97e52ec00f
unused except in dead code when ast() was split off from trap().
1328 lines
32 KiB
C
1328 lines
32 KiB
C
/*-
|
|
* Copyright (C) 1994, David Greenman
|
|
* Copyright (c) 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the University of Utah, and William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)trap.c 7.4 (Berkeley) 5/13/91
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* 386 Trap and System call handling
|
|
*/
|
|
|
|
#include "opt_clock.h"
|
|
#include "opt_cpu.h"
|
|
#include "opt_ddb.h"
|
|
#include "opt_isa.h"
|
|
#include "opt_ktrace.h"
|
|
#include "opt_npx.h"
|
|
#include "opt_trap.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/pioctl.h>
|
|
#include <sys/ipl.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/vmmeter.h>
|
|
#ifdef KTRACE
|
|
#include <sys/ktrace.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <sys/lock.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/pcb.h>
|
|
#ifdef SMP
|
|
#include <machine/smp.h>
|
|
#endif
|
|
#include <machine/tss.h>
|
|
|
|
#include <i386/isa/icu.h>
|
|
#include <i386/isa/intr_machdep.h>
|
|
|
|
#ifdef POWERFAIL_NMI
|
|
#include <sys/syslog.h>
|
|
#include <machine/clock.h>
|
|
#endif
|
|
|
|
#include <machine/vm86.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
int (*pmath_emulate) __P((struct trapframe *));
|
|
|
|
extern void trap __P((struct trapframe frame));
|
|
extern int trapwrite __P((unsigned addr));
|
|
extern void syscall __P((struct trapframe frame));
|
|
extern void ast __P((struct trapframe frame));
|
|
|
|
static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
|
|
static void trap_fatal __P((struct trapframe *, vm_offset_t));
|
|
void dblfault_handler __P((void));
|
|
|
|
extern inthand_t IDTVEC(syscall);
|
|
|
|
#define MAX_TRAP_MSG 28
|
|
static char *trap_msg[] = {
|
|
"", /* 0 unused */
|
|
"privileged instruction fault", /* 1 T_PRIVINFLT */
|
|
"", /* 2 unused */
|
|
"breakpoint instruction fault", /* 3 T_BPTFLT */
|
|
"", /* 4 unused */
|
|
"", /* 5 unused */
|
|
"arithmetic trap", /* 6 T_ARITHTRAP */
|
|
"", /* 7 unused */
|
|
"", /* 8 unused */
|
|
"general protection fault", /* 9 T_PROTFLT */
|
|
"trace trap", /* 10 T_TRCTRAP */
|
|
"", /* 11 unused */
|
|
"page fault", /* 12 T_PAGEFLT */
|
|
"", /* 13 unused */
|
|
"alignment fault", /* 14 T_ALIGNFLT */
|
|
"", /* 15 unused */
|
|
"", /* 16 unused */
|
|
"", /* 17 unused */
|
|
"integer divide fault", /* 18 T_DIVIDE */
|
|
"non-maskable interrupt trap", /* 19 T_NMI */
|
|
"overflow trap", /* 20 T_OFLOW */
|
|
"FPU bounds check fault", /* 21 T_BOUND */
|
|
"FPU device not available", /* 22 T_DNA */
|
|
"double fault", /* 23 T_DOUBLEFLT */
|
|
"FPU operand fetch fault", /* 24 T_FPOPFLT */
|
|
"invalid TSS fault", /* 25 T_TSSFLT */
|
|
"segment not present fault", /* 26 T_SEGNPFLT */
|
|
"stack fault", /* 27 T_STKFLT */
|
|
"machine check trap", /* 28 T_MCHK */
|
|
};
|
|
|
|
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
|
|
extern int has_f00f_bug;
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
static int ddb_on_nmi = 1;
|
|
SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
|
|
&ddb_on_nmi, 0, "Go to DDB on NMI");
|
|
#endif
|
|
static int panic_on_nmi = 1;
|
|
SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
|
|
&panic_on_nmi, 0, "Panic on NMI");
|
|
|
|
#ifdef WITNESS
|
|
extern char *syscallnames[];
|
|
#endif
|
|
|
|
void
|
|
userret(p, frame, oticks)
|
|
struct proc *p;
|
|
struct trapframe *frame;
|
|
u_quad_t oticks;
|
|
{
|
|
int sig;
|
|
|
|
while ((sig = CURSIG(p)) != 0) {
|
|
if (!mtx_owned(&Giant))
|
|
mtx_lock(&Giant);
|
|
postsig(sig);
|
|
}
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
p->p_pri.pri_level = p->p_pri.pri_user;
|
|
if (resched_wanted()) {
|
|
/*
|
|
* Since we are curproc, clock will normally just change
|
|
* our priority without moving us from one queue to another
|
|
* (since the running process is not on a queue.)
|
|
* If that happened after we setrunqueue ourselves but before we
|
|
* mi_switch()'ed, we might not be on the queue indicated by
|
|
* our priority.
|
|
*/
|
|
clear_resched();
|
|
DROP_GIANT_NOSWITCH();
|
|
setrunqueue(p);
|
|
p->p_stats->p_ru.ru_nivcsw++;
|
|
mi_switch();
|
|
mtx_unlock_spin(&sched_lock);
|
|
PICKUP_GIANT();
|
|
while ((sig = CURSIG(p)) != 0) {
|
|
if (!mtx_owned(&Giant))
|
|
mtx_lock(&Giant);
|
|
postsig(sig);
|
|
}
|
|
mtx_lock_spin(&sched_lock);
|
|
}
|
|
|
|
/*
|
|
* Charge system time if profiling.
|
|
*/
|
|
if (p->p_sflag & PS_PROFIL) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
/* XXX - do we need Giant? */
|
|
if (!mtx_owned(&Giant))
|
|
mtx_lock(&Giant);
|
|
mtx_lock_spin(&sched_lock);
|
|
addupc_task(p, TRAPF_PC(frame),
|
|
(u_int)(p->p_sticks - oticks) * psratio);
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
|
|
/*
|
|
* Exception, fault, and trap interface to the FreeBSD kernel.
|
|
* This common code is called from assembly language IDT gate entry
|
|
* routines that prepare a suitable stack frame, and restore this
|
|
* frame after the exception has been processed.
|
|
*/
|
|
|
|
void
|
|
trap(frame)
|
|
struct trapframe frame;
|
|
{
|
|
struct proc *p = curproc;
|
|
u_quad_t sticks = 0;
|
|
int i = 0, ucode = 0, type, code;
|
|
vm_offset_t eva;
|
|
#ifdef POWERFAIL_NMI
|
|
static int lastalert = 0;
|
|
#endif
|
|
|
|
atomic_add_int(&cnt.v_trap, 1);
|
|
|
|
if ((frame.tf_eflags & PSL_I) == 0) {
|
|
/*
|
|
* Buggy application or kernel code has disabled
|
|
* interrupts and then trapped. Enabling interrupts
|
|
* now is wrong, but it is better than running with
|
|
* interrupts disabled until they are accidentally
|
|
* enabled later. XXX This is really bad if we trap
|
|
* while holding a spin lock.
|
|
*/
|
|
type = frame.tf_trapno;
|
|
if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
|
|
printf(
|
|
"pid %ld (%s): trap %d with interrupts disabled\n",
|
|
(long)curproc->p_pid, curproc->p_comm, type);
|
|
else if (type != T_BPTFLT && type != T_TRCTRAP) {
|
|
/*
|
|
* XXX not quite right, since this may be for a
|
|
* multiple fault in user mode.
|
|
*/
|
|
printf("kernel trap %d with interrupts disabled\n",
|
|
type);
|
|
/*
|
|
* We should walk p_heldmtx here and see if any are
|
|
* spin mutexes, and not do this if so.
|
|
*/
|
|
enable_intr();
|
|
}
|
|
}
|
|
|
|
eva = 0;
|
|
|
|
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
|
|
restart:
|
|
#endif
|
|
|
|
type = frame.tf_trapno;
|
|
code = frame.tf_err;
|
|
|
|
if ((ISPL(frame.tf_cs) == SEL_UPL) ||
|
|
((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
|
|
/* user trap */
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
sticks = p->p_sticks;
|
|
mtx_unlock_spin(&sched_lock);
|
|
p->p_md.md_regs = &frame;
|
|
|
|
switch (type) {
|
|
case T_PRIVINFLT: /* privileged instruction fault */
|
|
ucode = type;
|
|
i = SIGILL;
|
|
break;
|
|
|
|
case T_BPTFLT: /* bpt instruction fault */
|
|
case T_TRCTRAP: /* trace trap */
|
|
frame.tf_eflags &= ~PSL_T;
|
|
i = SIGTRAP;
|
|
break;
|
|
|
|
case T_ARITHTRAP: /* arithmetic trap */
|
|
ucode = code;
|
|
i = SIGFPE;
|
|
break;
|
|
|
|
/*
|
|
* The following two traps can happen in
|
|
* vm86 mode, and, if so, we want to handle
|
|
* them specially.
|
|
*/
|
|
case T_PROTFLT: /* general protection fault */
|
|
case T_STKFLT: /* stack fault */
|
|
if (frame.tf_eflags & PSL_VM) {
|
|
mtx_lock(&Giant);
|
|
i = vm86_emulate((struct vm86frame *)&frame);
|
|
mtx_unlock(&Giant);
|
|
if (i == 0)
|
|
goto user;
|
|
break;
|
|
}
|
|
/* FALL THROUGH */
|
|
|
|
case T_SEGNPFLT: /* segment not present fault */
|
|
case T_TSSFLT: /* invalid TSS fault */
|
|
case T_DOUBLEFLT: /* double fault */
|
|
default:
|
|
ucode = code + BUS_SEGM_FAULT ;
|
|
i = SIGBUS;
|
|
break;
|
|
|
|
case T_PAGEFLT: /* page fault */
|
|
/*
|
|
* For some Cyrix CPUs, %cr2 is clobbered by
|
|
* interrupts. This problem is worked around by using
|
|
* an interrupt gate for the pagefault handler. We
|
|
* are finally ready to read %cr2 and then must
|
|
* reenable interrupts.
|
|
*/
|
|
eva = rcr2();
|
|
enable_intr();
|
|
mtx_lock(&Giant);
|
|
i = trap_pfault(&frame, TRUE, eva);
|
|
mtx_unlock(&Giant);
|
|
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
|
|
if (i == -2) {
|
|
/*
|
|
* f00f hack workaround has triggered, treat
|
|
* as illegal instruction not page fault.
|
|
*/
|
|
frame.tf_trapno = T_PRIVINFLT;
|
|
goto restart;
|
|
}
|
|
#endif
|
|
if (i == -1)
|
|
goto out;
|
|
if (i == 0)
|
|
goto user;
|
|
|
|
ucode = T_PAGEFLT;
|
|
break;
|
|
|
|
case T_DIVIDE: /* integer divide fault */
|
|
ucode = FPE_INTDIV;
|
|
i = SIGFPE;
|
|
break;
|
|
|
|
#ifdef DEV_ISA
|
|
case T_NMI:
|
|
#ifdef POWERFAIL_NMI
|
|
#ifndef TIMER_FREQ
|
|
# define TIMER_FREQ 1193182
|
|
#endif
|
|
mtx_lock(&Giant);
|
|
if (time_second - lastalert > 10) {
|
|
log(LOG_WARNING, "NMI: power fail\n");
|
|
sysbeep(TIMER_FREQ/880, hz);
|
|
lastalert = time_second;
|
|
}
|
|
mtx_unlock(&Giant);
|
|
goto out;
|
|
#else /* !POWERFAIL_NMI */
|
|
/* machine/parity/power fail/"kitchen sink" faults */
|
|
/* XXX Giant */
|
|
if (isa_nmi(code) == 0) {
|
|
#ifdef DDB
|
|
/*
|
|
* NMI can be hooked up to a pushbutton
|
|
* for debugging.
|
|
*/
|
|
if (ddb_on_nmi) {
|
|
printf ("NMI ... going to debugger\n");
|
|
kdb_trap (type, 0, &frame);
|
|
}
|
|
#endif /* DDB */
|
|
goto out;
|
|
} else if (panic_on_nmi)
|
|
panic("NMI indicates hardware failure");
|
|
break;
|
|
#endif /* POWERFAIL_NMI */
|
|
#endif /* DEV_ISA */
|
|
|
|
case T_OFLOW: /* integer overflow fault */
|
|
ucode = FPE_INTOVF;
|
|
i = SIGFPE;
|
|
break;
|
|
|
|
case T_BOUND: /* bounds check fault */
|
|
ucode = FPE_FLTSUB;
|
|
i = SIGFPE;
|
|
break;
|
|
|
|
case T_DNA:
|
|
#ifdef DEV_NPX
|
|
/* transparent fault (due to context switch "late") */
|
|
if (npxdna())
|
|
goto out;
|
|
#endif
|
|
if (!pmath_emulate) {
|
|
i = SIGFPE;
|
|
ucode = FPE_FPU_NP_TRAP;
|
|
break;
|
|
}
|
|
mtx_lock(&Giant);
|
|
i = (*pmath_emulate)(&frame);
|
|
mtx_unlock(&Giant);
|
|
if (i == 0) {
|
|
if (!(frame.tf_eflags & PSL_T))
|
|
goto out;
|
|
frame.tf_eflags &= ~PSL_T;
|
|
i = SIGTRAP;
|
|
}
|
|
/* else ucode = emulator_only_knows() XXX */
|
|
break;
|
|
|
|
case T_FPOPFLT: /* FPU operand fetch fault */
|
|
ucode = T_FPOPFLT;
|
|
i = SIGILL;
|
|
break;
|
|
}
|
|
} else {
|
|
/* kernel trap */
|
|
|
|
switch (type) {
|
|
case T_PAGEFLT: /* page fault */
|
|
/*
|
|
* For some Cyrix CPUs, %cr2 is clobbered by
|
|
* interrupts. This problem is worked around by using
|
|
* an interrupt gate for the pagefault handler. We
|
|
* are finally ready to read %cr2 and then must
|
|
* reenable interrupts.
|
|
*/
|
|
eva = rcr2();
|
|
enable_intr();
|
|
mtx_lock(&Giant);
|
|
(void) trap_pfault(&frame, FALSE, eva);
|
|
mtx_unlock(&Giant);
|
|
goto out;
|
|
|
|
case T_DNA:
|
|
#ifdef DEV_NPX
|
|
/*
|
|
* The kernel is apparently using npx for copying.
|
|
* XXX this should be fatal unless the kernel has
|
|
* registered such use.
|
|
*/
|
|
if (npxdna())
|
|
goto out;
|
|
#endif
|
|
break;
|
|
|
|
/*
|
|
* The following two traps can happen in
|
|
* vm86 mode, and, if so, we want to handle
|
|
* them specially.
|
|
*/
|
|
case T_PROTFLT: /* general protection fault */
|
|
case T_STKFLT: /* stack fault */
|
|
if (frame.tf_eflags & PSL_VM) {
|
|
mtx_lock(&Giant);
|
|
i = vm86_emulate((struct vm86frame *)&frame);
|
|
mtx_unlock(&Giant);
|
|
if (i != 0)
|
|
/*
|
|
* returns to original process
|
|
*/
|
|
vm86_trap((struct vm86frame *)&frame);
|
|
goto out;
|
|
}
|
|
if (type == T_STKFLT)
|
|
break;
|
|
|
|
/* FALL THROUGH */
|
|
|
|
case T_SEGNPFLT: /* segment not present fault */
|
|
if (in_vm86call)
|
|
break;
|
|
|
|
if (p->p_intr_nesting_level != 0)
|
|
break;
|
|
|
|
/*
|
|
* Invalid %fs's and %gs's can be created using
|
|
* procfs or PT_SETREGS or by invalidating the
|
|
* underlying LDT entry. This causes a fault
|
|
* in kernel mode when the kernel attempts to
|
|
* switch contexts. Lose the bad context
|
|
* (XXX) so that we can continue, and generate
|
|
* a signal.
|
|
*/
|
|
if (frame.tf_eip == (int)cpu_switch_load_gs) {
|
|
PCPU_GET(curpcb)->pcb_gs = 0;
|
|
mtx_lock(&Giant);
|
|
psignal(p, SIGBUS);
|
|
mtx_unlock(&Giant);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Invalid segment selectors and out of bounds
|
|
* %eip's and %esp's can be set up in user mode.
|
|
* This causes a fault in kernel mode when the
|
|
* kernel tries to return to user mode. We want
|
|
* to get this fault so that we can fix the
|
|
* problem here and not have to check all the
|
|
* selectors and pointers when the user changes
|
|
* them.
|
|
*/
|
|
if (frame.tf_eip == (int)doreti_iret) {
|
|
frame.tf_eip = (int)doreti_iret_fault;
|
|
goto out;
|
|
}
|
|
if (frame.tf_eip == (int)doreti_popl_ds) {
|
|
frame.tf_eip = (int)doreti_popl_ds_fault;
|
|
goto out;
|
|
}
|
|
if (frame.tf_eip == (int)doreti_popl_es) {
|
|
frame.tf_eip = (int)doreti_popl_es_fault;
|
|
goto out;
|
|
}
|
|
if (frame.tf_eip == (int)doreti_popl_fs) {
|
|
frame.tf_eip = (int)doreti_popl_fs_fault;
|
|
goto out;
|
|
}
|
|
if (PCPU_GET(curpcb) != NULL &&
|
|
PCPU_GET(curpcb)->pcb_onfault != NULL) {
|
|
frame.tf_eip =
|
|
(int)PCPU_GET(curpcb)->pcb_onfault;
|
|
goto out;
|
|
}
|
|
break;
|
|
|
|
case T_TSSFLT:
|
|
/*
|
|
* PSL_NT can be set in user mode and isn't cleared
|
|
* automatically when the kernel is entered. This
|
|
* causes a TSS fault when the kernel attempts to
|
|
* `iret' because the TSS link is uninitialized. We
|
|
* want to get this fault so that we can fix the
|
|
* problem here and not every time the kernel is
|
|
* entered.
|
|
*/
|
|
if (frame.tf_eflags & PSL_NT) {
|
|
frame.tf_eflags &= ~PSL_NT;
|
|
goto out;
|
|
}
|
|
break;
|
|
|
|
case T_TRCTRAP: /* trace trap */
|
|
if (frame.tf_eip == (int)IDTVEC(syscall)) {
|
|
/*
|
|
* We've just entered system mode via the
|
|
* syscall lcall. Continue single stepping
|
|
* silently until the syscall handler has
|
|
* saved the flags.
|
|
*/
|
|
goto out;
|
|
}
|
|
if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
|
|
/*
|
|
* The syscall handler has now saved the
|
|
* flags. Stop single stepping it.
|
|
*/
|
|
frame.tf_eflags &= ~PSL_T;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Ignore debug register trace traps due to
|
|
* accesses in the user's address space, which
|
|
* can happen under several conditions such as
|
|
* if a user sets a watchpoint on a buffer and
|
|
* then passes that buffer to a system call.
|
|
* We still want to get TRCTRAPS for addresses
|
|
* in kernel space because that is useful when
|
|
* debugging the kernel.
|
|
*/
|
|
/* XXX Giant */
|
|
if (user_dbreg_trap() && !in_vm86call) {
|
|
/*
|
|
* Reset breakpoint bits because the
|
|
* processor doesn't
|
|
*/
|
|
load_dr6(rdr6() & 0xfffffff0);
|
|
goto out;
|
|
}
|
|
/*
|
|
* Fall through (TRCTRAP kernel mode, kernel address)
|
|
*/
|
|
case T_BPTFLT:
|
|
/*
|
|
* If DDB is enabled, let it handle the debugger trap.
|
|
* Otherwise, debugger traps "can't happen".
|
|
*/
|
|
#ifdef DDB
|
|
/* XXX Giant */
|
|
if (kdb_trap (type, 0, &frame))
|
|
goto out;
|
|
#endif
|
|
break;
|
|
|
|
#ifdef DEV_ISA
|
|
case T_NMI:
|
|
#ifdef POWERFAIL_NMI
|
|
mtx_lock(&Giant);
|
|
if (time_second - lastalert > 10) {
|
|
log(LOG_WARNING, "NMI: power fail\n");
|
|
sysbeep(TIMER_FREQ/880, hz);
|
|
lastalert = time_second;
|
|
}
|
|
mtx_unlock(&Giant);
|
|
goto out;
|
|
#else /* !POWERFAIL_NMI */
|
|
/* XXX Giant */
|
|
/* machine/parity/power fail/"kitchen sink" faults */
|
|
if (isa_nmi(code) == 0) {
|
|
#ifdef DDB
|
|
/*
|
|
* NMI can be hooked up to a pushbutton
|
|
* for debugging.
|
|
*/
|
|
if (ddb_on_nmi) {
|
|
printf ("NMI ... going to debugger\n");
|
|
kdb_trap (type, 0, &frame);
|
|
}
|
|
#endif /* DDB */
|
|
goto out;
|
|
} else if (panic_on_nmi == 0)
|
|
goto out;
|
|
/* FALL THROUGH */
|
|
#endif /* POWERFAIL_NMI */
|
|
#endif /* DEV_ISA */
|
|
}
|
|
|
|
mtx_lock(&Giant);
|
|
trap_fatal(&frame, eva);
|
|
mtx_unlock(&Giant);
|
|
goto out;
|
|
}
|
|
|
|
mtx_lock(&Giant);
|
|
/* Translate fault for emulators (e.g. Linux) */
|
|
if (*p->p_sysent->sv_transtrap)
|
|
i = (*p->p_sysent->sv_transtrap)(i, type);
|
|
|
|
trapsignal(p, i, ucode);
|
|
|
|
#ifdef DEBUG
|
|
if (type <= MAX_TRAP_MSG) {
|
|
uprintf("fatal process exception: %s",
|
|
trap_msg[type]);
|
|
if ((type == T_PAGEFLT) || (type == T_PROTFLT))
|
|
uprintf(", fault VA = 0x%lx", (u_long)eva);
|
|
uprintf("\n");
|
|
}
|
|
#endif
|
|
mtx_unlock(&Giant);
|
|
|
|
user:
|
|
userret(p, &frame, sticks);
|
|
if (mtx_owned(&Giant))
|
|
mtx_unlock(&Giant);
|
|
out:
|
|
return;
|
|
}
|
|
|
|
#ifdef notyet
|
|
/*
|
|
* This version doesn't allow a page fault to user space while
|
|
* in the kernel. The rest of the kernel needs to be made "safe"
|
|
* before this can be used. I think the only things remaining
|
|
* to be made safe are the iBCS2 code and the process tracing/
|
|
* debugging code.
|
|
*/
|
|
static int
|
|
trap_pfault(frame, usermode, eva)
|
|
struct trapframe *frame;
|
|
int usermode;
|
|
vm_offset_t eva;
|
|
{
|
|
vm_offset_t va;
|
|
struct vmspace *vm = NULL;
|
|
vm_map_t map = 0;
|
|
int rv = 0;
|
|
vm_prot_t ftype;
|
|
struct proc *p = curproc;
|
|
|
|
if (frame->tf_err & PGEX_W)
|
|
ftype = VM_PROT_WRITE;
|
|
else
|
|
ftype = VM_PROT_READ;
|
|
|
|
va = trunc_page(eva);
|
|
if (va < VM_MIN_KERNEL_ADDRESS) {
|
|
vm_offset_t v;
|
|
vm_page_t mpte;
|
|
|
|
if (p == NULL ||
|
|
(!usermode && va < VM_MAXUSER_ADDRESS &&
|
|
(p->p_intr_nesting_level != 0 ||
|
|
PCPU_GET(curpcb) == NULL ||
|
|
PCPU_GET(curpcb)->pcb_onfault == NULL))) {
|
|
trap_fatal(frame, eva);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* This is a fault on non-kernel virtual memory.
|
|
* vm is initialized above to NULL. If curproc is NULL
|
|
* or curproc->p_vmspace is NULL the fault is fatal.
|
|
*/
|
|
vm = p->p_vmspace;
|
|
if (vm == NULL)
|
|
goto nogo;
|
|
|
|
map = &vm->vm_map;
|
|
|
|
/*
|
|
* Keep swapout from messing with us during this
|
|
* critical time.
|
|
*/
|
|
PROC_LOCK(p);
|
|
++p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
|
|
/*
|
|
* Grow the stack if necessary
|
|
*/
|
|
/* grow_stack returns false only if va falls into
|
|
* a growable stack region and the stack growth
|
|
* fails. It returns true if va was not within
|
|
* a growable stack region, or if the stack
|
|
* growth succeeded.
|
|
*/
|
|
if (!grow_stack (p, va)) {
|
|
rv = KERN_FAILURE;
|
|
PROC_LOCK(p);
|
|
--p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
goto nogo;
|
|
}
|
|
|
|
/* Fault in the user page: */
|
|
rv = vm_fault(map, va, ftype,
|
|
(ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
|
|
: VM_FAULT_NORMAL);
|
|
|
|
PROC_LOCK(p);
|
|
--p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
} else {
|
|
/*
|
|
* Don't allow user-mode faults in kernel address space.
|
|
*/
|
|
if (usermode)
|
|
goto nogo;
|
|
|
|
/*
|
|
* Since we know that kernel virtual address addresses
|
|
* always have pte pages mapped, we just have to fault
|
|
* the page.
|
|
*/
|
|
rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
|
|
}
|
|
|
|
if (rv == KERN_SUCCESS)
|
|
return (0);
|
|
nogo:
|
|
if (!usermode) {
|
|
if (p->p_intr_nesting_level == 0 &&
|
|
PCPU_GET(curpcb) != NULL &&
|
|
PCPU_GET(curpcb)->pcb_onfault != NULL) {
|
|
frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
|
|
return (0);
|
|
}
|
|
trap_fatal(frame, eva);
|
|
return (-1);
|
|
}
|
|
|
|
/* kludge to pass faulting virtual address to sendsig */
|
|
frame->tf_err = eva;
|
|
|
|
return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
trap_pfault(frame, usermode, eva)
|
|
struct trapframe *frame;
|
|
int usermode;
|
|
vm_offset_t eva;
|
|
{
|
|
vm_offset_t va;
|
|
struct vmspace *vm = NULL;
|
|
vm_map_t map = 0;
|
|
int rv = 0;
|
|
vm_prot_t ftype;
|
|
struct proc *p = curproc;
|
|
|
|
va = trunc_page(eva);
|
|
if (va >= KERNBASE) {
|
|
/*
|
|
* Don't allow user-mode faults in kernel address space.
|
|
* An exception: if the faulting address is the invalid
|
|
* instruction entry in the IDT, then the Intel Pentium
|
|
* F00F bug workaround was triggered, and we need to
|
|
* treat it is as an illegal instruction, and not a page
|
|
* fault.
|
|
*/
|
|
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
|
|
if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
|
|
return -2;
|
|
#endif
|
|
if (usermode)
|
|
goto nogo;
|
|
|
|
map = kernel_map;
|
|
} else {
|
|
/*
|
|
* This is a fault on non-kernel virtual memory.
|
|
* vm is initialized above to NULL. If curproc is NULL
|
|
* or curproc->p_vmspace is NULL the fault is fatal.
|
|
*/
|
|
if (p != NULL)
|
|
vm = p->p_vmspace;
|
|
|
|
if (vm == NULL)
|
|
goto nogo;
|
|
|
|
map = &vm->vm_map;
|
|
}
|
|
|
|
if (frame->tf_err & PGEX_W)
|
|
ftype = VM_PROT_WRITE;
|
|
else
|
|
ftype = VM_PROT_READ;
|
|
|
|
if (map != kernel_map) {
|
|
/*
|
|
* Keep swapout from messing with us during this
|
|
* critical time.
|
|
*/
|
|
PROC_LOCK(p);
|
|
++p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
|
|
/*
|
|
* Grow the stack if necessary
|
|
*/
|
|
/* grow_stack returns false only if va falls into
|
|
* a growable stack region and the stack growth
|
|
* fails. It returns true if va was not within
|
|
* a growable stack region, or if the stack
|
|
* growth succeeded.
|
|
*/
|
|
if (!grow_stack (p, va)) {
|
|
rv = KERN_FAILURE;
|
|
PROC_LOCK(p);
|
|
--p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
goto nogo;
|
|
}
|
|
|
|
/* Fault in the user page: */
|
|
rv = vm_fault(map, va, ftype,
|
|
(ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
|
|
: VM_FAULT_NORMAL);
|
|
|
|
PROC_LOCK(p);
|
|
--p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
} else {
|
|
/*
|
|
* Don't have to worry about process locking or stacks in the
|
|
* kernel.
|
|
*/
|
|
rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
|
|
}
|
|
|
|
if (rv == KERN_SUCCESS)
|
|
return (0);
|
|
nogo:
|
|
if (!usermode) {
|
|
if (p->p_intr_nesting_level == 0 &&
|
|
PCPU_GET(curpcb) != NULL &&
|
|
PCPU_GET(curpcb)->pcb_onfault != NULL) {
|
|
frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
|
|
return (0);
|
|
}
|
|
trap_fatal(frame, eva);
|
|
return (-1);
|
|
}
|
|
|
|
/* kludge to pass faulting virtual address to sendsig */
|
|
frame->tf_err = eva;
|
|
|
|
return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
|
|
}
|
|
|
|
static void
|
|
trap_fatal(frame, eva)
|
|
struct trapframe *frame;
|
|
vm_offset_t eva;
|
|
{
|
|
int code, type, ss, esp;
|
|
struct soft_segment_descriptor softseg;
|
|
|
|
code = frame->tf_err;
|
|
type = frame->tf_trapno;
|
|
sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
|
|
|
|
if (type <= MAX_TRAP_MSG)
|
|
printf("\n\nFatal trap %d: %s while in %s mode\n",
|
|
type, trap_msg[type],
|
|
frame->tf_eflags & PSL_VM ? "vm86" :
|
|
ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
|
|
#ifdef SMP
|
|
/* two separate prints in case of a trap on an unmapped page */
|
|
printf("cpuid = %d; ", PCPU_GET(cpuid));
|
|
printf("lapic.id = %08x\n", lapic.id);
|
|
#endif
|
|
if (type == T_PAGEFLT) {
|
|
printf("fault virtual address = 0x%x\n", eva);
|
|
printf("fault code = %s %s, %s\n",
|
|
code & PGEX_U ? "user" : "supervisor",
|
|
code & PGEX_W ? "write" : "read",
|
|
code & PGEX_P ? "protection violation" : "page not present");
|
|
}
|
|
printf("instruction pointer = 0x%x:0x%x\n",
|
|
frame->tf_cs & 0xffff, frame->tf_eip);
|
|
if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
|
|
ss = frame->tf_ss & 0xffff;
|
|
esp = frame->tf_esp;
|
|
} else {
|
|
ss = GSEL(GDATA_SEL, SEL_KPL);
|
|
esp = (int)&frame->tf_esp;
|
|
}
|
|
printf("stack pointer = 0x%x:0x%x\n", ss, esp);
|
|
printf("frame pointer = 0x%x:0x%x\n", ss, frame->tf_ebp);
|
|
printf("code segment = base 0x%x, limit 0x%x, type 0x%x\n",
|
|
softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
|
|
printf(" = DPL %d, pres %d, def32 %d, gran %d\n",
|
|
softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
|
|
softseg.ssd_gran);
|
|
printf("processor eflags = ");
|
|
if (frame->tf_eflags & PSL_T)
|
|
printf("trace trap, ");
|
|
if (frame->tf_eflags & PSL_I)
|
|
printf("interrupt enabled, ");
|
|
if (frame->tf_eflags & PSL_NT)
|
|
printf("nested task, ");
|
|
if (frame->tf_eflags & PSL_RF)
|
|
printf("resume, ");
|
|
if (frame->tf_eflags & PSL_VM)
|
|
printf("vm86, ");
|
|
printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
|
|
printf("current process = ");
|
|
if (curproc) {
|
|
printf("%lu (%s)\n",
|
|
(u_long)curproc->p_pid, curproc->p_comm ?
|
|
curproc->p_comm : "");
|
|
} else {
|
|
printf("Idle\n");
|
|
}
|
|
|
|
#ifdef KDB
|
|
if (kdb_trap(&psl))
|
|
return;
|
|
#endif
|
|
#ifdef DDB
|
|
if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
|
|
return;
|
|
#endif
|
|
printf("trap number = %d\n", type);
|
|
if (type <= MAX_TRAP_MSG)
|
|
panic(trap_msg[type]);
|
|
else
|
|
panic("unknown/reserved trap");
|
|
}
|
|
|
|
/*
|
|
* Double fault handler. Called when a fault occurs while writing
|
|
* a frame for a trap/exception onto the stack. This usually occurs
|
|
* when the stack overflows (such is the case with infinite recursion,
|
|
* for example).
|
|
*
|
|
* XXX Note that the current PTD gets replaced by IdlePTD when the
|
|
* task switch occurs. This means that the stack that was active at
|
|
* the time of the double fault is not available at <kstack> unless
|
|
* the machine was idle when the double fault occurred. The downside
|
|
* of this is that "trace <ebp>" in ddb won't work.
|
|
*/
|
|
void
|
|
dblfault_handler()
|
|
{
|
|
printf("\nFatal double fault:\n");
|
|
printf("eip = 0x%x\n", PCPU_GET(common_tss.tss_eip));
|
|
printf("esp = 0x%x\n", PCPU_GET(common_tss.tss_esp));
|
|
printf("ebp = 0x%x\n", PCPU_GET(common_tss.tss_ebp));
|
|
#ifdef SMP
|
|
/* two separate prints in case of a trap on an unmapped page */
|
|
printf("cpuid = %d; ", PCPU_GET(cpuid));
|
|
printf("lapic.id = %08x\n", lapic.id);
|
|
#endif
|
|
panic("double fault");
|
|
}
|
|
|
|
/*
|
|
* Compensate for 386 brain damage (missing URKR).
|
|
* This is a little simpler than the pagefault handler in trap() because
|
|
* it the page tables have already been faulted in and high addresses
|
|
* are thrown out early for other reasons.
|
|
*/
|
|
int trapwrite(addr)
|
|
unsigned addr;
|
|
{
|
|
struct proc *p;
|
|
vm_offset_t va;
|
|
struct vmspace *vm;
|
|
int rv;
|
|
|
|
va = trunc_page((vm_offset_t)addr);
|
|
/*
|
|
* XXX - MAX is END. Changed > to >= for temp. fix.
|
|
*/
|
|
if (va >= VM_MAXUSER_ADDRESS)
|
|
return (1);
|
|
|
|
p = curproc;
|
|
vm = p->p_vmspace;
|
|
|
|
PROC_LOCK(p);
|
|
++p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
|
|
if (!grow_stack (p, va)) {
|
|
PROC_LOCK(p);
|
|
--p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* fault the data page
|
|
*/
|
|
rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
|
|
|
|
PROC_LOCK(p);
|
|
--p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
|
|
if (rv != KERN_SUCCESS)
|
|
return 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* syscall - MP aware system call request C handler
|
|
*
|
|
* A system call is essentially treated as a trap except that the
|
|
* MP lock is not held on entry or return. We are responsible for
|
|
* obtaining the MP lock if necessary and for handling ASTs
|
|
* (e.g. a task switch) prior to return.
|
|
*
|
|
* In general, only simple access and manipulation of curproc and
|
|
* the current stack is allowed without having to hold MP lock.
|
|
*/
|
|
void
|
|
syscall(frame)
|
|
struct trapframe frame;
|
|
{
|
|
caddr_t params;
|
|
int i;
|
|
struct sysent *callp;
|
|
struct proc *p = curproc;
|
|
u_quad_t sticks;
|
|
int error;
|
|
int narg;
|
|
int args[8];
|
|
u_int code;
|
|
|
|
atomic_add_int(&cnt.v_syscall, 1);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (ISPL(frame.tf_cs) != SEL_UPL) {
|
|
mtx_lock(&Giant);
|
|
panic("syscall");
|
|
/* NOT REACHED */
|
|
}
|
|
#endif
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
sticks = p->p_sticks;
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
p->p_md.md_regs = &frame;
|
|
params = (caddr_t)frame.tf_esp + sizeof(int);
|
|
code = frame.tf_eax;
|
|
|
|
if (p->p_sysent->sv_prepsyscall) {
|
|
/*
|
|
* The prep code is not MP aware.
|
|
*/
|
|
mtx_lock(&Giant);
|
|
(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, ¶ms);
|
|
mtx_unlock(&Giant);
|
|
} else {
|
|
/*
|
|
* Need to check if this is a 32 bit or 64 bit syscall.
|
|
* fuword is MP aware.
|
|
*/
|
|
if (code == SYS_syscall) {
|
|
/*
|
|
* Code is first argument, followed by actual args.
|
|
*/
|
|
code = fuword(params);
|
|
params += sizeof(int);
|
|
} else if (code == SYS___syscall) {
|
|
/*
|
|
* Like syscall, but code is a quad, so as to maintain
|
|
* quad alignment for the rest of the arguments.
|
|
*/
|
|
code = fuword(params);
|
|
params += sizeof(quad_t);
|
|
}
|
|
}
|
|
|
|
if (p->p_sysent->sv_mask)
|
|
code &= p->p_sysent->sv_mask;
|
|
|
|
if (code >= p->p_sysent->sv_size)
|
|
callp = &p->p_sysent->sv_table[0];
|
|
else
|
|
callp = &p->p_sysent->sv_table[code];
|
|
|
|
narg = callp->sy_narg & SYF_ARGMASK;
|
|
|
|
/*
|
|
* copyin is MP aware, but the tracing code is not
|
|
*/
|
|
if (params && (i = narg * sizeof(int)) &&
|
|
(error = copyin(params, (caddr_t)args, (u_int)i))) {
|
|
mtx_lock(&Giant);
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_SYSCALL))
|
|
ktrsyscall(p->p_tracep, code, narg, args);
|
|
#endif
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Try to run the syscall without the MP lock if the syscall
|
|
* is MP safe. We have to obtain the MP lock no matter what if
|
|
* we are ktracing
|
|
*/
|
|
if ((callp->sy_narg & SYF_MPSAFE) == 0) {
|
|
mtx_lock(&Giant);
|
|
}
|
|
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_SYSCALL)) {
|
|
if (!mtx_owned(&Giant))
|
|
mtx_lock(&Giant);
|
|
ktrsyscall(p->p_tracep, code, narg, args);
|
|
}
|
|
#endif
|
|
p->p_retval[0] = 0;
|
|
p->p_retval[1] = frame.tf_edx;
|
|
|
|
STOPEVENT(p, S_SCE, narg); /* MP aware */
|
|
|
|
error = (*callp->sy_call)(p, args);
|
|
|
|
/*
|
|
* MP SAFE (we may or may not have the MP lock at this point)
|
|
*/
|
|
switch (error) {
|
|
case 0:
|
|
frame.tf_eax = p->p_retval[0];
|
|
frame.tf_edx = p->p_retval[1];
|
|
frame.tf_eflags &= ~PSL_C;
|
|
break;
|
|
|
|
case ERESTART:
|
|
/*
|
|
* Reconstruct pc, assuming lcall $X,y is 7 bytes,
|
|
* int 0x80 is 2 bytes. We saved this in tf_err.
|
|
*/
|
|
frame.tf_eip -= frame.tf_err;
|
|
break;
|
|
|
|
case EJUSTRETURN:
|
|
break;
|
|
|
|
default:
|
|
bad:
|
|
if (p->p_sysent->sv_errsize) {
|
|
if (error >= p->p_sysent->sv_errsize)
|
|
error = -1; /* XXX */
|
|
else
|
|
error = p->p_sysent->sv_errtbl[error];
|
|
}
|
|
frame.tf_eax = error;
|
|
frame.tf_eflags |= PSL_C;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Traced syscall. trapsignal() is not MP aware.
|
|
*/
|
|
if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
|
|
if (!mtx_owned(&Giant))
|
|
mtx_lock(&Giant);
|
|
frame.tf_eflags &= ~PSL_T;
|
|
trapsignal(p, SIGTRAP, 0);
|
|
}
|
|
|
|
/*
|
|
* Handle reschedule and other end-of-syscall issues
|
|
*/
|
|
userret(p, &frame, sticks);
|
|
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_SYSRET)) {
|
|
if (!mtx_owned(&Giant))
|
|
mtx_lock(&Giant);
|
|
ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This works because errno is findable through the
|
|
* register set. If we ever support an emulation where this
|
|
* is not the case, this code will need to be revisited.
|
|
*/
|
|
STOPEVENT(p, S_SCX, code);
|
|
|
|
/*
|
|
* Release Giant if we had to get it
|
|
*/
|
|
if (mtx_owned(&Giant))
|
|
mtx_unlock(&Giant);
|
|
|
|
#ifdef WITNESS
|
|
if (witness_list(p)) {
|
|
panic("system call %s returning with mutex(s) held\n",
|
|
syscallnames[code]);
|
|
}
|
|
#endif
|
|
mtx_assert(&sched_lock, MA_NOTOWNED);
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
}
|
|
|
|
void
|
|
ast(frame)
|
|
struct trapframe frame;
|
|
{
|
|
struct proc *p = CURPROC;
|
|
u_quad_t sticks;
|
|
|
|
KASSERT(TRAPF_USERMODE(&frame), ("ast in kernel mode"));
|
|
|
|
/*
|
|
* We check for a pending AST here rather than in the assembly as
|
|
* acquiring and releasing mutexes in assembly is not fun.
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
if (!(astpending(p) || resched_wanted())) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
return;
|
|
}
|
|
|
|
sticks = p->p_sticks;
|
|
|
|
astoff(p);
|
|
mtx_intr_enable(&sched_lock);
|
|
atomic_add_int(&cnt.v_soft, 1);
|
|
if (p->p_sflag & PS_OWEUPC) {
|
|
p->p_sflag &= ~PS_OWEUPC;
|
|
mtx_unlock_spin(&sched_lock);
|
|
mtx_lock(&Giant);
|
|
mtx_lock_spin(&sched_lock);
|
|
addupc_task(p, p->p_stats->p_prof.pr_addr,
|
|
p->p_stats->p_prof.pr_ticks);
|
|
}
|
|
if (p->p_sflag & PS_ALRMPEND) {
|
|
p->p_sflag &= ~PS_ALRMPEND;
|
|
mtx_unlock_spin(&sched_lock);
|
|
if (!mtx_owned(&Giant))
|
|
mtx_lock(&Giant);
|
|
psignal(p, SIGVTALRM);
|
|
mtx_lock_spin(&sched_lock);
|
|
}
|
|
if (p->p_sflag & PS_PROFPEND) {
|
|
p->p_sflag &= ~PS_PROFPEND;
|
|
mtx_unlock_spin(&sched_lock);
|
|
if (!mtx_owned(&Giant))
|
|
mtx_lock(&Giant);
|
|
psignal(p, SIGPROF);
|
|
} else
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
userret(p, &frame, sticks);
|
|
|
|
if (mtx_owned(&Giant))
|
|
mtx_unlock(&Giant);
|
|
}
|