|
|
{
|
|
struct cam_ed *dev = path->device;
|
|
struct cam_devq *devq;
|
|
uint32_t freeze;
|
|
|
|
devq = dev->sim->devq;
|
|
mtx_lock(&devq->send_mtx);
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
|
|
freeze = xpt_freeze_devq_device(dev, count);
|
|
mtx_unlock(&devq->send_mtx);
|
|
return (freeze);
|
|
}
|
|
|
|
u_int32_t
|
|
xpt_freeze_simq(struct cam_sim *sim, u_int count)
|
|
{
|
|
struct cam_devq *devq;
|
|
uint32_t freeze;
|
|
|
|
devq = sim->devq;
|
|
mtx_lock(&devq->send_mtx);
|
|
freeze = (devq->send_queue.qfrozen_cnt += count);
|
|
mtx_unlock(&devq->send_mtx);
|
|
return (freeze);
|
|
}
|
|
|
|
static void
|
|
xpt_release_devq_timeout(void *arg)
|
|
{
|
|
struct cam_ed *dev;
|
|
struct cam_devq *devq;
|
|
|
|
dev = (struct cam_ed *)arg;
|
|
CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
|
|
devq = dev->sim->devq;
|
|
mtx_assert(&devq->send_mtx, MA_OWNED);
|
|
if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
|
|
xpt_run_devq(devq);
|
|
}
|
|
|
|
void
|
|
xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
|
|
{
|
|
struct cam_ed *dev;
|
|
struct cam_devq *devq;
|
|
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
|
|
count, run_queue));
|
|
dev = path->device;
|
|
devq = dev->sim->devq;
|
|
mtx_lock(&devq->send_mtx);
|
|
if (xpt_release_devq_device(dev, count, run_queue))
|
|
xpt_run_devq(dev->sim->devq);
|
|
mtx_unlock(&devq->send_mtx);
|
|
}
|
|
|
|
static int
|
|
xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
|
|
{
|
|
|
|
mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
|
|
CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
|
|
("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
|
|
dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
|
|
if (count > dev->ccbq.queue.qfrozen_cnt) {
|
|
#ifdef INVARIANTS
|
|
printf("xpt_release_devq(): requested %u > present %u\n",
|
|
count, dev->ccbq.queue.qfrozen_cnt);
|
|
#endif
|
|
count = dev->ccbq.queue.qfrozen_cnt;
|
|
}
|
|
dev->ccbq.queue.qfrozen_cnt -= count;
|
|
if (dev->ccbq.queue.qfrozen_cnt == 0) {
|
|
/*
|
|
* No longer need to wait for a successful
|
|
* command completion.
|
|
*/
|
|
dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
|
|
/*
|
|
* Remove any timeouts that might be scheduled
|
|
* to release this queue.
|
|
*/
|
|
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
|
|
callout_stop(&dev->callout);
|
|
dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
|
|
}
|
|
/*
|
|
* Now that we are unfrozen schedule the
|
|
* device so any pending transactions are
|
|
* run.
|
|
*/
|
|
xpt_schedule_devq(dev->sim->devq, dev);
|
|
} else
|
|
run_queue = 0;
|
|
return (run_queue);
|
|
}
|
|
|
|
void
|
|
xpt_release_simq(struct cam_sim *sim, int run_queue)
|
|
{
|
|
struct cam_devq *devq;
|
|
|
|
devq = sim->devq;
|
|
mtx_lock(&devq->send_mtx);
|
|
if (devq->send_queue.qfrozen_cnt <= 0) {
|
|
#ifdef INVARIANTS
|
|
printf("xpt_release_simq: requested 1 > present %u\n",
|
|
devq->send_queue.qfrozen_cnt);
|
|
#endif
|
|
} else
|
|
devq->send_queue.qfrozen_cnt--;
|
|
if (devq->send_queue.qfrozen_cnt == 0) {
|
|
/*
|
|
* If there is a timeout scheduled to release this
|
|
* sim queue, remove it. The queue frozen count is
|
|
* already at 0.
|
|
*/
|
|
if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
|
|
callout_stop(&sim->callout);
|
|
sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
|
|
}
|
|
if (run_queue) {
|
|
/*
|
|
* Now that we are unfrozen run the send queue.
|
|
*/
|
|
xpt_run_devq(sim->devq);
|
|
}
|
|
}
|
|
mtx_unlock(&devq->send_mtx);
|
|
}
|
|
|
|
/*
|
|
* XXX Appears to be unused.
|
|
*/
|
|
static void
|
|
xpt_release_simq_timeout(void *arg)
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
sim = (struct cam_sim *)arg;
|
|
xpt_release_simq(sim, /* run_queue */ TRUE);
|
|
}
|
|
|
|
void
|
|
xpt_done(union ccb *done_ccb)
|
|
{
|
|
struct cam_doneq *queue;
|
|
int run, hash;
|
|
|
|
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
|
|
("xpt_done: func= %#x %s status %#x\n",
|
|
done_ccb->ccb_h.func_code,
|
|
xpt_action_name(done_ccb->ccb_h.func_code),
|
|
done_ccb->ccb_h.status));
|
|
if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
|
|
return;
|
|
|
|
/* Store the time the ccb was in the sim */
|
|
done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
|
|
hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
|
|
done_ccb->ccb_h.target_lun) % cam_num_doneqs;
|
|
queue = &cam_doneqs[hash];
|
|
mtx_lock(&queue->cam_doneq_mtx);
|
|
run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
|
|
STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
|
|
done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
|
|
mtx_unlock(&queue->cam_doneq_mtx);
|
|
if (run)
|
|
wakeup(&queue->cam_doneq);
|
|
}
|
|
|
|
void
|
|
xpt_done_direct(union ccb *done_ccb)
|
|
{
|
|
|
|
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
|
|
("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
|
|
if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
|
|
return;
|
|
|
|
/* Store the time the ccb was in the sim */
|
|
done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
|
|
xpt_done_process(&done_ccb->ccb_h);
|
|
}
|
|
|
|
union ccb *
|
|
xpt_alloc_ccb()
|
|
{
|
|
union ccb *new_ccb;
|
|
|
|
new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
|
|
return (new_ccb);
|
|
}
|
|
|
|
union ccb *
|
|
xpt_alloc_ccb_nowait()
|
|
{
|
|
union ccb *new_ccb;
|
|
|
|
new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
|
|
return (new_ccb);
|
|
}
|
|
|
|
void
|
|
xpt_free_ccb(union ccb *free_ccb)
|
|
{
|
|
free(free_ccb, M_CAMCCB);
|
|
}
|
|
|
|
|
|
|
|
/* Private XPT functions */
|
|
|
|
/*
|
|
* Get a CAM control block for the caller. Charge the structure to the device
|
|
* referenced by the path. If we don't have sufficient resources to allocate
|
|
* more ccbs, we return NULL.
|
|
*/
|
|
static union ccb *
|
|
xpt_get_ccb_nowait(struct cam_periph *periph)
|
|
{
|
|
union ccb *new_ccb;
|
|
|
|
new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
|
|
if (new_ccb == NULL)
|
|
return (NULL);
|
|
periph->periph_allocated++;
|
|
cam_ccbq_take_opening(&periph->path->device->ccbq);
|
|
return (new_ccb);
|
|
}
|
|
|
|
static union ccb *
|
|
xpt_get_ccb(struct cam_periph *periph)
|
|
{
|
|
union ccb *new_ccb;
|
|
|
|
cam_periph_unlock(periph);
|
|
new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
|
|
cam_periph_lock(periph);
|
|
periph->periph_allocated++;
|
|
cam_ccbq_take_opening(&periph->path->device->ccbq);
|
|
return (new_ccb);
|
|
}
|
|
|
|
union ccb *
|
|
cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
|
|
{
|
|
struct ccb_hdr *ccb_h;
|
|
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
|
|
ccb_h->pinfo.priority != priority) {
|
|
if (priority < periph->immediate_priority) {
|
|
periph->immediate_priority = priority;
|
|
xpt_run_allocq(periph, 0);
|
|
} else
|
|
cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
|
|
"cgticb", 0);
|
|
}
|
|
SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
|
|
return ((union ccb *)ccb_h);
|
|
}
|
|
|
|
static void
|
|
xpt_acquire_bus(struct cam_eb *bus)
|
|
{
|
|
|
|
xpt_lock_buses();
|
|
bus->refcount++;
|
|
xpt_unlock_buses();
|
|
}
|
|
|
|
static void
|
|
xpt_release_bus(struct cam_eb *bus)
|
|
{
|
|
|
|
xpt_lock_buses();
|
|
KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
|
|
if (--bus->refcount > 0) {
|
|
xpt_unlock_buses();
|
|
return;
|
|
}
|
|
TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
|
|
xsoftc.bus_generation++;
|
|
xpt_unlock_buses();
|
|
KASSERT(TAILQ_EMPTY(&bus->et_entries),
|
|
("destroying bus, but target list is not empty"));
|
|
cam_sim_release(bus->sim);
|
|
mtx_destroy(&bus->eb_mtx);
|
|
free(bus, M_CAMXPT);
|
|
}
|
|
|
|
static struct cam_et *
|
|
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
|
|
{
|
|
struct cam_et *cur_target, *target;
|
|
|
|
mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
|
|
mtx_assert(&bus->eb_mtx, MA_OWNED);
|
|
target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
|
|
M_NOWAIT|M_ZERO);
|
|
if (target == NULL)
|
|
return (NULL);
|
|
|
|
TAILQ_INIT(&target->ed_entries);
|
|
target->bus = bus;
|
|
target->target_id = target_id;
|
|
target->refcount = 1;
|
|
target->generation = 0;
|
|
target->luns = NULL;
|
|
mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
|
|
timevalclear(&target->last_reset);
|
|
/*
|
|
* Hold a reference to our parent bus so it
|
|
* will not go away before we do.
|
|
*/
|
|
bus->refcount++;
|
|
|
|
/* Insertion sort into our bus's target list */
|
|
cur_target = TAILQ_FIRST(&bus->et_entries);
|
|
while (cur_target != NULL && cur_target->target_id < target_id)
|
|
cur_target = TAILQ_NEXT(cur_target, links);
|
|
if (cur_target != NULL) {
|
|
TAILQ_INSERT_BEFORE(cur_target, target, links);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
|
|
}
|
|
bus->generation++;
|
|
return (target);
|
|
}
|
|
|
|
static void
|
|
xpt_acquire_target(struct cam_et *target)
|
|
{
|
|
struct cam_eb *bus = target->bus;
|
|
|
|
mtx_lock(&bus->eb_mtx);
|
|
target->refcount++;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
}
|
|
|
|
static void
|
|
xpt_release_target(struct cam_et *target)
|
|
{
|
|
struct cam_eb *bus = target->bus;
|
|
|
|
mtx_lock(&bus->eb_mtx);
|
|
if (--target->refcount > 0) {
|
|
mtx_unlock(&bus->eb_mtx);
|
|
return;
|
|
}
|
|
TAILQ_REMOVE(&bus->et_entries, target, links);
|
|
bus->generation++;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
KASSERT(TAILQ_EMPTY(&target->ed_entries),
|
|
("destroying target, but device list is not empty"));
|
|
xpt_release_bus(bus);
|
|
mtx_destroy(&target->luns_mtx);
|
|
if (target->luns)
|
|
free(target->luns, M_CAMXPT);
|
|
free(target, M_CAMXPT);
|
|
}
|
|
|
|
static struct cam_ed *
|
|
xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
|
|
lun_id_t lun_id)
|
|
{
|
|
struct cam_ed *device;
|
|
|
|
device = xpt_alloc_device(bus, target, lun_id);
|
|
if (device == NULL)
|
|
return (NULL);
|
|
|
|
device->mintags = 1;
|
|
device->maxtags = 1;
|
|
return (device);
|
|
}
|
|
|
|
static void
|
|
xpt_destroy_device(void *context, int pending)
|
|
{
|
|
struct cam_ed *device = context;
|
|
|
|
mtx_lock(&device->device_mtx);
|
|
mtx_destroy(&device->device_mtx);
|
|
free(device, M_CAMDEV);
|
|
}
|
|
|
|
struct cam_ed *
|
|
xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
|
|
{
|
|
struct cam_ed *cur_device, *device;
|
|
struct cam_devq *devq;
|
|
cam_status status;
|
|
|
|
mtx_assert(&bus->eb_mtx, MA_OWNED);
|
|
/* Make space for us in the device queue on our bus */
|
|
devq = bus->sim->devq;
|
|
mtx_lock(&devq->send_mtx);
|
|
status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
|
|
mtx_unlock(&devq->send_mtx);
|
|
if (status != CAM_REQ_CMP)
|
|
return (NULL);
|
|
|
|
device = (struct cam_ed *)malloc(sizeof(*device),
|
|
M_CAMDEV, M_NOWAIT|M_ZERO);
|
|
if (device == NULL)
|
|
return (NULL);
|
|
|
|
cam_init_pinfo(&device->devq_entry);
|
|
device->target = target;
|
|
device->lun_id = lun_id;
|
|
device->sim = bus->sim;
|
|
if (cam_ccbq_init(&device->ccbq,
|
|
bus->sim->max_dev_openings) != 0) {
|
|
free(device, M_CAMDEV);
|
|
return (NULL);
|
|
}
|
|
SLIST_INIT(&device->asyncs);
|
|
SLIST_INIT(&device->periphs);
|
|
device->generation = 0;
|
|
device->flags = CAM_DEV_UNCONFIGURED;
|
|
device->tag_delay_count = 0;
|
|
device->tag_saved_openings = 0;
|
|
device->refcount = 1;
|
|
mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
|
|
callout_init_mtx(&device->callout, &devq->send_mtx, 0);
|
|
TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
|
|
/*
|
|
* Hold a reference to our parent bus so it
|
|
* will not go away before we do.
|
|
*/
|
|
target->refcount++;
|
|
|
|
cur_device = TAILQ_FIRST(&target->ed_entries);
|
|
while (cur_device != NULL && cur_device->lun_id < lun_id)
|
|
cur_device = TAILQ_NEXT(cur_device, links);
|
|
if (cur_device != NULL)
|
|
TAILQ_INSERT_BEFORE(cur_device, device, links);
|
|
else
|
|
TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
|
|
target->generation++;
|
|
return (device);
|
|
}
|
|
|
|
void
|
|
xpt_acquire_device(struct cam_ed *device)
|
|
{
|
|
struct cam_eb *bus = device->target->bus;
|
|
|
|
mtx_lock(&bus->eb_mtx);
|
|
device->refcount++;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
}
|
|
|
|
void
|
|
xpt_release_device(struct cam_ed *device)
|
|
{
|
|
struct cam_eb *bus = device->target->bus;
|
|
struct cam_devq *devq;
|
|
|
|
mtx_lock(&bus->eb_mtx);
|
|
if (--device->refcount > 0) {
|
|
mtx_unlock(&bus->eb_mtx);
|
|
return;
|
|
}
|
|
|
|
TAILQ_REMOVE(&device->target->ed_entries, device,links);
|
|
device->target->generation++;
|
|
mtx_unlock(&bus->eb_mtx);
|
|
|
|
/* Release our slot in the devq */
|
|
devq = bus->sim->devq;
|
|
mtx_lock(&devq->send_mtx);
|
|
cam_devq_resize(devq, devq->send_queue.array_size - 1);
|
|
mtx_unlock(&devq->send_mtx);
|
|
|
|
KASSERT(SLIST_EMPTY(&device->periphs),
|
|
("destroying device, but periphs list is not empty"));
|
|
KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
|
|
("destroying device while still queued for ccbs"));
|
|
|
|
if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
|
|
callout_stop(&device->callout);
|
|
|
|
xpt_release_target(device->target);
|
|
|
|
cam_ccbq_fini(&device->ccbq);
|
|
/*
|
|
* Free allocated memory. free(9) does nothing if the
|
|
* supplied pointer is NULL, so it is safe to call without
|
|
* checking.
|
|
*/
|
|
free(device->supported_vpds, M_CAMXPT);
|
|
free(device->device_id, M_CAMXPT);
|
|
free(device->ext_inq, M_CAMXPT);
|
|
free(device->physpath, M_CAMXPT);
|
|
free(device->rcap_buf, M_CAMXPT);
|
|
free(device->serial_num, M_CAMXPT);
|
|
taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
|
|
}
|
|
|
|
u_int32_t
|
|
xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
|
|
{
|
|
int result;
|
|
struct cam_ed *dev;
|
|
|
|
dev = path->device;
|
|
mtx_lock(&dev->sim->devq->send_mtx);
|
|
result = cam_ccbq_resize(&dev->ccbq, newopenings);
|
|
mtx_unlock(&dev->sim->devq->send_mtx);
|
|
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|
|
|| (dev->inq_flags & SID_CmdQue) != 0)
|
|
dev->tag_saved_openings = newopenings;
|
|
return (result);
|
|
}
|
|
|
|
static struct cam_eb *
|
|
xpt_find_bus(path_id_t path_id)
|
|
{
|
|
struct cam_eb *bus;
|
|
|
|
xpt_lock_buses();
|
|
for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
|
|
bus != NULL;
|
|
bus = TAILQ_NEXT(bus, links)) {
|
|
if (bus->path_id == path_id) {
|
|
bus->refcount++;
|
|
break;
|
|
}
|
|
}
|
|
xpt_unlock_buses();
|
|
return (bus);
|
|
}
|
|
|
|
static struct cam_et *
|
|
xpt_find_target(struct cam_eb *bus, target_id_t target_id)
|
|
{
|
|
struct cam_et *target;
|
|
|
|
mtx_assert(&bus->eb_mtx, MA_OWNED);
|
|
for (target = TAILQ_FIRST(&bus->et_entries);
|
|
target != NULL;
|
|
target = TAILQ_NEXT(target, links)) {
|
|
if (target->target_id == target_id) {
|
|
target->refcount++;
|
|
break;
|
|
}
|
|
}
|
|
return (target);
|
|
}
|
|
|
|
static struct cam_ed *
|
|
xpt_find_device(struct cam_et *target, lun_id_t lun_id)
|
|
{
|
|
struct cam_ed *device;
|
|
|
|
mtx_assert(&target->bus->eb_mtx, MA_OWNED);
|
|
for (device = TAILQ_FIRST(&target->ed_entries);
|
|
device != NULL;
|
|
device = TAILQ_NEXT(device, links)) {
|
|
if (device->lun_id == lun_id) {
|
|
device->refcount++;
|
|
break;
|
|
}
|
|
}
|
|
return (device);
|
|
}
|
|
|
|
void
|
|
xpt_start_tags(struct cam_path *path)
|
|
{
|
|
struct ccb_relsim crs;
|
|
struct cam_ed *device;
|
|
struct cam_sim *sim;
|
|
int newopenings;
|
|
|
|
device = path->device;
|
|
sim = path->bus->sim;
|
|
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
|
|
xpt_freeze_devq(path, /*count*/1);
|
|
device->inq_flags |= SID_CmdQue;
|
|
if (device->tag_saved_openings != 0)
|
|
newopenings = device->tag_saved_openings;
|
|
else
|
|
newopenings = min(device->maxtags,
|
|
sim->max_tagged_dev_openings);
|
|
xpt_dev_ccbq_resize(path, newopenings);
|
|
xpt_async(AC_GETDEV_CHANGED, path, NULL);
|
|
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
|
|
crs.ccb_h.func_code = XPT_REL_SIMQ;
|
|
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
|
|
crs.openings
|
|
= crs.release_timeout
|
|
= crs.qfrozen_cnt
|
|
= 0;
|
|
xpt_action((union ccb *)&crs);
|
|
}
|
|
|
|
void
|
|
xpt_stop_tags(struct cam_path *path)
|
|
{
|
|
struct ccb_relsim crs;
|
|
struct cam_ed *device;
|
|
struct cam_sim *sim;
|
|
|
|
device = path->device;
|
|
sim = path->bus->sim;
|
|
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
|
|
device->tag_delay_count = 0;
|
|
xpt_freeze_devq(path, /*count*/1);
|
|
device->inq_flags &= ~SID_CmdQue;
|
|
xpt_dev_ccbq_resize(path, sim->max_dev_openings);
|
|
xpt_async(AC_GETDEV_CHANGED, path, NULL);
|
|
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
|
|
crs.ccb_h.func_code = XPT_REL_SIMQ;
|
|
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
|
|
crs.openings
|
|
= crs.release_timeout
|
|
= crs.qfrozen_cnt
|
|
= 0;
|
|
xpt_action((union ccb *)&crs);
|
|
}
|
|
|
|
static void
|
|
xpt_boot_delay(void *arg)
|
|
{
|
|
|
|
xpt_release_boot();
|
|
}
|
|
|
|
static void
|
|
xpt_config(void *arg)
|
|
{
|
|
/*
|
|
* Now that interrupts are enabled, go find our devices
|
|
*/
|
|
if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
|
|
printf("xpt_config: failed to create taskqueue thread.\n");
|
|
|
|
/* Setup debugging path */
|
|
if (cam_dflags != CAM_DEBUG_NONE) {
|
|
if (xpt_create_path(&cam_dpath, NULL,
|
|
CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
|
|
CAM_DEBUG_LUN) != CAM_REQ_CMP) {
|
|
printf("xpt_config: xpt_create_path() failed for debug"
|
|
" target %d:%d:%d, debugging disabled\n",
|
|
CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
|
|
cam_dflags = CAM_DEBUG_NONE;
|
|
}
|
|
} else
|
|
cam_dpath = NULL;
|
|
|
|
periphdriver_init(1);
|
|
xpt_hold_boot();
|
|
callout_init(&xsoftc.boot_callout, 1);
|
|
callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
|
|
xpt_boot_delay, NULL, 0);
|
|
/* Fire up rescan thread. */
|
|
if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
|
|
"cam", "scanner")) {
|
|
printf("xpt_config: failed to create rescan thread.\n");
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_hold_boot(void)
|
|
{
|
|
xpt_lock_buses();
|
|
xsoftc.buses_to_config++;
|
|
xpt_unlock_buses();
|
|
}
|
|
|
|
void
|
|
xpt_release_boot(void)
|
|
{
|
|
xpt_lock_buses();
|
|
xsoftc.buses_to_config--;
|
|
if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
|
|
struct xpt_task *task;
|
|
|
|
xsoftc.buses_config_done = 1;
|
|
xpt_unlock_buses();
|
|
/* Call manually because we don't have any busses */
|
|
task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
|
|
if (task != NULL) {
|
|
TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
|
|
taskqueue_enqueue(taskqueue_thread, &task->task);
|
|
}
|
|
} else
|
|
xpt_unlock_buses();
|
|
}
|
|
|
|
/*
|
|
* If the given device only has one peripheral attached to it, and if that
|
|
* peripheral is the passthrough driver, announce it. This insures that the
|
|
* user sees some sort of announcement for every peripheral in their system.
|
|
*/
|
|
static int
|
|
xptpassannouncefunc(struct cam_ed *device, void *arg)
|
|
{
|
|
struct cam_periph *periph;
|
|
int i;
|
|
|
|
for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
|
|
periph = SLIST_NEXT(periph, periph_links), i++);
|
|
|
|
periph = SLIST_FIRST(&device->periphs);
|
|
if ((i == 1)
|
|
&& (strncmp(periph->periph_name, "pass", 4) == 0))
|
|
xpt_announce_periph(periph, NULL);
|
|
|
|
return(1);
|
|
}
|
|
|
|
static void
|
|
xpt_finishconfig_task(void *context, int pending)
|
|
{
|
|
|
|
periphdriver_init(2);
|
|
/*
|
|
* Check for devices with no "standard" peripheral driver
|
|
* attached. For any devices like that, announce the
|
|
* passthrough driver so the user will see something.
|
|
*/
|
|
if (!bootverbose)
|
|
xpt_for_all_devices(xptpassannouncefunc, NULL);
|
|
|
|
/* Release our hook so that the boot can continue. */
|
|
config_intrhook_disestablish(xsoftc.xpt_config_hook);
|
|
free(xsoftc.xpt_config_hook, M_CAMXPT);
|
|
xsoftc.xpt_config_hook = NULL;
|
|
|
|
free(context, M_CAMXPT);
|
|
}
|
|
|
|
cam_status
|
|
xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
|
|
struct cam_path *path)
|
|
{
|
|
struct ccb_setasync csa;
|
|
cam_status status;
|
|
int xptpath = 0;
|
|
|
|
if (path == NULL) {
|
|
status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
if (status != CAM_REQ_CMP)
|
|
return (status);
|
|
xpt_path_lock(path);
|
|
xptpath = 1;
|
|
}
|
|
|
|
xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
|
|
csa.ccb_h.func_code = XPT_SASYNC_CB;
|
|
csa.event_enable = event;
|
|
csa.callback = cbfunc;
|
|
csa.callback_arg = cbarg;
|
|
xpt_action((union ccb *)&csa);
|
|
status = csa.ccb_h.status;
|
|
|
|
CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
|
|
("xpt_register_async: func %p\n", cbfunc));
|
|
|
|
if (xptpath) {
|
|
xpt_path_unlock(path);
|
|
xpt_free_path(path);
|
|
}
|
|
|
|
if ((status == CAM_REQ_CMP) &&
|
|
(csa.event_enable & AC_FOUND_DEVICE)) {
|
|
/*
|
|
* Get this peripheral up to date with all
|
|
* the currently existing devices.
|
|
*/
|
|
xpt_for_all_devices(xptsetasyncfunc, &csa);
|
|
}
|
|
if ((status == CAM_REQ_CMP) &&
|
|
(csa.event_enable & AC_PATH_REGISTERED)) {
|
|
/*
|
|
* Get this peripheral up to date with all
|
|
* the currently existing busses.
|
|
*/
|
|
xpt_for_all_busses(xptsetasyncbusfunc, &csa);
|
|
}
|
|
|
|
return (status);
|
|
}
|
|
|
|
static void
|
|
xptaction(struct cam_sim *sim, union ccb *work_ccb)
|
|
{
|
|
CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
|
|
|
|
switch (work_ccb->ccb_h.func_code) {
|
|
/* Common cases first */
|
|
case XPT_PATH_INQ: /* Path routing inquiry */
|
|
{
|
|
struct ccb_pathinq *cpi;
|
|
|
|
cpi = &work_ccb->cpi;
|
|
cpi->version_num = 1; /* XXX??? */
|
|
cpi->hba_inquiry = 0;
|
|
cpi->target_sprt = 0;
|
|
cpi->hba_misc = 0;
|
|
cpi->hba_eng_cnt = 0;
|
|
cpi->max_target = 0;
|
|
cpi->max_lun = 0;
|
|
cpi->initiator_id = 0;
|
|
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
|
|
strncpy(cpi->hba_vid, "", HBA_IDLEN);
|
|
strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
|
|
cpi->unit_number = sim->unit_number;
|
|
cpi->bus_id = sim->bus_id;
|
|
cpi->base_transfer_speed = 0;
|
|
cpi->protocol = PROTO_UNSPECIFIED;
|
|
cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
|
|
cpi->transport = XPORT_UNSPECIFIED;
|
|
cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
|
|
cpi->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(work_ccb);
|
|
break;
|
|
}
|
|
default:
|
|
work_ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
xpt_done(work_ccb);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The xpt as a "controller" has no interrupt sources, so polling
|
|
* is a no-op.
|
|
*/
|
|
static void
|
|
xptpoll(struct cam_sim *sim)
|
|
{
|
|
}
|
|
|
|
void
|
|
xpt_lock_buses(void)
|
|
{
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
}
|
|
|
|
void
|
|
xpt_unlock_buses(void)
|
|
{
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
}
|
|
|
|
struct mtx *
|
|
xpt_path_mtx(struct cam_path *path)
|
|
{
|
|
|
|
return (&path->device->device_mtx);
|
|
}
|
|
|
|
static void
|
|
xpt_done_process(struct ccb_hdr *ccb_h)
|
|
{
|
|
struct cam_sim *sim;
|
|
struct cam_devq *devq;
|
|
struct mtx *mtx = NULL;
|
|
|
|
if (ccb_h->flags & CAM_HIGH_POWER) {
|
|
struct highpowerlist *hphead;
|
|
struct cam_ed *device;
|
|
|
|
mtx_lock(&xsoftc.xpt_highpower_lock);
|
|
hphead = &xsoftc.highpowerq;
|
|
|
|
device = STAILQ_FIRST(hphead);
|
|
|
|
/*
|
|
* Increment the count since this command is done.
|
|
*/
|
|
xsoftc.num_highpower++;
|
|
|
|
/*
|
|
* Any high powered commands queued up?
|
|
*/
|
|
if (device != NULL) {
|
|
|
|
STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
|
|
mtx_unlock(&xsoftc.xpt_highpower_lock);
|
|
|
|
mtx_lock(&device->sim->devq->send_mtx);
|
|
xpt_release_devq_device(device,
|
|
/*count*/1, /*runqueue*/TRUE);
|
|
mtx_unlock(&device->sim->devq->send_mtx);
|
|
} else
|
|
mtx_unlock(&xsoftc.xpt_highpower_lock);
|
|
}
|
|
|
|
sim = ccb_h->path->bus->sim;
|
|
|
|
if (ccb_h->status & CAM_RELEASE_SIMQ) {
|
|
xpt_release_simq(sim, /*run_queue*/FALSE);
|
|
ccb_h->status &= ~CAM_RELEASE_SIMQ;
|
|
}
|
|
|
|
if ((ccb_h->flags & CAM_DEV_QFRZDIS)
|
|
&& (ccb_h->status & CAM_DEV_QFRZN)) {
|
|
xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
|
|
ccb_h->status &= ~CAM_DEV_QFRZN;
|
|
}
|
|
|
|
devq = sim->devq;
|
|
if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
|
|
struct cam_ed *dev = ccb_h->path->device;
|
|
|
|
mtx_lock(&devq->send_mtx);
|
|
devq->send_active--;
|
|
devq->send_openings++;
|
|
cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
|
|
|
|
if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
|
|
&& (dev->ccbq.dev_active == 0))) {
|
|
dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
|
|
xpt_release_devq_device(dev, /*count*/1,
|
|
/*run_queue*/FALSE);
|
|
}
|
|
|
|
if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
|
|
&& (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
|
|
dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
|
|
xpt_release_devq_device(dev, /*count*/1,
|
|
/*run_queue*/FALSE);
|
|
}
|
|
|
|
if (!device_is_queued(dev))
|
|
(void)xpt_schedule_devq(devq, dev);
|
|
xpt_run_devq(devq);
|
|
mtx_unlock(&devq->send_mtx);
|
|
|
|
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
|
|
mtx = xpt_path_mtx(ccb_h->path);
|
|
mtx_lock(mtx);
|
|
|
|
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|
|
&& (--dev->tag_delay_count == 0))
|
|
xpt_start_tags(ccb_h->path);
|
|
}
|
|
}
|
|
|
|
if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
|
|
if (mtx == NULL) {
|
|
mtx = xpt_path_mtx(ccb_h->path);
|
|
mtx_lock(mtx);
|
|
}
|
|
} else {
|
|
if (mtx != NULL) {
|
|
mtx_unlock(mtx);
|
|
mtx = NULL;
|
|
}
|
|
}
|
|
|
|
/* Call the peripheral driver's callback */
|
|
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
|
|
(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
|
|
if (mtx != NULL)
|
|
mtx_unlock(mtx);
|
|
}
|
|
|
|
void
|
|
xpt_done_td(void *arg)
|
|
{
|
|
struct cam_doneq *queue = arg;
|
|
struct ccb_hdr *ccb_h;
|
|
STAILQ_HEAD(, ccb_hdr) doneq;
|
|
|
|
STAILQ_INIT(&doneq);
|
|
mtx_lock(&queue->cam_doneq_mtx);
|
|
while (1) {
|
|
while (STAILQ_EMPTY(&queue->cam_doneq)) {
|
|
queue->cam_doneq_sleep = 1;
|
|
msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
|
|
PRIBIO, "-", 0);
|
|
queue->cam_doneq_sleep = 0;
|
|
}
|
|
STAILQ_CONCAT(&doneq, &queue->cam_doneq);
|
|
mtx_unlock(&queue->cam_doneq_mtx);
|
|
|
|
THREAD_NO_SLEEPING();
|
|
while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
|
|
STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
|
|
xpt_done_process(ccb_h);
|
|
}
|
|
THREAD_SLEEPING_OK();
|
|
|
|
mtx_lock(&queue->cam_doneq_mtx);
|
|
}
|
|
}
|
|
|
|
static void
|
|
camisr_runqueue(void)
|
|
{
|
|
struct ccb_hdr *ccb_h;
|
|
struct cam_doneq *queue;
|
|
int i;
|
|
|
|
/* Process global queues. */
|
|
for (i = 0; i < cam_num_doneqs; i++) {
|
|
queue = &cam_doneqs[i];
|
|
mtx_lock(&queue->cam_doneq_mtx);
|
|
while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
|
|
STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
|
|
mtx_unlock(&queue->cam_doneq_mtx);
|
|
xpt_done_process(ccb_h);
|
|
mtx_lock(&queue->cam_doneq_mtx);
|
|
}
|
|
mtx_unlock(&queue->cam_doneq_mtx);
|
|
}
|
|
}
|
|
|
|
struct kv
|
|
{
|
|
uint32_t v;
|
|
const char *name;
|
|
};
|
|
|
|
static struct kv map[] = {
|
|
{ XPT_NOOP, "XPT_NOOP" },
|
|
{ XPT_SCSI_IO, "XPT_SCSI_IO" },
|
|
{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
|
|
{ XPT_GDEVLIST, "XPT_GDEVLIST" },
|
|
{ XPT_PATH_INQ, "XPT_PATH_INQ" },
|
|
{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
|
|
{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
|
|
{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
|
|
{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
|
|
{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
|
|
{ XPT_DEBUG, "XPT_DEBUG" },
|
|
{ XPT_PATH_STATS, "XPT_PATH_STATS" },
|
|
{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
|
|
{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
|
|
{ XPT_ASYNC, "XPT_ASYNC" },
|
|
{ XPT_ABORT, "XPT_ABORT" },
|
|
{ XPT_RESET_BUS, "XPT_RESET_BUS" },
|
|
{ XPT_RESET_DEV, "XPT_RESET_DEV" },
|
|
{ XPT_TERM_IO, "XPT_TERM_IO" },
|
|
{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
|
|
{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
|
|
{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
|
|
{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
|
|
{ XPT_ATA_IO, "XPT_ATA_IO" },
|
|
{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
|
|
{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
|
|
{ XPT_NVME_IO, "XPT_NVME_IO" },
|
|
{ XPT_MMCSD_IO, "XPT_MMCSD_IO" },
|
|
{ XPT_SMP_IO, "XPT_SMP_IO" },
|
|
{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
|
|
{ XPT_ENG_INQ, "XPT_ENG_INQ" },
|
|
{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
|
|
{ XPT_EN_LUN, "XPT_EN_LUN" },
|
|
{ XPT_TARGET_IO, "XPT_TARGET_IO" },
|
|
{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
|
|
{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
|
|
{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
|
|
{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
|
|
{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
|
|
{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static const char *
|
|
xpt_action_name(uint32_t action)
|
|
{
|
|
static char buffer[32]; /* Only for unknown messages -- racy */
|
|
struct kv *walker = map;
|
|
|
|
while (walker->name != NULL) {
|
|
if (walker->v == action)
|
|
return (walker->name);
|
|
walker++;
|
|
}
|
|
|
|
snprintf(buffer, sizeof(buffer), "%#x", action);
|
|
return (buffer);
|
|
}
|