freebsd-skq/sys/dev/hwpmc/hwpmc_amd.c
mmacy 33d22ed3f8 hwpmc: simplify calling convention for hwpmc interrupt handling
pmc_process_interrupt takes 5 arguments when only 3 are needed.
cpu is always available in curcpu and inuserspace can always be
derived from the passed trapframe.

While facially a reasonable cleanup this change was motivated
by the need to workaround a compiler bug.

core2_intr(cpu, tf) ->
  pmc_process_interrupt(cpu, ring, pmc, tf, inuserspace) ->
    pmc_add_sample(cpu, ring, pm, tf, inuserspace)

In the process of optimizing the tail call the tf pointer was getting
clobbered:

(kgdb) up
    at /storage/mmacy/devel/freebsd/sys/dev/hwpmc/hwpmc_mod.c:4709
4709                                pmc_save_kernel_callchain(ps->ps_pc,
(kgdb) up
1205                    error = pmc_process_interrupt(cpu, PMC_HR, pm, tf,

resulting in a crash in pmc_save_kernel_callchain.
2018-06-08 04:58:03 +00:00

1038 lines
27 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2003-2008 Joseph Koshy
* Copyright (c) 2007 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by A. Joseph Koshy under
* sponsorship from the FreeBSD Foundation and Google, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* Support for the AMD K7 and later processors */
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pmc.h>
#include <sys/pmckern.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#ifdef HWPMC_DEBUG
enum pmc_class amd_pmc_class;
#endif
/* AMD K7 & K8 PMCs */
struct amd_descr {
struct pmc_descr pm_descr; /* "base class" */
uint32_t pm_evsel; /* address of EVSEL register */
uint32_t pm_perfctr; /* address of PERFCTR register */
};
static struct amd_descr amd_pmcdesc[AMD_NPMCS] =
{
{
.pm_descr =
{
.pd_name = "",
.pd_class = -1,
.pd_caps = AMD_PMC_CAPS,
.pd_width = 48
},
.pm_evsel = AMD_PMC_EVSEL_0,
.pm_perfctr = AMD_PMC_PERFCTR_0
},
{
.pm_descr =
{
.pd_name = "",
.pd_class = -1,
.pd_caps = AMD_PMC_CAPS,
.pd_width = 48
},
.pm_evsel = AMD_PMC_EVSEL_1,
.pm_perfctr = AMD_PMC_PERFCTR_1
},
{
.pm_descr =
{
.pd_name = "",
.pd_class = -1,
.pd_caps = AMD_PMC_CAPS,
.pd_width = 48
},
.pm_evsel = AMD_PMC_EVSEL_2,
.pm_perfctr = AMD_PMC_PERFCTR_2
},
{
.pm_descr =
{
.pd_name = "",
.pd_class = -1,
.pd_caps = AMD_PMC_CAPS,
.pd_width = 48
},
.pm_evsel = AMD_PMC_EVSEL_3,
.pm_perfctr = AMD_PMC_PERFCTR_3
}
};
struct amd_event_code_map {
enum pmc_event pe_ev; /* enum value */
uint16_t pe_code; /* encoded event mask */
uint8_t pe_mask; /* bits allowed in unit mask */
};
const struct amd_event_code_map amd_event_codes[] = {
#if defined(__i386__) /* 32 bit Athlon (K7) only */
{ PMC_EV_K7_DC_ACCESSES, 0x40, 0 },
{ PMC_EV_K7_DC_MISSES, 0x41, 0 },
{ PMC_EV_K7_DC_REFILLS_FROM_L2, 0x42, AMD_PMC_UNITMASK_MOESI },
{ PMC_EV_K7_DC_REFILLS_FROM_SYSTEM, 0x43, AMD_PMC_UNITMASK_MOESI },
{ PMC_EV_K7_DC_WRITEBACKS, 0x44, AMD_PMC_UNITMASK_MOESI },
{ PMC_EV_K7_L1_DTLB_MISS_AND_L2_DTLB_HITS, 0x45, 0 },
{ PMC_EV_K7_L1_AND_L2_DTLB_MISSES, 0x46, 0 },
{ PMC_EV_K7_MISALIGNED_REFERENCES, 0x47, 0 },
{ PMC_EV_K7_IC_FETCHES, 0x80, 0 },
{ PMC_EV_K7_IC_MISSES, 0x81, 0 },
{ PMC_EV_K7_L1_ITLB_MISSES, 0x84, 0 },
{ PMC_EV_K7_L1_L2_ITLB_MISSES, 0x85, 0 },
{ PMC_EV_K7_RETIRED_INSTRUCTIONS, 0xC0, 0 },
{ PMC_EV_K7_RETIRED_OPS, 0xC1, 0 },
{ PMC_EV_K7_RETIRED_BRANCHES, 0xC2, 0 },
{ PMC_EV_K7_RETIRED_BRANCHES_MISPREDICTED, 0xC3, 0 },
{ PMC_EV_K7_RETIRED_TAKEN_BRANCHES, 0xC4, 0 },
{ PMC_EV_K7_RETIRED_TAKEN_BRANCHES_MISPREDICTED, 0xC5, 0 },
{ PMC_EV_K7_RETIRED_FAR_CONTROL_TRANSFERS, 0xC6, 0 },
{ PMC_EV_K7_RETIRED_RESYNC_BRANCHES, 0xC7, 0 },
{ PMC_EV_K7_INTERRUPTS_MASKED_CYCLES, 0xCD, 0 },
{ PMC_EV_K7_INTERRUPTS_MASKED_WHILE_PENDING_CYCLES, 0xCE, 0 },
{ PMC_EV_K7_HARDWARE_INTERRUPTS, 0xCF, 0 },
#endif
{ PMC_EV_K8_FP_DISPATCHED_FPU_OPS, 0x00, 0x3F },
{ PMC_EV_K8_FP_CYCLES_WITH_NO_FPU_OPS_RETIRED, 0x01, 0x00 },
{ PMC_EV_K8_FP_DISPATCHED_FPU_FAST_FLAG_OPS, 0x02, 0x00 },
{ PMC_EV_K8_LS_SEGMENT_REGISTER_LOAD, 0x20, 0x7F },
{ PMC_EV_K8_LS_MICROARCHITECTURAL_RESYNC_BY_SELF_MODIFYING_CODE,
0x21, 0x00 },
{ PMC_EV_K8_LS_MICROARCHITECTURAL_RESYNC_BY_SNOOP, 0x22, 0x00 },
{ PMC_EV_K8_LS_BUFFER2_FULL, 0x23, 0x00 },
{ PMC_EV_K8_LS_LOCKED_OPERATION, 0x24, 0x07 },
{ PMC_EV_K8_LS_MICROARCHITECTURAL_LATE_CANCEL, 0x25, 0x00 },
{ PMC_EV_K8_LS_RETIRED_CFLUSH_INSTRUCTIONS, 0x26, 0x00 },
{ PMC_EV_K8_LS_RETIRED_CPUID_INSTRUCTIONS, 0x27, 0x00 },
{ PMC_EV_K8_DC_ACCESS, 0x40, 0x00 },
{ PMC_EV_K8_DC_MISS, 0x41, 0x00 },
{ PMC_EV_K8_DC_REFILL_FROM_L2, 0x42, 0x1F },
{ PMC_EV_K8_DC_REFILL_FROM_SYSTEM, 0x43, 0x1F },
{ PMC_EV_K8_DC_COPYBACK, 0x44, 0x1F },
{ PMC_EV_K8_DC_L1_DTLB_MISS_AND_L2_DTLB_HIT, 0x45, 0x00 },
{ PMC_EV_K8_DC_L1_DTLB_MISS_AND_L2_DTLB_MISS, 0x46, 0x00 },
{ PMC_EV_K8_DC_MISALIGNED_DATA_REFERENCE, 0x47, 0x00 },
{ PMC_EV_K8_DC_MICROARCHITECTURAL_LATE_CANCEL, 0x48, 0x00 },
{ PMC_EV_K8_DC_MICROARCHITECTURAL_EARLY_CANCEL, 0x49, 0x00 },
{ PMC_EV_K8_DC_ONE_BIT_ECC_ERROR, 0x4A, 0x03 },
{ PMC_EV_K8_DC_DISPATCHED_PREFETCH_INSTRUCTIONS, 0x4B, 0x07 },
{ PMC_EV_K8_DC_DCACHE_ACCESSES_BY_LOCKS, 0x4C, 0x03 },
{ PMC_EV_K8_BU_CPU_CLK_UNHALTED, 0x76, 0x00 },
{ PMC_EV_K8_BU_INTERNAL_L2_REQUEST, 0x7D, 0x1F },
{ PMC_EV_K8_BU_FILL_REQUEST_L2_MISS, 0x7E, 0x07 },
{ PMC_EV_K8_BU_FILL_INTO_L2, 0x7F, 0x03 },
{ PMC_EV_K8_IC_FETCH, 0x80, 0x00 },
{ PMC_EV_K8_IC_MISS, 0x81, 0x00 },
{ PMC_EV_K8_IC_REFILL_FROM_L2, 0x82, 0x00 },
{ PMC_EV_K8_IC_REFILL_FROM_SYSTEM, 0x83, 0x00 },
{ PMC_EV_K8_IC_L1_ITLB_MISS_AND_L2_ITLB_HIT, 0x84, 0x00 },
{ PMC_EV_K8_IC_L1_ITLB_MISS_AND_L2_ITLB_MISS, 0x85, 0x00 },
{ PMC_EV_K8_IC_MICROARCHITECTURAL_RESYNC_BY_SNOOP, 0x86, 0x00 },
{ PMC_EV_K8_IC_INSTRUCTION_FETCH_STALL, 0x87, 0x00 },
{ PMC_EV_K8_IC_RETURN_STACK_HIT, 0x88, 0x00 },
{ PMC_EV_K8_IC_RETURN_STACK_OVERFLOW, 0x89, 0x00 },
{ PMC_EV_K8_FR_RETIRED_X86_INSTRUCTIONS, 0xC0, 0x00 },
{ PMC_EV_K8_FR_RETIRED_UOPS, 0xC1, 0x00 },
{ PMC_EV_K8_FR_RETIRED_BRANCHES, 0xC2, 0x00 },
{ PMC_EV_K8_FR_RETIRED_BRANCHES_MISPREDICTED, 0xC3, 0x00 },
{ PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES, 0xC4, 0x00 },
{ PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES_MISPREDICTED, 0xC5, 0x00 },
{ PMC_EV_K8_FR_RETIRED_FAR_CONTROL_TRANSFERS, 0xC6, 0x00 },
{ PMC_EV_K8_FR_RETIRED_RESYNCS, 0xC7, 0x00 },
{ PMC_EV_K8_FR_RETIRED_NEAR_RETURNS, 0xC8, 0x00 },
{ PMC_EV_K8_FR_RETIRED_NEAR_RETURNS_MISPREDICTED, 0xC9, 0x00 },
{ PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES_MISPREDICTED_BY_ADDR_MISCOMPARE,
0xCA, 0x00 },
{ PMC_EV_K8_FR_RETIRED_FPU_INSTRUCTIONS, 0xCB, 0x0F },
{ PMC_EV_K8_FR_RETIRED_FASTPATH_DOUBLE_OP_INSTRUCTIONS,
0xCC, 0x07 },
{ PMC_EV_K8_FR_INTERRUPTS_MASKED_CYCLES, 0xCD, 0x00 },
{ PMC_EV_K8_FR_INTERRUPTS_MASKED_WHILE_PENDING_CYCLES, 0xCE, 0x00 },
{ PMC_EV_K8_FR_TAKEN_HARDWARE_INTERRUPTS, 0xCF, 0x00 },
{ PMC_EV_K8_FR_DECODER_EMPTY, 0xD0, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALLS, 0xD1, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_FROM_BRANCH_ABORT_TO_RETIRE,
0xD2, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_FOR_SERIALIZATION, 0xD3, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_FOR_SEGMENT_LOAD, 0xD4, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_REORDER_BUFFER_IS_FULL,
0xD5, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_RESERVATION_STATIONS_ARE_FULL,
0xD6, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_FPU_IS_FULL, 0xD7, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_LS_IS_FULL, 0xD8, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_WAITING_FOR_ALL_TO_BE_QUIET,
0xD9, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_FAR_XFER_OR_RESYNC_BRANCH_PENDING,
0xDA, 0x00 },
{ PMC_EV_K8_FR_FPU_EXCEPTIONS, 0xDB, 0x0F },
{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR0, 0xDC, 0x00 },
{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR1, 0xDD, 0x00 },
{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR2, 0xDE, 0x00 },
{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR3, 0xDF, 0x00 },
{ PMC_EV_K8_NB_MEMORY_CONTROLLER_PAGE_ACCESS_EVENT, 0xE0, 0x7 },
{ PMC_EV_K8_NB_MEMORY_CONTROLLER_PAGE_TABLE_OVERFLOW, 0xE1, 0x00 },
{ PMC_EV_K8_NB_MEMORY_CONTROLLER_DRAM_COMMAND_SLOTS_MISSED,
0xE2, 0x00 },
{ PMC_EV_K8_NB_MEMORY_CONTROLLER_TURNAROUND, 0xE3, 0x07 },
{ PMC_EV_K8_NB_MEMORY_CONTROLLER_BYPASS_SATURATION, 0xE4, 0x0F },
{ PMC_EV_K8_NB_SIZED_COMMANDS, 0xEB, 0x7F },
{ PMC_EV_K8_NB_PROBE_RESULT, 0xEC, 0x0F },
{ PMC_EV_K8_NB_HT_BUS0_BANDWIDTH, 0xF6, 0x0F },
{ PMC_EV_K8_NB_HT_BUS1_BANDWIDTH, 0xF7, 0x0F },
{ PMC_EV_K8_NB_HT_BUS2_BANDWIDTH, 0xF8, 0x0F }
};
const int amd_event_codes_size = nitems(amd_event_codes);
/*
* Per-processor information
*/
struct amd_cpu {
struct pmc_hw pc_amdpmcs[AMD_NPMCS];
};
static struct amd_cpu **amd_pcpu;
/*
* read a pmc register
*/
static int
amd_read_pmc(int cpu, int ri, pmc_value_t *v)
{
enum pmc_mode mode;
const struct amd_descr *pd;
struct pmc *pm;
pmc_value_t tmp;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
KASSERT(amd_pcpu[cpu],
("[amd,%d] null per-cpu, cpu %d", __LINE__, cpu));
pm = amd_pcpu[cpu]->pc_amdpmcs[ri].phw_pmc;
pd = &amd_pmcdesc[ri];
KASSERT(pm != NULL,
("[amd,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__,
cpu, ri));
mode = PMC_TO_MODE(pm);
PMCDBG2(MDP,REA,1,"amd-read id=%d class=%d", ri, pd->pm_descr.pd_class);
#ifdef HWPMC_DEBUG
KASSERT(pd->pm_descr.pd_class == amd_pmc_class,
("[amd,%d] unknown PMC class (%d)", __LINE__,
pd->pm_descr.pd_class));
#endif
tmp = rdmsr(pd->pm_perfctr); /* RDMSR serializes */
PMCDBG2(MDP,REA,2,"amd-read (pre-munge) id=%d -> %jd", ri, tmp);
if (PMC_IS_SAMPLING_MODE(mode)) {
/* Sign extend 48 bit value to 64 bits. */
tmp = (pmc_value_t) (((int64_t) tmp << 16) >> 16);
tmp = AMD_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
}
*v = tmp;
PMCDBG2(MDP,REA,2,"amd-read (post-munge) id=%d -> %jd", ri, *v);
return 0;
}
/*
* Write a PMC MSR.
*/
static int
amd_write_pmc(int cpu, int ri, pmc_value_t v)
{
const struct amd_descr *pd;
enum pmc_mode mode;
struct pmc *pm;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
pm = amd_pcpu[cpu]->pc_amdpmcs[ri].phw_pmc;
pd = &amd_pmcdesc[ri];
KASSERT(pm != NULL,
("[amd,%d] PMC not owned (cpu%d,pmc%d)", __LINE__,
cpu, ri));
mode = PMC_TO_MODE(pm);
#ifdef HWPMC_DEBUG
KASSERT(pd->pm_descr.pd_class == amd_pmc_class,
("[amd,%d] unknown PMC class (%d)", __LINE__,
pd->pm_descr.pd_class));
#endif
/* use 2's complement of the count for sampling mode PMCs */
if (PMC_IS_SAMPLING_MODE(mode))
v = AMD_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
PMCDBG3(MDP,WRI,1,"amd-write cpu=%d ri=%d v=%jx", cpu, ri, v);
/* write the PMC value */
wrmsr(pd->pm_perfctr, v);
return 0;
}
/*
* configure hardware pmc according to the configuration recorded in
* pmc 'pm'.
*/
static int
amd_config_pmc(int cpu, int ri, struct pmc *pm)
{
struct pmc_hw *phw;
PMCDBG3(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
KASSERT(pm == NULL || phw->phw_pmc == NULL,
("[amd,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
__LINE__, pm, phw->phw_pmc));
phw->phw_pmc = pm;
return 0;
}
/*
* Retrieve a configured PMC pointer from hardware state.
*/
static int
amd_get_config(int cpu, int ri, struct pmc **ppm)
{
*ppm = amd_pcpu[cpu]->pc_amdpmcs[ri].phw_pmc;
return 0;
}
/*
* Machine dependent actions taken during the context switch in of a
* thread.
*/
static int
amd_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
{
(void) pc;
PMCDBG3(MDP,SWI,1, "pc=%p pp=%p enable-msr=%d", pc, pp,
(pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0);
/* enable the RDPMC instruction if needed */
if (pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS)
load_cr4(rcr4() | CR4_PCE);
return 0;
}
/*
* Machine dependent actions taken during the context switch out of a
* thread.
*/
static int
amd_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
{
(void) pc;
(void) pp; /* can be NULL */
PMCDBG3(MDP,SWO,1, "pc=%p pp=%p enable-msr=%d", pc, pp, pp ?
(pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS) == 1 : 0);
/* always turn off the RDPMC instruction */
load_cr4(rcr4() & ~CR4_PCE);
return 0;
}
/*
* Check if a given allocation is feasible.
*/
static int
amd_allocate_pmc(int cpu, int ri, struct pmc *pm,
const struct pmc_op_pmcallocate *a)
{
int i;
uint32_t allowed_unitmask, caps, config, unitmask;
enum pmc_event pe;
const struct pmc_descr *pd;
(void) cpu;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row index %d", __LINE__, ri));
pd = &amd_pmcdesc[ri].pm_descr;
/* check class match */
if (pd->pd_class != a->pm_class)
return EINVAL;
caps = pm->pm_caps;
PMCDBG2(MDP,ALL,1,"amd-allocate ri=%d caps=0x%x", ri, caps);
if ((pd->pd_caps & caps) != caps)
return EPERM;
pe = a->pm_ev;
/* map ev to the correct event mask code */
config = allowed_unitmask = 0;
for (i = 0; i < amd_event_codes_size; i++)
if (amd_event_codes[i].pe_ev == pe) {
config =
AMD_PMC_TO_EVENTMASK(amd_event_codes[i].pe_code);
allowed_unitmask =
AMD_PMC_TO_UNITMASK(amd_event_codes[i].pe_mask);
break;
}
if (i == amd_event_codes_size)
return EINVAL;
unitmask = a->pm_md.pm_amd.pm_amd_config & AMD_PMC_UNITMASK;
if (unitmask & ~allowed_unitmask) /* disallow reserved bits */
return EINVAL;
if (unitmask && (caps & PMC_CAP_QUALIFIER))
config |= unitmask;
if (caps & PMC_CAP_THRESHOLD)
config |= a->pm_md.pm_amd.pm_amd_config & AMD_PMC_COUNTERMASK;
/* set at least one of the 'usr' or 'os' caps */
if (caps & PMC_CAP_USER)
config |= AMD_PMC_USR;
if (caps & PMC_CAP_SYSTEM)
config |= AMD_PMC_OS;
if ((caps & (PMC_CAP_USER|PMC_CAP_SYSTEM)) == 0)
config |= (AMD_PMC_USR|AMD_PMC_OS);
if (caps & PMC_CAP_EDGE)
config |= AMD_PMC_EDGE;
if (caps & PMC_CAP_INVERT)
config |= AMD_PMC_INVERT;
if (caps & PMC_CAP_INTERRUPT)
config |= AMD_PMC_INT;
pm->pm_md.pm_amd.pm_amd_evsel = config; /* save config value */
PMCDBG2(MDP,ALL,2,"amd-allocate ri=%d -> config=0x%x", ri, config);
return 0;
}
/*
* Release machine dependent state associated with a PMC. This is a
* no-op on this architecture.
*
*/
/* ARGSUSED0 */
static int
amd_release_pmc(int cpu, int ri, struct pmc *pmc)
{
#ifdef HWPMC_DEBUG
const struct amd_descr *pd;
#endif
struct pmc_hw *phw;
(void) pmc;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
KASSERT(phw->phw_pmc == NULL,
("[amd,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
#ifdef HWPMC_DEBUG
pd = &amd_pmcdesc[ri];
if (pd->pm_descr.pd_class == amd_pmc_class)
KASSERT(AMD_PMC_IS_STOPPED(pd->pm_evsel),
("[amd,%d] PMC %d released while active", __LINE__, ri));
#endif
return 0;
}
/*
* start a PMC.
*/
static int
amd_start_pmc(int cpu, int ri)
{
uint32_t config;
struct pmc *pm;
struct pmc_hw *phw;
const struct amd_descr *pd;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
pm = phw->phw_pmc;
pd = &amd_pmcdesc[ri];
KASSERT(pm != NULL,
("[amd,%d] starting cpu%d,pmc%d with null pmc record", __LINE__,
cpu, ri));
PMCDBG2(MDP,STA,1,"amd-start cpu=%d ri=%d", cpu, ri);
KASSERT(AMD_PMC_IS_STOPPED(pd->pm_evsel),
("[amd,%d] pmc%d,cpu%d: Starting active PMC \"%s\"", __LINE__,
ri, cpu, pd->pm_descr.pd_name));
/* turn on the PMC ENABLE bit */
config = pm->pm_md.pm_amd.pm_amd_evsel | AMD_PMC_ENABLE;
PMCDBG1(MDP,STA,2,"amd-start config=0x%x", config);
wrmsr(pd->pm_evsel, config);
return 0;
}
/*
* Stop a PMC.
*/
static int
amd_stop_pmc(int cpu, int ri)
{
struct pmc *pm;
struct pmc_hw *phw;
const struct amd_descr *pd;
uint64_t config;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
pm = phw->phw_pmc;
pd = &amd_pmcdesc[ri];
KASSERT(pm != NULL,
("[amd,%d] cpu%d,pmc%d no PMC to stop", __LINE__,
cpu, ri));
KASSERT(!AMD_PMC_IS_STOPPED(pd->pm_evsel),
("[amd,%d] PMC%d, CPU%d \"%s\" already stopped",
__LINE__, ri, cpu, pd->pm_descr.pd_name));
PMCDBG1(MDP,STO,1,"amd-stop ri=%d", ri);
/* turn off the PMC ENABLE bit */
config = pm->pm_md.pm_amd.pm_amd_evsel & ~AMD_PMC_ENABLE;
wrmsr(pd->pm_evsel, config);
return 0;
}
/*
* Interrupt handler. This function needs to return '1' if the
* interrupt was this CPU's PMCs or '0' otherwise. It is not allowed
* to sleep or do anything a 'fast' interrupt handler is not allowed
* to do.
*/
static int
amd_intr(struct trapframe *tf)
{
int i, error, retval, cpu;
uint32_t config, evsel, perfctr;
struct pmc *pm;
struct amd_cpu *pac;
pmc_value_t v;
cpu = curcpu;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] out of range CPU %d", __LINE__, cpu));
PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf,
TRAPF_USERMODE(tf));
retval = 0;
pac = amd_pcpu[cpu];
/*
* look for all PMCs that have interrupted:
* - look for a running, sampling PMC which has overflowed
* and which has a valid 'struct pmc' association
*
* If found, we call a helper to process the interrupt.
*
* If multiple PMCs interrupt at the same time, the AMD64
* processor appears to deliver as many NMIs as there are
* outstanding PMC interrupts. So we process only one NMI
* interrupt at a time.
*/
for (i = 0; retval == 0 && i < AMD_NPMCS; i++) {
if ((pm = pac->pc_amdpmcs[i].phw_pmc) == NULL ||
!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
continue;
}
if (!AMD_PMC_HAS_OVERFLOWED(i))
continue;
retval = 1; /* Found an interrupting PMC. */
if (pm->pm_state != PMC_STATE_RUNNING)
continue;
/* Stop the PMC, reload count. */
evsel = AMD_PMC_EVSEL_0 + i;
perfctr = AMD_PMC_PERFCTR_0 + i;
v = pm->pm_sc.pm_reloadcount;
config = rdmsr(evsel);
KASSERT((config & ~AMD_PMC_ENABLE) ==
(pm->pm_md.pm_amd.pm_amd_evsel & ~AMD_PMC_ENABLE),
("[amd,%d] config mismatch reg=0x%x pm=0x%x", __LINE__,
config, pm->pm_md.pm_amd.pm_amd_evsel));
wrmsr(evsel, config & ~AMD_PMC_ENABLE);
wrmsr(perfctr, AMD_RELOAD_COUNT_TO_PERFCTR_VALUE(v));
/* Restart the counter if logging succeeded. */
error = pmc_process_interrupt(PMC_HR, pm, tf);
if (error == 0)
wrmsr(evsel, config);
}
if (retval)
counter_u64_add(pmc_stats.pm_intr_processed, 1);
else
counter_u64_add(pmc_stats.pm_intr_ignored, 1);
PMCDBG1(MDP,INT,2, "retval=%d", retval);
return (retval);
}
/*
* describe a PMC
*/
static int
amd_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
{
int error;
size_t copied;
const struct amd_descr *pd;
struct pmc_hw *phw;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] row-index %d out of range", __LINE__, ri));
phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
pd = &amd_pmcdesc[ri];
if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name,
PMC_NAME_MAX, &copied)) != 0)
return error;
pi->pm_class = pd->pm_descr.pd_class;
if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
pi->pm_enabled = TRUE;
*ppmc = phw->phw_pmc;
} else {
pi->pm_enabled = FALSE;
*ppmc = NULL;
}
return 0;
}
/*
* i386 specific entry points
*/
/*
* return the MSR address of the given PMC.
*/
static int
amd_get_msr(int ri, uint32_t *msr)
{
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] ri %d out of range", __LINE__, ri));
*msr = amd_pmcdesc[ri].pm_perfctr - AMD_PMC_PERFCTR_0;
return (0);
}
/*
* processor dependent initialization.
*/
static int
amd_pcpu_init(struct pmc_mdep *md, int cpu)
{
int classindex, first_ri, n;
struct pmc_cpu *pc;
struct amd_cpu *pac;
struct pmc_hw *phw;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] insane cpu number %d", __LINE__, cpu));
PMCDBG1(MDP,INI,1,"amd-init cpu=%d", cpu);
amd_pcpu[cpu] = pac = malloc(sizeof(struct amd_cpu), M_PMC,
M_WAITOK|M_ZERO);
/*
* Set the content of the hardware descriptors to a known
* state and initialize pointers in the MI per-cpu descriptor.
*/
pc = pmc_pcpu[cpu];
#if defined(__amd64__)
classindex = PMC_MDEP_CLASS_INDEX_K8;
#elif defined(__i386__)
classindex = md->pmd_cputype == PMC_CPU_AMD_K8 ?
PMC_MDEP_CLASS_INDEX_K8 : PMC_MDEP_CLASS_INDEX_K7;
#endif
first_ri = md->pmd_classdep[classindex].pcd_ri;
KASSERT(pc != NULL, ("[amd,%d] NULL per-cpu pointer", __LINE__));
for (n = 0, phw = pac->pc_amdpmcs; n < AMD_NPMCS; n++, phw++) {
phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n);
phw->phw_pmc = NULL;
pc->pc_hwpmcs[n + first_ri] = phw;
}
return (0);
}
/*
* processor dependent cleanup prior to the KLD
* being unloaded
*/
static int
amd_pcpu_fini(struct pmc_mdep *md, int cpu)
{
int classindex, first_ri, i;
uint32_t evsel;
struct pmc_cpu *pc;
struct amd_cpu *pac;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] insane cpu number (%d)", __LINE__, cpu));
PMCDBG1(MDP,INI,1,"amd-cleanup cpu=%d", cpu);
/*
* First, turn off all PMCs on this CPU.
*/
for (i = 0; i < 4; i++) { /* XXX this loop is now not needed */
evsel = rdmsr(AMD_PMC_EVSEL_0 + i);
evsel &= ~AMD_PMC_ENABLE;
wrmsr(AMD_PMC_EVSEL_0 + i, evsel);
}
/*
* Next, free up allocated space.
*/
if ((pac = amd_pcpu[cpu]) == NULL)
return (0);
amd_pcpu[cpu] = NULL;
#ifdef HWPMC_DEBUG
for (i = 0; i < AMD_NPMCS; i++) {
KASSERT(pac->pc_amdpmcs[i].phw_pmc == NULL,
("[amd,%d] CPU%d/PMC%d in use", __LINE__, cpu, i));
KASSERT(AMD_PMC_IS_STOPPED(AMD_PMC_EVSEL_0 + i),
("[amd,%d] CPU%d/PMC%d not stopped", __LINE__, cpu, i));
}
#endif
pc = pmc_pcpu[cpu];
KASSERT(pc != NULL, ("[amd,%d] NULL per-cpu state", __LINE__));
#if defined(__amd64__)
classindex = PMC_MDEP_CLASS_INDEX_K8;
#elif defined(__i386__)
classindex = md->pmd_cputype == PMC_CPU_AMD_K8 ? PMC_MDEP_CLASS_INDEX_K8 :
PMC_MDEP_CLASS_INDEX_K7;
#endif
first_ri = md->pmd_classdep[classindex].pcd_ri;
/*
* Reset pointers in the MI 'per-cpu' state.
*/
for (i = 0; i < AMD_NPMCS; i++) {
pc->pc_hwpmcs[i + first_ri] = NULL;
}
free(pac, M_PMC);
return (0);
}
/*
* Initialize ourselves.
*/
struct pmc_mdep *
pmc_amd_initialize(void)
{
int classindex, error, i, ncpus;
struct pmc_classdep *pcd;
enum pmc_cputype cputype;
struct pmc_mdep *pmc_mdep;
enum pmc_class class;
char *name;
/*
* The presence of hardware performance counters on the AMD
* Athlon, Duron or later processors, is _not_ indicated by
* any of the processor feature flags set by the 'CPUID'
* instruction, so we only check the 'instruction family'
* field returned by CPUID for instruction family >= 6.
*/
name = NULL;
switch (cpu_id & 0xF00) {
#if defined(__i386__)
case 0x600: /* Athlon(tm) processor */
classindex = PMC_MDEP_CLASS_INDEX_K7;
cputype = PMC_CPU_AMD_K7;
class = PMC_CLASS_K7;
name = "K7";
break;
#endif
case 0xF00: /* Athlon64/Opteron processor */
classindex = PMC_MDEP_CLASS_INDEX_K8;
cputype = PMC_CPU_AMD_K8;
class = PMC_CLASS_K8;
name = "K8";
break;
default:
(void) printf("pmc: Unknown AMD CPU.\n");
return NULL;
}
#ifdef HWPMC_DEBUG
amd_pmc_class = class;
#endif
/*
* Allocate space for pointers to PMC HW descriptors and for
* the MDEP structure used by MI code.
*/
amd_pcpu = malloc(sizeof(struct amd_cpu *) * pmc_cpu_max(), M_PMC,
M_WAITOK|M_ZERO);
/*
* These processors have two classes of PMCs: the TSC and
* programmable PMCs.
*/
pmc_mdep = pmc_mdep_alloc(2);
pmc_mdep->pmd_cputype = cputype;
ncpus = pmc_cpu_max();
/* Initialize the TSC. */
error = pmc_tsc_initialize(pmc_mdep, ncpus);
if (error)
goto error;
/* Initialize AMD K7 and K8 PMC handling. */
pcd = &pmc_mdep->pmd_classdep[classindex];
pcd->pcd_caps = AMD_PMC_CAPS;
pcd->pcd_class = class;
pcd->pcd_num = AMD_NPMCS;
pcd->pcd_ri = pmc_mdep->pmd_npmc;
pcd->pcd_width = 48;
/* fill in the correct pmc name and class */
for (i = 0; i < AMD_NPMCS; i++) {
(void) snprintf(amd_pmcdesc[i].pm_descr.pd_name,
sizeof(amd_pmcdesc[i].pm_descr.pd_name), "%s-%d",
name, i);
amd_pmcdesc[i].pm_descr.pd_class = class;
}
pcd->pcd_allocate_pmc = amd_allocate_pmc;
pcd->pcd_config_pmc = amd_config_pmc;
pcd->pcd_describe = amd_describe;
pcd->pcd_get_config = amd_get_config;
pcd->pcd_get_msr = amd_get_msr;
pcd->pcd_pcpu_fini = amd_pcpu_fini;
pcd->pcd_pcpu_init = amd_pcpu_init;
pcd->pcd_read_pmc = amd_read_pmc;
pcd->pcd_release_pmc = amd_release_pmc;
pcd->pcd_start_pmc = amd_start_pmc;
pcd->pcd_stop_pmc = amd_stop_pmc;
pcd->pcd_write_pmc = amd_write_pmc;
pmc_mdep->pmd_pcpu_init = NULL;
pmc_mdep->pmd_pcpu_fini = NULL;
pmc_mdep->pmd_intr = amd_intr;
pmc_mdep->pmd_switch_in = amd_switch_in;
pmc_mdep->pmd_switch_out = amd_switch_out;
pmc_mdep->pmd_npmc += AMD_NPMCS;
PMCDBG0(MDP,INI,0,"amd-initialize");
return (pmc_mdep);
error:
if (error) {
free(pmc_mdep, M_PMC);
pmc_mdep = NULL;
}
return (NULL);
}
/*
* Finalization code for AMD CPUs.
*/
void
pmc_amd_finalize(struct pmc_mdep *md)
{
#if defined(INVARIANTS)
int classindex, i, ncpus, pmcclass;
#endif
pmc_tsc_finalize(md);
KASSERT(amd_pcpu != NULL, ("[amd,%d] NULL per-cpu array pointer",
__LINE__));
#if defined(INVARIANTS)
switch (md->pmd_cputype) {
#if defined(__i386__)
case PMC_CPU_AMD_K7:
classindex = PMC_MDEP_CLASS_INDEX_K7;
pmcclass = PMC_CLASS_K7;
break;
#endif
default:
classindex = PMC_MDEP_CLASS_INDEX_K8;
pmcclass = PMC_CLASS_K8;
}
KASSERT(md->pmd_classdep[classindex].pcd_class == pmcclass,
("[amd,%d] pmc class mismatch", __LINE__));
ncpus = pmc_cpu_max();
for (i = 0; i < ncpus; i++)
KASSERT(amd_pcpu[i] == NULL, ("[amd,%d] non-null pcpu",
__LINE__));
#endif
free(amd_pcpu, M_PMC);
amd_pcpu = NULL;
}