freebsd-skq/sys/dev/bxe/bxe.c
2019-10-21 18:06:31 +00:00

19578 lines
604 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define BXE_DRIVER_VERSION "1.78.91"
#include "bxe.h"
#include "ecore_sp.h"
#include "ecore_init.h"
#include "ecore_init_ops.h"
#include "57710_int_offsets.h"
#include "57711_int_offsets.h"
#include "57712_int_offsets.h"
/*
* CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
* explicitly here for older kernels that don't include this changeset.
*/
#ifndef CTLTYPE_U64
#define CTLTYPE_U64 CTLTYPE_QUAD
#define sysctl_handle_64 sysctl_handle_quad
#endif
/*
* CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
* here as zero(0) for older kernels that don't include this changeset
* thereby masking the functionality.
*/
#ifndef CSUM_TCP_IPV6
#define CSUM_TCP_IPV6 0
#define CSUM_UDP_IPV6 0
#endif
/*
* pci_find_cap was added in r219865. Re-define this at pci_find_extcap
* for older kernels that don't include this changeset.
*/
#if __FreeBSD_version < 900035
#define pci_find_cap pci_find_extcap
#endif
#define BXE_DEF_SB_ATT_IDX 0x0001
#define BXE_DEF_SB_IDX 0x0002
/*
* FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
* function HW initialization.
*/
#define FLR_WAIT_USEC 10000 /* 10 msecs */
#define FLR_WAIT_INTERVAL 50 /* usecs */
#define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
struct pbf_pN_buf_regs {
int pN;
uint32_t init_crd;
uint32_t crd;
uint32_t crd_freed;
};
struct pbf_pN_cmd_regs {
int pN;
uint32_t lines_occup;
uint32_t lines_freed;
};
/*
* PCI Device ID Table used by bxe_probe().
*/
#define BXE_DEVDESC_MAX 64
static struct bxe_device_type bxe_devs[] = {
{
BRCM_VENDORID,
CHIP_NUM_57710,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57710 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57711,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57711 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57711E,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57711E 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57712,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57712 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57712_MF,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57712 MF 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57800,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57800 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57800_MF,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57800 MF 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57810,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57810 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57810_MF,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57810 MF 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57811,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57811 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57811_MF,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57811 MF 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57840_4_10,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57840 4x10GbE"
},
{
QLOGIC_VENDORID,
CHIP_NUM_57840_4_10,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57840 4x10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57840_2_20,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57840 2x20GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57840_MF,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57840 MF 10GbE"
},
{
0, 0, 0, 0, NULL
}
};
MALLOC_DECLARE(M_BXE_ILT);
MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
/*
* FreeBSD device entry points.
*/
static int bxe_probe(device_t);
static int bxe_attach(device_t);
static int bxe_detach(device_t);
static int bxe_shutdown(device_t);
/*
* FreeBSD KLD module/device interface event handler method.
*/
static device_method_t bxe_methods[] = {
/* Device interface (device_if.h) */
DEVMETHOD(device_probe, bxe_probe),
DEVMETHOD(device_attach, bxe_attach),
DEVMETHOD(device_detach, bxe_detach),
DEVMETHOD(device_shutdown, bxe_shutdown),
/* Bus interface (bus_if.h) */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
KOBJMETHOD_END
};
/*
* FreeBSD KLD Module data declaration
*/
static driver_t bxe_driver = {
"bxe", /* module name */
bxe_methods, /* event handler */
sizeof(struct bxe_softc) /* extra data */
};
/*
* FreeBSD dev class is needed to manage dev instances and
* to associate with a bus type
*/
static devclass_t bxe_devclass;
MODULE_DEPEND(bxe, pci, 1, 1, 1);
MODULE_DEPEND(bxe, ether, 1, 1, 1);
DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
DEBUGNET_DEFINE(bxe);
/* resources needed for unloading a previously loaded device */
#define BXE_PREV_WAIT_NEEDED 1
struct mtx bxe_prev_mtx;
MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
struct bxe_prev_list_node {
LIST_ENTRY(bxe_prev_list_node) node;
uint8_t bus;
uint8_t slot;
uint8_t path;
uint8_t aer; /* XXX automatic error recovery */
uint8_t undi;
};
static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
/* Tunable device values... */
SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
/* Debug */
unsigned long bxe_debug = 0;
SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
&bxe_debug, 0, "Debug logging mode");
/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
static int bxe_interrupt_mode = INTR_MODE_MSIX;
SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
&bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
static int bxe_queue_count = 4;
SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
&bxe_queue_count, 0, "Multi-Queue queue count");
/* max number of buffers per queue (default RX_BD_USABLE) */
static int bxe_max_rx_bufs = 0;
SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
&bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
/* Host interrupt coalescing RX tick timer (usecs) */
static int bxe_hc_rx_ticks = 25;
SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
&bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
/* Host interrupt coalescing TX tick timer (usecs) */
static int bxe_hc_tx_ticks = 50;
SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
&bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
/* Maximum number of Rx packets to process at a time */
static int bxe_rx_budget = 0xffffffff;
SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
&bxe_rx_budget, 0, "Rx processing budget");
/* Maximum LRO aggregation size */
static int bxe_max_aggregation_size = 0;
SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
&bxe_max_aggregation_size, 0, "max aggregation size");
/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
static int bxe_mrrs = -1;
SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
&bxe_mrrs, 0, "PCIe maximum read request size");
/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
static int bxe_autogreeen = 0;
SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
&bxe_autogreeen, 0, "AutoGrEEEn support");
/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
static int bxe_udp_rss = 0;
SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
&bxe_udp_rss, 0, "UDP RSS support");
#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
#define STATS_OFFSET32(stat_name) \
(offsetof(struct bxe_eth_stats, stat_name) / 4)
#define Q_STATS_OFFSET32(stat_name) \
(offsetof(struct bxe_eth_q_stats, stat_name) / 4)
static const struct {
uint32_t offset;
uint32_t size;
uint32_t flags;
#define STATS_FLAGS_PORT 1
#define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */
#define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
char string[STAT_NAME_LEN];
} bxe_eth_stats_arr[] = {
{ STATS_OFFSET32(total_bytes_received_hi),
8, STATS_FLAGS_BOTH, "rx_bytes" },
{ STATS_OFFSET32(error_bytes_received_hi),
8, STATS_FLAGS_BOTH, "rx_error_bytes" },
{ STATS_OFFSET32(total_unicast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
{ STATS_OFFSET32(total_multicast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
{ STATS_OFFSET32(total_broadcast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
{ STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
8, STATS_FLAGS_PORT, "rx_crc_errors" },
{ STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
8, STATS_FLAGS_PORT, "rx_align_errors" },
{ STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
8, STATS_FLAGS_PORT, "rx_undersize_packets" },
{ STATS_OFFSET32(etherstatsoverrsizepkts_hi),
8, STATS_FLAGS_PORT, "rx_oversize_packets" },
{ STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
8, STATS_FLAGS_PORT, "rx_fragments" },
{ STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
8, STATS_FLAGS_PORT, "rx_jabbers" },
{ STATS_OFFSET32(no_buff_discard_hi),
8, STATS_FLAGS_BOTH, "rx_discards" },
{ STATS_OFFSET32(mac_filter_discard),
4, STATS_FLAGS_PORT, "rx_filtered_packets" },
{ STATS_OFFSET32(mf_tag_discard),
4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
{ STATS_OFFSET32(pfc_frames_received_hi),
8, STATS_FLAGS_PORT, "pfc_frames_received" },
{ STATS_OFFSET32(pfc_frames_sent_hi),
8, STATS_FLAGS_PORT, "pfc_frames_sent" },
{ STATS_OFFSET32(brb_drop_hi),
8, STATS_FLAGS_PORT, "rx_brb_discard" },
{ STATS_OFFSET32(brb_truncate_hi),
8, STATS_FLAGS_PORT, "rx_brb_truncate" },
{ STATS_OFFSET32(pause_frames_received_hi),
8, STATS_FLAGS_PORT, "rx_pause_frames" },
{ STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
{ STATS_OFFSET32(nig_timer_max),
4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
{ STATS_OFFSET32(total_bytes_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_bytes" },
{ STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
8, STATS_FLAGS_PORT, "tx_error_bytes" },
{ STATS_OFFSET32(total_unicast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
{ STATS_OFFSET32(total_multicast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
{ STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
{ STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
8, STATS_FLAGS_PORT, "tx_mac_errors" },
{ STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
8, STATS_FLAGS_PORT, "tx_carrier_errors" },
{ STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
8, STATS_FLAGS_PORT, "tx_single_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
8, STATS_FLAGS_PORT, "tx_multi_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
8, STATS_FLAGS_PORT, "tx_deferred" },
{ STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
8, STATS_FLAGS_PORT, "tx_excess_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
8, STATS_FLAGS_PORT, "tx_late_collisions" },
{ STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
8, STATS_FLAGS_PORT, "tx_total_collisions" },
{ STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
{ STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
{ STATS_OFFSET32(etherstatspktsover1522octets_hi),
8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
{ STATS_OFFSET32(pause_frames_sent_hi),
8, STATS_FLAGS_PORT, "tx_pause_frames" },
{ STATS_OFFSET32(total_tpa_aggregations_hi),
8, STATS_FLAGS_FUNC, "tpa_aggregations" },
{ STATS_OFFSET32(total_tpa_aggregated_frames_hi),
8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
{ STATS_OFFSET32(total_tpa_bytes_hi),
8, STATS_FLAGS_FUNC, "tpa_bytes"},
{ STATS_OFFSET32(eee_tx_lpi),
4, STATS_FLAGS_PORT, "eee_tx_lpi"},
{ STATS_OFFSET32(rx_calls),
4, STATS_FLAGS_FUNC, "rx_calls"},
{ STATS_OFFSET32(rx_pkts),
4, STATS_FLAGS_FUNC, "rx_pkts"},
{ STATS_OFFSET32(rx_tpa_pkts),
4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
{ STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
{ STATS_OFFSET32(rx_bxe_service_rxsgl),
4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
{ STATS_OFFSET32(rx_jumbo_sge_pkts),
4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
{ STATS_OFFSET32(rx_soft_errors),
4, STATS_FLAGS_FUNC, "rx_soft_errors"},
{ STATS_OFFSET32(rx_hw_csum_errors),
4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
{ STATS_OFFSET32(rx_ofld_frames_csum_ip),
4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
{ STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
{ STATS_OFFSET32(rx_budget_reached),
4, STATS_FLAGS_FUNC, "rx_budget_reached"},
{ STATS_OFFSET32(tx_pkts),
4, STATS_FLAGS_FUNC, "tx_pkts"},
{ STATS_OFFSET32(tx_soft_errors),
4, STATS_FLAGS_FUNC, "tx_soft_errors"},
{ STATS_OFFSET32(tx_ofld_frames_csum_ip),
4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
{ STATS_OFFSET32(tx_ofld_frames_csum_tcp),
4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
{ STATS_OFFSET32(tx_ofld_frames_csum_udp),
4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
{ STATS_OFFSET32(tx_ofld_frames_lso),
4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
{ STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
{ STATS_OFFSET32(tx_encap_failures),
4, STATS_FLAGS_FUNC, "tx_encap_failures"},
{ STATS_OFFSET32(tx_hw_queue_full),
4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
{ STATS_OFFSET32(tx_hw_max_queue_depth),
4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
{ STATS_OFFSET32(tx_dma_mapping_failure),
4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
{ STATS_OFFSET32(tx_max_drbr_queue_depth),
4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
{ STATS_OFFSET32(tx_window_violation_std),
4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
{ STATS_OFFSET32(tx_window_violation_tso),
4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
{ STATS_OFFSET32(tx_chain_lost_mbuf),
4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
{ STATS_OFFSET32(tx_frames_deferred),
4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
{ STATS_OFFSET32(tx_queue_xoff),
4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
{ STATS_OFFSET32(mbuf_defrag_attempts),
4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
{ STATS_OFFSET32(mbuf_defrag_failures),
4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
{ STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
{ STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
{ STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
{ STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
{ STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
{ STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
{ STATS_OFFSET32(mbuf_alloc_tx),
4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
{ STATS_OFFSET32(mbuf_alloc_rx),
4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
{ STATS_OFFSET32(mbuf_alloc_sge),
4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
{ STATS_OFFSET32(mbuf_alloc_tpa),
4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
{ STATS_OFFSET32(tx_queue_full_return),
4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
{ STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
{ STATS_OFFSET32(tx_request_link_down_failures),
4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
{ STATS_OFFSET32(bd_avail_too_less_failures),
4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
{ STATS_OFFSET32(tx_mq_not_empty),
4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
{ STATS_OFFSET32(nsegs_path1_errors),
4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
{ STATS_OFFSET32(nsegs_path2_errors),
4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
};
static const struct {
uint32_t offset;
uint32_t size;
char string[STAT_NAME_LEN];
} bxe_eth_q_stats_arr[] = {
{ Q_STATS_OFFSET32(total_bytes_received_hi),
8, "rx_bytes" },
{ Q_STATS_OFFSET32(total_unicast_packets_received_hi),
8, "rx_ucast_packets" },
{ Q_STATS_OFFSET32(total_multicast_packets_received_hi),
8, "rx_mcast_packets" },
{ Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
8, "rx_bcast_packets" },
{ Q_STATS_OFFSET32(no_buff_discard_hi),
8, "rx_discards" },
{ Q_STATS_OFFSET32(total_bytes_transmitted_hi),
8, "tx_bytes" },
{ Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
8, "tx_ucast_packets" },
{ Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
8, "tx_mcast_packets" },
{ Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
8, "tx_bcast_packets" },
{ Q_STATS_OFFSET32(total_tpa_aggregations_hi),
8, "tpa_aggregations" },
{ Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
8, "tpa_aggregated_frames"},
{ Q_STATS_OFFSET32(total_tpa_bytes_hi),
8, "tpa_bytes"},
{ Q_STATS_OFFSET32(rx_calls),
4, "rx_calls"},
{ Q_STATS_OFFSET32(rx_pkts),
4, "rx_pkts"},
{ Q_STATS_OFFSET32(rx_tpa_pkts),
4, "rx_tpa_pkts"},
{ Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
4, "rx_erroneous_jumbo_sge_pkts"},
{ Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
4, "rx_bxe_service_rxsgl"},
{ Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
4, "rx_jumbo_sge_pkts"},
{ Q_STATS_OFFSET32(rx_soft_errors),
4, "rx_soft_errors"},
{ Q_STATS_OFFSET32(rx_hw_csum_errors),
4, "rx_hw_csum_errors"},
{ Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
4, "rx_ofld_frames_csum_ip"},
{ Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
4, "rx_ofld_frames_csum_tcp_udp"},
{ Q_STATS_OFFSET32(rx_budget_reached),
4, "rx_budget_reached"},
{ Q_STATS_OFFSET32(tx_pkts),
4, "tx_pkts"},
{ Q_STATS_OFFSET32(tx_soft_errors),
4, "tx_soft_errors"},
{ Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
4, "tx_ofld_frames_csum_ip"},
{ Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
4, "tx_ofld_frames_csum_tcp"},
{ Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
4, "tx_ofld_frames_csum_udp"},
{ Q_STATS_OFFSET32(tx_ofld_frames_lso),
4, "tx_ofld_frames_lso"},
{ Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
4, "tx_ofld_frames_lso_hdr_splits"},
{ Q_STATS_OFFSET32(tx_encap_failures),
4, "tx_encap_failures"},
{ Q_STATS_OFFSET32(tx_hw_queue_full),
4, "tx_hw_queue_full"},
{ Q_STATS_OFFSET32(tx_hw_max_queue_depth),
4, "tx_hw_max_queue_depth"},
{ Q_STATS_OFFSET32(tx_dma_mapping_failure),
4, "tx_dma_mapping_failure"},
{ Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
4, "tx_max_drbr_queue_depth"},
{ Q_STATS_OFFSET32(tx_window_violation_std),
4, "tx_window_violation_std"},
{ Q_STATS_OFFSET32(tx_window_violation_tso),
4, "tx_window_violation_tso"},
{ Q_STATS_OFFSET32(tx_chain_lost_mbuf),
4, "tx_chain_lost_mbuf"},
{ Q_STATS_OFFSET32(tx_frames_deferred),
4, "tx_frames_deferred"},
{ Q_STATS_OFFSET32(tx_queue_xoff),
4, "tx_queue_xoff"},
{ Q_STATS_OFFSET32(mbuf_defrag_attempts),
4, "mbuf_defrag_attempts"},
{ Q_STATS_OFFSET32(mbuf_defrag_failures),
4, "mbuf_defrag_failures"},
{ Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
4, "mbuf_rx_bd_alloc_failed"},
{ Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
4, "mbuf_rx_bd_mapping_failed"},
{ Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
4, "mbuf_rx_tpa_alloc_failed"},
{ Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
4, "mbuf_rx_tpa_mapping_failed"},
{ Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
4, "mbuf_rx_sge_alloc_failed"},
{ Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
4, "mbuf_rx_sge_mapping_failed"},
{ Q_STATS_OFFSET32(mbuf_alloc_tx),
4, "mbuf_alloc_tx"},
{ Q_STATS_OFFSET32(mbuf_alloc_rx),
4, "mbuf_alloc_rx"},
{ Q_STATS_OFFSET32(mbuf_alloc_sge),
4, "mbuf_alloc_sge"},
{ Q_STATS_OFFSET32(mbuf_alloc_tpa),
4, "mbuf_alloc_tpa"},
{ Q_STATS_OFFSET32(tx_queue_full_return),
4, "tx_queue_full_return"},
{ Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
4, "bxe_tx_mq_sc_state_failures"},
{ Q_STATS_OFFSET32(tx_request_link_down_failures),
4, "tx_request_link_down_failures"},
{ Q_STATS_OFFSET32(bd_avail_too_less_failures),
4, "bd_avail_too_less_failures"},
{ Q_STATS_OFFSET32(tx_mq_not_empty),
4, "tx_mq_not_empty"},
{ Q_STATS_OFFSET32(nsegs_path1_errors),
4, "nsegs_path1_errors"},
{ Q_STATS_OFFSET32(nsegs_path2_errors),
4, "nsegs_path2_errors"}
};
#define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr)
#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
static void bxe_cmng_fns_init(struct bxe_softc *sc,
uint8_t read_cfg,
uint8_t cmng_type);
static int bxe_get_cmng_fns_mode(struct bxe_softc *sc);
static void storm_memset_cmng(struct bxe_softc *sc,
struct cmng_init *cmng,
uint8_t port);
static void bxe_set_reset_global(struct bxe_softc *sc);
static void bxe_set_reset_in_progress(struct bxe_softc *sc);
static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
int engine);
static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
uint8_t *global,
uint8_t print);
static void bxe_int_disable(struct bxe_softc *sc);
static int bxe_release_leader_lock(struct bxe_softc *sc);
static void bxe_pf_disable(struct bxe_softc *sc);
static void bxe_free_fp_buffers(struct bxe_softc *sc);
static inline void bxe_update_rx_prod(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint16_t rx_bd_prod,
uint16_t rx_cq_prod,
uint16_t rx_sge_prod);
static void bxe_link_report_locked(struct bxe_softc *sc);
static void bxe_link_report(struct bxe_softc *sc);
static void bxe_link_status_update(struct bxe_softc *sc);
static void bxe_periodic_callout_func(void *xsc);
static void bxe_periodic_start(struct bxe_softc *sc);
static void bxe_periodic_stop(struct bxe_softc *sc);
static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
uint16_t prev_index,
uint16_t index);
static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
int queue);
static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
uint16_t index);
static uint8_t bxe_txeof(struct bxe_softc *sc,
struct bxe_fastpath *fp);
static void bxe_task_fp(struct bxe_fastpath *fp);
static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
struct mbuf *m,
uint8_t contents);
static int bxe_alloc_mem(struct bxe_softc *sc);
static void bxe_free_mem(struct bxe_softc *sc);
static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
static void bxe_free_fw_stats_mem(struct bxe_softc *sc);
static int bxe_interrupt_attach(struct bxe_softc *sc);
static void bxe_interrupt_detach(struct bxe_softc *sc);
static void bxe_set_rx_mode(struct bxe_softc *sc);
static int bxe_init_locked(struct bxe_softc *sc);
static int bxe_stop_locked(struct bxe_softc *sc);
static void bxe_sp_err_timeout_task(void *arg, int pending);
void bxe_parity_recover(struct bxe_softc *sc);
void bxe_handle_error(struct bxe_softc *sc);
static __noinline int bxe_nic_load(struct bxe_softc *sc,
int load_mode);
static __noinline int bxe_nic_unload(struct bxe_softc *sc,
uint32_t unload_mode,
uint8_t keep_link);
static void bxe_handle_sp_tq(void *context, int pending);
static void bxe_handle_fp_tq(void *context, int pending);
static int bxe_add_cdev(struct bxe_softc *sc);
static void bxe_del_cdev(struct bxe_softc *sc);
int bxe_grc_dump(struct bxe_softc *sc);
static int bxe_alloc_buf_rings(struct bxe_softc *sc);
static void bxe_free_buf_rings(struct bxe_softc *sc);
/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
uint32_t
calc_crc32(uint8_t *crc32_packet,
uint32_t crc32_length,
uint32_t crc32_seed,
uint8_t complement)
{
uint32_t byte = 0;
uint32_t bit = 0;
uint8_t msb = 0;
uint32_t temp = 0;
uint32_t shft = 0;
uint8_t current_byte = 0;
uint32_t crc32_result = crc32_seed;
const uint32_t CRC32_POLY = 0x1edc6f41;
if ((crc32_packet == NULL) ||
(crc32_length == 0) ||
((crc32_length % 8) != 0))
{
return (crc32_result);
}
for (byte = 0; byte < crc32_length; byte = byte + 1)
{
current_byte = crc32_packet[byte];
for (bit = 0; bit < 8; bit = bit + 1)
{
/* msb = crc32_result[31]; */
msb = (uint8_t)(crc32_result >> 31);
crc32_result = crc32_result << 1;
/* it (msb != current_byte[bit]) */
if (msb != (0x1 & (current_byte >> bit)))
{
crc32_result = crc32_result ^ CRC32_POLY;
/* crc32_result[0] = 1 */
crc32_result |= 1;
}
}
}
/* Last step is to:
* 1. "mirror" every bit
* 2. swap the 4 bytes
* 3. complement each bit
*/
/* Mirror */
temp = crc32_result;
shft = sizeof(crc32_result) * 8 - 1;
for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
{
temp <<= 1;
temp |= crc32_result & 1;
shft-- ;
}
/* temp[31-bit] = crc32_result[bit] */
temp <<= shft;
/* Swap */
/* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
{
uint32_t t0, t1, t2, t3;
t0 = (0x000000ff & (temp >> 24));
t1 = (0x0000ff00 & (temp >> 8));
t2 = (0x00ff0000 & (temp << 8));
t3 = (0xff000000 & (temp << 24));
crc32_result = t0 | t1 | t2 | t3;
}
/* Complement */
if (complement)
{
crc32_result = ~crc32_result;
}
return (crc32_result);
}
int
bxe_test_bit(int nr,
volatile unsigned long *addr)
{
return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
}
void
bxe_set_bit(unsigned int nr,
volatile unsigned long *addr)
{
atomic_set_acq_long(addr, (1 << nr));
}
void
bxe_clear_bit(int nr,
volatile unsigned long *addr)
{
atomic_clear_acq_long(addr, (1 << nr));
}
int
bxe_test_and_set_bit(int nr,
volatile unsigned long *addr)
{
unsigned long x;
nr = (1 << nr);
do {
x = *addr;
} while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
// if (x & nr) bit_was_set; else bit_was_not_set;
return (x & nr);
}
int
bxe_test_and_clear_bit(int nr,
volatile unsigned long *addr)
{
unsigned long x;
nr = (1 << nr);
do {
x = *addr;
} while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
// if (x & nr) bit_was_set; else bit_was_not_set;
return (x & nr);
}
int
bxe_cmpxchg(volatile int *addr,
int old,
int new)
{
int x;
do {
x = *addr;
} while (atomic_cmpset_acq_int(addr, old, new) == 0);
return (x);
}
/*
* Get DMA memory from the OS.
*
* Validates that the OS has provided DMA buffers in response to a
* bus_dmamap_load call and saves the physical address of those buffers.
* When the callback is used the OS will return 0 for the mapping function
* (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
* failures back to the caller.
*
* Returns:
* Nothing.
*/
static void
bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct bxe_dma *dma = arg;
if (error) {
dma->paddr = 0;
dma->nseg = 0;
BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
} else {
dma->paddr = segs->ds_addr;
dma->nseg = nseg;
}
}
/*
* Allocate a block of memory and map it for DMA. No partial completions
* allowed and release any resources acquired if we can't acquire all
* resources.
*
* Returns:
* 0 = Success, !0 = Failure
*/
int
bxe_dma_alloc(struct bxe_softc *sc,
bus_size_t size,
struct bxe_dma *dma,
const char *msg)
{
int rc;
if (dma->size > 0) {
BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
(unsigned long)dma->size);
return (1);
}
memset(dma, 0, sizeof(*dma)); /* sanity */
dma->sc = sc;
dma->size = size;
snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
BCM_PAGE_SIZE, /* alignment */
0, /* boundary limit */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* addr filter() */
NULL, /* addr filter() arg */
size, /* max map size */
1, /* num discontinuous */
size, /* max seg size */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lock() */
NULL, /* lock() arg */
&dma->tag); /* returned dma tag */
if (rc != 0) {
BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
memset(dma, 0, sizeof(*dma));
return (1);
}
rc = bus_dmamem_alloc(dma->tag,
(void **)&dma->vaddr,
(BUS_DMA_NOWAIT | BUS_DMA_ZERO),
&dma->map);
if (rc != 0) {
BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
bus_dma_tag_destroy(dma->tag);
memset(dma, 0, sizeof(*dma));
return (1);
}
rc = bus_dmamap_load(dma->tag,
dma->map,
dma->vaddr,
size,
bxe_dma_map_addr, /* BLOGD in here */
dma,
BUS_DMA_NOWAIT);
if (rc != 0) {
BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
bus_dma_tag_destroy(dma->tag);
memset(dma, 0, sizeof(*dma));
return (1);
}
return (0);
}
void
bxe_dma_free(struct bxe_softc *sc,
struct bxe_dma *dma)
{
if (dma->size > 0) {
DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
bus_dmamap_sync(dma->tag, dma->map,
(BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
bus_dma_tag_destroy(dma->tag);
}
memset(dma, 0, sizeof(*dma));
}
/*
* These indirect read and write routines are only during init.
* The locking is handled by the MCP.
*/
void
bxe_reg_wr_ind(struct bxe_softc *sc,
uint32_t addr,
uint32_t val)
{
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
}
uint32_t
bxe_reg_rd_ind(struct bxe_softc *sc,
uint32_t addr)
{
uint32_t val;
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
return (val);
}
static int
bxe_acquire_hw_lock(struct bxe_softc *sc,
uint32_t resource)
{
uint32_t lock_status;
uint32_t resource_bit = (1 << resource);
int func = SC_FUNC(sc);
uint32_t hw_lock_control_reg;
int cnt;
/* validate the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
" resource_bit 0x%x\n", resource, resource_bit);
return (-1);
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
}
/* validate the resource is not already taken */
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit) {
BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
resource, lock_status, resource_bit);
return (-1);
}
/* try every 5ms for 5 seconds */
for (cnt = 0; cnt < 1000; cnt++) {
REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit) {
return (0);
}
DELAY(5000);
}
BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
resource, resource_bit);
return (-1);
}
static int
bxe_release_hw_lock(struct bxe_softc *sc,
uint32_t resource)
{
uint32_t lock_status;
uint32_t resource_bit = (1 << resource);
int func = SC_FUNC(sc);
uint32_t hw_lock_control_reg;
/* validate the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
" resource_bit 0x%x\n", resource, resource_bit);
return (-1);
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
}
/* validate the resource is currently taken */
lock_status = REG_RD(sc, hw_lock_control_reg);
if (!(lock_status & resource_bit)) {
BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
resource, lock_status, resource_bit);
return (-1);
}
REG_WR(sc, hw_lock_control_reg, resource_bit);
return (0);
}
static void bxe_acquire_phy_lock(struct bxe_softc *sc)
{
BXE_PHY_LOCK(sc);
bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
}
static void bxe_release_phy_lock(struct bxe_softc *sc)
{
bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
BXE_PHY_UNLOCK(sc);
}
/*
* Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
* had we done things the other way around, if two pfs from the same port
* would attempt to access nvram at the same time, we could run into a
* scenario such as:
* pf A takes the port lock.
* pf B succeeds in taking the same lock since they are from the same port.
* pf A takes the per pf misc lock. Performs eeprom access.
* pf A finishes. Unlocks the per pf misc lock.
* Pf B takes the lock and proceeds to perform it's own access.
* pf A unlocks the per port lock, while pf B is still working (!).
* mcp takes the per port lock and corrupts pf B's access (and/or has it's own
* access corrupted by pf B).*
*/
static int
bxe_acquire_nvram_lock(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
int count, i;
uint32_t val = 0;
/* acquire HW lock: protect against other PFs in PF Direct Assignment */
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
/* adjust timeout for emulation/FPGA */
count = NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(sc)) {
count *= 100;
}
/* request access to nvram interface */
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
for (i = 0; i < count*10; i++) {
val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
break;
}
DELAY(5);
}
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
BLOGE(sc, "Cannot get access to nvram interface "
"port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
port, val);
return (-1);
}
return (0);
}
static int
bxe_release_nvram_lock(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
int count, i;
uint32_t val = 0;
/* adjust timeout for emulation/FPGA */
count = NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(sc)) {
count *= 100;
}
/* relinquish nvram interface */
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
for (i = 0; i < count*10; i++) {
val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
break;
}
DELAY(5);
}
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
BLOGE(sc, "Cannot free access to nvram interface "
"port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
port, val);
return (-1);
}
/* release HW lock: protect against other PFs in PF Direct Assignment */
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
return (0);
}
static void
bxe_enable_nvram_access(struct bxe_softc *sc)
{
uint32_t val;
val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* enable both bits, even on read */
REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
}
static void
bxe_disable_nvram_access(struct bxe_softc *sc)
{
uint32_t val;
val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* disable both bits, even after read */
REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
MCPR_NVM_ACCESS_ENABLE_WR_EN)));
}
static int
bxe_nvram_read_dword(struct bxe_softc *sc,
uint32_t offset,
uint32_t *ret_val,
uint32_t cmd_flags)
{
int count, i, rc;
uint32_t val;
/* build the command word */
cmd_flags |= MCPR_NVM_COMMAND_DOIT;
/* need to clear DONE bit separately */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* address of the NVRAM to read from */
REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* issue a read command */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* adjust timeout for emulation/FPGA */
count = NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(sc)) {
count *= 100;
}
/* wait for completion */
*ret_val = 0;
rc = -1;
for (i = 0; i < count; i++) {
DELAY(5);
val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
/* we read nvram data in cpu order
* but ethtool sees it as an array of bytes
* converting to big-endian will do the work
*/
*ret_val = htobe32(val);
rc = 0;
break;
}
}
if (rc == -1) {
BLOGE(sc, "nvram read timeout expired "
"(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
offset, cmd_flags, val);
}
return (rc);
}
static int
bxe_nvram_read(struct bxe_softc *sc,
uint32_t offset,
uint8_t *ret_buf,
int buf_size)
{
uint32_t cmd_flags;
uint32_t val;
int rc;
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
offset, buf_size);
return (-1);
}
if ((offset + buf_size) > sc->devinfo.flash_size) {
BLOGE(sc, "Invalid parameter, "
"offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
offset, buf_size, sc->devinfo.flash_size);
return (-1);
}
/* request access to nvram interface */
rc = bxe_acquire_nvram_lock(sc);
if (rc) {
return (rc);
}
/* enable access to nvram interface */
bxe_enable_nvram_access(sc);
/* read the first word(s) */
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
/* advance to the next dword */
offset += sizeof(uint32_t);
ret_buf += sizeof(uint32_t);
buf_size -= sizeof(uint32_t);
cmd_flags = 0;
}
if (rc == 0) {
cmd_flags |= MCPR_NVM_COMMAND_LAST;
rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
}
/* disable access to nvram interface */
bxe_disable_nvram_access(sc);
bxe_release_nvram_lock(sc);
return (rc);
}
static int
bxe_nvram_write_dword(struct bxe_softc *sc,
uint32_t offset,
uint32_t val,
uint32_t cmd_flags)
{
int count, i, rc;
/* build the command word */
cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
/* need to clear DONE bit separately */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* write the data */
REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
/* address of the NVRAM to write to */
REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* issue the write command */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* adjust timeout for emulation/FPGA */
count = NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(sc)) {
count *= 100;
}
/* wait for completion */
rc = -1;
for (i = 0; i < count; i++) {
DELAY(5);
val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
rc = 0;
break;
}
}
if (rc == -1) {
BLOGE(sc, "nvram write timeout expired "
"(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
offset, cmd_flags, val);
}
return (rc);
}
#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
static int
bxe_nvram_write1(struct bxe_softc *sc,
uint32_t offset,
uint8_t *data_buf,
int buf_size)
{
uint32_t cmd_flags;
uint32_t align_offset;
uint32_t val;
int rc;
if ((offset + buf_size) > sc->devinfo.flash_size) {
BLOGE(sc, "Invalid parameter, "
"offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
offset, buf_size, sc->devinfo.flash_size);
return (-1);
}
/* request access to nvram interface */
rc = bxe_acquire_nvram_lock(sc);
if (rc) {
return (rc);
}
/* enable access to nvram interface */
bxe_enable_nvram_access(sc);
cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
align_offset = (offset & ~0x03);
rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
if (rc == 0) {
val &= ~(0xff << BYTE_OFFSET(offset));
val |= (*data_buf << BYTE_OFFSET(offset));
/* nvram data is returned as an array of bytes
* convert it back to cpu order
*/
val = be32toh(val);
rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
}
/* disable access to nvram interface */
bxe_disable_nvram_access(sc);
bxe_release_nvram_lock(sc);
return (rc);
}
static int
bxe_nvram_write(struct bxe_softc *sc,
uint32_t offset,
uint8_t *data_buf,
int buf_size)
{
uint32_t cmd_flags;
uint32_t val;
uint32_t written_so_far;
int rc;
if (buf_size == 1) {
return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
}
if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
offset, buf_size);
return (-1);
}
if (buf_size == 0) {
return (0); /* nothing to do */
}
if ((offset + buf_size) > sc->devinfo.flash_size) {
BLOGE(sc, "Invalid parameter, "
"offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
offset, buf_size, sc->devinfo.flash_size);
return (-1);
}
/* request access to nvram interface */
rc = bxe_acquire_nvram_lock(sc);
if (rc) {
return (rc);
}
/* enable access to nvram interface */
bxe_enable_nvram_access(sc);
written_so_far = 0;
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((written_so_far < buf_size) && (rc == 0)) {
if (written_so_far == (buf_size - sizeof(uint32_t))) {
cmd_flags |= MCPR_NVM_COMMAND_LAST;
} else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
cmd_flags |= MCPR_NVM_COMMAND_LAST;
} else if ((offset % NVRAM_PAGE_SIZE) == 0) {
cmd_flags |= MCPR_NVM_COMMAND_FIRST;
}
memcpy(&val, data_buf, 4);
rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
/* advance to the next dword */
offset += sizeof(uint32_t);
data_buf += sizeof(uint32_t);
written_so_far += sizeof(uint32_t);
cmd_flags = 0;
}
/* disable access to nvram interface */
bxe_disable_nvram_access(sc);
bxe_release_nvram_lock(sc);
return (rc);
}
/* copy command into DMAE command memory and set DMAE command Go */
void
bxe_post_dmae(struct bxe_softc *sc,
struct dmae_cmd *dmae,
int idx)
{
uint32_t cmd_offset;
int i;
cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
}
REG_WR(sc, dmae_reg_go_c[idx], 1);
}
uint32_t
bxe_dmae_opcode_add_comp(uint32_t opcode,
uint8_t comp_type)
{
return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
DMAE_CMD_C_TYPE_ENABLE));
}
uint32_t
bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
{
return (opcode & ~DMAE_CMD_SRC_RESET);
}
uint32_t
bxe_dmae_opcode(struct bxe_softc *sc,
uint8_t src_type,
uint8_t dst_type,
uint8_t with_comp,
uint8_t comp_type)
{
uint32_t opcode = 0;
opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
(dst_type << DMAE_CMD_DST_SHIFT));
opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
(SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
#ifdef __BIG_ENDIAN
opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
#else
opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
#endif
if (with_comp) {
opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
}
return (opcode);
}
static void
bxe_prep_dmae_with_comp(struct bxe_softc *sc,
struct dmae_cmd *dmae,
uint8_t src_type,
uint8_t dst_type)
{
memset(dmae, 0, sizeof(struct dmae_cmd));
/* set the opcode */
dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
TRUE, DMAE_COMP_PCI);
/* fill in the completion parameters */
dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
dmae->comp_val = DMAE_COMP_VAL;
}
/* issue a DMAE command over the init channel and wait for completion */
static int
bxe_issue_dmae_with_comp(struct bxe_softc *sc,
struct dmae_cmd *dmae)
{
uint32_t *wb_comp = BXE_SP(sc, wb_comp);
int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
BXE_DMAE_LOCK(sc);
/* reset completion */
*wb_comp = 0;
/* post the command on the channel used for initializations */
bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
/* wait for completion */
DELAY(5);
while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
if (!timeout ||
(sc->recovery_state != BXE_RECOVERY_DONE &&
sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
*wb_comp, sc->recovery_state);
BXE_DMAE_UNLOCK(sc);
return (DMAE_TIMEOUT);
}
timeout--;
DELAY(50);
}
if (*wb_comp & DMAE_PCI_ERR_FLAG) {
BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
*wb_comp, sc->recovery_state);
BXE_DMAE_UNLOCK(sc);
return (DMAE_PCI_ERROR);
}
BXE_DMAE_UNLOCK(sc);
return (0);
}
void
bxe_read_dmae(struct bxe_softc *sc,
uint32_t src_addr,
uint32_t len32)
{
struct dmae_cmd dmae;
uint32_t *data;
int i, rc;
DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
if (!sc->dmae_ready) {
data = BXE_SP(sc, wb_data[0]);
for (i = 0; i < len32; i++) {
data[i] = (CHIP_IS_E1(sc)) ?
bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
REG_RD(sc, (src_addr + (i * 4)));
}
return;
}
/* set opcode and fixed command fields */
bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
/* fill in addresses and len */
dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
dmae.src_addr_hi = 0;
dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
dmae.len = len32;
/* issue the command and wait for completion */
if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
bxe_panic(sc, ("DMAE failed (%d)\n", rc));
}
}
void
bxe_write_dmae(struct bxe_softc *sc,
bus_addr_t dma_addr,
uint32_t dst_addr,
uint32_t len32)
{
struct dmae_cmd dmae;
int rc;
if (!sc->dmae_ready) {
DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
if (CHIP_IS_E1(sc)) {
ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
} else {
ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
}
return;
}
/* set opcode and fixed command fields */
bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
/* fill in addresses and len */
dmae.src_addr_lo = U64_LO(dma_addr);
dmae.src_addr_hi = U64_HI(dma_addr);
dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
dmae.dst_addr_hi = 0;
dmae.len = len32;
/* issue the command and wait for completion */
if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
bxe_panic(sc, ("DMAE failed (%d)\n", rc));
}
}
void
bxe_write_dmae_phys_len(struct bxe_softc *sc,
bus_addr_t phys_addr,
uint32_t addr,
uint32_t len)
{
int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
int offset = 0;
while (len > dmae_wr_max) {
bxe_write_dmae(sc,
(phys_addr + offset), /* src DMA address */
(addr + offset), /* dst GRC address */
dmae_wr_max);
offset += (dmae_wr_max * 4);
len -= dmae_wr_max;
}
bxe_write_dmae(sc,
(phys_addr + offset), /* src DMA address */
(addr + offset), /* dst GRC address */
len);
}
void
bxe_set_ctx_validation(struct bxe_softc *sc,
struct eth_context *cxt,
uint32_t cid)
{
/* ustorm cxt validation */
cxt->ustorm_ag_context.cdu_usage =
CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
/* xcontext validation */
cxt->xstorm_ag_context.cdu_reserved =
CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
}
static void
bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
uint8_t port,
uint8_t fw_sb_id,
uint8_t sb_index,
uint8_t ticks)
{
uint32_t addr =
(BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
REG_WR8(sc, addr, ticks);
BLOGD(sc, DBG_LOAD,
"port %d fw_sb_id %d sb_index %d ticks %d\n",
port, fw_sb_id, sb_index, ticks);
}
static void
bxe_storm_memset_hc_disable(struct bxe_softc *sc,
uint8_t port,
uint16_t fw_sb_id,
uint8_t sb_index,
uint8_t disable)
{
uint32_t enable_flag =
(disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
uint32_t addr =
(BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
uint8_t flags;
/* clear and set */
flags = REG_RD8(sc, addr);
flags &= ~HC_INDEX_DATA_HC_ENABLED;
flags |= enable_flag;
REG_WR8(sc, addr, flags);
BLOGD(sc, DBG_LOAD,
"port %d fw_sb_id %d sb_index %d disable %d\n",
port, fw_sb_id, sb_index, disable);
}
void
bxe_update_coalesce_sb_index(struct bxe_softc *sc,
uint8_t fw_sb_id,
uint8_t sb_index,
uint8_t disable,
uint16_t usec)
{
int port = SC_PORT(sc);
uint8_t ticks = (usec / 4); /* XXX ??? */
bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
disable = (disable) ? 1 : ((usec) ? 0 : 1);
bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
}
void
elink_cb_udelay(struct bxe_softc *sc,
uint32_t usecs)
{
DELAY(usecs);
}
uint32_t
elink_cb_reg_read(struct bxe_softc *sc,
uint32_t reg_addr)
{
return (REG_RD(sc, reg_addr));
}
void
elink_cb_reg_write(struct bxe_softc *sc,
uint32_t reg_addr,
uint32_t val)
{
REG_WR(sc, reg_addr, val);
}
void
elink_cb_reg_wb_write(struct bxe_softc *sc,
uint32_t offset,
uint32_t *wb_write,
uint16_t len)
{
REG_WR_DMAE(sc, offset, wb_write, len);
}
void
elink_cb_reg_wb_read(struct bxe_softc *sc,
uint32_t offset,
uint32_t *wb_write,
uint16_t len)
{
REG_RD_DMAE(sc, offset, wb_write, len);
}
uint8_t
elink_cb_path_id(struct bxe_softc *sc)
{
return (SC_PATH(sc));
}
void
elink_cb_event_log(struct bxe_softc *sc,
const elink_log_id_t elink_log_id,
...)
{
/* XXX */
BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
}
static int
bxe_set_spio(struct bxe_softc *sc,
int spio,
uint32_t mode)
{
uint32_t spio_reg;
/* Only 2 SPIOs are configurable */
if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
return (-1);
}
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
/* read SPIO and mask except the float bits */
spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
switch (mode) {
case MISC_SPIO_OUTPUT_LOW:
BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
/* clear FLOAT and set CLR */
spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
spio_reg |= (spio << MISC_SPIO_CLR_POS);
break;
case MISC_SPIO_OUTPUT_HIGH:
BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
/* clear FLOAT and set SET */
spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
spio_reg |= (spio << MISC_SPIO_SET_POS);
break;
case MISC_SPIO_INPUT_HI_Z:
BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
/* set FLOAT */
spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
break;
default:
break;
}
REG_WR(sc, MISC_REG_SPIO, spio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
return (0);
}
static int
bxe_gpio_read(struct bxe_softc *sc,
int gpio_num,
uint8_t port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
int gpio_shift = (gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
uint32_t gpio_mask = (1 << gpio_shift);
uint32_t gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
" gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
gpio_mask);
return (-1);
}
/* read GPIO value */
gpio_reg = REG_RD(sc, MISC_REG_GPIO);
/* get the requested pin value */
return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
}
static int
bxe_gpio_write(struct bxe_softc *sc,
int gpio_num,
uint32_t mode,
uint8_t port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
int gpio_shift = (gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
uint32_t gpio_mask = (1 << gpio_shift);
uint32_t gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
" gpio_shift %d gpio_mask 0x%x\n",
gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
return (-1);
}
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
/* read GPIO and mask except the float bits */
gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
switch (mode) {
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
BLOGD(sc, DBG_PHY,
"Set GPIO %d (shift %d) -> output low\n",
gpio_num, gpio_shift);
/* clear FLOAT and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
break;
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
BLOGD(sc, DBG_PHY,
"Set GPIO %d (shift %d) -> output high\n",
gpio_num, gpio_shift);
/* clear FLOAT and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
break;
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
BLOGD(sc, DBG_PHY,
"Set GPIO %d (shift %d) -> input\n",
gpio_num, gpio_shift);
/* set FLOAT */
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
break;
default:
break;
}
REG_WR(sc, MISC_REG_GPIO, gpio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return (0);
}
static int
bxe_gpio_mult_write(struct bxe_softc *sc,
uint8_t pins,
uint32_t mode)
{
uint32_t gpio_reg;
/* any port swapping should be handled by caller */
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
/* read GPIO and mask except the float bits */
gpio_reg = REG_RD(sc, MISC_REG_GPIO);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
switch (mode) {
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
/* set CLR */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
break;
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
/* set SET */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
break;
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
/* set FLOAT */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
break;
default:
BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
" gpio_reg 0x%x\n", pins, mode, gpio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return (-1);
}
REG_WR(sc, MISC_REG_GPIO, gpio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return (0);
}
static int
bxe_gpio_int_write(struct bxe_softc *sc,
int gpio_num,
uint32_t mode,
uint8_t port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
int gpio_shift = (gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
uint32_t gpio_mask = (1 << gpio_shift);
uint32_t gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
" gpio_shift %d gpio_mask 0x%x\n",
gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
return (-1);
}
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
/* read GPIO int */
gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
switch (mode) {
case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
BLOGD(sc, DBG_PHY,
"Clear GPIO INT %d (shift %d) -> output low\n",
gpio_num, gpio_shift);
/* clear SET and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
break;
case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
BLOGD(sc, DBG_PHY,
"Set GPIO INT %d (shift %d) -> output high\n",
gpio_num, gpio_shift);
/* clear CLR and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
break;
default:
break;
}
REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return (0);
}
uint32_t
elink_cb_gpio_read(struct bxe_softc *sc,
uint16_t gpio_num,
uint8_t port)
{
return (bxe_gpio_read(sc, gpio_num, port));
}
uint8_t
elink_cb_gpio_write(struct bxe_softc *sc,
uint16_t gpio_num,
uint8_t mode, /* 0=low 1=high */
uint8_t port)
{
return (bxe_gpio_write(sc, gpio_num, mode, port));
}
uint8_t
elink_cb_gpio_mult_write(struct bxe_softc *sc,
uint8_t pins,
uint8_t mode) /* 0=low 1=high */
{
return (bxe_gpio_mult_write(sc, pins, mode));
}
uint8_t
elink_cb_gpio_int_write(struct bxe_softc *sc,
uint16_t gpio_num,
uint8_t mode, /* 0=low 1=high */
uint8_t port)
{
return (bxe_gpio_int_write(sc, gpio_num, mode, port));
}
void
elink_cb_notify_link_changed(struct bxe_softc *sc)
{
REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
(SC_FUNC(sc) * sizeof(uint32_t))), 1);
}
/* send the MCP a request, block until there is a reply */
uint32_t
elink_cb_fw_command(struct bxe_softc *sc,
uint32_t command,
uint32_t param)
{
int mb_idx = SC_FW_MB_IDX(sc);
uint32_t seq;
uint32_t rc = 0;
uint32_t cnt = 1;
uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
BXE_FWMB_LOCK(sc);
seq = ++sc->fw_seq;
SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
BLOGD(sc, DBG_PHY,
"wrote command 0x%08x to FW MB param 0x%08x\n",
(command | seq), param);
/* Let the FW do it's magic. GIve it up to 5 seconds... */
do {
DELAY(delay * 1000);
rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
BLOGD(sc, DBG_PHY,
"[after %d ms] read 0x%x seq 0x%x from FW MB\n",
cnt*delay, rc, seq);
/* is this a reply to our command? */
if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
rc &= FW_MSG_CODE_MASK;
} else {
/* Ruh-roh! */
BLOGE(sc, "FW failed to respond!\n");
// XXX bxe_fw_dump(sc);
rc = 0;
}
BXE_FWMB_UNLOCK(sc);
return (rc);
}
static uint32_t
bxe_fw_command(struct bxe_softc *sc,
uint32_t command,
uint32_t param)
{
return (elink_cb_fw_command(sc, command, param));
}
static void
__storm_memset_dma_mapping(struct bxe_softc *sc,
uint32_t addr,
bus_addr_t mapping)
{
REG_WR(sc, addr, U64_LO(mapping));
REG_WR(sc, (addr + 4), U64_HI(mapping));
}
static void
storm_memset_spq_addr(struct bxe_softc *sc,
bus_addr_t mapping,
uint16_t abs_fid)
{
uint32_t addr = (XSEM_REG_FAST_MEMORY +
XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
__storm_memset_dma_mapping(sc, addr, mapping);
}
static void
storm_memset_vf_to_pf(struct bxe_softc *sc,
uint16_t abs_fid,
uint16_t pf_id)
{
REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
}
static void
storm_memset_func_en(struct bxe_softc *sc,
uint16_t abs_fid,
uint8_t enable)
{
REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
}
static void
storm_memset_eq_data(struct bxe_softc *sc,
struct event_ring_data *eq_data,
uint16_t pfid)
{
uint32_t addr;
size_t size;
addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
size = sizeof(struct event_ring_data);
ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
}
static void
storm_memset_eq_prod(struct bxe_softc *sc,
uint16_t eq_prod,
uint16_t pfid)
{
uint32_t addr = (BAR_CSTRORM_INTMEM +
CSTORM_EVENT_RING_PROD_OFFSET(pfid));
REG_WR16(sc, addr, eq_prod);
}
/*
* Post a slowpath command.
*
* A slowpath command is used to propagate a configuration change through
* the controller in a controlled manner, allowing each STORM processor and
* other H/W blocks to phase in the change. The commands sent on the
* slowpath are referred to as ramrods. Depending on the ramrod used the
* completion of the ramrod will occur in different ways. Here's a
* breakdown of ramrods and how they complete:
*
* RAMROD_CMD_ID_ETH_PORT_SETUP
* Used to setup the leading connection on a port. Completes on the
* Receive Completion Queue (RCQ) of that port (typically fp[0]).
*
* RAMROD_CMD_ID_ETH_CLIENT_SETUP
* Used to setup an additional connection on a port. Completes on the
* RCQ of the multi-queue/RSS connection being initialized.
*
* RAMROD_CMD_ID_ETH_STAT_QUERY
* Used to force the storm processors to update the statistics database
* in host memory. This ramrod is send on the leading connection CID and
* completes as an index increment of the CSTORM on the default status
* block.
*
* RAMROD_CMD_ID_ETH_UPDATE
* Used to update the state of the leading connection, usually to udpate
* the RSS indirection table. Completes on the RCQ of the leading
* connection. (Not currently used under FreeBSD until OS support becomes
* available.)
*
* RAMROD_CMD_ID_ETH_HALT
* Used when tearing down a connection prior to driver unload. Completes
* on the RCQ of the multi-queue/RSS connection being torn down. Don't
* use this on the leading connection.
*
* RAMROD_CMD_ID_ETH_SET_MAC
* Sets the Unicast/Broadcast/Multicast used by the port. Completes on
* the RCQ of the leading connection.
*
* RAMROD_CMD_ID_ETH_CFC_DEL
* Used when tearing down a conneciton prior to driver unload. Completes
* on the RCQ of the leading connection (since the current connection
* has been completely removed from controller memory).
*
* RAMROD_CMD_ID_ETH_PORT_DEL
* Used to tear down the leading connection prior to driver unload,
* typically fp[0]. Completes as an index increment of the CSTORM on the
* default status block.
*
* RAMROD_CMD_ID_ETH_FORWARD_SETUP
* Used for connection offload. Completes on the RCQ of the multi-queue
* RSS connection that is being offloaded. (Not currently used under
* FreeBSD.)
*
* There can only be one command pending per function.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
/* must be called under the spq lock */
static inline
struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
{
struct eth_spe *next_spe = sc->spq_prod_bd;
if (sc->spq_prod_bd == sc->spq_last_bd) {
/* wrap back to the first eth_spq */
sc->spq_prod_bd = sc->spq;
sc->spq_prod_idx = 0;
} else {
sc->spq_prod_bd++;
sc->spq_prod_idx++;
}
return (next_spe);
}
/* must be called under the spq lock */
static inline
void bxe_sp_prod_update(struct bxe_softc *sc)
{
int func = SC_FUNC(sc);
/*
* Make sure that BD data is updated before writing the producer.
* BD data is written to the memory, the producer is read from the
* memory, thus we need a full memory barrier to ensure the ordering.
*/
mb();
REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
sc->spq_prod_idx);
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
BUS_SPACE_BARRIER_WRITE);
}
/**
* bxe_is_contextless_ramrod - check if the current command ends on EQ
*
* @cmd: command to check
* @cmd_type: command type
*/
static inline
int bxe_is_contextless_ramrod(int cmd,
int cmd_type)
{
if ((cmd_type == NONE_CONNECTION_TYPE) ||
(cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
(cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
(cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
return (TRUE);
} else {
return (FALSE);
}
}
/**
* bxe_sp_post - place a single command on an SP ring
*
* @sc: driver handle
* @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
* @cid: SW CID the command is related to
* @data_hi: command private data address (high 32 bits)
* @data_lo: command private data address (low 32 bits)
* @cmd_type: command type (e.g. NONE, ETH)
*
* SP data is handled as if it's always an address pair, thus data fields are
* not swapped to little endian in upper functions. Instead this function swaps
* data as if it's two uint32 fields.
*/
int
bxe_sp_post(struct bxe_softc *sc,
int command,
int cid,
uint32_t data_hi,
uint32_t data_lo,
int cmd_type)
{
struct eth_spe *spe;
uint16_t type;
int common;
common = bxe_is_contextless_ramrod(command, cmd_type);
BXE_SP_LOCK(sc);
if (common) {
if (!atomic_load_acq_long(&sc->eq_spq_left)) {
BLOGE(sc, "EQ ring is full!\n");
BXE_SP_UNLOCK(sc);
return (-1);
}
} else {
if (!atomic_load_acq_long(&sc->cq_spq_left)) {
BLOGE(sc, "SPQ ring is full!\n");
BXE_SP_UNLOCK(sc);
return (-1);
}
}
spe = bxe_sp_get_next(sc);
/* CID needs port number to be encoded int it */
spe->hdr.conn_and_cmd_data =
htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
/* TBD: Check if it works for VFs */
type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
SPE_HDR_T_FUNCTION_ID);
spe->hdr.type = htole16(type);
spe->data.update_data_addr.hi = htole32(data_hi);
spe->data.update_data_addr.lo = htole32(data_lo);
/*
* It's ok if the actual decrement is issued towards the memory
* somewhere between the lock and unlock. Thus no more explict
* memory barrier is needed.
*/
if (common) {
atomic_subtract_acq_long(&sc->eq_spq_left, 1);
} else {
atomic_subtract_acq_long(&sc->cq_spq_left, 1);
}
BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
BLOGD(sc, DBG_SP,
"SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
sc->spq_prod_idx,
(uint32_t)U64_HI(sc->spq_dma.paddr),
(uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
command,
common,
HW_CID(sc, cid),
data_hi,
data_lo,
type,
atomic_load_acq_long(&sc->cq_spq_left),
atomic_load_acq_long(&sc->eq_spq_left));
bxe_sp_prod_update(sc);
BXE_SP_UNLOCK(sc);
return (0);
}
/**
* bxe_debug_print_ind_table - prints the indirection table configuration.
*
* @sc: driver hanlde
* @p: pointer to rss configuration
*/
/*
* FreeBSD Device probe function.
*
* Compares the device found to the driver's list of supported devices and
* reports back to the bsd loader whether this is the right driver for the device.
* This is the driver entry function called from the "kldload" command.
*
* Returns:
* BUS_PROBE_DEFAULT on success, positive value on failure.
*/
static int
bxe_probe(device_t dev)
{
struct bxe_device_type *t;
char *descbuf;
uint16_t did, sdid, svid, vid;
/* Find our device structure */
t = bxe_devs;
/* Get the data for the device to be probed. */
vid = pci_get_vendor(dev);
did = pci_get_device(dev);
svid = pci_get_subvendor(dev);
sdid = pci_get_subdevice(dev);
/* Look through the list of known devices for a match. */
while (t->bxe_name != NULL) {
if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
if (descbuf == NULL)
return (ENOMEM);
/* Print out the device identity. */
snprintf(descbuf, BXE_DEVDESC_MAX,
"%s (%c%d) BXE v:%s\n", t->bxe_name,
(((pci_read_config(dev, PCIR_REVID, 4) &
0xf0) >> 4) + 'A'),
(pci_read_config(dev, PCIR_REVID, 4) & 0xf),
BXE_DRIVER_VERSION);
device_set_desc_copy(dev, descbuf);
free(descbuf, M_TEMP);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
static void
bxe_init_mutexes(struct bxe_softc *sc)
{
#ifdef BXE_CORE_LOCK_SX
snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
"bxe%d_core_lock", sc->unit);
sx_init(&sc->core_sx, sc->core_sx_name);
#else
snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
"bxe%d_core_lock", sc->unit);
mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
#endif
snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
"bxe%d_sp_lock", sc->unit);
mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
"bxe%d_dmae_lock", sc->unit);
mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
"bxe%d_phy_lock", sc->unit);
mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
"bxe%d_fwmb_lock", sc->unit);
mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
"bxe%d_print_lock", sc->unit);
mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
"bxe%d_stats_lock", sc->unit);
mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
"bxe%d_mcast_lock", sc->unit);
mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
}
static void
bxe_release_mutexes(struct bxe_softc *sc)
{
#ifdef BXE_CORE_LOCK_SX
sx_destroy(&sc->core_sx);
#else
if (mtx_initialized(&sc->core_mtx)) {
mtx_destroy(&sc->core_mtx);
}
#endif
if (mtx_initialized(&sc->sp_mtx)) {
mtx_destroy(&sc->sp_mtx);
}
if (mtx_initialized(&sc->dmae_mtx)) {
mtx_destroy(&sc->dmae_mtx);
}
if (mtx_initialized(&sc->port.phy_mtx)) {
mtx_destroy(&sc->port.phy_mtx);
}
if (mtx_initialized(&sc->fwmb_mtx)) {
mtx_destroy(&sc->fwmb_mtx);
}
if (mtx_initialized(&sc->print_mtx)) {
mtx_destroy(&sc->print_mtx);
}
if (mtx_initialized(&sc->stats_mtx)) {
mtx_destroy(&sc->stats_mtx);
}
if (mtx_initialized(&sc->mcast_mtx)) {
mtx_destroy(&sc->mcast_mtx);
}
}
static void
bxe_tx_disable(struct bxe_softc* sc)
{
if_t ifp = sc->ifp;
/* tell the stack the driver is stopped and TX queue is full */
if (ifp != NULL) {
if_setdrvflags(ifp, 0);
}
}
static void
bxe_drv_pulse(struct bxe_softc *sc)
{
SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
sc->fw_drv_pulse_wr_seq);
}
static inline uint16_t
bxe_tx_avail(struct bxe_softc *sc,
struct bxe_fastpath *fp)
{
int16_t used;
uint16_t prod;
uint16_t cons;
prod = fp->tx_bd_prod;
cons = fp->tx_bd_cons;
used = SUB_S16(prod, cons);
return (int16_t)(sc->tx_ring_size) - used;
}
static inline int
bxe_tx_queue_has_work(struct bxe_fastpath *fp)
{
uint16_t hw_cons;
mb(); /* status block fields can change */
hw_cons = le16toh(*fp->tx_cons_sb);
return (hw_cons != fp->tx_pkt_cons);
}
static inline uint8_t
bxe_has_tx_work(struct bxe_fastpath *fp)
{
/* expand this for multi-cos if ever supported */
return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
}
static inline int
bxe_has_rx_work(struct bxe_fastpath *fp)
{
uint16_t rx_cq_cons_sb;
mb(); /* status block fields can change */
rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
rx_cq_cons_sb++;
return (fp->rx_cq_cons != rx_cq_cons_sb);
}
static void
bxe_sp_event(struct bxe_softc *sc,
struct bxe_fastpath *fp,
union eth_rx_cqe *rr_cqe)
{
int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
switch (command) {
case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
drv_cmd = ECORE_Q_CMD_UPDATE;
break;
case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
drv_cmd = ECORE_Q_CMD_SETUP;
break;
case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
break;
case (RAMROD_CMD_ID_ETH_HALT):
BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
drv_cmd = ECORE_Q_CMD_HALT;
break;
case (RAMROD_CMD_ID_ETH_TERMINATE):
BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
drv_cmd = ECORE_Q_CMD_TERMINATE;
break;
case (RAMROD_CMD_ID_ETH_EMPTY):
BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
drv_cmd = ECORE_Q_CMD_EMPTY;
break;
default:
BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
command, fp->index);
return;
}
if ((drv_cmd != ECORE_Q_CMD_MAX) &&
q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
/*
* q_obj->complete_cmd() failure means that this was
* an unexpected completion.
*
* In this case we don't want to increase the sc->spq_left
* because apparently we haven't sent this command the first
* place.
*/
// bxe_panic(sc, ("Unexpected SP completion\n"));
return;
}
atomic_add_acq_long(&sc->cq_spq_left, 1);
BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
atomic_load_acq_long(&sc->cq_spq_left));
}
/*
* The current mbuf is part of an aggregation. Move the mbuf into the TPA
* aggregation queue, put an empty mbuf back onto the receive chain, and mark
* the current aggregation queue as in-progress.
*/
static void
bxe_tpa_start(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint16_t queue,
uint16_t cons,
uint16_t prod,
struct eth_fast_path_rx_cqe *cqe)
{
struct bxe_sw_rx_bd tmp_bd;
struct bxe_sw_rx_bd *rx_buf;
struct eth_rx_bd *rx_bd;
int max_agg_queues;
struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
uint16_t index;
BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
"cons=%d prod=%d\n",
fp->index, queue, cons, prod);
max_agg_queues = MAX_AGG_QS(sc);
KASSERT((queue < max_agg_queues),
("fp[%02d] invalid aggr queue (%d >= %d)!",
fp->index, queue, max_agg_queues));
KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
fp->index, queue));
/* copy the existing mbuf and mapping from the TPA pool */
tmp_bd = tpa_info->bd;
if (tmp_bd.m == NULL) {
uint32_t *tmp;
tmp = (uint32_t *)cqe;
BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
fp->index, queue, cons, prod);
BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
*tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
/* XXX Error handling? */
return;
}
/* change the TPA queue to the start state */
tpa_info->state = BXE_TPA_STATE_START;
tpa_info->placement_offset = cqe->placement_offset;
tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags);
tpa_info->vlan_tag = le16toh(cqe->vlan_tag);
tpa_info->len_on_bd = le16toh(cqe->len_on_bd);
fp->rx_tpa_queue_used |= (1 << queue);
/*
* If all the buffer descriptors are filled with mbufs then fill in
* the current consumer index with a new BD. Else if a maximum Rx
* buffer limit is imposed then fill in the next producer index.
*/
index = (sc->max_rx_bufs != RX_BD_USABLE) ?
prod : cons;
/* move the received mbuf and mapping to TPA pool */
tpa_info->bd = fp->rx_mbuf_chain[cons];
/* release any existing RX BD mbuf mappings */
if (cons != index) {
rx_buf = &fp->rx_mbuf_chain[cons];
if (rx_buf->m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
}
/*
* We get here when the maximum number of rx buffers is less than
* RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
* it out here without concern of a memory leak.
*/
fp->rx_mbuf_chain[cons].m = NULL;
}
/* update the Rx SW BD with the mbuf info from the TPA pool */
fp->rx_mbuf_chain[index] = tmp_bd;
/* update the Rx BD with the empty mbuf phys address from the TPA pool */
rx_bd = &fp->rx_chain[index];
rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
}
/*
* When a TPA aggregation is completed, loop through the individual mbufs
* of the aggregation, combining them into a single mbuf which will be sent
* up the stack. Refill all freed SGEs with mbufs as we go along.
*/
static int
bxe_fill_frag_mbuf(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct bxe_sw_tpa_info *tpa_info,
uint16_t queue,
uint16_t pages,
struct mbuf *m,
struct eth_end_agg_rx_cqe *cqe,
uint16_t cqe_idx)
{
struct mbuf *m_frag;
uint32_t frag_len, frag_size, i;
uint16_t sge_idx;
int rc = 0;
int j;
frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
BLOGD(sc, DBG_LRO,
"fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
/* make sure the aggregated frame is not too big to handle */
if (pages > 8 * PAGES_PER_SGE) {
uint32_t *tmp = (uint32_t *)cqe;
BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
"pkt_len=%d len_on_bd=%d frag_size=%d\n",
fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
tpa_info->len_on_bd, frag_size);
BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
*tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
bxe_panic(sc, ("sge page count error\n"));
return (EINVAL);
}
/*
* Scan through the scatter gather list pulling individual mbufs into a
* single mbuf for the host stack.
*/
for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
/*
* Firmware gives the indices of the SGE as if the ring is an array
* (meaning that the "next" element will consume 2 indices).
*/
frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
"sge_idx=%d frag_size=%d frag_len=%d\n",
fp->index, queue, i, j, sge_idx, frag_size, frag_len);
m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
/* allocate a new mbuf for the SGE */
rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
if (rc) {
/* Leave all remaining SGEs in the ring! */
return (rc);
}
/* update the fragment length */
m_frag->m_len = frag_len;
/* concatenate the fragment to the head mbuf */
m_cat(m, m_frag);
fp->eth_q_stats.mbuf_alloc_sge--;
/* update the TPA mbuf size and remaining fragment size */
m->m_pkthdr.len += frag_len;
frag_size -= frag_len;
}
BLOGD(sc, DBG_LRO,
"fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
fp->index, queue, frag_size);
return (rc);
}
static inline void
bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
{
int i, j;
for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
for (j = 0; j < 2; j++) {
BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
idx--;
}
}
}
static inline void
bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
{
/* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
/*
* Clear the two last indices in the page to 1. These are the indices that
* correspond to the "next" element, hence will never be indicated and
* should be removed from the calculations.
*/
bxe_clear_sge_mask_next_elems(fp);
}
static inline void
bxe_update_last_max_sge(struct bxe_fastpath *fp,
uint16_t idx)
{
uint16_t last_max = fp->last_max_sge;
if (SUB_S16(idx, last_max) > 0) {
fp->last_max_sge = idx;
}
}
static inline void
bxe_update_sge_prod(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint16_t sge_len,
union eth_sgl_or_raw_data *cqe)
{
uint16_t last_max, last_elem, first_elem;
uint16_t delta = 0;
uint16_t i;
if (!sge_len) {
return;
}
/* first mark all used pages */
for (i = 0; i < sge_len; i++) {
BIT_VEC64_CLEAR_BIT(fp->sge_mask,
RX_SGE(le16toh(cqe->sgl[i])));
}
BLOGD(sc, DBG_LRO,
"fp[%02d] fp_cqe->sgl[%d] = %d\n",
fp->index, sge_len - 1,
le16toh(cqe->sgl[sge_len - 1]));
/* assume that the last SGE index is the biggest */
bxe_update_last_max_sge(fp,
le16toh(cqe->sgl[sge_len - 1]));
last_max = RX_SGE(fp->last_max_sge);
last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
/* if ring is not full */
if (last_elem + 1 != first_elem) {
last_elem++;
}
/* now update the prod */
for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
if (__predict_true(fp->sge_mask[i])) {
break;
}
fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
delta += BIT_VEC64_ELEM_SZ;
}
if (delta > 0) {
fp->rx_sge_prod += delta;
/* clear page-end entries */
bxe_clear_sge_mask_next_elems(fp);
}
BLOGD(sc, DBG_LRO,
"fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
fp->index, fp->last_max_sge, fp->rx_sge_prod);
}
/*
* The aggregation on the current TPA queue has completed. Pull the individual
* mbuf fragments together into a single mbuf, perform all necessary checksum
* calculations, and send the resuting mbuf to the stack.
*/
static void
bxe_tpa_stop(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct bxe_sw_tpa_info *tpa_info,
uint16_t queue,
uint16_t pages,
struct eth_end_agg_rx_cqe *cqe,
uint16_t cqe_idx)
{
if_t ifp = sc->ifp;
struct mbuf *m;
int rc = 0;
BLOGD(sc, DBG_LRO,
"fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
fp->index, queue, tpa_info->placement_offset,
le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
m = tpa_info->bd.m;
/* allocate a replacement before modifying existing mbuf */
rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
if (rc) {
/* drop the frame and log an error */
fp->eth_q_stats.rx_soft_errors++;
goto bxe_tpa_stop_exit;
}
/* we have a replacement, fixup the current mbuf */
m_adj(m, tpa_info->placement_offset);
m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
/* mark the checksums valid (taken care of by the firmware) */
fp->eth_q_stats.rx_ofld_frames_csum_ip++;
fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
m->m_pkthdr.csum_data = 0xffff;
m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
CSUM_IP_VALID |
CSUM_DATA_VALID |
CSUM_PSEUDO_HDR);
/* aggregate all of the SGEs into a single mbuf */
rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
if (rc) {
/* drop the packet and log an error */
fp->eth_q_stats.rx_soft_errors++;
m_freem(m);
} else {
if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
m->m_flags |= M_VLANTAG;
}
/* assign packet to this interface interface */
if_setrcvif(m, ifp);
#if __FreeBSD_version >= 800000
/* specify what RSS queue was used for this flow */
m->m_pkthdr.flowid = fp->index;
BXE_SET_FLOWID(m);
#endif
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
fp->eth_q_stats.rx_tpa_pkts++;
/* pass the frame to the stack */
if_input(ifp, m);
}
/* we passed an mbuf up the stack or dropped the frame */
fp->eth_q_stats.mbuf_alloc_tpa--;
bxe_tpa_stop_exit:
fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
fp->rx_tpa_queue_used &= ~(1 << queue);
}
static uint8_t
bxe_service_rxsgl(
struct bxe_fastpath *fp,
uint16_t len,
uint16_t lenonbd,
struct mbuf *m,
struct eth_fast_path_rx_cqe *cqe_fp)
{
struct mbuf *m_frag;
uint16_t frags, frag_len;
uint16_t sge_idx = 0;
uint16_t j;
uint8_t i, rc = 0;
uint32_t frag_size;
/* adjust the mbuf */
m->m_len = lenonbd;
frag_size = len - lenonbd;
frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
m_frag->m_len = frag_len;
/* allocate a new mbuf for the SGE */
rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
if (rc) {
/* Leave all remaining SGEs in the ring! */
return (rc);
}
fp->eth_q_stats.mbuf_alloc_sge--;
/* concatenate the fragment to the head mbuf */
m_cat(m, m_frag);
frag_size -= frag_len;
}
bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
return rc;
}
static uint8_t
bxe_rxeof(struct bxe_softc *sc,
struct bxe_fastpath *fp)
{
if_t ifp = sc->ifp;
uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
int rx_pkts = 0;
int rc = 0;
BXE_FP_RX_LOCK(fp);
/* CQ "next element" is of the size of the regular element */
hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
hw_cq_cons++;
}
bd_cons = fp->rx_bd_cons;
bd_prod = fp->rx_bd_prod;
bd_prod_fw = bd_prod;
sw_cq_cons = fp->rx_cq_cons;
sw_cq_prod = fp->rx_cq_prod;
/*
* Memory barrier necessary as speculative reads of the rx
* buffer can be ahead of the index in the status block
*/
rmb();
BLOGD(sc, DBG_RX,
"fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
fp->index, hw_cq_cons, sw_cq_cons);
while (sw_cq_cons != hw_cq_cons) {
struct bxe_sw_rx_bd *rx_buf = NULL;
union eth_rx_cqe *cqe;
struct eth_fast_path_rx_cqe *cqe_fp;
uint8_t cqe_fp_flags;
enum eth_rx_cqe_type cqe_fp_type;
uint16_t len, lenonbd, pad;
struct mbuf *m = NULL;
comp_ring_cons = RCQ(sw_cq_cons);
bd_prod = RX_BD(bd_prod);
bd_cons = RX_BD(bd_cons);
cqe = &fp->rcq_chain[comp_ring_cons];
cqe_fp = &cqe->fast_path_cqe;
cqe_fp_flags = cqe_fp->type_error_flags;
cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
BLOGD(sc, DBG_RX,
"fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
"BD prod=%d cons=%d CQE type=0x%x err=0x%x "
"status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
fp->index,
hw_cq_cons,
sw_cq_cons,
bd_prod,
bd_cons,
CQE_TYPE(cqe_fp_flags),
cqe_fp_flags,
cqe_fp->status_flags,
le32toh(cqe_fp->rss_hash_result),
le16toh(cqe_fp->vlan_tag),
le16toh(cqe_fp->pkt_len_or_gro_seg_len),
le16toh(cqe_fp->len_on_bd));
/* is this a slowpath msg? */
if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
bxe_sp_event(sc, fp, cqe);
goto next_cqe;
}
rx_buf = &fp->rx_mbuf_chain[bd_cons];
if (!CQE_TYPE_FAST(cqe_fp_type)) {
struct bxe_sw_tpa_info *tpa_info;
uint16_t frag_size, pages;
uint8_t queue;
if (CQE_TYPE_START(cqe_fp_type)) {
bxe_tpa_start(sc, fp, cqe_fp->queue_index,
bd_cons, bd_prod, cqe_fp);
m = NULL; /* packet not ready yet */
goto next_rx;
}
KASSERT(CQE_TYPE_STOP(cqe_fp_type),
("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
queue = cqe->end_agg_cqe.queue_index;
tpa_info = &fp->rx_tpa_info[queue];
BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
fp->index, queue);
frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
tpa_info->len_on_bd);
pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
&cqe->end_agg_cqe, comp_ring_cons);
bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
goto next_cqe;
}
/* non TPA */
/* is this an error packet? */
if (__predict_false(cqe_fp_flags &
ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
fp->eth_q_stats.rx_soft_errors++;
goto next_rx;
}
len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
lenonbd = le16toh(cqe_fp->len_on_bd);
pad = cqe_fp->placement_offset;
m = rx_buf->m;
if (__predict_false(m == NULL)) {
BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
bd_cons, fp->index);
goto next_rx;
}
/* XXX double copy if packet length under a threshold */
/*
* If all the buffer descriptors are filled with mbufs then fill in
* the current consumer index with a new BD. Else if a maximum Rx
* buffer limit is imposed then fill in the next producer index.
*/
rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
(sc->max_rx_bufs != RX_BD_USABLE) ?
bd_prod : bd_cons);
if (rc != 0) {
/* we simply reuse the received mbuf and don't post it to the stack */
m = NULL;
BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
fp->index, rc);
fp->eth_q_stats.rx_soft_errors++;
if (sc->max_rx_bufs != RX_BD_USABLE) {
/* copy this consumer index to the producer index */
memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
sizeof(struct bxe_sw_rx_bd));
memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
}
goto next_rx;
}
/* current mbuf was detached from the bd */
fp->eth_q_stats.mbuf_alloc_rx--;
/* we allocated a replacement mbuf, fixup the current one */
m_adj(m, pad);
m->m_pkthdr.len = m->m_len = len;
if ((len > 60) && (len > lenonbd)) {
fp->eth_q_stats.rx_bxe_service_rxsgl++;
rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
if (rc)
break;
fp->eth_q_stats.rx_jumbo_sge_pkts++;
} else if (lenonbd < len) {
fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
}
/* assign packet to this interface interface */
if_setrcvif(m, ifp);
/* assume no hardware checksum has complated */
m->m_pkthdr.csum_flags = 0;
/* validate checksum if offload enabled */
if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
/* check for a valid IP frame */
if (!(cqe->fast_path_cqe.status_flags &
ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (__predict_false(cqe_fp_flags &
ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
fp->eth_q_stats.rx_hw_csum_errors++;
} else {
fp->eth_q_stats.rx_ofld_frames_csum_ip++;
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
}
/* check for a valid TCP/UDP frame */
if (!(cqe->fast_path_cqe.status_flags &
ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
if (__predict_false(cqe_fp_flags &
ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
fp->eth_q_stats.rx_hw_csum_errors++;
} else {
fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
m->m_pkthdr.csum_data = 0xFFFF;
m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
CSUM_PSEUDO_HDR);
}
}
}
/* if there is a VLAN tag then flag that info */
if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
m->m_flags |= M_VLANTAG;
}
#if __FreeBSD_version >= 800000
/* specify what RSS queue was used for this flow */
m->m_pkthdr.flowid = fp->index;
BXE_SET_FLOWID(m);
#endif
next_rx:
bd_cons = RX_BD_NEXT(bd_cons);
bd_prod = RX_BD_NEXT(bd_prod);
bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
/* pass the frame to the stack */
if (__predict_true(m != NULL)) {
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
rx_pkts++;
if_input(ifp, m);
}
next_cqe:
sw_cq_prod = RCQ_NEXT(sw_cq_prod);
sw_cq_cons = RCQ_NEXT(sw_cq_cons);
/* limit spinning on the queue */
if (rc != 0)
break;
if (rx_pkts == sc->rx_budget) {
fp->eth_q_stats.rx_budget_reached++;
break;
}
} /* while work to do */
fp->rx_bd_cons = bd_cons;
fp->rx_bd_prod = bd_prod_fw;
fp->rx_cq_cons = sw_cq_cons;
fp->rx_cq_prod = sw_cq_prod;
/* Update producers */
bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
fp->eth_q_stats.rx_pkts += rx_pkts;
fp->eth_q_stats.rx_calls++;
BXE_FP_RX_UNLOCK(fp);
return (sw_cq_cons != hw_cq_cons);
}
static uint16_t
bxe_free_tx_pkt(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint16_t idx)
{
struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
struct eth_tx_start_bd *tx_start_bd;
uint16_t bd_idx = TX_BD(tx_buf->first_bd);
uint16_t new_cons;
int nbd;
/* unmap the mbuf from non-paged memory */
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
nbd = le16toh(tx_start_bd->nbd) - 1;
new_cons = (tx_buf->first_bd + nbd);
/* free the mbuf */
if (__predict_true(tx_buf->m != NULL)) {
m_freem(tx_buf->m);
fp->eth_q_stats.mbuf_alloc_tx--;
} else {
fp->eth_q_stats.tx_chain_lost_mbuf++;
}
tx_buf->m = NULL;
tx_buf->first_bd = 0;
return (new_cons);
}
/* transmit timeout watchdog */
static int
bxe_watchdog(struct bxe_softc *sc,
struct bxe_fastpath *fp)
{
BXE_FP_TX_LOCK(fp);
if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
BXE_FP_TX_UNLOCK(fp);
return (0);
}
BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
BXE_FP_TX_UNLOCK(fp);
BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
return (-1);
}
/* processes transmit completions */
static uint8_t
bxe_txeof(struct bxe_softc *sc,
struct bxe_fastpath *fp)
{
if_t ifp = sc->ifp;
uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
uint16_t tx_bd_avail;
BXE_FP_TX_LOCK_ASSERT(fp);
bd_cons = fp->tx_bd_cons;
hw_cons = le16toh(*fp->tx_cons_sb);
sw_cons = fp->tx_pkt_cons;
while (sw_cons != hw_cons) {
pkt_cons = TX_BD(sw_cons);
BLOGD(sc, DBG_TX,
"TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
fp->index, hw_cons, sw_cons, pkt_cons);
bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
sw_cons++;
}
fp->tx_pkt_cons = sw_cons;
fp->tx_bd_cons = bd_cons;
BLOGD(sc, DBG_TX,
"TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
mb();
tx_bd_avail = bxe_tx_avail(sc, fp);
if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
} else {
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
}
if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
/* reset the watchdog timer if there are pending transmits */
fp->watchdog_timer = BXE_TX_TIMEOUT;
return (TRUE);
} else {
/* clear watchdog when there are no pending transmits */
fp->watchdog_timer = 0;
return (FALSE);
}
}
static void
bxe_drain_tx_queues(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i, count;
/* wait until all TX fastpath tasks have completed */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
count = 1000;
while (bxe_has_tx_work(fp)) {
BXE_FP_TX_LOCK(fp);
bxe_txeof(sc, fp);
BXE_FP_TX_UNLOCK(fp);
if (count == 0) {
BLOGE(sc, "Timeout waiting for fp[%d] "
"transmits to complete!\n", i);
bxe_panic(sc, ("tx drain failure\n"));
return;
}
count--;
DELAY(1000);
rmb();
}
}
return;
}
static int
bxe_del_all_macs(struct bxe_softc *sc,
struct ecore_vlan_mac_obj *mac_obj,
int mac_type,
uint8_t wait_for_comp)
{
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
int rc;
/* wait for completion of requested */
if (wait_for_comp) {
bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
}
/* Set the mac type of addresses we want to clear */
bxe_set_bit(mac_type, &vlan_mac_flags);
rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
if (rc < 0) {
BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
rc, mac_type, wait_for_comp);
}
return (rc);
}
static int
bxe_fill_accept_flags(struct bxe_softc *sc,
uint32_t rx_mode,
unsigned long *rx_accept_flags,
unsigned long *tx_accept_flags)
{
/* Clear the flags first */
*rx_accept_flags = 0;
*tx_accept_flags = 0;
switch (rx_mode) {
case BXE_RX_MODE_NONE:
/*
* 'drop all' supersedes any accept flags that may have been
* passed to the function.
*/
break;
case BXE_RX_MODE_NORMAL:
bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
break;
case BXE_RX_MODE_ALLMULTI:
bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
break;
case BXE_RX_MODE_PROMISC:
/*
* According to deffinition of SI mode, iface in promisc mode
* should receive matched and unmatched (in resolution of port)
* unicast packets.
*/
bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
if (IS_MF_SI(sc)) {
bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
} else {
bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
}
break;
default:
BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
return (-1);
}
/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
if (rx_mode != BXE_RX_MODE_NONE) {
bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
}
return (0);
}
static int
bxe_set_q_rx_mode(struct bxe_softc *sc,
uint8_t cl_id,
unsigned long rx_mode_flags,
unsigned long rx_accept_flags,
unsigned long tx_accept_flags,
unsigned long ramrod_flags)
{
struct ecore_rx_mode_ramrod_params ramrod_param;
int rc;
memset(&ramrod_param, 0, sizeof(ramrod_param));
/* Prepare ramrod parameters */
ramrod_param.cid = 0;
ramrod_param.cl_id = cl_id;
ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
ramrod_param.func_id = SC_FUNC(sc);
ramrod_param.pstate = &sc->sp_state;
ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
ramrod_param.ramrod_flags = ramrod_flags;
ramrod_param.rx_mode_flags = rx_mode_flags;
ramrod_param.rx_accept_flags = rx_accept_flags;
ramrod_param.tx_accept_flags = tx_accept_flags;
rc = ecore_config_rx_mode(sc, &ramrod_param);
if (rc < 0) {
BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
"rx_accept_flags 0x%x tx_accept_flags 0x%x "
"ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
(uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
(uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
return (rc);
}
return (0);
}
static int
bxe_set_storm_rx_mode(struct bxe_softc *sc)
{
unsigned long rx_mode_flags = 0, ramrod_flags = 0;
unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
int rc;
rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
&tx_accept_flags);
if (rc) {
return (rc);
}
bxe_set_bit(RAMROD_RX, &ramrod_flags);
bxe_set_bit(RAMROD_TX, &ramrod_flags);
/* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
rx_accept_flags, tx_accept_flags,
ramrod_flags));
}
/* returns the "mcp load_code" according to global load_count array */
static int
bxe_nic_load_no_mcp(struct bxe_softc *sc)
{
int path = SC_PATH(sc);
int port = SC_PORT(sc);
BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
load_count[path][0]++;
load_count[path][1 + port]++;
BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
if (load_count[path][0] == 1) {
return (FW_MSG_CODE_DRV_LOAD_COMMON);
} else if (load_count[path][1 + port] == 1) {
return (FW_MSG_CODE_DRV_LOAD_PORT);
} else {
return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
}
}
/* returns the "mcp load_code" according to global load_count array */
static int
bxe_nic_unload_no_mcp(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
int path = SC_PATH(sc);
BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
load_count[path][0]--;
load_count[path][1 + port]--;
BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
if (load_count[path][0] == 0) {
return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
} else if (load_count[path][1 + port] == 0) {
return (FW_MSG_CODE_DRV_UNLOAD_PORT);
} else {
return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
}
}
/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
static uint32_t
bxe_send_unload_req(struct bxe_softc *sc,
int unload_mode)
{
uint32_t reset_code = 0;
/* Select the UNLOAD request mode */
if (unload_mode == UNLOAD_NORMAL) {
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
} else {
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
}
/* Send the request to the MCP */
if (!BXE_NOMCP(sc)) {
reset_code = bxe_fw_command(sc, reset_code, 0);
} else {
reset_code = bxe_nic_unload_no_mcp(sc);
}
return (reset_code);
}
/* send UNLOAD_DONE command to the MCP */
static void
bxe_send_unload_done(struct bxe_softc *sc,
uint8_t keep_link)
{
uint32_t reset_param =
keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
/* Report UNLOAD_DONE to MCP */
if (!BXE_NOMCP(sc)) {
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
}
}
static int
bxe_func_wait_started(struct bxe_softc *sc)
{
int tout = 50;
if (!sc->port.pmf) {
return (0);
}
/*
* (assumption: No Attention from MCP at this stage)
* PMF probably in the middle of TX disable/enable transaction
* 1. Sync IRS for default SB
* 2. Sync SP queue - this guarantees us that attention handling started
* 3. Wait, that TX disable/enable transaction completes
*
* 1+2 guarantee that if DCBX attention was scheduled it already changed
* pending bit of transaction from STARTED-->TX_STOPPED, if we already
* received completion for the transaction the state is TX_STOPPED.
* State will return to STARTED after completion of TX_STOPPED-->STARTED
* transaction.
*/
/* XXX make sure default SB ISR is done */
/* need a way to synchronize an irq (intr_mtx?) */
/* XXX flush any work queues */
while (ecore_func_get_state(sc, &sc->func_obj) !=
ECORE_F_STATE_STARTED && tout--) {
DELAY(20000);
}
if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
/*
* Failed to complete the transaction in a "good way"
* Force both transactions with CLR bit.
*/
struct ecore_func_state_params func_params = { NULL };
BLOGE(sc, "Unexpected function state! "
"Forcing STARTED-->TX_STOPPED-->STARTED\n");
func_params.f_obj = &sc->func_obj;
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
/* STARTED-->TX_STOPPED */
func_params.cmd = ECORE_F_CMD_TX_STOP;
ecore_func_state_change(sc, &func_params);
/* TX_STOPPED-->STARTED */
func_params.cmd = ECORE_F_CMD_TX_START;
return (ecore_func_state_change(sc, &func_params));
}
return (0);
}
static int
bxe_stop_queue(struct bxe_softc *sc,
int index)
{
struct bxe_fastpath *fp = &sc->fp[index];
struct ecore_queue_state_params q_params = { NULL };
int rc;
BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
/* We want to wait for completion in this context */
bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
/* Stop the primary connection: */
/* ...halt the connection */
q_params.cmd = ECORE_Q_CMD_HALT;
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
return (rc);
}
/* ...terminate the connection */
q_params.cmd = ECORE_Q_CMD_TERMINATE;
memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
return (rc);
}
/* ...delete cfc entry */
q_params.cmd = ECORE_Q_CMD_CFC_DEL;
memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
return (ecore_queue_state_change(sc, &q_params));
}
/* wait for the outstanding SP commands */
static inline uint8_t
bxe_wait_sp_comp(struct bxe_softc *sc,
unsigned long mask)
{
unsigned long tmp;
int tout = 5000; /* wait for 5 secs tops */
while (tout--) {
mb();
if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
return (TRUE);
}
DELAY(1000);
}
mb();
tmp = atomic_load_acq_long(&sc->sp_state);
if (tmp & mask) {
BLOGE(sc, "Filtering completion timed out: "
"sp_state 0x%lx, mask 0x%lx\n",
tmp, mask);
return (FALSE);
}
return (FALSE);
}
static int
bxe_func_stop(struct bxe_softc *sc)
{
struct ecore_func_state_params func_params = { NULL };
int rc;
/* prepare parameters for function state transitions */
bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_STOP;
/*
* Try to stop the function the 'good way'. If it fails (in case
* of a parity error during bxe_chip_cleanup()) and we are
* not in a debug mode, perform a state transaction in order to
* enable further HW_RESET transaction.
*/
rc = ecore_func_state_change(sc, &func_params);
if (rc) {
BLOGE(sc, "FUNC_STOP ramrod failed. "
"Running a dry transaction (%d)\n", rc);
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
return (ecore_func_state_change(sc, &func_params));
}
return (0);
}
static int
bxe_reset_hw(struct bxe_softc *sc,
uint32_t load_code)
{
struct ecore_func_state_params func_params = { NULL };
/* Prepare parameters for function state transitions */
bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_HW_RESET;
func_params.params.hw_init.load_phase = load_code;
return (ecore_func_state_change(sc, &func_params));
}
static void
bxe_int_disable_sync(struct bxe_softc *sc,
int disable_hw)
{
if (disable_hw) {
/* prevent the HW from sending interrupts */
bxe_int_disable(sc);
}
/* XXX need a way to synchronize ALL irqs (intr_mtx?) */
/* make sure all ISRs are done */
/* XXX make sure sp_task is not running */
/* cancel and flush work queues */
}
static void
bxe_chip_cleanup(struct bxe_softc *sc,
uint32_t unload_mode,
uint8_t keep_link)
{
int port = SC_PORT(sc);
struct ecore_mcast_ramrod_params rparam = { NULL };
uint32_t reset_code;
int i, rc = 0;
bxe_drain_tx_queues(sc);
/* give HW time to discard old tx messages */
DELAY(1000);
/* Clean all ETH MACs */
rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
if (rc < 0) {
BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
}
/* Clean up UC list */
rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
if (rc < 0) {
BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
}
/* Disable LLH */
if (!CHIP_IS_E1(sc)) {
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
}
/* Set "drop all" to stop Rx */
/*
* We need to take the BXE_MCAST_LOCK() here in order to prevent
* a race between the completion code and this code.
*/
BXE_MCAST_LOCK(sc);
if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
} else {
bxe_set_storm_rx_mode(sc);
}
/* Clean up multicast configuration */
rparam.mcast_obj = &sc->mcast_obj;
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
if (rc < 0) {
BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
}
BXE_MCAST_UNLOCK(sc);
// XXX bxe_iov_chip_cleanup(sc);
/*
* Send the UNLOAD_REQUEST to the MCP. This will return if
* this function should perform FUNCTION, PORT, or COMMON HW
* reset.
*/
reset_code = bxe_send_unload_req(sc, unload_mode);
/*
* (assumption: No Attention from MCP at this stage)
* PMF probably in the middle of TX disable/enable transaction
*/
rc = bxe_func_wait_started(sc);
if (rc) {
BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
}
/*
* Close multi and leading connections
* Completions for ramrods are collected in a synchronous way
*/
for (i = 0; i < sc->num_queues; i++) {
if (bxe_stop_queue(sc, i)) {
goto unload_error;
}
}
/*
* If SP settings didn't get completed so far - something
* very wrong has happen.
*/
if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
}
unload_error:
rc = bxe_func_stop(sc);
if (rc) {
BLOGE(sc, "Function stop failed!(%d)\n", rc);
}
/* disable HW interrupts */
bxe_int_disable_sync(sc, TRUE);
/* detach interrupts */
bxe_interrupt_detach(sc);
/* Reset the chip */
rc = bxe_reset_hw(sc, reset_code);
if (rc) {
BLOGE(sc, "Hardware reset failed(%d)\n", rc);
}
/* Report UNLOAD_DONE to MCP */
bxe_send_unload_done(sc, keep_link);
}
static void
bxe_disable_close_the_gate(struct bxe_softc *sc)
{
uint32_t val;
int port = SC_PORT(sc);
BLOGD(sc, DBG_LOAD,
"Disabling 'close the gates'\n");
if (CHIP_IS_E1(sc)) {
uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
val = REG_RD(sc, addr);
val &= ~(0x300);
REG_WR(sc, addr, val);
} else {
val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
}
}
/*
* Cleans the object that have internal lists without sending
* ramrods. Should be run when interrutps are disabled.
*/
static void
bxe_squeeze_objects(struct bxe_softc *sc)
{
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
struct ecore_mcast_ramrod_params rparam = { NULL };
struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
int rc;
/* Cleanup MACs' object first... */
/* Wait for completion of requested */
bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
/* Perform a dry cleanup */
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
/* Clean ETH primary MAC */
bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
&ramrod_flags);
if (rc != 0) {
BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
}
/* Cleanup UC list */
vlan_mac_flags = 0;
bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
&ramrod_flags);
if (rc != 0) {
BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
}
/* Now clean mcast object... */
rparam.mcast_obj = &sc->mcast_obj;
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
/* Add a DEL command... */
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
if (rc < 0) {
BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
}
/* now wait until all pending commands are cleared */
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
while (rc != 0) {
if (rc < 0) {
BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
return;
}
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
}
}
/* stop the controller */
static __noinline int
bxe_nic_unload(struct bxe_softc *sc,
uint32_t unload_mode,
uint8_t keep_link)
{
uint8_t global = FALSE;
uint32_t val;
int i;
BXE_CORE_LOCK_ASSERT(sc);
if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
for (i = 0; i < sc->num_queues; i++) {
struct bxe_fastpath *fp;
fp = &sc->fp[i];
fp->watchdog_timer = 0;
BXE_FP_TX_LOCK(fp);
BXE_FP_TX_UNLOCK(fp);
}
BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
/* mark driver as unloaded in shmem2 */
if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
}
if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
(sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
/*
* We can get here if the driver has been unloaded
* during parity error recovery and is either waiting for a
* leader to complete or for other functions to unload and
* then ifconfig down has been issued. In this case we want to
* unload and let other functions to complete a recovery
* process.
*/
sc->recovery_state = BXE_RECOVERY_DONE;
sc->is_leader = 0;
bxe_release_leader_lock(sc);
mb();
BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
}
BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
" state = 0x%x\n", sc->recovery_state, sc->state);
return (-1);
}
/*
* Nothing to do during unload if previous bxe_nic_load()
* did not completed successfully - all resourses are released.
*/
if ((sc->state == BXE_STATE_CLOSED) ||
(sc->state == BXE_STATE_ERROR)) {
return (0);
}
sc->state = BXE_STATE_CLOSING_WAITING_HALT;
mb();
/* stop tx */
bxe_tx_disable(sc);
sc->rx_mode = BXE_RX_MODE_NONE;
/* XXX set rx mode ??? */
if (IS_PF(sc) && !sc->grcdump_done) {
/* set ALWAYS_ALIVE bit in shmem */
sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
bxe_drv_pulse(sc);
bxe_stats_handle(sc, STATS_EVENT_STOP);
bxe_save_statistics(sc);
}
/* wait till consumers catch up with producers in all queues */
bxe_drain_tx_queues(sc);
/* if VF indicate to PF this function is going down (PF will delete sp
* elements and clear initializations
*/
if (IS_VF(sc)) {
; /* bxe_vfpf_close_vf(sc); */
} else if (unload_mode != UNLOAD_RECOVERY) {
/* if this is a normal/close unload need to clean up chip */
if (!sc->grcdump_done)
bxe_chip_cleanup(sc, unload_mode, keep_link);
} else {
/* Send the UNLOAD_REQUEST to the MCP */
bxe_send_unload_req(sc, unload_mode);
/*
* Prevent transactions to host from the functions on the
* engine that doesn't reset global blocks in case of global
* attention once gloabl blocks are reset and gates are opened
* (the engine which leader will perform the recovery
* last).
*/
if (!CHIP_IS_E1x(sc)) {
bxe_pf_disable(sc);
}
/* disable HW interrupts */
bxe_int_disable_sync(sc, TRUE);
/* detach interrupts */
bxe_interrupt_detach(sc);
/* Report UNLOAD_DONE to MCP */
bxe_send_unload_done(sc, FALSE);
}
/*
* At this stage no more interrupts will arrive so we may safely clean
* the queue'able objects here in case they failed to get cleaned so far.
*/
if (IS_PF(sc)) {
bxe_squeeze_objects(sc);
}
/* There should be no more pending SP commands at this stage */
sc->sp_state = 0;
sc->port.pmf = 0;
bxe_free_fp_buffers(sc);
if (IS_PF(sc)) {
bxe_free_mem(sc);
}
bxe_free_fw_stats_mem(sc);
sc->state = BXE_STATE_CLOSED;
/*
* Check if there are pending parity attentions. If there are - set
* RECOVERY_IN_PROGRESS.
*/
if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
bxe_set_reset_in_progress(sc);
/* Set RESET_IS_GLOBAL if needed */
if (global) {
bxe_set_reset_global(sc);
}
}
/*
* The last driver must disable a "close the gate" if there is no
* parity attention or "process kill" pending.
*/
if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
bxe_reset_is_done(sc, SC_PATH(sc))) {
bxe_disable_close_the_gate(sc);
}
BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
bxe_link_report(sc);
return (0);
}
/*
* Called by the OS to set various media options (i.e. link, speed, etc.) when
* the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
*/
static int
bxe_ifmedia_update(struct ifnet *ifp)
{
struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
struct ifmedia *ifm;
ifm = &sc->ifmedia;
/* We only support Ethernet media type. */
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
return (EINVAL);
}
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
break;
case IFM_10G_CX4:
case IFM_10G_SR:
case IFM_10G_T:
case IFM_10G_TWINAX:
default:
/* We don't support changing the media type. */
BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
IFM_SUBTYPE(ifm->ifm_media));
return (EINVAL);
}
return (0);
}
/*
* Called by the OS to get the current media status (i.e. link, speed, etc.).
*/
static void
bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bxe_softc *sc = if_getsoftc(ifp);
/* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..."
line if the IFM_AVALID flag is *NOT* set. So we need to set this
flag unconditionally (irrespective of the admininistrative
'up/down' state of the interface) to ensure that that line is always
displayed.
*/
ifmr->ifm_status = IFM_AVALID;
/* Setup the default interface info. */
ifmr->ifm_active = IFM_ETHER;
/* Report link down if the driver isn't running. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
ifmr->ifm_active |= IFM_NONE;
BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__);
BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n",
__func__, sc->link_vars.link_up);
return;
}
if (sc->link_vars.link_up) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_FDX;
} else {
ifmr->ifm_active |= IFM_NONE;
BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n",
__func__);
return;
}
ifmr->ifm_active |= sc->media;
return;
}
static void
bxe_handle_chip_tq(void *context,
int pending)
{
struct bxe_softc *sc = (struct bxe_softc *)context;
long work = atomic_load_acq_long(&sc->chip_tq_flags);
switch (work)
{
case CHIP_TQ_REINIT:
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
/* restart the interface */
BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
bxe_periodic_stop(sc);
BXE_CORE_LOCK(sc);
bxe_stop_locked(sc);
bxe_init_locked(sc);
BXE_CORE_UNLOCK(sc);
}
break;
default:
break;
}
}
/*
* Handles any IOCTL calls from the operating system.
*
* Returns:
* 0 = Success, >0 Failure
*/
static int
bxe_ioctl(if_t ifp,
u_long command,
caddr_t data)
{
struct bxe_softc *sc = if_getsoftc(ifp);
struct ifreq *ifr = (struct ifreq *)data;
int mask = 0;
int reinit = 0;
int error = 0;
int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
switch (command)
{
case SIOCSIFMTU:
BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
ifr->ifr_mtu);
if (sc->mtu == ifr->ifr_mtu) {
/* nothing to change */
break;
}
if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
ifr->ifr_mtu, mtu_min, mtu_max);
error = EINVAL;
break;
}
atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
(unsigned long)ifr->ifr_mtu);
/*
atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
(unsigned long)ifr->ifr_mtu);
XXX - Not sure why it needs to be atomic
*/
if_setmtu(ifp, ifr->ifr_mtu);
reinit = 1;
break;
case SIOCSIFFLAGS:
/* toggle the interface state up or down */
BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
BXE_CORE_LOCK(sc);
/* check if the interface is up */
if (if_getflags(ifp) & IFF_UP) {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
/* set the receive mode flags */
bxe_set_rx_mode(sc);
} else if(sc->state != BXE_STATE_DISABLED) {
bxe_init_locked(sc);
}
} else {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
bxe_periodic_stop(sc);
bxe_stop_locked(sc);
}
}
BXE_CORE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* add/delete multicast addresses */
BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
/* check if the interface is up */
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
/* set the receive mode flags */
BXE_CORE_LOCK(sc);
bxe_set_rx_mode(sc);
BXE_CORE_UNLOCK(sc);
}
break;
case SIOCSIFCAP:
/* find out which capabilities have changed */
mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
mask);
/* toggle the LRO capabilites enable flag */
if (mask & IFCAP_LRO) {
if_togglecapenable(ifp, IFCAP_LRO);
BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
(if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
reinit = 1;
}
/* toggle the TXCSUM checksum capabilites enable flag */
if (mask & IFCAP_TXCSUM) {
if_togglecapenable(ifp, IFCAP_TXCSUM);
BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
(if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
if_sethwassistbits(ifp, (CSUM_IP |
CSUM_TCP |
CSUM_UDP |
CSUM_TSO |
CSUM_TCP_IPV6 |
CSUM_UDP_IPV6), 0);
} else {
if_clearhwassist(ifp); /* XXX */
}
}
/* toggle the RXCSUM checksum capabilities enable flag */
if (mask & IFCAP_RXCSUM) {
if_togglecapenable(ifp, IFCAP_RXCSUM);
BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
(if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
if_sethwassistbits(ifp, (CSUM_IP |
CSUM_TCP |
CSUM_UDP |
CSUM_TSO |
CSUM_TCP_IPV6 |
CSUM_UDP_IPV6), 0);
} else {
if_clearhwassist(ifp); /* XXX */
}
}
/* toggle TSO4 capabilities enabled flag */
if (mask & IFCAP_TSO4) {
if_togglecapenable(ifp, IFCAP_TSO4);
BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
(if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
}
/* toggle TSO6 capabilities enabled flag */
if (mask & IFCAP_TSO6) {
if_togglecapenable(ifp, IFCAP_TSO6);
BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
(if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
}
/* toggle VLAN_HWTSO capabilities enabled flag */
if (mask & IFCAP_VLAN_HWTSO) {
if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
(if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
}
/* toggle VLAN_HWCSUM capabilities enabled flag */
if (mask & IFCAP_VLAN_HWCSUM) {
/* XXX investigate this... */
BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
error = EINVAL;
}
/* toggle VLAN_MTU capabilities enable flag */
if (mask & IFCAP_VLAN_MTU) {
/* XXX investigate this... */
BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
error = EINVAL;
}
/* toggle VLAN_HWTAGGING capabilities enabled flag */
if (mask & IFCAP_VLAN_HWTAGGING) {
/* XXX investigate this... */
BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
error = EINVAL;
}
/* toggle VLAN_HWFILTER capabilities enabled flag */
if (mask & IFCAP_VLAN_HWFILTER) {
/* XXX investigate this... */
BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
error = EINVAL;
}
/* XXX not yet...
* IFCAP_WOL_MAGIC
*/
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
/* set/get interface media */
BLOGD(sc, DBG_IOCTL,
"Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
(command & 0xff));
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
(command & 0xff));
error = ether_ioctl(ifp, command, data);
break;
}
if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
BLOGD(sc, DBG_LOAD | DBG_IOCTL,
"Re-initializing hardware from IOCTL change\n");
bxe_periodic_stop(sc);
BXE_CORE_LOCK(sc);
bxe_stop_locked(sc);
bxe_init_locked(sc);
BXE_CORE_UNLOCK(sc);
}
return (error);
}
static __noinline void
bxe_dump_mbuf(struct bxe_softc *sc,
struct mbuf *m,
uint8_t contents)
{
char * type;
int i = 0;
if (!(sc->debug & DBG_MBUF)) {
return;
}
if (m == NULL) {
BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
return;
}
while (m) {
#if __FreeBSD_version >= 1000000
BLOGD(sc, DBG_MBUF,
"%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
if (m->m_flags & M_PKTHDR) {
BLOGD(sc, DBG_MBUF,
"%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
(int)m->m_pkthdr.csum_flags, CSUM_BITS);
}
#else
BLOGD(sc, DBG_MBUF,
"%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
i, m, m->m_len, m->m_flags,
"\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
if (m->m_flags & M_PKTHDR) {
BLOGD(sc, DBG_MBUF,
"%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
i, m->m_pkthdr.len, m->m_flags,
"\20\12M_BCAST\13M_MCAST\14M_FRAG"
"\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
"\22M_PROMISC\23M_NOFREE",
(int)m->m_pkthdr.csum_flags,
"\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
"\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
"\12CSUM_IP_VALID\13CSUM_DATA_VALID"
"\14CSUM_PSEUDO_HDR");
}
#endif /* #if __FreeBSD_version >= 1000000 */
if (m->m_flags & M_EXT) {
switch (m->m_ext.ext_type) {
case EXT_CLUSTER: type = "EXT_CLUSTER"; break;
case EXT_SFBUF: type = "EXT_SFBUF"; break;
case EXT_JUMBOP: type = "EXT_JUMBOP"; break;
case EXT_JUMBO9: type = "EXT_JUMBO9"; break;
case EXT_JUMBO16: type = "EXT_JUMBO16"; break;
case EXT_PACKET: type = "EXT_PACKET"; break;
case EXT_MBUF: type = "EXT_MBUF"; break;
case EXT_NET_DRV: type = "EXT_NET_DRV"; break;
case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break;
case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
case EXT_EXTREF: type = "EXT_EXTREF"; break;
default: type = "UNKNOWN"; break;
}
BLOGD(sc, DBG_MBUF,
"%02d: - m_ext: %p ext_size=%d type=%s\n",
i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
}
if (contents) {
bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
}
m = m->m_next;
i++;
}
}
/*
* Checks to ensure the 13 bd sliding window is >= MSS for TSO.
* Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
* The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
* The headers comes in a separate bd in FreeBSD so 13-3=10.
* Returns: 0 if OK to send, 1 if packet needs further defragmentation
*/
static int
bxe_chktso_window(struct bxe_softc *sc,
int nsegs,
bus_dma_segment_t *segs,
struct mbuf *m)
{
uint32_t num_wnds, wnd_size, wnd_sum;
int32_t frag_idx, wnd_idx;
unsigned short lso_mss;
int defrag;
defrag = 0;
wnd_sum = 0;
wnd_size = 10;
num_wnds = nsegs - wnd_size;
lso_mss = htole16(m->m_pkthdr.tso_segsz);
/*
* Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
* first window sum of data while skipping the first assuming it is the
* header in FreeBSD.
*/
for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
wnd_sum += htole16(segs[frag_idx].ds_len);
}
/* check the first 10 bd window size */
if (wnd_sum < lso_mss) {
return (1);
}
/* run through the windows */
for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
/* subtract the first mbuf->m_len of the last wndw(-header) */
wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
/* add the next mbuf len to the len of our new window */
wnd_sum += htole16(segs[frag_idx].ds_len);
if (wnd_sum < lso_mss) {
return (1);
}
}
return (0);
}
static uint8_t
bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
struct mbuf *m,
uint32_t *parsing_data)
{
struct ether_vlan_header *eh = NULL;
struct ip *ip4 = NULL;
struct ip6_hdr *ip6 = NULL;
caddr_t ip = NULL;
struct tcphdr *th = NULL;
int e_hlen, ip_hlen, l4_off;
uint16_t proto;
if (m->m_pkthdr.csum_flags == CSUM_IP) {
/* no L4 checksum offload needed */
return (0);
}
/* get the Ethernet header */
eh = mtod(m, struct ether_vlan_header *);
/* handle VLAN encapsulation if present */
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
proto = ntohs(eh->evl_proto);
} else {
e_hlen = ETHER_HDR_LEN;
proto = ntohs(eh->evl_encap_proto);
}
switch (proto) {
case ETHERTYPE_IP:
/* get the IP header, if mbuf len < 20 then header in next mbuf */
ip4 = (m->m_len < sizeof(struct ip)) ?
(struct ip *)m->m_next->m_data :
(struct ip *)(m->m_data + e_hlen);
/* ip_hl is number of 32-bit words */
ip_hlen = (ip4->ip_hl << 2);
ip = (caddr_t)ip4;
break;
case ETHERTYPE_IPV6:
/* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
(struct ip6_hdr *)m->m_next->m_data :
(struct ip6_hdr *)(m->m_data + e_hlen);
/* XXX cannot support offload with IPv6 extensions */
ip_hlen = sizeof(struct ip6_hdr);
ip = (caddr_t)ip6;
break;
default:
/* We can't offload in this case... */
/* XXX error stat ??? */
return (0);
}
/* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
l4_off = (e_hlen + ip_hlen);
*parsing_data |=
(((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
if (m->m_pkthdr.csum_flags & (CSUM_TCP |
CSUM_TSO |
CSUM_TCP_IPV6)) {
fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
th = (struct tcphdr *)(ip + ip_hlen);
/* th_off is number of 32-bit words */
*parsing_data |= ((th->th_off <<
ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
return (l4_off + (th->th_off << 2)); /* entire header length */
} else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
CSUM_UDP_IPV6)) {
fp->eth_q_stats.tx_ofld_frames_csum_udp++;
return (l4_off + sizeof(struct udphdr)); /* entire header length */
} else {
/* XXX error stat ??? */
return (0);
}
}
static uint8_t
bxe_set_pbd_csum(struct bxe_fastpath *fp,
struct mbuf *m,
struct eth_tx_parse_bd_e1x *pbd)
{
struct ether_vlan_header *eh = NULL;
struct ip *ip4 = NULL;
struct ip6_hdr *ip6 = NULL;
caddr_t ip = NULL;
struct tcphdr *th = NULL;
struct udphdr *uh = NULL;
int e_hlen, ip_hlen;
uint16_t proto;
uint8_t hlen;
uint16_t tmp_csum;
uint32_t *tmp_uh;
/* get the Ethernet header */
eh = mtod(m, struct ether_vlan_header *);
/* handle VLAN encapsulation if present */
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
proto = ntohs(eh->evl_proto);
} else {
e_hlen = ETHER_HDR_LEN;
proto = ntohs(eh->evl_encap_proto);
}
switch (proto) {
case ETHERTYPE_IP:
/* get the IP header, if mbuf len < 20 then header in next mbuf */
ip4 = (m->m_len < sizeof(struct ip)) ?
(struct ip *)m->m_next->m_data :
(struct ip *)(m->m_data + e_hlen);
/* ip_hl is number of 32-bit words */
ip_hlen = (ip4->ip_hl << 1);
ip = (caddr_t)ip4;
break;
case ETHERTYPE_IPV6:
/* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
(struct ip6_hdr *)m->m_next->m_data :
(struct ip6_hdr *)(m->m_data + e_hlen);
/* XXX cannot support offload with IPv6 extensions */
ip_hlen = (sizeof(struct ip6_hdr) >> 1);
ip = (caddr_t)ip6;
break;
default:
/* We can't offload in this case... */
/* XXX error stat ??? */
return (0);
}
hlen = (e_hlen >> 1);
/* note that rest of global_data is indirectly zeroed here */
if (m->m_flags & M_VLANTAG) {
pbd->global_data =
htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
} else {
pbd->global_data = htole16(hlen);
}
pbd->ip_hlen_w = ip_hlen;
hlen += pbd->ip_hlen_w;
/* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
if (m->m_pkthdr.csum_flags & (CSUM_TCP |
CSUM_TSO |
CSUM_TCP_IPV6)) {
th = (struct tcphdr *)(ip + (ip_hlen << 1));
/* th_off is number of 32-bit words */
hlen += (uint16_t)(th->th_off << 1);
} else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
CSUM_UDP_IPV6)) {
uh = (struct udphdr *)(ip + (ip_hlen << 1));
hlen += (sizeof(struct udphdr) / 2);
} else {
/* valid case as only CSUM_IP was set */
return (0);
}
pbd->total_hlen_w = htole16(hlen);
if (m->m_pkthdr.csum_flags & (CSUM_TCP |
CSUM_TSO |
CSUM_TCP_IPV6)) {
fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
pbd->tcp_pseudo_csum = ntohs(th->th_sum);
} else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
CSUM_UDP_IPV6)) {
fp->eth_q_stats.tx_ofld_frames_csum_udp++;
/*
* Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
* checksums and does not know anything about the UDP header and where
* the checksum field is located. It only knows about TCP. Therefore
* we "lie" to the hardware for outgoing UDP packets w/ checksum
* offload. Since the checksum field offset for TCP is 16 bytes and
* for UDP it is 6 bytes we pass a pointer to the hardware that is 10
* bytes less than the start of the UDP header. This allows the
* hardware to write the checksum in the correct spot. But the
* hardware will compute a checksum which includes the last 10 bytes
* of the IP header. To correct this we tweak the stack computed
* pseudo checksum by folding in the calculation of the inverse
* checksum for those final 10 bytes of the IP header. This allows
* the correct checksum to be computed by the hardware.
*/
/* set pointer 10 bytes before UDP header */
tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
/* calculate a pseudo header checksum over the first 10 bytes */
tmp_csum = in_pseudo(*tmp_uh,
*(tmp_uh + 1),
*(uint16_t *)(tmp_uh + 2));
pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
}
return (hlen * 2); /* entire header length, number of bytes */
}
static void
bxe_set_pbd_lso_e2(struct mbuf *m,
uint32_t *parsing_data)
{
*parsing_data |= ((m->m_pkthdr.tso_segsz <<
ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
ETH_TX_PARSE_BD_E2_LSO_MSS);
/* XXX test for IPv6 with extension header... */
}
static void
bxe_set_pbd_lso(struct mbuf *m,
struct eth_tx_parse_bd_e1x *pbd)
{
struct ether_vlan_header *eh = NULL;
struct ip *ip = NULL;
struct tcphdr *th = NULL;
int e_hlen;
/* get the Ethernet header */
eh = mtod(m, struct ether_vlan_header *);
/* handle VLAN encapsulation if present */
e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
(ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
/* get the IP and TCP header, with LSO entire header in first mbuf */
/* XXX assuming IPv4 */
ip = (struct ip *)(m->m_data + e_hlen);
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
pbd->tcp_send_seq = ntohl(th->th_seq);
pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
#if 1
/* XXX IPv4 */
pbd->ip_id = ntohs(ip->ip_id);
pbd->tcp_pseudo_csum =
ntohs(in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htons(IPPROTO_TCP)));
#else
/* XXX IPv6 */
pbd->tcp_pseudo_csum =
ntohs(in_pseudo(&ip6->ip6_src,
&ip6->ip6_dst,
htons(IPPROTO_TCP)));
#endif
pbd->global_data |=
htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
}
/*
* Encapsulte an mbuf cluster into the tx bd chain and makes the memory
* visible to the controller.
*
* If an mbuf is submitted to this routine and cannot be given to the
* controller (e.g. it has too many fragments) then the function may free
* the mbuf and return to the caller.
*
* Returns:
* 0 = Success, !0 = Failure
* Note the side effect that an mbuf may be freed if it causes a problem.
*/
static int
bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
{
bus_dma_segment_t segs[32];
struct mbuf *m0;
struct bxe_sw_tx_bd *tx_buf;
struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
/* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
struct eth_tx_bd *tx_data_bd;
struct eth_tx_bd *tx_total_pkt_size_bd;
struct eth_tx_start_bd *tx_start_bd;
uint16_t bd_prod, pkt_prod, total_pkt_size;
uint8_t mac_type;
int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
struct bxe_softc *sc;
uint16_t tx_bd_avail;
struct ether_vlan_header *eh;
uint32_t pbd_e2_parsing_data = 0;
uint8_t hlen = 0;
int tmp_bd;
int i;
sc = fp->sc;
#if __FreeBSD_version >= 800000
M_ASSERTPKTHDR(*m_head);
#endif /* #if __FreeBSD_version >= 800000 */
m0 = *m_head;
rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
tx_start_bd = NULL;
tx_data_bd = NULL;
tx_total_pkt_size_bd = NULL;
/* get the H/W pointer for packets and BDs */
pkt_prod = fp->tx_pkt_prod;
bd_prod = fp->tx_bd_prod;
mac_type = UNICAST_ADDRESS;
/* map the mbuf into the next open DMAable memory */
tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
tx_buf->m_map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
/* mapping errors */
if(__predict_false(error != 0)) {
fp->eth_q_stats.tx_dma_mapping_failure++;
if (error == ENOMEM) {
/* resource issue, try again later */
rc = ENOMEM;
} else if (error == EFBIG) {
/* possibly recoverable with defragmentation */
fp->eth_q_stats.mbuf_defrag_attempts++;
m0 = m_defrag(*m_head, M_NOWAIT);
if (m0 == NULL) {
fp->eth_q_stats.mbuf_defrag_failures++;
rc = ENOBUFS;
} else {
/* defrag successful, try mapping again */
*m_head = m0;
error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
tx_buf->m_map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error) {
fp->eth_q_stats.tx_dma_mapping_failure++;
rc = error;
}
}
} else {
/* unknown, unrecoverable mapping error */
BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
bxe_dump_mbuf(sc, m0, FALSE);
rc = error;
}
goto bxe_tx_encap_continue;
}
tx_bd_avail = bxe_tx_avail(sc, fp);
/* make sure there is enough room in the send queue */
if (__predict_false(tx_bd_avail < (nsegs + 2))) {
/* Recoverable, try again later. */
fp->eth_q_stats.tx_hw_queue_full++;
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
rc = ENOMEM;
goto bxe_tx_encap_continue;
}
/* capture the current H/W TX chain high watermark */
if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
(TX_BD_USABLE - tx_bd_avail))) {
fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
}
/* make sure it fits in the packet window */
if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
/*
* The mbuf may be to big for the controller to handle. If the frame
* is a TSO frame we'll need to do an additional check.
*/
if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
goto bxe_tx_encap_continue; /* OK to send */
} else {
fp->eth_q_stats.tx_window_violation_tso++;
}
} else {
fp->eth_q_stats.tx_window_violation_std++;
}
/* lets try to defragment this mbuf and remap it */
fp->eth_q_stats.mbuf_defrag_attempts++;
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
m0 = m_defrag(*m_head, M_NOWAIT);
if (m0 == NULL) {
fp->eth_q_stats.mbuf_defrag_failures++;
/* Ugh, just drop the frame... :( */
rc = ENOBUFS;
} else {
/* defrag successful, try mapping again */
*m_head = m0;
error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
tx_buf->m_map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error) {
fp->eth_q_stats.tx_dma_mapping_failure++;
/* No sense in trying to defrag/copy chain, drop it. :( */
rc = error;
} else {
/* if the chain is still too long then drop it */
if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
/*
* in case TSO is enabled nsegs should be checked against
* BXE_TSO_MAX_SEGMENTS
*/
if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
fp->eth_q_stats.nsegs_path1_errors++;
rc = ENODEV;
}
} else {
if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
fp->eth_q_stats.nsegs_path2_errors++;
rc = ENODEV;
}
}
}
}
}
bxe_tx_encap_continue:
/* Check for errors */
if (rc) {
if (rc == ENOMEM) {
/* recoverable try again later */
} else {
fp->eth_q_stats.tx_soft_errors++;
fp->eth_q_stats.mbuf_alloc_tx--;
m_freem(*m_head);
*m_head = NULL;
}
return (rc);
}
/* set flag according to packet type (UNICAST_ADDRESS is default) */
if (m0->m_flags & M_BCAST) {
mac_type = BROADCAST_ADDRESS;
} else if (m0->m_flags & M_MCAST) {
mac_type = MULTICAST_ADDRESS;
}
/* store the mbuf into the mbuf ring */
tx_buf->m = m0;
tx_buf->first_bd = fp->tx_bd_prod;
tx_buf->flags = 0;
/* prepare the first transmit (start) BD for the mbuf */
tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
BLOGD(sc, DBG_TX,
"sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
tx_start_bd->nbytes = htole16(segs[0].ds_len);
total_pkt_size += tx_start_bd->nbytes;
tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
/* all frames have at least Start BD + Parsing BD */
nbds = nsegs + 1;
tx_start_bd->nbd = htole16(nbds);
if (m0->m_flags & M_VLANTAG) {
tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
tx_start_bd->bd_flags.as_bitfield |=
(X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
} else {
/* vf tx, start bd must hold the ethertype for fw to enforce it */
if (IS_VF(sc)) {
/* map ethernet header to find type and header length */
eh = mtod(m0, struct ether_vlan_header *);
tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
} else {
/* used by FW for packet accounting */
tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
}
}
/*
* add a parsing BD from the chain. The parsing BD is always added
* though it is only used for TSO and chksum
*/
bd_prod = TX_BD_NEXT(bd_prod);
if (m0->m_pkthdr.csum_flags) {
if (m0->m_pkthdr.csum_flags & CSUM_IP) {
fp->eth_q_stats.tx_ofld_frames_csum_ip++;
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
}
if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
ETH_TX_BD_FLAGS_L4_CSUM);
} else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
ETH_TX_BD_FLAGS_IS_UDP |
ETH_TX_BD_FLAGS_L4_CSUM);
} else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
(m0->m_pkthdr.csum_flags & CSUM_TSO)) {
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
} else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
ETH_TX_BD_FLAGS_IS_UDP);
}
}
if (!CHIP_IS_E1x(sc)) {
pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
if (m0->m_pkthdr.csum_flags) {
hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
}
SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
mac_type);
} else {
uint16_t global_data = 0;
pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
if (m0->m_pkthdr.csum_flags) {
hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
}
SET_FLAG(global_data,
ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
pbd_e1x->global_data |= htole16(global_data);
}
/* setup the parsing BD with TSO specific info */
if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
fp->eth_q_stats.tx_ofld_frames_lso++;
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
if (__predict_false(tx_start_bd->nbytes > hlen)) {
fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
/* split the first BD into header/data making the fw job easy */
nbds++;
tx_start_bd->nbd = htole16(nbds);
tx_start_bd->nbytes = htole16(hlen);
bd_prod = TX_BD_NEXT(bd_prod);
/* new transmit BD after the tx_parse_bd */
tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen);
if (tx_total_pkt_size_bd == NULL) {
tx_total_pkt_size_bd = tx_data_bd;
}
BLOGD(sc, DBG_TX,
"TSO split header size is %d (%x:%x) nbds %d\n",
le16toh(tx_start_bd->nbytes),
le32toh(tx_start_bd->addr_hi),
le32toh(tx_start_bd->addr_lo),
nbds);
}
if (!CHIP_IS_E1x(sc)) {
bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
} else {
bxe_set_pbd_lso(m0, pbd_e1x);
}
}
if (pbd_e2_parsing_data) {
pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
}
/* prepare remaining BDs, start tx bd contains first seg/frag */
for (i = 1; i < nsegs ; i++) {
bd_prod = TX_BD_NEXT(bd_prod);
tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
tx_data_bd->nbytes = htole16(segs[i].ds_len);
if (tx_total_pkt_size_bd == NULL) {
tx_total_pkt_size_bd = tx_data_bd;
}
total_pkt_size += tx_data_bd->nbytes;
}
BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
if (tx_total_pkt_size_bd != NULL) {
tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
}
if (__predict_false(sc->debug & DBG_TX)) {
tmp_bd = tx_buf->first_bd;
for (i = 0; i < nbds; i++)
{
if (i == 0) {
BLOGD(sc, DBG_TX,
"TX Strt: %p bd=%d nbd=%d vlan=0x%x "
"bd_flags=0x%x hdr_nbds=%d\n",
tx_start_bd,
tmp_bd,
le16toh(tx_start_bd->nbd),
le16toh(tx_start_bd->vlan_or_ethertype),
tx_start_bd->bd_flags.as_bitfield,
(tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
} else if (i == 1) {
if (pbd_e1x) {
BLOGD(sc, DBG_TX,
"-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
"ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
"tcp_seq=%u total_hlen_w=%u\n",
pbd_e1x,
tmp_bd,
pbd_e1x->global_data,
pbd_e1x->ip_hlen_w,
pbd_e1x->ip_id,
pbd_e1x->lso_mss,
pbd_e1x->tcp_flags,
pbd_e1x->tcp_pseudo_csum,
pbd_e1x->tcp_send_seq,
le16toh(pbd_e1x->total_hlen_w));
} else { /* if (pbd_e2) */
BLOGD(sc, DBG_TX,
"-> Parse: %p bd=%d dst=%02x:%02x:%02x "
"src=%02x:%02x:%02x parsing_data=0x%x\n",
pbd_e2,
tmp_bd,
pbd_e2->data.mac_addr.dst_hi,
pbd_e2->data.mac_addr.dst_mid,
pbd_e2->data.mac_addr.dst_lo,
pbd_e2->data.mac_addr.src_hi,
pbd_e2->data.mac_addr.src_mid,
pbd_e2->data.mac_addr.src_lo,
pbd_e2->parsing_data);
}
}
if (i != 1) { /* skip parse db as it doesn't hold data */
tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
BLOGD(sc, DBG_TX,
"-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
tx_data_bd,
tmp_bd,
le16toh(tx_data_bd->nbytes),
le32toh(tx_data_bd->addr_hi),
le32toh(tx_data_bd->addr_lo));
}
tmp_bd = TX_BD_NEXT(tmp_bd);
}
}
BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
/* update TX BD producer index value for next TX */
bd_prod = TX_BD_NEXT(bd_prod);
/*
* If the chain of tx_bd's describing this frame is adjacent to or spans
* an eth_tx_next_bd element then we need to increment the nbds value.
*/
if (TX_BD_IDX(bd_prod) < nbds) {
nbds++;
}
/* don't allow reordering of writes for nbd and packets */
mb();
fp->tx_db.data.prod += nbds;
/* producer points to the next free tx_bd at this point */
fp->tx_pkt_prod++;
fp->tx_bd_prod = bd_prod;
DOORBELL(sc, fp->index, fp->tx_db.raw);
fp->eth_q_stats.tx_pkts++;
/* Prevent speculative reads from getting ahead of the status block. */
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
0, 0, BUS_SPACE_BARRIER_READ);
/* Prevent speculative reads from getting ahead of the doorbell. */
bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
0, 0, BUS_SPACE_BARRIER_READ);
return (0);
}
static void
bxe_tx_start_locked(struct bxe_softc *sc,
if_t ifp,
struct bxe_fastpath *fp)
{
struct mbuf *m = NULL;
int tx_count = 0;
uint16_t tx_bd_avail;
BXE_FP_TX_LOCK_ASSERT(fp);
/* keep adding entries while there are frames to send */
while (!if_sendq_empty(ifp)) {
/*
* check for any frames to send
* dequeue can still be NULL even if queue is not empty
*/
m = if_dequeue(ifp);
if (__predict_false(m == NULL)) {
break;
}
/* the mbuf now belongs to us */
fp->eth_q_stats.mbuf_alloc_tx++;
/*
* Put the frame into the transmit ring. If we don't have room,
* place the mbuf back at the head of the TX queue, set the
* OACTIVE flag, and wait for the NIC to drain the chain.
*/
if (__predict_false(bxe_tx_encap(fp, &m))) {
fp->eth_q_stats.tx_encap_failures++;
if (m != NULL) {
/* mark the TX queue as full and return the frame */
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
if_sendq_prepend(ifp, m);
fp->eth_q_stats.mbuf_alloc_tx--;
fp->eth_q_stats.tx_queue_xoff++;
}
/* stop looking for more work */
break;
}
/* the frame was enqueued successfully */
tx_count++;
/* send a copy of the frame to any BPF listeners. */
if_etherbpfmtap(ifp, m);
tx_bd_avail = bxe_tx_avail(sc, fp);
/* handle any completions if we're running low */
if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
/* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
bxe_txeof(sc, fp);
if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
break;
}
}
}
/* all TX packets were dequeued and/or the tx ring is full */
if (tx_count > 0) {
/* reset the TX watchdog timeout timer */
fp->watchdog_timer = BXE_TX_TIMEOUT;
}
}
/* Legacy (non-RSS) dispatch routine */
static void
bxe_tx_start(if_t ifp)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
sc = if_getsoftc(ifp);
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
BLOGW(sc, "Interface not running, ignoring transmit request\n");
return;
}
if (!sc->link_vars.link_up) {
BLOGW(sc, "Interface link is down, ignoring transmit request\n");
return;
}
fp = &sc->fp[0];
if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
fp->eth_q_stats.tx_queue_full_return++;
return;
}
BXE_FP_TX_LOCK(fp);
bxe_tx_start_locked(sc, ifp, fp);
BXE_FP_TX_UNLOCK(fp);
}
#if __FreeBSD_version >= 901504
static int
bxe_tx_mq_start_locked(struct bxe_softc *sc,
if_t ifp,
struct bxe_fastpath *fp,
struct mbuf *m)
{
struct buf_ring *tx_br = fp->tx_br;
struct mbuf *next;
int depth, rc, tx_count;
uint16_t tx_bd_avail;
rc = tx_count = 0;
BXE_FP_TX_LOCK_ASSERT(fp);
if (sc->state != BXE_STATE_OPEN) {
fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
return ENETDOWN;
}
if (!tx_br) {
BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
return (EINVAL);
}
if (m != NULL) {
rc = drbr_enqueue(ifp, tx_br, m);
if (rc != 0) {
fp->eth_q_stats.tx_soft_errors++;
goto bxe_tx_mq_start_locked_exit;
}
}
if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
fp->eth_q_stats.tx_request_link_down_failures++;
goto bxe_tx_mq_start_locked_exit;
}
/* fetch the depth of the driver queue */
depth = drbr_inuse_drv(ifp, tx_br);
if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
}
/* keep adding entries while there are frames to send */
while ((next = drbr_peek(ifp, tx_br)) != NULL) {
/* handle any completions if we're running low */
tx_bd_avail = bxe_tx_avail(sc, fp);
if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
/* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
bxe_txeof(sc, fp);
tx_bd_avail = bxe_tx_avail(sc, fp);
if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
fp->eth_q_stats.bd_avail_too_less_failures++;
m_freem(next);
drbr_advance(ifp, tx_br);
rc = ENOBUFS;
break;
}
}
/* the mbuf now belongs to us */
fp->eth_q_stats.mbuf_alloc_tx++;
/*
* Put the frame into the transmit ring. If we don't have room,
* place the mbuf back at the head of the TX queue, set the
* OACTIVE flag, and wait for the NIC to drain the chain.
*/
rc = bxe_tx_encap(fp, &next);
if (__predict_false(rc != 0)) {
fp->eth_q_stats.tx_encap_failures++;
if (next != NULL) {
/* mark the TX queue as full and save the frame */
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
drbr_putback(ifp, tx_br, next);
fp->eth_q_stats.mbuf_alloc_tx--;
fp->eth_q_stats.tx_frames_deferred++;
} else
drbr_advance(ifp, tx_br);
/* stop looking for more work */
break;
}
/* the transmit frame was enqueued successfully */
tx_count++;
/* send a copy of the frame to any BPF listeners */
if_etherbpfmtap(ifp, next);
drbr_advance(ifp, tx_br);
}
/* all TX packets were dequeued and/or the tx ring is full */
if (tx_count > 0) {
/* reset the TX watchdog timeout timer */
fp->watchdog_timer = BXE_TX_TIMEOUT;
}
bxe_tx_mq_start_locked_exit:
/* If we didn't drain the drbr, enqueue a task in the future to do it. */
if (!drbr_empty(ifp, tx_br)) {
fp->eth_q_stats.tx_mq_not_empty++;
taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
}
return (rc);
}
static void
bxe_tx_mq_start_deferred(void *arg,
int pending)
{
struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
struct bxe_softc *sc = fp->sc;
if_t ifp = sc->ifp;
BXE_FP_TX_LOCK(fp);
bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
BXE_FP_TX_UNLOCK(fp);
}
/* Multiqueue (TSS) dispatch routine. */
static int
bxe_tx_mq_start(struct ifnet *ifp,
struct mbuf *m)
{
struct bxe_softc *sc = if_getsoftc(ifp);
struct bxe_fastpath *fp;
int fp_index, rc;
fp_index = 0; /* default is the first queue */
/* check if flowid is set */
if (BXE_VALID_FLOWID(m))
fp_index = (m->m_pkthdr.flowid % sc->num_queues);
fp = &sc->fp[fp_index];
if (sc->state != BXE_STATE_OPEN) {
fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
return ENETDOWN;
}
if (BXE_FP_TX_TRYLOCK(fp)) {
rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
BXE_FP_TX_UNLOCK(fp);
} else {
rc = drbr_enqueue(ifp, fp->tx_br, m);
taskqueue_enqueue(fp->tq, &fp->tx_task);
}
return (rc);
}
static void
bxe_mq_flush(struct ifnet *ifp)
{
struct bxe_softc *sc = if_getsoftc(ifp);
struct bxe_fastpath *fp;
struct mbuf *m;
int i;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->state != BXE_FP_STATE_IRQ) {
BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
fp->index, fp->state);
continue;
}
if (fp->tx_br != NULL) {
BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
BXE_FP_TX_LOCK(fp);
while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
m_freem(m);
}
BXE_FP_TX_UNLOCK(fp);
}
}
if_qflush(ifp);
}
#endif /* FreeBSD_version >= 901504 */
static uint16_t
bxe_cid_ilt_lines(struct bxe_softc *sc)
{
if (IS_SRIOV(sc)) {
return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
}
return (L2_ILT_LINES(sc));
}
static void
bxe_ilt_set_info(struct bxe_softc *sc)
{
struct ilt_client_info *ilt_client;
struct ecore_ilt *ilt = sc->ilt;
uint16_t line = 0;
ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
/* CDU */
ilt_client = &ilt->clients[ILT_CLIENT_CDU];
ilt_client->client_num = ILT_CLIENT_CDU;
ilt_client->page_size = CDU_ILT_PAGE_SZ;
ilt_client->flags = ILT_CLIENT_SKIP_MEM;
ilt_client->start = line;
line += bxe_cid_ilt_lines(sc);
if (CNIC_SUPPORT(sc)) {
line += CNIC_ILT_LINES;
}
ilt_client->end = (line - 1);
BLOGD(sc, DBG_LOAD,
"ilt client[CDU]: start %d, end %d, "
"psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start, ilt_client->end,
ilt_client->page_size,
ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
/* QM */
if (QM_INIT(sc->qm_cid_count)) {
ilt_client = &ilt->clients[ILT_CLIENT_QM];
ilt_client->client_num = ILT_CLIENT_QM;
ilt_client->page_size = QM_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
/* 4 bytes for each cid */
line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
QM_ILT_PAGE_SZ);
ilt_client->end = (line - 1);
BLOGD(sc, DBG_LOAD,
"ilt client[QM]: start %d, end %d, "
"psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start, ilt_client->end,
ilt_client->page_size, ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
}
if (CNIC_SUPPORT(sc)) {
/* SRC */
ilt_client = &ilt->clients[ILT_CLIENT_SRC];
ilt_client->client_num = ILT_CLIENT_SRC;
ilt_client->page_size = SRC_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
line += SRC_ILT_LINES;
ilt_client->end = (line - 1);
BLOGD(sc, DBG_LOAD,
"ilt client[SRC]: start %d, end %d, "
"psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start, ilt_client->end,
ilt_client->page_size, ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
/* TM */
ilt_client = &ilt->clients[ILT_CLIENT_TM];
ilt_client->client_num = ILT_CLIENT_TM;
ilt_client->page_size = TM_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
line += TM_ILT_LINES;
ilt_client->end = (line - 1);
BLOGD(sc, DBG_LOAD,
"ilt client[TM]: start %d, end %d, "
"psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start, ilt_client->end,
ilt_client->page_size, ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
}
KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
}
static void
bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
{
int i;
uint32_t rx_buf_size;
rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
for (i = 0; i < sc->num_queues; i++) {
if(rx_buf_size <= MCLBYTES){
sc->fp[i].rx_buf_size = rx_buf_size;
sc->fp[i].mbuf_alloc_size = MCLBYTES;
}else if (rx_buf_size <= MJUMPAGESIZE){
sc->fp[i].rx_buf_size = rx_buf_size;
sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
}else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
sc->fp[i].rx_buf_size = MCLBYTES;
sc->fp[i].mbuf_alloc_size = MCLBYTES;
}else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
sc->fp[i].rx_buf_size = MJUMPAGESIZE;
sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
}else {
sc->fp[i].rx_buf_size = MCLBYTES;
sc->fp[i].mbuf_alloc_size = MCLBYTES;
}
}
}
static int
bxe_alloc_ilt_mem(struct bxe_softc *sc)
{
int rc = 0;
if ((sc->ilt =
(struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
M_BXE_ILT,
(M_NOWAIT | M_ZERO))) == NULL) {
rc = 1;
}
return (rc);
}
static int
bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
{
int rc = 0;
if ((sc->ilt->lines =
(struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
M_BXE_ILT,
(M_NOWAIT | M_ZERO))) == NULL) {
rc = 1;
}
return (rc);
}
static void
bxe_free_ilt_mem(struct bxe_softc *sc)
{
if (sc->ilt != NULL) {
free(sc->ilt, M_BXE_ILT);
sc->ilt = NULL;
}
}
static void
bxe_free_ilt_lines_mem(struct bxe_softc *sc)
{
if (sc->ilt->lines != NULL) {
free(sc->ilt->lines, M_BXE_ILT);
sc->ilt->lines = NULL;
}
}
static void
bxe_free_mem(struct bxe_softc *sc)
{
int i;
for (i = 0; i < L2_ILT_LINES(sc); i++) {
bxe_dma_free(sc, &sc->context[i].vcxt_dma);
sc->context[i].vcxt = NULL;
sc->context[i].size = 0;
}
ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
bxe_free_ilt_lines_mem(sc);
}
static int
bxe_alloc_mem(struct bxe_softc *sc)
{
int context_size;
int allocated;
int i;
/*
* Allocate memory for CDU context:
* This memory is allocated separately and not in the generic ILT
* functions because CDU differs in few aspects:
* 1. There can be multiple entities allocating memory for context -
* regular L2, CNIC, and SRIOV drivers. Each separately controls
* its own ILT lines.
* 2. Since CDU page-size is not a single 4KB page (which is the case
* for the other ILT clients), to be efficient we want to support
* allocation of sub-page-size in the last entry.
* 3. Context pointers are used by the driver to pass to FW / update
* the context (for the other ILT clients the pointers are used just to
* free the memory during unload).
*/
context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
for (i = 0, allocated = 0; allocated < context_size; i++) {
sc->context[i].size = min(CDU_ILT_PAGE_SZ,
(context_size - allocated));
if (bxe_dma_alloc(sc, sc->context[i].size,
&sc->context[i].vcxt_dma,
"cdu context") != 0) {
bxe_free_mem(sc);
return (-1);
}
sc->context[i].vcxt =
(union cdu_context *)sc->context[i].vcxt_dma.vaddr;
allocated += sc->context[i].size;
}
bxe_alloc_ilt_lines_mem(sc);
BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
sc->ilt, sc->ilt->start_line, sc->ilt->lines);
{
for (i = 0; i < 4; i++) {
BLOGD(sc, DBG_LOAD,
"c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
i,
sc->ilt->clients[i].page_size,
sc->ilt->clients[i].start,
sc->ilt->clients[i].end,
sc->ilt->clients[i].client_num,
sc->ilt->clients[i].flags);
}
}
if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
bxe_free_mem(sc);
return (-1);
}
return (0);
}
static void
bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int i;
sc = fp->sc;
if (fp->rx_mbuf_tag == NULL) {
return;
}
/* free all mbufs and unload all maps */
for (i = 0; i < RX_BD_TOTAL; i++) {
if (fp->rx_mbuf_chain[i].m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag,
fp->rx_mbuf_chain[i].m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_mbuf_chain[i].m_map);
}
if (fp->rx_mbuf_chain[i].m != NULL) {
m_freem(fp->rx_mbuf_chain[i].m);
fp->rx_mbuf_chain[i].m = NULL;
fp->eth_q_stats.mbuf_alloc_rx--;
}
}
}
static void
bxe_free_tpa_pool(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int i, max_agg_queues;
sc = fp->sc;
if (fp->rx_mbuf_tag == NULL) {
return;
}
max_agg_queues = MAX_AGG_QS(sc);
/* release all mbufs and unload all DMA maps in the TPA pool */
for (i = 0; i < max_agg_queues; i++) {
if (fp->rx_tpa_info[i].bd.m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag,
fp->rx_tpa_info[i].bd.m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_tpa_info[i].bd.m_map);
}
if (fp->rx_tpa_info[i].bd.m != NULL) {
m_freem(fp->rx_tpa_info[i].bd.m);
fp->rx_tpa_info[i].bd.m = NULL;
fp->eth_q_stats.mbuf_alloc_tpa--;
}
}
}
static void
bxe_free_sge_chain(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int i;
sc = fp->sc;
if (fp->rx_sge_mbuf_tag == NULL) {
return;
}
/* rree all mbufs and unload all maps */
for (i = 0; i < RX_SGE_TOTAL; i++) {
if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
bus_dmamap_sync(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_chain[i].m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_chain[i].m_map);
}
if (fp->rx_sge_mbuf_chain[i].m != NULL) {
m_freem(fp->rx_sge_mbuf_chain[i].m);
fp->rx_sge_mbuf_chain[i].m = NULL;
fp->eth_q_stats.mbuf_alloc_sge--;
}
}
}
static void
bxe_free_fp_buffers(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
#if __FreeBSD_version >= 901504
if (fp->tx_br != NULL) {
/* just in case bxe_mq_flush() wasn't called */
if (mtx_initialized(&fp->tx_mtx)) {
struct mbuf *m;
BXE_FP_TX_LOCK(fp);
while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
m_freem(m);
BXE_FP_TX_UNLOCK(fp);
}
}
#endif
/* free all RX buffers */
bxe_free_rx_bd_chain(fp);
bxe_free_tpa_pool(fp);
bxe_free_sge_chain(fp);
if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
fp->eth_q_stats.mbuf_alloc_rx);
}
if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
fp->eth_q_stats.mbuf_alloc_sge);
}
if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
fp->eth_q_stats.mbuf_alloc_tpa);
}
if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
BLOGE(sc, "failed to release tx mbufs (%d left)\n",
fp->eth_q_stats.mbuf_alloc_tx);
}
/* XXX verify all mbufs were reclaimed */
}
}
static int
bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
uint16_t prev_index,
uint16_t index)
{
struct bxe_sw_rx_bd *rx_buf;
struct eth_rx_bd *rx_bd;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct mbuf *m;
int nsegs, rc;
rc = 0;
/* allocate the new RX BD mbuf */
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
if (__predict_false(m == NULL)) {
fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
return (ENOBUFS);
}
fp->eth_q_stats.mbuf_alloc_rx++;
/* initialize the mbuf buffer length */
m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
/* map the mbuf into non-paged pool */
rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
fp->rx_mbuf_spare_map,
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(rc != 0)) {
fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
m_freem(m);
fp->eth_q_stats.mbuf_alloc_rx--;
return (rc);
}
/* all mbufs must map to a single segment */
KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
/* release any existing RX BD mbuf mappings */
if (prev_index != index) {
rx_buf = &fp->rx_mbuf_chain[prev_index];
if (rx_buf->m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
}
/*
* We only get here from bxe_rxeof() when the maximum number
* of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
* holds the mbuf in the prev_index so it's OK to NULL it out
* here without concern of a memory leak.
*/
fp->rx_mbuf_chain[prev_index].m = NULL;
}
rx_buf = &fp->rx_mbuf_chain[index];
if (rx_buf->m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
}
/* save the mbuf and mapping info for a future packet */
map = (prev_index != index) ?
fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
rx_buf->m_map = fp->rx_mbuf_spare_map;
fp->rx_mbuf_spare_map = map;
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
BUS_DMASYNC_PREREAD);
rx_buf->m = m;
rx_bd = &fp->rx_chain[index];
rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
return (rc);
}
static int
bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
int queue)
{
struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct mbuf *m;
int nsegs;
int rc = 0;
/* allocate the new TPA mbuf */
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
if (__predict_false(m == NULL)) {
fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
return (ENOBUFS);
}
fp->eth_q_stats.mbuf_alloc_tpa++;
/* initialize the mbuf buffer length */
m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
/* map the mbuf into non-paged pool */
rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
fp->rx_tpa_info_mbuf_spare_map,
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(rc != 0)) {
fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
m_free(m);
fp->eth_q_stats.mbuf_alloc_tpa--;
return (rc);
}
/* all mbufs must map to a single segment */
KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
/* release any existing TPA mbuf mapping */
if (tpa_info->bd.m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
}
/* save the mbuf and mapping info for the TPA mbuf */
map = tpa_info->bd.m_map;
tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
fp->rx_tpa_info_mbuf_spare_map = map;
bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
BUS_DMASYNC_PREREAD);
tpa_info->bd.m = m;
tpa_info->seg = segs[0];
return (rc);
}
/*
* Allocate an mbuf and assign it to the receive scatter gather chain. The
* caller must take care to save a copy of the existing mbuf in the SG mbuf
* chain.
*/
static int
bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
uint16_t index)
{
struct bxe_sw_rx_bd *sge_buf;
struct eth_rx_sge *sge;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct mbuf *m;
int nsegs;
int rc = 0;
/* allocate a new SGE mbuf */
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
if (__predict_false(m == NULL)) {
fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
return (ENOMEM);
}
fp->eth_q_stats.mbuf_alloc_sge++;
/* initialize the mbuf buffer length */
m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
/* map the SGE mbuf into non-paged pool */
rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_spare_map,
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(rc != 0)) {
fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
m_freem(m);
fp->eth_q_stats.mbuf_alloc_sge--;
return (rc);
}
/* all mbufs must map to a single segment */
KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
sge_buf = &fp->rx_sge_mbuf_chain[index];
/* release any existing SGE mbuf mapping */
if (sge_buf->m_map != NULL) {
bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
}
/* save the mbuf and mapping info for a future packet */
map = sge_buf->m_map;
sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
fp->rx_sge_mbuf_spare_map = map;
bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
BUS_DMASYNC_PREREAD);
sge_buf->m = m;
sge = &fp->rx_sge_chain[index];
sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
return (rc);
}
static __noinline int
bxe_alloc_fp_buffers(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i, j, rc = 0;
int ring_prod, cqe_ring_prod;
int max_agg_queues;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
ring_prod = cqe_ring_prod = 0;
fp->rx_bd_cons = 0;
fp->rx_cq_cons = 0;
/* allocate buffers for the RX BDs in RX BD chain */
for (j = 0; j < sc->max_rx_bufs; j++) {
rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
if (rc != 0) {
BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
i, rc);
goto bxe_alloc_fp_buffers_error;
}
ring_prod = RX_BD_NEXT(ring_prod);
cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
}
fp->rx_bd_prod = ring_prod;
fp->rx_cq_prod = cqe_ring_prod;
fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
max_agg_queues = MAX_AGG_QS(sc);
fp->tpa_enable = TRUE;
/* fill the TPA pool */
for (j = 0; j < max_agg_queues; j++) {
rc = bxe_alloc_rx_tpa_mbuf(fp, j);
if (rc != 0) {
BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
i, j);
fp->tpa_enable = FALSE;
goto bxe_alloc_fp_buffers_error;
}
fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
}
if (fp->tpa_enable) {
/* fill the RX SGE chain */
ring_prod = 0;
for (j = 0; j < RX_SGE_USABLE; j++) {
rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
if (rc != 0) {
BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
i, ring_prod);
fp->tpa_enable = FALSE;
ring_prod = 0;
goto bxe_alloc_fp_buffers_error;
}
ring_prod = RX_SGE_NEXT(ring_prod);
}
fp->rx_sge_prod = ring_prod;
}
}
return (0);
bxe_alloc_fp_buffers_error:
/* unwind what was already allocated */
bxe_free_rx_bd_chain(fp);
bxe_free_tpa_pool(fp);
bxe_free_sge_chain(fp);
return (ENOBUFS);
}
static void
bxe_free_fw_stats_mem(struct bxe_softc *sc)
{
bxe_dma_free(sc, &sc->fw_stats_dma);
sc->fw_stats_num = 0;
sc->fw_stats_req_size = 0;
sc->fw_stats_req = NULL;
sc->fw_stats_req_mapping = 0;
sc->fw_stats_data_size = 0;
sc->fw_stats_data = NULL;
sc->fw_stats_data_mapping = 0;
}
static int
bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
{
uint8_t num_queue_stats;
int num_groups;
/* number of queues for statistics is number of eth queues */
num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
/*
* Total number of FW statistics requests =
* 1 for port stats + 1 for PF stats + num of queues
*/
sc->fw_stats_num = (2 + num_queue_stats);
/*
* Request is built from stats_query_header and an array of
* stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
* rules. The real number or requests is configured in the
* stats_query_header.
*/
num_groups =
((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
sc->fw_stats_num, num_groups);
sc->fw_stats_req_size =
(sizeof(struct stats_query_header) +
(num_groups * sizeof(struct stats_query_cmd_group)));
/*
* Data for statistics requests + stats_counter.
* stats_counter holds per-STORM counters that are incremented when
* STORM has finished with the current request. Memory for FCoE
* offloaded statistics are counted anyway, even if they will not be sent.
* VF stats are not accounted for here as the data of VF stats is stored
* in memory allocated by the VF, not here.
*/
sc->fw_stats_data_size =
(sizeof(struct stats_counter) +
sizeof(struct per_port_stats) +
sizeof(struct per_pf_stats) +
/* sizeof(struct fcoe_statistics_params) + */
(sizeof(struct per_queue_stats) * num_queue_stats));
if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
&sc->fw_stats_dma, "fw stats") != 0) {
bxe_free_fw_stats_mem(sc);
return (-1);
}
/* set up the shortcuts */
sc->fw_stats_req =
(struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
sc->fw_stats_data =
(struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
sc->fw_stats_req_size);
sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
sc->fw_stats_req_size);
BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
(uintmax_t)sc->fw_stats_req_mapping);
BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
(uintmax_t)sc->fw_stats_data_mapping);
return (0);
}
/*
* Bits map:
* 0-7 - Engine0 load counter.
* 8-15 - Engine1 load counter.
* 16 - Engine0 RESET_IN_PROGRESS bit.
* 17 - Engine1 RESET_IN_PROGRESS bit.
* 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
* function on the engine
* 19 - Engine1 ONE_IS_LOADED.
* 20 - Chip reset flow bit. When set none-leader must wait for both engines
* leader to complete (check for both RESET_IN_PROGRESS bits and not
* for just the one belonging to its engine).
*/
#define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
#define BXE_PATH0_LOAD_CNT_MASK 0x000000ff
#define BXE_PATH0_LOAD_CNT_SHIFT 0
#define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00
#define BXE_PATH1_LOAD_CNT_SHIFT 8
#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
#define BXE_GLOBAL_RESET_BIT 0x00040000
/* set the GLOBAL_RESET bit, should be run under rtnl lock */
static void
bxe_set_reset_global(struct bxe_softc *sc)
{
uint32_t val;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
static void
bxe_clear_reset_global(struct bxe_softc *sc)
{
uint32_t val;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
static uint8_t
bxe_reset_is_global(struct bxe_softc *sc)
{
uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
}
/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
static void
bxe_set_reset_done(struct bxe_softc *sc)
{
uint32_t val;
uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
BXE_PATH0_RST_IN_PROG_BIT;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
/* Clear the bit */
val &= ~bit;
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
static void
bxe_set_reset_in_progress(struct bxe_softc *sc)
{
uint32_t val;
uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
BXE_PATH0_RST_IN_PROG_BIT;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
/* Set the bit */
val |= bit;
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
static uint8_t
bxe_reset_is_done(struct bxe_softc *sc,
int engine)
{
uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
BXE_PATH0_RST_IN_PROG_BIT;
/* return false if bit is set */
return (val & bit) ? FALSE : TRUE;
}
/* get the load status for an engine, should be run under rtnl lock */
static uint8_t
bxe_get_load_status(struct bxe_softc *sc,
int engine)
{
uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
BXE_PATH0_LOAD_CNT_MASK;
uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
BXE_PATH0_LOAD_CNT_SHIFT;
uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
val = ((val & mask) >> shift);
BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
return (val != 0);
}
/* set pf load mark */
/* XXX needs to be under rtnl lock */
static void
bxe_set_pf_load(struct bxe_softc *sc)
{
uint32_t val;
uint32_t val1;
uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
BXE_PATH0_LOAD_CNT_MASK;
uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
BXE_PATH0_LOAD_CNT_SHIFT;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
/* get the current counter value */
val1 = ((val & mask) >> shift);
/* set bit of this PF */
val1 |= (1 << SC_ABS_FUNC(sc));
/* clear the old value */
val &= ~mask;
/* set the new one */
val |= ((val1 << shift) & mask);
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* clear pf load mark */
/* XXX needs to be under rtnl lock */
static uint8_t
bxe_clear_pf_load(struct bxe_softc *sc)
{
uint32_t val1, val;
uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
BXE_PATH0_LOAD_CNT_MASK;
uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
BXE_PATH0_LOAD_CNT_SHIFT;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
/* get the current counter value */
val1 = (val & mask) >> shift;
/* clear bit of that PF */
val1 &= ~(1 << SC_ABS_FUNC(sc));
/* clear the old value */
val &= ~mask;
/* set the new one */
val |= ((val1 << shift) & mask);
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
return (val1 != 0);
}
/* send load requrest to mcp and analyze response */
static int
bxe_nic_load_request(struct bxe_softc *sc,
uint32_t *load_code)
{
/* init fw_seq */
sc->fw_seq =
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
/* get the current FW pulse sequence */
sc->fw_drv_pulse_wr_seq =
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
DRV_PULSE_SEQ_MASK);
BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
sc->fw_drv_pulse_wr_seq);
/* load request */
(*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
/* if the MCP fails to respond we must abort */
if (!(*load_code)) {
BLOGE(sc, "MCP response failure!\n");
return (-1);
}
/* if MCP refused then must abort */
if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
BLOGE(sc, "MCP refused load request\n");
return (-1);
}
return (0);
}
/*
* Check whether another PF has already loaded FW to chip. In virtualized
* environments a pf from anoth VM may have already initialized the device
* including loading FW.
*/
static int
bxe_nic_load_analyze_req(struct bxe_softc *sc,
uint32_t load_code)
{
uint32_t my_fw, loaded_fw;
/* is another pf loaded on this engine? */
if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
(load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
/* build my FW version dword */
my_fw = (BCM_5710_FW_MAJOR_VERSION +
(BCM_5710_FW_MINOR_VERSION << 8 ) +
(BCM_5710_FW_REVISION_VERSION << 16) +
(BCM_5710_FW_ENGINEERING_VERSION << 24));
/* read loaded FW from chip */
loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
loaded_fw, my_fw);
/* abort nic load if version mismatch */
if (my_fw != loaded_fw) {
BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
loaded_fw, my_fw);
return (-1);
}
}
return (0);
}
/* mark PMF if applicable */
static void
bxe_nic_load_pmf(struct bxe_softc *sc,
uint32_t load_code)
{
uint32_t ncsi_oem_data_addr;
if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
(load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
(load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
/*
* Barrier here for ordering between the writing to sc->port.pmf here
* and reading it from the periodic task.
*/
sc->port.pmf = 1;
mb();
} else {
sc->port.pmf = 0;
}
BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
/* XXX needed? */
if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
if (ncsi_oem_data_addr) {
REG_WR(sc,
(ncsi_oem_data_addr +
offsetof(struct glob_ncsi_oem_data, driver_version)),
0);
}
}
}
}
static void
bxe_read_mf_cfg(struct bxe_softc *sc)
{
int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
int abs_func;
int vn;
if (BXE_NOMCP(sc)) {
return; /* what should be the default bvalue in this case */
}
/*
* The formula for computing the absolute function number is...
* For 2 port configuration (4 functions per port):
* abs_func = 2 * vn + SC_PORT + SC_PATH
* For 4 port configuration (2 functions per port):
* abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
*/
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
if (abs_func >= E1H_FUNC_MAX) {
break;
}
sc->devinfo.mf_info.mf_config[vn] =
MFCFG_RD(sc, func_mf_config[abs_func].config);
}
if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
FUNC_MF_CFG_FUNC_DISABLED) {
BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
sc->flags |= BXE_MF_FUNC_DIS;
} else {
BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
sc->flags &= ~BXE_MF_FUNC_DIS;
}
}
/* acquire split MCP access lock register */
static int bxe_acquire_alr(struct bxe_softc *sc)
{
uint32_t j, val;
for (j = 0; j < 1000; j++) {
val = (1UL << 31);
REG_WR(sc, GRCBASE_MCP + 0x9c, val);
val = REG_RD(sc, GRCBASE_MCP + 0x9c);
if (val & (1L << 31))
break;
DELAY(5000);
}
if (!(val & (1L << 31))) {
BLOGE(sc, "Cannot acquire MCP access lock register\n");
return (-1);
}
return (0);
}
/* release split MCP access lock register */
static void bxe_release_alr(struct bxe_softc *sc)
{
REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
}
static void
bxe_fan_failure(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
uint32_t ext_phy_config;
/* mark the failure */
ext_phy_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
ext_phy_config);
/* log the failure */
BLOGW(sc, "Fan Failure has caused the driver to shutdown "
"the card to prevent permanent damage. "
"Please contact OEM Support for assistance\n");
/* XXX */
#if 1
bxe_panic(sc, ("Schedule task to handle fan failure\n"));
#else
/*
* Schedule device reset (unload)
* This is due to some boards consuming sufficient power when driver is
* up to overheat if fan fails.
*/
bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
schedule_delayed_work(&sc->sp_rtnl_task, 0);
#endif
}
/* this function is called upon a link interrupt */
static void
bxe_link_attn(struct bxe_softc *sc)
{
uint32_t pause_enabled = 0;
struct host_port_stats *pstats;
int cmng_fns;
struct bxe_fastpath *fp;
int i;
/* Make sure that we are synced with the current statistics */
bxe_stats_handle(sc, STATS_EVENT_STOP);
BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
elink_link_update(&sc->link_params, &sc->link_vars);
if (sc->link_vars.link_up) {
/* dropless flow control */
if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
pause_enabled = 0;
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
pause_enabled = 1;
}
REG_WR(sc,
(BAR_USTRORM_INTMEM +
USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
pause_enabled);
}
if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
pstats = BXE_SP(sc, port_stats);
/* reset old mac stats */
memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
}
if (sc->state == BXE_STATE_OPEN) {
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
/* Restart tx when the link comes back. */
FOR_EACH_ETH_QUEUE(sc, i) {
fp = &sc->fp[i];
taskqueue_enqueue(fp->tq, &fp->tx_task);
}
}
}
if (sc->link_vars.link_up && sc->link_vars.line_speed) {
cmng_fns = bxe_get_cmng_fns_mode(sc);
if (cmng_fns != CMNG_FNS_NONE) {
bxe_cmng_fns_init(sc, FALSE, cmng_fns);
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
} else {
/* rate shaping and fairness are disabled */
BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
}
}
bxe_link_report_locked(sc);
if (IS_MF(sc)) {
; // XXX bxe_link_sync_notify(sc);
}
}
static void
bxe_attn_int_asserted(struct bxe_softc *sc,
uint32_t asserted)
{
int port = SC_PORT(sc);
uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
NIG_REG_MASK_INTERRUPT_PORT0;
uint32_t aeu_mask;
uint32_t nig_mask = 0;
uint32_t reg_addr;
uint32_t igu_acked;
uint32_t cnt;
if (sc->attn_state & asserted) {
BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
}
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(sc, aeu_addr);
BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
aeu_mask, asserted);
aeu_mask &= ~(asserted & 0x3ff);
BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
REG_WR(sc, aeu_addr, aeu_mask);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
sc->attn_state |= asserted;
BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
if (asserted & ATTN_HARD_WIRED_MASK) {
if (asserted & ATTN_NIG_FOR_FUNC) {
bxe_acquire_phy_lock(sc);
/* save nig interrupt mask */
nig_mask = REG_RD(sc, nig_int_mask_addr);
/* If nig_mask is not set, no need to call the update function */
if (nig_mask) {
REG_WR(sc, nig_int_mask_addr, 0);
bxe_link_attn(sc);
}
/* handle unicore attn? */
}
if (asserted & ATTN_SW_TIMER_4_FUNC) {
BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
}
if (asserted & GPIO_2_FUNC) {
BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
}
if (asserted & GPIO_3_FUNC) {
BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
}
if (asserted & GPIO_4_FUNC) {
BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
}
if (port == 0) {
if (asserted & ATTN_GENERAL_ATTN_1) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_2) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_3) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
}
} else {
if (asserted & ATTN_GENERAL_ATTN_4) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_5) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_6) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
}
}
} /* hardwired */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
} else {
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
}
BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
asserted,
(sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
REG_WR(sc, reg_addr, asserted);
/* now set back the mask */
if (asserted & ATTN_NIG_FOR_FUNC) {
/*
* Verify that IGU ack through BAR was written before restoring
* NIG mask. This loop should exit after 2-3 iterations max.
*/
if (sc->devinfo.int_block != INT_BLOCK_HC) {
cnt = 0;
do {
igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
(++cnt < MAX_IGU_ATTN_ACK_TO));
if (!igu_acked) {
BLOGE(sc, "Failed to verify IGU ack on time\n");
}
mb();
}
REG_WR(sc, nig_int_mask_addr, nig_mask);
bxe_release_phy_lock(sc);
}
}
static void
bxe_print_next_block(struct bxe_softc *sc,
int idx,
const char *blk)
{
BLOGI(sc, "%s%s", idx ? ", " : "", blk);
}
static int
bxe_check_blocks_with_parity0(struct bxe_softc *sc,
uint32_t sig,
int par_num,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "BRB");
break;
case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "PARSER");
break;
case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "TSDM");
break;
case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "SEARCHER");
break;
case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "TCM");
break;
case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "TSEMI");
break;
case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "XPB");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return (par_num);
}
static int
bxe_check_blocks_with_parity1(struct bxe_softc *sc,
uint32_t sig,
int par_num,
uint8_t *global,
uint8_t print)
{
int i = 0;
uint32_t cur_bit = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "PBF");
break;
case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "QM");
break;
case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "TM");
break;
case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "XSDM");
break;
case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "XCM");
break;
case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "XSEMI");
break;
case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "DOORBELLQ");
break;
case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "NIG");
break;
case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "DEBUG");
break;
case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "USDM");
break;
case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "UCM");
break;
case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "USEMI");
break;
case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "UPB");
break;
case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "CSDM");
break;
case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "CCM");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return (par_num);
}
static int
bxe_check_blocks_with_parity2(struct bxe_softc *sc,
uint32_t sig,
int par_num,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "CSEMI");
break;
case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "PXP");
break;
case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
break;
case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "CFC");
break;
case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "CDU");
break;
case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "DMAE");
break;
case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "IGU");
break;
case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "MISC");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return (par_num);
}
static int
bxe_check_blocks_with_parity3(struct bxe_softc *sc,
uint32_t sig,
int par_num,
uint8_t *global,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
if (print)
bxe_print_next_block(sc, par_num++, "MCP ROM");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
if (print)
bxe_print_next_block(sc, par_num++,
"MCP UMP RX");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
if (print)
bxe_print_next_block(sc, par_num++,
"MCP UMP TX");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
if (print)
bxe_print_next_block(sc, par_num++,
"MCP SCPAD");
*global = TRUE;
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return (par_num);
}
static int
bxe_check_blocks_with_parity4(struct bxe_softc *sc,
uint32_t sig,
int par_num,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "PGLUE_B");
break;
case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "ATC");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return (par_num);
}
static uint8_t
bxe_parity_attn(struct bxe_softc *sc,
uint8_t *global,
uint8_t print,
uint32_t *sig)
{
int par_num = 0;
if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
(sig[1] & HW_PRTY_ASSERT_SET_1) ||
(sig[2] & HW_PRTY_ASSERT_SET_2) ||
(sig[3] & HW_PRTY_ASSERT_SET_3) ||
(sig[4] & HW_PRTY_ASSERT_SET_4)) {
BLOGE(sc, "Parity error: HW block parity attention:\n"
"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
(uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
(uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
(uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
(uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
(uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
if (print)
BLOGI(sc, "Parity errors detected in blocks: ");
par_num =
bxe_check_blocks_with_parity0(sc, sig[0] &
HW_PRTY_ASSERT_SET_0,
par_num, print);
par_num =
bxe_check_blocks_with_parity1(sc, sig[1] &
HW_PRTY_ASSERT_SET_1,
par_num, global, print);
par_num =
bxe_check_blocks_with_parity2(sc, sig[2] &
HW_PRTY_ASSERT_SET_2,
par_num, print);
par_num =
bxe_check_blocks_with_parity3(sc, sig[3] &
HW_PRTY_ASSERT_SET_3,
par_num, global, print);
par_num =
bxe_check_blocks_with_parity4(sc, sig[4] &
HW_PRTY_ASSERT_SET_4,
par_num, print);
if (print)
BLOGI(sc, "\n");
if( *global == TRUE ) {
BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
}
return (TRUE);
}
return (FALSE);
}
static uint8_t
bxe_chk_parity_attn(struct bxe_softc *sc,
uint8_t *global,
uint8_t print)
{
struct attn_route attn = { {0} };
int port = SC_PORT(sc);
if(sc->state != BXE_STATE_OPEN)
return FALSE;
attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
/*
* Since MCP attentions can't be disabled inside the block, we need to
* read AEU registers to see whether they're currently disabled
*/
attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
: MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
MISC_AEU_ENABLE_MCP_PRTY_BITS) |
~MISC_AEU_ENABLE_MCP_PRTY_BITS);
if (!CHIP_IS_E1x(sc))
attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
return (bxe_parity_attn(sc, global, print, attn.sig));
}
static void
bxe_attn_int_deasserted4(struct bxe_softc *sc,
uint32_t attn)
{
uint32_t val;
boolean_t err_flg = FALSE;
if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
err_flg = TRUE;
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
}
if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
BLOGE(sc, "ATC hw attention 0x%08x\n", val);
err_flg = TRUE;
if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
}
if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
(uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
err_flg = TRUE;
}
if (err_flg) {
BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
}
}
static void
bxe_e1h_disable(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
bxe_tx_disable(sc);
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
}
static void
bxe_e1h_enable(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
// XXX bxe_tx_enable(sc);
}
/*
* called due to MCP event (on pmf):
* reread new bandwidth configuration
* configure FW
* notify others function about the change
*/
static void
bxe_config_mf_bw(struct bxe_softc *sc)
{
if (sc->link_vars.link_up) {
bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
// XXX bxe_link_sync_notify(sc);
}
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
}
static void
bxe_set_mf_bw(struct bxe_softc *sc)
{
bxe_config_mf_bw(sc);
bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
}
static void
bxe_handle_eee_event(struct bxe_softc *sc)
{
BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
}
#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
static void
bxe_drv_info_ether_stat(struct bxe_softc *sc)
{
struct eth_stats_info *ether_stat =
&sc->sp->drv_info_to_mcp.ether_stat;
strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
ETH_STAT_INFO_VERSION_LEN);
/* XXX (+ MAC_PAD) taken from other driver... verify this is right */
sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
ether_stat->mac_local + MAC_PAD,
MAC_PAD, ETH_ALEN);
ether_stat->mtu_size = sc->mtu;
ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
}
// XXX ether_stat->feature_flags |= ???;
ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
ether_stat->txq_size = sc->tx_ring_size;
ether_stat->rxq_size = sc->rx_ring_size;
}
static void
bxe_handle_drv_info_req(struct bxe_softc *sc)
{
enum drv_info_opcode op_code;
uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
/* if drv_info version supported by MFW doesn't match - send NACK */
if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
return;
}
op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
DRV_INFO_CONTROL_OP_CODE_SHIFT);
memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
switch (op_code) {
case ETH_STATS_OPCODE:
bxe_drv_info_ether_stat(sc);
break;
case FCOE_STATS_OPCODE:
case ISCSI_STATS_OPCODE:
default:
/* if op code isn't supported - send NACK */
bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
return;
}
/*
* If we got drv_info attn from MFW then these fields are defined in
* shmem2 for sure
*/
SHMEM2_WR(sc, drv_info_host_addr_lo,
U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
SHMEM2_WR(sc, drv_info_host_addr_hi,
U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
}
static void
bxe_dcc_event(struct bxe_softc *sc,
uint32_t dcc_event)
{
BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
/*
* This is the only place besides the function initialization
* where the sc->flags can change so it is done without any
* locks
*/
if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
sc->flags |= BXE_MF_FUNC_DIS;
bxe_e1h_disable(sc);
} else {
BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
sc->flags &= ~BXE_MF_FUNC_DIS;
bxe_e1h_enable(sc);
}
dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
}
if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
bxe_config_mf_bw(sc);
dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
}
/* Report results to MCP */
if (dcc_event)
bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
else
bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
}
static void
bxe_pmf_update(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
uint32_t val;
sc->port.pmf = 1;
BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
/*
* We need the mb() to ensure the ordering between the writing to
* sc->port.pmf here and reading it from the bxe_periodic_task().
*/
mb();
/* queue a periodic task */
// XXX schedule task...
// XXX bxe_dcbx_pmf_update(sc);
/* enable nig attention */
val = (0xff0f | (1 << (SC_VN(sc) + 4)));
if (sc->devinfo.int_block == INT_BLOCK_HC) {
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
} else if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
}
bxe_stats_handle(sc, STATS_EVENT_PMF);
}
static int
bxe_mc_assert(struct bxe_softc *sc)
{
char last_idx;
int i, rc = 0;
uint32_t row0, row1, row2, row3;
/* XSTORM */
last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* TSTORM */
last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx) {
BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
}
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* CSTORM */
last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx) {
BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
}
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* USTORM */
last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx) {
BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
}
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
return (rc);
}
static void
bxe_attn_int_deasserted3(struct bxe_softc *sc,
uint32_t attn)
{
int func = SC_FUNC(sc);
uint32_t val;
if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
if (attn & BXE_PMF_LINK_ASSERT(sc)) {
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
bxe_read_mf_cfg(sc);
sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
if (val & DRV_STATUS_DCC_EVENT_MASK)
bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
if (val & DRV_STATUS_SET_MF_BW)
bxe_set_mf_bw(sc);
if (val & DRV_STATUS_DRV_INFO_REQ)
bxe_handle_drv_info_req(sc);
if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
bxe_pmf_update(sc);
if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
bxe_handle_eee_event(sc);
if (sc->link_vars.periodic_flags &
ELINK_PERIODIC_FLAGS_LINK_EVENT) {
/* sync with link */
bxe_acquire_phy_lock(sc);
sc->link_vars.periodic_flags &=
~ELINK_PERIODIC_FLAGS_LINK_EVENT;
bxe_release_phy_lock(sc);
if (IS_MF(sc))
; // XXX bxe_link_sync_notify(sc);
bxe_link_report(sc);
}
/*
* Always call it here: bxe_link_report() will
* prevent the link indication duplication.
*/
bxe_link_status_update(sc);
} else if (attn & BXE_MC_ASSERT_BITS) {
BLOGE(sc, "MC assert!\n");
bxe_mc_assert(sc);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
bxe_int_disable(sc);
BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
} else if (attn & BXE_MCP_ASSERT) {
BLOGE(sc, "MCP assert!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
bxe_int_disable(sc); /*avoid repetive assert alert */
} else {
BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
}
}
if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
if (attn & BXE_GRC_TIMEOUT) {
val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
BLOGE(sc, "GRC time-out 0x%08x\n", val);
}
if (attn & BXE_GRC_RSV) {
val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
BLOGE(sc, "GRC reserved 0x%08x\n", val);
}
REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
}
}
static void
bxe_attn_int_deasserted2(struct bxe_softc *sc,
uint32_t attn)
{
int port = SC_PORT(sc);
int reg_offset;
uint32_t val0, mask0, val1, mask1;
uint32_t val;
boolean_t err_flg = FALSE;
if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
BLOGE(sc, "CFC hw attention 0x%08x\n", val);
/* CFC error attention */
if (val & 0x2) {
BLOGE(sc, "FATAL error from CFC\n");
err_flg = TRUE;
}
}
if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
/* RQ_USDMDP_FIFO_OVERFLOW */
if (val & 0x18000) {
BLOGE(sc, "FATAL error from PXP\n");
err_flg = TRUE;
}
if (!CHIP_IS_E1x(sc)) {
val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
err_flg = TRUE;
}
}
#define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
if (attn & AEU_PXP2_HW_INT_BIT) {
/* CQ47854 workaround do not panic on
* PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
*/
if (!CHIP_IS_E1x(sc)) {
mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
/*
* If the only PXP2_EOP_ERROR_BIT is set in
* STS0 and STS1 - clear it
*
* probably we lose additional attentions between
* STS0 and STS_CLR0, in this case user will not
* be notified about them
*/
if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
!(val1 & mask1))
val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
/* print the register, since no one can restore it */
BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
/*
* if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
* then notify
*/
if (val0 & PXP2_EOP_ERROR_BIT) {
BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
err_flg = TRUE;
/*
* if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
* set then clear attention from PXP2 block without panic
*/
if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
((val1 & mask1) == 0))
attn &= ~AEU_PXP2_HW_INT_BIT;
}
}
}
if (attn & HW_INTERRUT_ASSERT_SET_2) {
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
REG_WR(sc, reg_offset, val);
BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
(uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
err_flg = TRUE;
bxe_panic(sc, ("HW block attention set2\n"));
}
if(err_flg) {
BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
}
}
static void
bxe_attn_int_deasserted1(struct bxe_softc *sc,
uint32_t attn)
{
int port = SC_PORT(sc);
int reg_offset;
uint32_t val;
boolean_t err_flg = FALSE;
if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
BLOGE(sc, "DB hw attention 0x%08x\n", val);
/* DORQ discard attention */
if (val & 0x2) {
BLOGE(sc, "FATAL error from DORQ\n");
err_flg = TRUE;
}
}
if (attn & HW_INTERRUT_ASSERT_SET_1) {
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
REG_WR(sc, reg_offset, val);
BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
(uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
err_flg = TRUE;
bxe_panic(sc, ("HW block attention set1\n"));
}
if(err_flg) {
BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
}
}
static void
bxe_attn_int_deasserted0(struct bxe_softc *sc,
uint32_t attn)
{
int port = SC_PORT(sc);
int reg_offset;
uint32_t val;
reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
val = REG_RD(sc, reg_offset);
val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(sc, reg_offset, val);
BLOGW(sc, "SPIO5 hw attention\n");
/* Fan failure attention */
elink_hw_reset_phy(&sc->link_params);
bxe_fan_failure(sc);
}
if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
bxe_acquire_phy_lock(sc);
elink_handle_module_detect_int(&sc->link_params);
bxe_release_phy_lock(sc);
}
if (attn & HW_INTERRUT_ASSERT_SET_0) {
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
REG_WR(sc, reg_offset, val);
BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
(attn & HW_INTERRUT_ASSERT_SET_0)));
}
}
static void
bxe_attn_int_deasserted(struct bxe_softc *sc,
uint32_t deasserted)
{
struct attn_route attn;
struct attn_route *group_mask;
int port = SC_PORT(sc);
int index;
uint32_t reg_addr;
uint32_t val;
uint32_t aeu_mask;
uint8_t global = FALSE;
/*
* Need to take HW lock because MCP or other port might also
* try to handle this event.
*/
bxe_acquire_alr(sc);
if (bxe_chk_parity_attn(sc, &global, TRUE)) {
/* XXX
* In case of parity errors don't handle attentions so that
* other function would "see" parity errors.
*/
// XXX schedule a recovery task...
/* disable HW interrupts */
bxe_int_disable(sc);
BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
bxe_release_alr(sc);
return;
}
attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
if (!CHIP_IS_E1x(sc)) {
attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
} else {
attn.sig[4] = 0;
}
BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
if (deasserted & (1 << index)) {
group_mask = &sc->attn_group[index];
BLOGD(sc, DBG_INTR,
"group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
group_mask->sig[0], group_mask->sig[1],
group_mask->sig[2], group_mask->sig[3],
group_mask->sig[4]);
bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
}
}
bxe_release_alr(sc);
if (sc->devinfo.int_block == INT_BLOCK_HC) {
reg_addr = (HC_REG_COMMAND_REG + port*32 +
COMMAND_REG_ATTN_BITS_CLR);
} else {
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
}
val = ~deasserted;
BLOGD(sc, DBG_INTR,
"about to mask 0x%08x at %s addr 0x%08x\n", val,
(sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
REG_WR(sc, reg_addr, val);
if (~sc->attn_state & deasserted) {
BLOGE(sc, "IGU error\n");
}
reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(sc, reg_addr);
BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
aeu_mask, deasserted);
aeu_mask |= (deasserted & 0x3ff);
BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
REG_WR(sc, reg_addr, aeu_mask);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
sc->attn_state &= ~deasserted;
BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
}
static void
bxe_attn_int(struct bxe_softc *sc)
{
/* read local copy of bits */
uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
uint32_t attn_state = sc->attn_state;
/* look for changed bits */
uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
BLOGD(sc, DBG_INTR,
"attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
attn_bits, attn_ack, asserted, deasserted);
if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
BLOGE(sc, "BAD attention state\n");
}
/* handle bits that were raised */
if (asserted) {
bxe_attn_int_asserted(sc, asserted);
}
if (deasserted) {
bxe_attn_int_deasserted(sc, deasserted);
}
}
static uint16_t
bxe_update_dsb_idx(struct bxe_softc *sc)
{
struct host_sp_status_block *def_sb = sc->def_sb;
uint16_t rc = 0;
mb(); /* status block is written to by the chip */
if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
rc |= BXE_DEF_SB_ATT_IDX;
}
if (sc->def_idx != def_sb->sp_sb.running_index) {
sc->def_idx = def_sb->sp_sb.running_index;
rc |= BXE_DEF_SB_IDX;
}
mb();
return (rc);
}
static inline struct ecore_queue_sp_obj *
bxe_cid_to_q_obj(struct bxe_softc *sc,
uint32_t cid)
{
BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
}
static void
bxe_handle_mcast_eqe(struct bxe_softc *sc)
{
struct ecore_mcast_ramrod_params rparam;
int rc;
memset(&rparam, 0, sizeof(rparam));
rparam.mcast_obj = &sc->mcast_obj;
BXE_MCAST_LOCK(sc);
/* clear pending state for the last command */
sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
/* if there are pending mcast commands - send them */
if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
if (rc < 0) {
BLOGD(sc, DBG_SP,
"ERROR: Failed to send pending mcast commands (%d)\n", rc);
}
}
BXE_MCAST_UNLOCK(sc);
}
static void
bxe_handle_classification_eqe(struct bxe_softc *sc,
union event_ring_elem *elem)
{
unsigned long ramrod_flags = 0;
int rc = 0;
uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
struct ecore_vlan_mac_obj *vlan_mac_obj;
/* always push next commands out, don't wait here */
bit_set(&ramrod_flags, RAMROD_CONT);
switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
case ECORE_FILTER_MAC_PENDING:
BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
break;
case ECORE_FILTER_MCAST_PENDING:
BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
/*
* This is only relevant for 57710 where multicast MACs are
* configured as unicast MACs using the same ramrod.
*/
bxe_handle_mcast_eqe(sc);
return;
default:
BLOGE(sc, "Unsupported classification command: %d\n",
elem->message.data.eth_event.echo);
return;
}
rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
if (rc < 0) {
BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
} else if (rc > 0) {
BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
}
}
static void
bxe_handle_rx_mode_eqe(struct bxe_softc *sc,
union event_ring_elem *elem)
{
bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
/* send rx_mode command again if was requested */
if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
&sc->sp_state)) {
bxe_set_storm_rx_mode(sc);
}
}
static void
bxe_update_eq_prod(struct bxe_softc *sc,
uint16_t prod)
{
storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
wmb(); /* keep prod updates ordered */
}
static void
bxe_eq_int(struct bxe_softc *sc)
{
uint16_t hw_cons, sw_cons, sw_prod;
union event_ring_elem *elem;
uint8_t echo;
uint32_t cid;
uint8_t opcode;
int spqe_cnt = 0;
struct ecore_queue_sp_obj *q_obj;
struct ecore_func_sp_obj *f_obj = &sc->func_obj;
struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
hw_cons = le16toh(*sc->eq_cons_sb);
/*
* The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
* when we get to the next-page we need to adjust so the loop
* condition below will be met. The next element is the size of a
* regular element and hence incrementing by 1
*/
if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
hw_cons++;
}
/*
* This function may never run in parallel with itself for a
* specific sc and no need for a read memory barrier here.
*/
sw_cons = sc->eq_cons;
sw_prod = sc->eq_prod;
BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
for (;
sw_cons != hw_cons;
sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
elem = &sc->eq[EQ_DESC(sw_cons)];
/* elem CID originates from FW, actually LE */
cid = SW_CID(elem->message.data.cfc_del_event.cid);
opcode = elem->message.opcode;
/* handle eq element */
switch (opcode) {
case EVENT_RING_OPCODE_STAT_QUERY:
BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
sc->stats_comp++);
/* nothing to do with stats comp */
goto next_spqe;
case EVENT_RING_OPCODE_CFC_DEL:
/* handle according to cid range */
/* we may want to verify here that the sc state is HALTING */
BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
q_obj = bxe_cid_to_q_obj(sc, cid);
if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_STOP_TRAFFIC:
BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
break;
}
// XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
goto next_spqe;
case EVENT_RING_OPCODE_START_TRAFFIC:
BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
break;
}
// XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_UPDATE:
echo = elem->message.data.function_update_event.echo;
if (echo == SWITCH_UPDATE) {
BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
if (f_obj->complete_cmd(sc, f_obj,
ECORE_F_CMD_SWITCH_UPDATE)) {
break;
}
}
else {
BLOGD(sc, DBG_SP,
"AFEX: ramrod completed FUNCTION_UPDATE\n");
}
goto next_spqe;
case EVENT_RING_OPCODE_FORWARD_SETUP:
q_obj = &bxe_fwd_sp_obj(sc, q_obj);
if (q_obj->complete_cmd(sc, q_obj,
ECORE_Q_CMD_SETUP_TX_ONLY)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_START:
BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_STOP:
BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
break;
}
goto next_spqe;
}
switch (opcode | sc->state) {
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
rss_raw->clear_pending(rss_raw);
break;
case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
bxe_handle_classification_eqe(sc, elem);
break;
case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
BLOGD(sc, DBG_SP, "got mcast ramrod\n");
bxe_handle_mcast_eqe(sc);
break;
case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
bxe_handle_rx_mode_eqe(sc, elem);
break;
default:
/* unknown event log error and continue */
BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
elem->message.opcode, sc->state);
}
next_spqe:
spqe_cnt++;
} /* for */
mb();
atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
sc->eq_cons = sw_cons;
sc->eq_prod = sw_prod;
/* make sure that above mem writes were issued towards the memory */
wmb();
/* update producer */
bxe_update_eq_prod(sc, sc->eq_prod);
}
static void
bxe_handle_sp_tq(void *context,
int pending)
{
struct bxe_softc *sc = (struct bxe_softc *)context;
uint16_t status;
BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
/* what work needs to be performed? */
status = bxe_update_dsb_idx(sc);
BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
/* HW attentions */
if (status & BXE_DEF_SB_ATT_IDX) {
BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
bxe_attn_int(sc);
status &= ~BXE_DEF_SB_ATT_IDX;
}
/* SP events: STAT_QUERY and others */
if (status & BXE_DEF_SB_IDX) {
/* handle EQ completions */
BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
bxe_eq_int(sc);
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
le16toh(sc->def_idx), IGU_INT_NOP, 1);
status &= ~BXE_DEF_SB_IDX;
}
/* if status is non zero then something went wrong */
if (__predict_false(status)) {
BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
}
/* ack status block only if something was actually handled */
bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
/*
* Must be called after the EQ processing (since eq leads to sriov
* ramrod completion flows).
* This flow may have been scheduled by the arrival of a ramrod
* completion, or by the sriov code rescheduling itself.
*/
// XXX bxe_iov_sp_task(sc);
}
static void
bxe_handle_fp_tq(void *context,
int pending)
{
struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
struct bxe_softc *sc = fp->sc;
uint8_t more_tx = FALSE;
uint8_t more_rx = FALSE;
BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
/* XXX
* IFF_DRV_RUNNING state can't be checked here since we process
* slowpath events on a client queue during setup. Instead
* we need to add a "process/continue" flag here that the driver
* can use to tell the task here not to do anything.
*/
#if 0
if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
return;
}
#endif
/* update the fastpath index */
bxe_update_fp_sb_idx(fp);
/* XXX add loop here if ever support multiple tx CoS */
/* fp->txdata[cos] */
if (bxe_has_tx_work(fp)) {
BXE_FP_TX_LOCK(fp);
more_tx = bxe_txeof(sc, fp);
BXE_FP_TX_UNLOCK(fp);
}
if (bxe_has_rx_work(fp)) {
more_rx = bxe_rxeof(sc, fp);
}
if (more_rx /*|| more_tx*/) {
/* still more work to do */
taskqueue_enqueue(fp->tq, &fp->tq_task);
return;
}
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
}
static void
bxe_task_fp(struct bxe_fastpath *fp)
{
struct bxe_softc *sc = fp->sc;
uint8_t more_tx = FALSE;
uint8_t more_rx = FALSE;
BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
/* update the fastpath index */
bxe_update_fp_sb_idx(fp);
/* XXX add loop here if ever support multiple tx CoS */
/* fp->txdata[cos] */
if (bxe_has_tx_work(fp)) {
BXE_FP_TX_LOCK(fp);
more_tx = bxe_txeof(sc, fp);
BXE_FP_TX_UNLOCK(fp);
}
if (bxe_has_rx_work(fp)) {
more_rx = bxe_rxeof(sc, fp);
}
if (more_rx /*|| more_tx*/) {
/* still more work to do, bail out if this ISR and process later */
taskqueue_enqueue(fp->tq, &fp->tq_task);
return;
}
/*
* Here we write the fastpath index taken before doing any tx or rx work.
* It is very well possible other hw events occurred up to this point and
* they were actually processed accordingly above. Since we're going to
* write an older fastpath index, an interrupt is coming which we might
* not do any work in.
*/
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
}
/*
* Legacy interrupt entry point.
*
* Verifies that the controller generated the interrupt and
* then calls a separate routine to handle the various
* interrupt causes: link, RX, and TX.
*/
static void
bxe_intr_legacy(void *xsc)
{
struct bxe_softc *sc = (struct bxe_softc *)xsc;
struct bxe_fastpath *fp;
uint16_t status, mask;
int i;
BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
/*
* 0 for ustorm, 1 for cstorm
* the bits returned from ack_int() are 0-15
* bit 0 = attention status block
* bit 1 = fast path status block
* a mask of 0x2 or more = tx/rx event
* a mask of 1 = slow path event
*/
status = bxe_ack_int(sc);
/* the interrupt is not for us */
if (__predict_false(status == 0)) {
BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
return;
}
BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
FOR_EACH_ETH_QUEUE(sc, i) {
fp = &sc->fp[i];
mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
if (status & mask) {
/* acknowledge and disable further fastpath interrupts */
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
bxe_task_fp(fp);
status &= ~mask;
}
}
if (__predict_false(status & 0x1)) {
/* acknowledge and disable further slowpath interrupts */
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
/* schedule slowpath handler */
taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
status &= ~0x1;
}
if (__predict_false(status)) {
BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
}
}
/* slowpath interrupt entry point */
static void
bxe_intr_sp(void *xsc)
{
struct bxe_softc *sc = (struct bxe_softc *)xsc;
BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
/* acknowledge and disable further slowpath interrupts */
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
/* schedule slowpath handler */
taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
}
/* fastpath interrupt entry point */
static void
bxe_intr_fp(void *xfp)
{
struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
struct bxe_softc *sc = fp->sc;
BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
BLOGD(sc, DBG_INTR,
"(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
/* acknowledge and disable further fastpath interrupts */
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
bxe_task_fp(fp);
}
/* Release all interrupts allocated by the driver. */
static void
bxe_interrupt_free(struct bxe_softc *sc)
{
int i;
switch (sc->interrupt_mode) {
case INTR_MODE_INTX:
BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
if (sc->intr[0].resource != NULL) {
bus_release_resource(sc->dev,
SYS_RES_IRQ,
sc->intr[0].rid,
sc->intr[0].resource);
}
break;
case INTR_MODE_MSI:
for (i = 0; i < sc->intr_count; i++) {
BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
if (sc->intr[i].resource && sc->intr[i].rid) {
bus_release_resource(sc->dev,
SYS_RES_IRQ,
sc->intr[i].rid,
sc->intr[i].resource);
}
}
pci_release_msi(sc->dev);
break;
case INTR_MODE_MSIX:
for (i = 0; i < sc->intr_count; i++) {
BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
if (sc->intr[i].resource && sc->intr[i].rid) {
bus_release_resource(sc->dev,
SYS_RES_IRQ,
sc->intr[i].rid,
sc->intr[i].resource);
}
}
pci_release_msi(sc->dev);
break;
default:
/* nothing to do as initial allocation failed */
break;
}
}
/*
* This function determines and allocates the appropriate
* interrupt based on system capabilites and user request.
*
* The user may force a particular interrupt mode, specify
* the number of receive queues, specify the method for
* distribuitng received frames to receive queues, or use
* the default settings which will automatically select the
* best supported combination. In addition, the OS may or
* may not support certain combinations of these settings.
* This routine attempts to reconcile the settings requested
* by the user with the capabilites available from the system
* to select the optimal combination of features.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_interrupt_alloc(struct bxe_softc *sc)
{
int msix_count = 0;
int msi_count = 0;
int num_requested = 0;
int num_allocated = 0;
int rid, i, j;
int rc;
/* get the number of available MSI/MSI-X interrupts from the OS */
if (sc->interrupt_mode > 0) {
if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
msix_count = pci_msix_count(sc->dev);
}
if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
msi_count = pci_msi_count(sc->dev);
}
BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
msi_count, msix_count);
}
do { /* try allocating MSI-X interrupt resources (at least 2) */
if (sc->interrupt_mode != INTR_MODE_MSIX) {
break;
}
if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
(msix_count < 2)) {
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
break;
}
/* ask for the necessary number of MSI-X vectors */
num_requested = min((sc->num_queues + 1), msix_count);
BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
num_allocated = num_requested;
if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
break;
}
if (num_allocated < 2) { /* possible? */
BLOGE(sc, "MSI-X allocation less than 2!\n");
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
pci_release_msi(sc->dev);
break;
}
BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
num_requested, num_allocated);
/* best effort so use the number of vectors allocated to us */
sc->intr_count = num_allocated;
sc->num_queues = num_allocated - 1;
rid = 1; /* initial resource identifier */
/* allocate the MSI-X vectors */
for (i = 0; i < num_allocated; i++) {
sc->intr[i].rid = (rid + i);
if ((sc->intr[i].resource =
bus_alloc_resource_any(sc->dev,
SYS_RES_IRQ,
&sc->intr[i].rid,
RF_ACTIVE)) == NULL) {
BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
i, (rid + i));
for (j = (i - 1); j >= 0; j--) {
bus_release_resource(sc->dev,
SYS_RES_IRQ,
sc->intr[j].rid,
sc->intr[j].resource);
}
sc->intr_count = 0;
sc->num_queues = 0;
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
pci_release_msi(sc->dev);
break;
}
BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
}
} while (0);
do { /* try allocating MSI vector resources (at least 2) */
if (sc->interrupt_mode != INTR_MODE_MSI) {
break;
}
if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
(msi_count < 1)) {
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
break;
}
/* ask for a single MSI vector */
num_requested = 1;
BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
num_allocated = num_requested;
if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
break;
}
if (num_allocated != 1) { /* possible? */
BLOGE(sc, "MSI allocation is not 1!\n");
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
pci_release_msi(sc->dev);
break;
}
BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
num_requested, num_allocated);
/* best effort so use the number of vectors allocated to us */
sc->intr_count = num_allocated;
sc->num_queues = num_allocated;
rid = 1; /* initial resource identifier */
sc->intr[0].rid = rid;
if ((sc->intr[0].resource =
bus_alloc_resource_any(sc->dev,
SYS_RES_IRQ,
&sc->intr[0].rid,
RF_ACTIVE)) == NULL) {
BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
sc->intr_count = 0;
sc->num_queues = 0;
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
pci_release_msi(sc->dev);
break;
}
BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
} while (0);
do { /* try allocating INTx vector resources */
if (sc->interrupt_mode != INTR_MODE_INTX) {
break;
}
BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
/* only one vector for INTx */
sc->intr_count = 1;
sc->num_queues = 1;
rid = 0; /* initial resource identifier */
sc->intr[0].rid = rid;
if ((sc->intr[0].resource =
bus_alloc_resource_any(sc->dev,
SYS_RES_IRQ,
&sc->intr[0].rid,
(RF_ACTIVE | RF_SHAREABLE))) == NULL) {
BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
sc->intr_count = 0;
sc->num_queues = 0;
sc->interrupt_mode = -1; /* Failed! */
break;
}
BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
} while (0);
if (sc->interrupt_mode == -1) {
BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
rc = 1;
} else {
BLOGD(sc, DBG_LOAD,
"Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
sc->interrupt_mode, sc->num_queues);
rc = 0;
}
return (rc);
}
static void
bxe_interrupt_detach(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
/* release interrupt resources */
for (i = 0; i < sc->intr_count; i++) {
if (sc->intr[i].resource && sc->intr[i].tag) {
BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
}
}
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->tq) {
taskqueue_drain(fp->tq, &fp->tq_task);
taskqueue_drain(fp->tq, &fp->tx_task);
while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
NULL))
taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
}
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->tq != NULL) {
taskqueue_free(fp->tq);
fp->tq = NULL;
}
}
}
if (sc->sp_tq) {
taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
taskqueue_free(sc->sp_tq);
sc->sp_tq = NULL;
}
}
/*
* Enables interrupts and attach to the ISR.
*
* When using multiple MSI/MSI-X vectors the first vector
* is used for slowpath operations while all remaining
* vectors are used for fastpath operations. If only a
* single MSI/MSI-X vector is used (SINGLE_ISR) then the
* ISR must look for both slowpath and fastpath completions.
*/
static int
bxe_interrupt_attach(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int rc = 0;
int i;
snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
"bxe%d_sp_tq", sc->unit);
TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
taskqueue_thread_enqueue,
&sc->sp_tq);
taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
"%s", sc->sp_tq_name);
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
snprintf(fp->tq_name, sizeof(fp->tq_name),
"bxe%d_fp%d_tq", sc->unit, i);
TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
taskqueue_thread_enqueue,
&fp->tq);
TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
bxe_tx_mq_start_deferred, fp);
taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
"%s", fp->tq_name);
}
/* setup interrupt handlers */
if (sc->interrupt_mode == INTR_MODE_MSIX) {
BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
/*
* Setup the interrupt handler. Note that we pass the driver instance
* to the interrupt handler for the slowpath.
*/
if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, bxe_intr_sp, sc,
&sc->intr[0].tag)) != 0) {
BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
goto bxe_interrupt_attach_exit;
}
bus_describe_intr(sc->dev, sc->intr[0].resource,
sc->intr[0].tag, "sp");
/* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
/* initialize the fastpath vectors (note the first was used for sp) */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
/*
* Setup the interrupt handler. Note that we pass the
* fastpath context to the interrupt handler in this
* case.
*/
if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, bxe_intr_fp, fp,
&sc->intr[i + 1].tag)) != 0) {
BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
(i + 1), rc);
goto bxe_interrupt_attach_exit;
}
bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
sc->intr[i + 1].tag, "fp%02d", i);
/* bind the fastpath instance to a cpu */
if (sc->num_queues > 1) {
bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
}
fp->state = BXE_FP_STATE_IRQ;
}
} else if (sc->interrupt_mode == INTR_MODE_MSI) {
BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
/*
* Setup the interrupt handler. Note that we pass the
* driver instance to the interrupt handler which
* will handle both the slowpath and fastpath.
*/
if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, bxe_intr_legacy, sc,
&sc->intr[0].tag)) != 0) {
BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
goto bxe_interrupt_attach_exit;
}
} else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
/*
* Setup the interrupt handler. Note that we pass the
* driver instance to the interrupt handler which
* will handle both the slowpath and fastpath.
*/
if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, bxe_intr_legacy, sc,
&sc->intr[0].tag)) != 0) {
BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
goto bxe_interrupt_attach_exit;
}
}
bxe_interrupt_attach_exit:
return (rc);
}
static int bxe_init_hw_common_chip(struct bxe_softc *sc);
static int bxe_init_hw_common(struct bxe_softc *sc);
static int bxe_init_hw_port(struct bxe_softc *sc);
static int bxe_init_hw_func(struct bxe_softc *sc);
static void bxe_reset_common(struct bxe_softc *sc);
static void bxe_reset_port(struct bxe_softc *sc);
static void bxe_reset_func(struct bxe_softc *sc);
static int bxe_gunzip_init(struct bxe_softc *sc);
static void bxe_gunzip_end(struct bxe_softc *sc);
static int bxe_init_firmware(struct bxe_softc *sc);
static void bxe_release_firmware(struct bxe_softc *sc);
static struct
ecore_func_sp_drv_ops bxe_func_sp_drv = {
.init_hw_cmn_chip = bxe_init_hw_common_chip,
.init_hw_cmn = bxe_init_hw_common,
.init_hw_port = bxe_init_hw_port,
.init_hw_func = bxe_init_hw_func,
.reset_hw_cmn = bxe_reset_common,
.reset_hw_port = bxe_reset_port,
.reset_hw_func = bxe_reset_func,
.gunzip_init = bxe_gunzip_init,
.gunzip_end = bxe_gunzip_end,
.init_fw = bxe_init_firmware,
.release_fw = bxe_release_firmware,
};
static void
bxe_init_func_obj(struct bxe_softc *sc)
{
sc->dmae_ready = 0;
ecore_init_func_obj(sc,
&sc->func_obj,
BXE_SP(sc, func_rdata),
BXE_SP_MAPPING(sc, func_rdata),
BXE_SP(sc, func_afex_rdata),
BXE_SP_MAPPING(sc, func_afex_rdata),
&bxe_func_sp_drv);
}
static int
bxe_init_hw(struct bxe_softc *sc,
uint32_t load_code)
{
struct ecore_func_state_params func_params = { NULL };
int rc;
/* prepare the parameters for function state transitions */
bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_HW_INIT;
func_params.params.hw_init.load_phase = load_code;
/*
* Via a plethora of function pointers, we will eventually reach
* bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
*/
rc = ecore_func_state_change(sc, &func_params);
return (rc);
}
static void
bxe_fill(struct bxe_softc *sc,
uint32_t addr,
int fill,
uint32_t len)
{
uint32_t i;
if (!(len % 4) && !(addr % 4)) {
for (i = 0; i < len; i += 4) {
REG_WR(sc, (addr + i), fill);
}
} else {
for (i = 0; i < len; i++) {
REG_WR8(sc, (addr + i), fill);
}
}
}
/* writes FP SP data to FW - data_size in dwords */
static void
bxe_wr_fp_sb_data(struct bxe_softc *sc,
int fw_sb_id,
uint32_t *sb_data_p,
uint32_t data_size)
{
int index;
for (index = 0; index < data_size; index++) {
REG_WR(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
(sizeof(uint32_t) * index)),
*(sb_data_p + index));
}
}
static void
bxe_zero_fp_sb(struct bxe_softc *sc,
int fw_sb_id)
{
struct hc_status_block_data_e2 sb_data_e2;
struct hc_status_block_data_e1x sb_data_e1x;
uint32_t *sb_data_p;
uint32_t data_size = 0;
if (!CHIP_IS_E1x(sc)) {
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
sb_data_e2.common.state = SB_DISABLED;
sb_data_e2.common.p_func.vf_valid = FALSE;
sb_data_p = (uint32_t *)&sb_data_e2;
data_size = (sizeof(struct hc_status_block_data_e2) /
sizeof(uint32_t));
} else {
memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
sb_data_e1x.common.state = SB_DISABLED;
sb_data_e1x.common.p_func.vf_valid = FALSE;
sb_data_p = (uint32_t *)&sb_data_e1x;
data_size = (sizeof(struct hc_status_block_data_e1x) /
sizeof(uint32_t));
}
bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
0, CSTORM_STATUS_BLOCK_SIZE);
bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
0, CSTORM_SYNC_BLOCK_SIZE);
}
static void
bxe_wr_sp_sb_data(struct bxe_softc *sc,
struct hc_sp_status_block_data *sp_sb_data)
{
int i;
for (i = 0;
i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
i++) {
REG_WR(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
(i * sizeof(uint32_t))),
*((uint32_t *)sp_sb_data + i));
}
}
static void
bxe_zero_sp_sb(struct bxe_softc *sc)
{
struct hc_sp_status_block_data sp_sb_data;
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
sp_sb_data.state = SB_DISABLED;
sp_sb_data.p_func.vf_valid = FALSE;
bxe_wr_sp_sb_data(sc, &sp_sb_data);
bxe_fill(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
0, CSTORM_SP_STATUS_BLOCK_SIZE);
bxe_fill(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
0, CSTORM_SP_SYNC_BLOCK_SIZE);
}
static void
bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
int igu_sb_id,
int igu_seg_id)
{
hc_sm->igu_sb_id = igu_sb_id;
hc_sm->igu_seg_id = igu_seg_id;
hc_sm->timer_value = 0xFF;
hc_sm->time_to_expire = 0xFFFFFFFF;
}
static void
bxe_map_sb_state_machines(struct hc_index_data *index_data)
{
/* zero out state machine indices */
/* rx indices */
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
/* tx indices */
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
/* map indices */
/* rx indices */
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
(SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
/* tx indices */
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
}
static void
bxe_init_sb(struct bxe_softc *sc,
bus_addr_t busaddr,
int vfid,
uint8_t vf_valid,
int fw_sb_id,
int igu_sb_id)
{
struct hc_status_block_data_e2 sb_data_e2;
struct hc_status_block_data_e1x sb_data_e1x;
struct hc_status_block_sm *hc_sm_p;
uint32_t *sb_data_p;
int igu_seg_id;
int data_size;
if (CHIP_INT_MODE_IS_BC(sc)) {
igu_seg_id = HC_SEG_ACCESS_NORM;
} else {
igu_seg_id = IGU_SEG_ACCESS_NORM;
}
bxe_zero_fp_sb(sc, fw_sb_id);
if (!CHIP_IS_E1x(sc)) {
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
sb_data_e2.common.state = SB_ENABLED;
sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
sb_data_e2.common.p_func.vf_id = vfid;
sb_data_e2.common.p_func.vf_valid = vf_valid;
sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
sb_data_e2.common.same_igu_sb_1b = TRUE;
sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
hc_sm_p = sb_data_e2.common.state_machine;
sb_data_p = (uint32_t *)&sb_data_e2;
data_size = (sizeof(struct hc_status_block_data_e2) /
sizeof(uint32_t));
bxe_map_sb_state_machines(sb_data_e2.index_data);
} else {
memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
sb_data_e1x.common.state = SB_ENABLED;
sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
sb_data_e1x.common.p_func.vf_id = 0xff;
sb_data_e1x.common.p_func.vf_valid = FALSE;
sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
sb_data_e1x.common.same_igu_sb_1b = TRUE;
sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
hc_sm_p = sb_data_e1x.common.state_machine;
sb_data_p = (uint32_t *)&sb_data_e1x;
data_size = (sizeof(struct hc_status_block_data_e1x) /
sizeof(uint32_t));
bxe_map_sb_state_machines(sb_data_e1x.index_data);
}
bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
/* write indices to HW - PCI guarantees endianity of regpairs */
bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
}
static inline uint8_t
bxe_fp_qzone_id(struct bxe_fastpath *fp)
{
if (CHIP_IS_E1x(fp->sc)) {
return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
} else {
return (fp->cl_id);
}
}
static inline uint32_t
bxe_rx_ustorm_prods_offset(struct bxe_softc *sc,
struct bxe_fastpath *fp)
{
uint32_t offset = BAR_USTRORM_INTMEM;
if (!CHIP_IS_E1x(sc)) {
offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
} else {
offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
}
return (offset);
}
static void
bxe_init_eth_fp(struct bxe_softc *sc,
int idx)
{
struct bxe_fastpath *fp = &sc->fp[idx];
uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
unsigned long q_type = 0;
int cos;
fp->sc = sc;
fp->index = idx;
fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
fp->cl_id = (CHIP_IS_E1x(sc)) ?
(SC_L_ID(sc) + idx) :
/* want client ID same as IGU SB ID for non-E1 */
fp->igu_sb_id;
fp->cl_qzone_id = bxe_fp_qzone_id(fp);
/* setup sb indices */
if (!CHIP_IS_E1x(sc)) {
fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
} else {
fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
}
/* init shortcut */
fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
/*
* XXX If multiple CoS is ever supported then each fastpath structure
* will need to maintain tx producer/consumer/dma/etc values *per* CoS.
*/
for (cos = 0; cos < sc->max_cos; cos++) {
cids[cos] = idx;
}
fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
/* nothing more for a VF to do */
if (IS_VF(sc)) {
return;
}
bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
fp->fw_sb_id, fp->igu_sb_id);
bxe_update_fp_sb_idx(fp);
/* Configure Queue State object */
bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
ecore_init_queue_obj(sc,
&sc->sp_objs[idx].q_obj,
fp->cl_id,
cids,
sc->max_cos,
SC_FUNC(sc),
BXE_SP(sc, q_rdata),
BXE_SP_MAPPING(sc, q_rdata),
q_type);
/* configure classification DBs */
ecore_init_mac_obj(sc,
&sc->sp_objs[idx].mac_obj,
fp->cl_id,
idx,
SC_FUNC(sc),
BXE_SP(sc, mac_rdata),
BXE_SP_MAPPING(sc, mac_rdata),
ECORE_FILTER_MAC_PENDING,
&sc->sp_state,
ECORE_OBJ_TYPE_RX_TX,
&sc->macs_pool);
BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
}
static inline void
bxe_update_rx_prod(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint16_t rx_bd_prod,
uint16_t rx_cq_prod,
uint16_t rx_sge_prod)
{
struct ustorm_eth_rx_producers rx_prods = { 0 };
uint32_t i;
/* update producers */
rx_prods.bd_prod = rx_bd_prod;
rx_prods.cqe_prod = rx_cq_prod;
rx_prods.sge_prod = rx_sge_prod;
/*
* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
* This is only applicable for weak-ordered memory model archs such
* as IA-64. The following barrier is also mandatory since FW will
* assumes BDs must have buffers.
*/
wmb();
for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
REG_WR(sc,
(fp->ustorm_rx_prods_offset + (i * 4)),
((uint32_t *)&rx_prods)[i]);
}
wmb(); /* keep prod updates ordered */
BLOGD(sc, DBG_RX,
"RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
}
static void
bxe_init_rx_rings(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
fp->rx_bd_cons = 0;
/*
* Activate the BD ring...
* Warning, this will generate an interrupt (to the TSTORM)
* so this can only be done after the chip is initialized
*/
bxe_update_rx_prod(sc, fp,
fp->rx_bd_prod,
fp->rx_cq_prod,
fp->rx_sge_prod);
if (i != 0) {
continue;
}
if (CHIP_IS_E1(sc)) {
REG_WR(sc,
(BAR_USTRORM_INTMEM +
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
U64_LO(fp->rcq_dma.paddr));
REG_WR(sc,
(BAR_USTRORM_INTMEM +
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
U64_HI(fp->rcq_dma.paddr));
}
}
}
static void
bxe_init_tx_ring_one(struct bxe_fastpath *fp)
{
SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
fp->tx_db.data.zero_fill1 = 0;
fp->tx_db.data.prod = 0;
fp->tx_pkt_prod = 0;
fp->tx_pkt_cons = 0;
fp->tx_bd_prod = 0;
fp->tx_bd_cons = 0;
fp->eth_q_stats.tx_pkts = 0;
}
static inline void
bxe_init_tx_rings(struct bxe_softc *sc)
{
int i;
for (i = 0; i < sc->num_queues; i++) {
bxe_init_tx_ring_one(&sc->fp[i]);
}
}
static void
bxe_init_def_sb(struct bxe_softc *sc)
{
struct host_sp_status_block *def_sb = sc->def_sb;
bus_addr_t mapping = sc->def_sb_dma.paddr;
int igu_sp_sb_index;
int igu_seg_id;
int port = SC_PORT(sc);
int func = SC_FUNC(sc);
int reg_offset, reg_offset_en5;
uint64_t section;
int index, sindex;
struct hc_sp_status_block_data sp_sb_data;
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
if (CHIP_INT_MODE_IS_BC(sc)) {
igu_sp_sb_index = DEF_SB_IGU_ID;
igu_seg_id = HC_SEG_ACCESS_DEF;
} else {
igu_sp_sb_index = sc->igu_dsb_id;
igu_seg_id = IGU_SEG_ACCESS_DEF;
}
/* attentions */
section = ((uint64_t)mapping +
offsetof(struct host_sp_status_block, atten_status_block));
def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
sc->attn_state = 0;
reg_offset = (port) ?
MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
reg_offset_en5 = (port) ?
MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
/* take care of sig[0]..sig[4] */
for (sindex = 0; sindex < 4; sindex++) {
sc->attn_group[index].sig[sindex] =
REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
}
if (!CHIP_IS_E1x(sc)) {
/*
* enable5 is separate from the rest of the registers,
* and the address skip is 4 and not 16 between the
* different groups
*/
sc->attn_group[index].sig[4] =
REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
} else {
sc->attn_group[index].sig[4] = 0;
}
}
if (sc->devinfo.int_block == INT_BLOCK_HC) {
reg_offset = (port) ?
HC_REG_ATTN_MSG1_ADDR_L :
HC_REG_ATTN_MSG0_ADDR_L;
REG_WR(sc, reg_offset, U64_LO(section));
REG_WR(sc, (reg_offset + 4), U64_HI(section));
} else if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
}
section = ((uint64_t)mapping +
offsetof(struct host_sp_status_block, sp_sb));
bxe_zero_sp_sb(sc);
/* PCI guarantees endianity of regpair */
sp_sb_data.state = SB_ENABLED;
sp_sb_data.host_sb_addr.lo = U64_LO(section);
sp_sb_data.host_sb_addr.hi = U64_HI(section);
sp_sb_data.igu_sb_id = igu_sp_sb_index;
sp_sb_data.igu_seg_id = igu_seg_id;
sp_sb_data.p_func.pf_id = func;
sp_sb_data.p_func.vnic_id = SC_VN(sc);
sp_sb_data.p_func.vf_id = 0xff;
bxe_wr_sp_sb_data(sc, &sp_sb_data);
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
}
static void
bxe_init_sp_ring(struct bxe_softc *sc)
{
atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
sc->spq_prod_idx = 0;
sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
sc->spq_prod_bd = sc->spq;
sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
}
static void
bxe_init_eq_ring(struct bxe_softc *sc)
{
union event_ring_elem *elem;
int i;
for (i = 1; i <= NUM_EQ_PAGES; i++) {
elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
BCM_PAGE_SIZE *
(i % NUM_EQ_PAGES)));
elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
BCM_PAGE_SIZE *
(i % NUM_EQ_PAGES)));
}
sc->eq_cons = 0;
sc->eq_prod = NUM_EQ_DESC;
sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
atomic_store_rel_long(&sc->eq_spq_left,
(min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
NUM_EQ_DESC) - 1));
}
static void
bxe_init_internal_common(struct bxe_softc *sc)
{
int i;
/*
* Zero this manually as its initialization is currently missing
* in the initTool.
*/
for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
REG_WR(sc,
(BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
0);
}
if (!CHIP_IS_E1x(sc)) {
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
}
}
static void
bxe_init_internal(struct bxe_softc *sc,
uint32_t load_code)
{
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_COMMON:
case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
bxe_init_internal_common(sc);
/* no break */
case FW_MSG_CODE_DRV_LOAD_PORT:
/* nothing to do */
/* no break */
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
/* internal memory per function is initialized inside bxe_pf_init */
break;
default:
BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
break;
}
}
static void
storm_memset_func_cfg(struct bxe_softc *sc,
struct tstorm_eth_function_common_config *tcfg,
uint16_t abs_fid)
{
uint32_t addr;
size_t size;
addr = (BAR_TSTRORM_INTMEM +
TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
size = sizeof(struct tstorm_eth_function_common_config);
ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
}
static void
bxe_func_init(struct bxe_softc *sc,
struct bxe_func_init_params *p)
{
struct tstorm_eth_function_common_config tcfg = { 0 };
if (CHIP_IS_E1x(sc)) {
storm_memset_func_cfg(sc, &tcfg, p->func_id);
}
/* Enable the function in the FW */
storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
storm_memset_func_en(sc, p->func_id, 1);
/* spq */
if (p->func_flgs & FUNC_FLG_SPQ) {
storm_memset_spq_addr(sc, p->spq_map, p->func_id);
REG_WR(sc,
(XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
p->spq_prod);
}
}
/*
* Calculates the sum of vn_min_rates.
* It's needed for further normalizing of the min_rates.
* Returns:
* sum of vn_min_rates.
* or
* 0 - if all the min_rates are 0.
* In the later case fainess algorithm should be deactivated.
* If all min rates are not zero then those that are zeroes will be set to 1.
*/
static void
bxe_calc_vn_min(struct bxe_softc *sc,
struct cmng_init_input *input)
{
uint32_t vn_cfg;
uint32_t vn_min_rate;
int all_zero = 1;
int vn;
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
vn_cfg = sc->devinfo.mf_info.mf_config[vn];
vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
/* skip hidden VNs */
vn_min_rate = 0;
} else if (!vn_min_rate) {
/* If min rate is zero - set it to 100 */
vn_min_rate = DEF_MIN_RATE;
} else {
all_zero = 0;
}
input->vnic_min_rate[vn] = vn_min_rate;
}
/* if ETS or all min rates are zeros - disable fairness */
if (BXE_IS_ETS_ENABLED(sc)) {
input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
} else if (all_zero) {
input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
BLOGD(sc, DBG_LOAD,
"Fariness disabled (all MIN values are zeroes)\n");
} else {
input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
}
}
static inline uint16_t
bxe_extract_max_cfg(struct bxe_softc *sc,
uint32_t mf_cfg)
{
uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
FUNC_MF_CFG_MAX_BW_SHIFT);
if (!max_cfg) {
BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
max_cfg = 100;
}
return (max_cfg);
}
static void
bxe_calc_vn_max(struct bxe_softc *sc,
int vn,
struct cmng_init_input *input)
{
uint16_t vn_max_rate;
uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
uint32_t max_cfg;
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
vn_max_rate = 0;
} else {
max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
if (IS_MF_SI(sc)) {
/* max_cfg in percents of linkspeed */
vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
} else { /* SD modes */
/* max_cfg is absolute in 100Mb units */
vn_max_rate = (max_cfg * 100);
}
}
BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
input->vnic_max_rate[vn] = vn_max_rate;
}
static void
bxe_cmng_fns_init(struct bxe_softc *sc,
uint8_t read_cfg,
uint8_t cmng_type)
{
struct cmng_init_input input;
int vn;
memset(&input, 0, sizeof(struct cmng_init_input));
input.port_rate = sc->link_vars.line_speed;
if (cmng_type == CMNG_FNS_MINMAX) {
/* read mf conf from shmem */
if (read_cfg) {
bxe_read_mf_cfg(sc);
}
/* get VN min rate and enable fairness if not 0 */
bxe_calc_vn_min(sc, &input);
/* get VN max rate */
if (sc->port.pmf) {
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
bxe_calc_vn_max(sc, vn, &input);
}
}
/* always enable rate shaping and fairness */
input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
ecore_init_cmng(&input, &sc->cmng);
return;
}
/* rate shaping and fairness are disabled */
BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
}
static int
bxe_get_cmng_fns_mode(struct bxe_softc *sc)
{
if (CHIP_REV_IS_SLOW(sc)) {
return (CMNG_FNS_NONE);
}
if (IS_MF(sc)) {
return (CMNG_FNS_MINMAX);
}
return (CMNG_FNS_NONE);
}
static void
storm_memset_cmng(struct bxe_softc *sc,
struct cmng_init *cmng,
uint8_t port)
{
int vn;
int func;
uint32_t addr;
size_t size;
addr = (BAR_XSTRORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
size = sizeof(struct cmng_struct_per_port);
ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
func = func_by_vn(sc, vn);
addr = (BAR_XSTRORM_INTMEM +
XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
size = sizeof(struct rate_shaping_vars_per_vn);
ecore_storm_memset_struct(sc, addr, size,
(uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
addr = (BAR_XSTRORM_INTMEM +
XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
size = sizeof(struct fairness_vars_per_vn);
ecore_storm_memset_struct(sc, addr, size,
(uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
}
}
static void
bxe_pf_init(struct bxe_softc *sc)
{
struct bxe_func_init_params func_init = { 0 };
struct event_ring_data eq_data = { { 0 } };
uint16_t flags;
if (!CHIP_IS_E1x(sc)) {
/* reset IGU PF statistics: MSIX + ATTN */
/* PF */
REG_WR(sc,
(IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
(BXE_IGU_STAS_MSG_VF_CNT * 4) +
((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
0);
/* ATTN */
REG_WR(sc,
(IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
(BXE_IGU_STAS_MSG_VF_CNT * 4) +
(BXE_IGU_STAS_MSG_PF_CNT * 4) +
((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
0);
}
/* function setup flags */
flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
/*
* This flag is relevant for E1x only.
* E2 doesn't have a TPA configuration in a function level.
*/
flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
func_init.func_flgs = flags;
func_init.pf_id = SC_FUNC(sc);
func_init.func_id = SC_FUNC(sc);
func_init.spq_map = sc->spq_dma.paddr;
func_init.spq_prod = sc->spq_prod_idx;
bxe_func_init(sc, &func_init);
memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
/*
* Congestion management values depend on the link rate.
* There is no active link so initial link rate is set to 10Gbps.
* When the link comes up the congestion management values are
* re-calculated according to the actual link rate.
*/
sc->link_vars.line_speed = SPEED_10000;
bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
/* Only the PMF sets the HW */
if (sc->port.pmf) {
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
}
/* init Event Queue - PCI bus guarantees correct endainity */
eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
eq_data.producer = sc->eq_prod;
eq_data.index_id = HC_SP_INDEX_EQ_CONS;
eq_data.sb_id = DEF_SB_ID;
storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
}
static void
bxe_hc_int_enable(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
uint32_t val = REG_RD(sc, addr);
uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
(sc->intr_count == 1)) ? TRUE : FALSE;
uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
if (msix) {
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0);
val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
if (single_msix) {
val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
}
} else if (msi) {
val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else {
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
if (!CHIP_IS_E1(sc)) {
BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
val, port, addr);
REG_WR(sc, addr, val);
val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
}
}
if (CHIP_IS_E1(sc)) {
REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
}
BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
REG_WR(sc, addr, val);
/* ensure that HC_CONFIG is written before leading/trailing edge config */
mb();
if (!CHIP_IS_E1(sc)) {
/* init leading/trailing edge */
if (IS_MF(sc)) {
val = (0xee0f | (1 << (SC_VN(sc) + 4)));
if (sc->port.pmf) {
/* enable nig and gpio3 attention */
val |= 0x1100;
}
} else {
val = 0xffff;
}
REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
}
/* make sure that interrupts are indeed enabled from here on */
mb();
}
static void
bxe_igu_int_enable(struct bxe_softc *sc)
{
uint32_t val;
uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
(sc->intr_count == 1)) ? TRUE : FALSE;
uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
if (msix) {
val &= ~(IGU_PF_CONF_INT_LINE_EN |
IGU_PF_CONF_SINGLE_ISR_EN);
val |= (IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_ATTN_BIT_EN);
if (single_msix) {
val |= IGU_PF_CONF_SINGLE_ISR_EN;
}
} else if (msi) {
val &= ~IGU_PF_CONF_INT_LINE_EN;
val |= (IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_ATTN_BIT_EN |
IGU_PF_CONF_SINGLE_ISR_EN);
} else {
val &= ~IGU_PF_CONF_MSI_MSIX_EN;
val |= (IGU_PF_CONF_INT_LINE_EN |
IGU_PF_CONF_ATTN_BIT_EN |
IGU_PF_CONF_SINGLE_ISR_EN);
}
/* clean previous status - need to configure igu prior to ack*/
if ((!msix) || single_msix) {
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
bxe_ack_int(sc);
}
val |= IGU_PF_CONF_FUNC_EN;
BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
mb();
/* init leading/trailing edge */
if (IS_MF(sc)) {
val = (0xee0f | (1 << (SC_VN(sc) + 4)));
if (sc->port.pmf) {
/* enable nig and gpio3 attention */
val |= 0x1100;
}
} else {
val = 0xffff;
}
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
/* make sure that interrupts are indeed enabled from here on */
mb();
}
static void
bxe_int_enable(struct bxe_softc *sc)
{
if (sc->devinfo.int_block == INT_BLOCK_HC) {
bxe_hc_int_enable(sc);
} else {
bxe_igu_int_enable(sc);
}
}
static void
bxe_hc_int_disable(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
uint32_t val = REG_RD(sc, addr);
/*
* In E1 we must use only PCI configuration space to disable MSI/MSIX
* capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
* block
*/
if (CHIP_IS_E1(sc)) {
/*
* Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
* to prevent from HC sending interrupts after we exit the function
*/
REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else {
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
}
BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
/* flush all outstanding writes */
mb();
REG_WR(sc, addr, val);
if (REG_RD(sc, addr) != val) {
BLOGE(sc, "proper val not read from HC IGU!\n");
}
}
static void
bxe_igu_int_disable(struct bxe_softc *sc)
{
uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_INT_LINE_EN |
IGU_PF_CONF_ATTN_BIT_EN);
BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
/* flush all outstanding writes */
mb();
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
BLOGE(sc, "proper val not read from IGU!\n");
}
}
static void
bxe_int_disable(struct bxe_softc *sc)
{
if (sc->devinfo.int_block == INT_BLOCK_HC) {
bxe_hc_int_disable(sc);
} else {
bxe_igu_int_disable(sc);
}
}
static void
bxe_nic_init(struct bxe_softc *sc,
int load_code)
{
int i;
for (i = 0; i < sc->num_queues; i++) {
bxe_init_eth_fp(sc, i);
}
rmb(); /* ensure status block indices were read */
bxe_init_rx_rings(sc);
bxe_init_tx_rings(sc);
if (IS_VF(sc)) {
return;
}
/* initialize MOD_ABS interrupts */
elink_init_mod_abs_int(sc, &sc->link_vars,
sc->devinfo.chip_id,
sc->devinfo.shmem_base,
sc->devinfo.shmem2_base,
SC_PORT(sc));
bxe_init_def_sb(sc);
bxe_update_dsb_idx(sc);
bxe_init_sp_ring(sc);
bxe_init_eq_ring(sc);
bxe_init_internal(sc, load_code);
bxe_pf_init(sc);
bxe_stats_init(sc);
/* flush all before enabling interrupts */
mb();
bxe_int_enable(sc);
/* check for SPIO5 */
bxe_attn_int_deasserted0(sc,
REG_RD(sc,
(MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
SC_PORT(sc)*4)) &
AEU_INPUTS_ATTN_BITS_SPIO5);
}
static inline void
bxe_init_objs(struct bxe_softc *sc)
{
/* mcast rules must be added to tx if tx switching is enabled */
ecore_obj_type o_type =
(sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
ECORE_OBJ_TYPE_RX;
/* RX_MODE controlling object */
ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
/* multicast configuration controlling object */
ecore_init_mcast_obj(sc,
&sc->mcast_obj,
sc->fp[0].cl_id,
sc->fp[0].index,
SC_FUNC(sc),
SC_FUNC(sc),
BXE_SP(sc, mcast_rdata),
BXE_SP_MAPPING(sc, mcast_rdata),
ECORE_FILTER_MCAST_PENDING,
&sc->sp_state,
o_type);
/* Setup CAM credit pools */
ecore_init_mac_credit_pool(sc,
&sc->macs_pool,
SC_FUNC(sc),
CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
VNICS_PER_PATH(sc));
ecore_init_vlan_credit_pool(sc,
&sc->vlans_pool,
SC_ABS_FUNC(sc) >> 1,
CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
VNICS_PER_PATH(sc));
/* RSS configuration object */
ecore_init_rss_config_obj(sc,
&sc->rss_conf_obj,
sc->fp[0].cl_id,
sc->fp[0].index,
SC_FUNC(sc),
SC_FUNC(sc),
BXE_SP(sc, rss_rdata),
BXE_SP_MAPPING(sc, rss_rdata),
ECORE_FILTER_RSS_CONF_PENDING,
&sc->sp_state, ECORE_OBJ_TYPE_RX);
}
/*
* Initialize the function. This must be called before sending CLIENT_SETUP
* for the first client.
*/
static inline int
bxe_func_start(struct bxe_softc *sc)
{
struct ecore_func_state_params func_params = { NULL };
struct ecore_func_start_params *start_params = &func_params.params.start;
/* Prepare parameters for function state transitions */
bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_START;
/* Function parameters */
start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
start_params->sd_vlan_tag = OVLAN(sc);
if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
start_params->network_cos_mode = STATIC_COS;
} else { /* CHIP_IS_E1X */
start_params->network_cos_mode = FW_WRR;
}
//start_params->gre_tunnel_mode = 0;
//start_params->gre_tunnel_rss = 0;
return (ecore_func_state_change(sc, &func_params));
}
static int
bxe_set_power_state(struct bxe_softc *sc,
uint8_t state)
{
uint16_t pmcsr;
/* If there is no power capability, silently succeed */
if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
BLOGW(sc, "No power capability\n");
return (0);
}
pmcsr = pci_read_config(sc->dev,
(sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
2);
switch (state) {
case PCI_PM_D0:
pci_write_config(sc->dev,
(sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
if (pmcsr & PCIM_PSTAT_DMASK) {
/* delay required during transition out of D3hot */
DELAY(20000);
}
break;
case PCI_PM_D3hot:
/* XXX if there are other clients above don't shut down the power */
/* don't shut down the power for emulation and FPGA */
if (CHIP_REV_IS_SLOW(sc)) {
return (0);
}
pmcsr &= ~PCIM_PSTAT_DMASK;
pmcsr |= PCIM_PSTAT_D3;
if (sc->wol) {
pmcsr |= PCIM_PSTAT_PMEENABLE;
}
pci_write_config(sc->dev,
(sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
pmcsr, 4);
/*
* No more memory access after this point until device is brought back
* to D0 state.
*/
break;
default:
BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
state, pmcsr);
return (-1);
}
return (0);
}
/* return true if succeeded to acquire the lock */
static uint8_t
bxe_trylock_hw_lock(struct bxe_softc *sc,
uint32_t resource)
{
uint32_t lock_status;
uint32_t resource_bit = (1 << resource);
int func = SC_FUNC(sc);
uint32_t hw_lock_control_reg;
BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
/* Validating that the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
BLOGD(sc, DBG_LOAD,
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
resource, HW_LOCK_MAX_RESOURCE_VALUE);
return (FALSE);
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
} else {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
}
/* try to acquire the lock */
REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit) {
return (TRUE);
}
BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
"lock_status 0x%x resource_bit 0x%x\n", resource, func,
lock_status, resource_bit);
return (FALSE);
}
/*
* Get the recovery leader resource id according to the engine this function
* belongs to. Currently only only 2 engines is supported.
*/
static int
bxe_get_leader_lock_resource(struct bxe_softc *sc)
{
if (SC_PATH(sc)) {
return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
} else {
return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
}
}
/* try to acquire a leader lock for current engine */
static uint8_t
bxe_trylock_leader_lock(struct bxe_softc *sc)
{
return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
}
static int
bxe_release_leader_lock(struct bxe_softc *sc)
{
return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
}
/* close gates #2, #3 and #4 */
static void
bxe_set_234_gates(struct bxe_softc *sc,
uint8_t close)
{
uint32_t val;
/* gates #2 and #4a are closed/opened for "not E1" only */
if (!CHIP_IS_E1(sc)) {
/* #4 */
REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
/* #2 */
REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
}
/* #3 */
if (CHIP_IS_E1x(sc)) {
/* prevent interrupts from HC on both ports */
val = REG_RD(sc, HC_REG_CONFIG_1);
REG_WR(sc, HC_REG_CONFIG_1,
(!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
(val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
val = REG_RD(sc, HC_REG_CONFIG_0);
REG_WR(sc, HC_REG_CONFIG_0,
(!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
(val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
} else {
/* Prevent incoming interrupts in IGU */
val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
(!close) ?
(val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
(val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
}
BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
close ? "closing" : "opening");
wmb();
}
/* poll for pending writes bit, it should get cleared in no more than 1s */
static int
bxe_er_poll_igu_vq(struct bxe_softc *sc)
{
uint32_t cnt = 1000;
uint32_t pend_bits = 0;
do {
pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
if (pend_bits == 0) {
break;
}
DELAY(1000);
} while (--cnt > 0);
if (cnt == 0) {
BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
return (-1);
}
return (0);
}
#define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
static void
bxe_clp_reset_prep(struct bxe_softc *sc,
uint32_t *magic_val)
{
/* Do some magic... */
uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
*magic_val = val & SHARED_MF_CLP_MAGIC;
MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
}
/* restore the value of the 'magic' bit */
static void
bxe_clp_reset_done(struct bxe_softc *sc,
uint32_t magic_val)
{
/* Restore the 'magic' bit value... */
uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
MFCFG_WR(sc, shared_mf_config.clp_mb,
(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
}
/* prepare for MCP reset, takes care of CLP configurations */
static void
bxe_reset_mcp_prep(struct bxe_softc *sc,
uint32_t *magic_val)
{
uint32_t shmem;
uint32_t validity_offset;
/* set `magic' bit in order to save MF config */
if (!CHIP_IS_E1(sc)) {
bxe_clp_reset_prep(sc, magic_val);
}
/* get shmem offset */
shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
validity_offset =
offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
/* Clear validity map flags */
if (shmem > 0) {
REG_WR(sc, shmem + validity_offset, 0);
}
}
#define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
#define MCP_ONE_TIMEOUT 100 /* 100 ms */
static void
bxe_mcp_wait_one(struct bxe_softc *sc)
{
/* special handling for emulation and FPGA (10 times longer) */
if (CHIP_REV_IS_SLOW(sc)) {
DELAY((MCP_ONE_TIMEOUT*10) * 1000);
} else {
DELAY((MCP_ONE_TIMEOUT) * 1000);
}
}
/* initialize shmem_base and waits for validity signature to appear */
static int
bxe_init_shmem(struct bxe_softc *sc)
{
int cnt = 0;
uint32_t val = 0;
do {
sc->devinfo.shmem_base =
sc->link_params.shmem_base =
REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
if (sc->devinfo.shmem_base) {
val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
if (val & SHR_MEM_VALIDITY_MB)
return (0);
}
bxe_mcp_wait_one(sc);
} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
BLOGE(sc, "BAD MCP validity signature\n");
return (-1);
}
static int
bxe_reset_mcp_comp(struct bxe_softc *sc,
uint32_t magic_val)
{
int rc = bxe_init_shmem(sc);
/* Restore the `magic' bit value */
if (!CHIP_IS_E1(sc)) {
bxe_clp_reset_done(sc, magic_val);
}
return (rc);
}
static void
bxe_pxp_prep(struct bxe_softc *sc)
{
if (!CHIP_IS_E1(sc)) {
REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
wmb();
}
}
/*
* Reset the whole chip except for:
* - PCIE core
* - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
* - IGU
* - MISC (including AEU)
* - GRC
* - RBCN, RBCP
*/
static void
bxe_process_kill_chip_reset(struct bxe_softc *sc,
uint8_t global)
{
uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
uint32_t global_bits2, stay_reset2;
/*
* Bits that have to be set in reset_mask2 if we want to reset 'global'
* (per chip) blocks.
*/
global_bits2 =
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
/*
* Don't reset the following blocks.
* Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
* reset, as in 4 port device they might still be owned
* by the MCP (there is only one leader per path).
*/
not_reset_mask1 =
MISC_REGISTERS_RESET_REG_1_RST_HC |
MISC_REGISTERS_RESET_REG_1_RST_PXPV |
MISC_REGISTERS_RESET_REG_1_RST_PXP;
not_reset_mask2 =
MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
MISC_REGISTERS_RESET_REG_2_RST_RBCN |
MISC_REGISTERS_RESET_REG_2_RST_GRC |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
MISC_REGISTERS_RESET_REG_2_RST_ATC |
MISC_REGISTERS_RESET_REG_2_PGLC |
MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
MISC_REGISTERS_RESET_REG_2_UMAC0 |
MISC_REGISTERS_RESET_REG_2_UMAC1;
/*
* Keep the following blocks in reset:
* - all xxMACs are handled by the elink code.
*/
stay_reset2 =
MISC_REGISTERS_RESET_REG_2_XMAC |
MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
/* Full reset masks according to the chip */
reset_mask1 = 0xffffffff;
if (CHIP_IS_E1(sc))
reset_mask2 = 0xffff;
else if (CHIP_IS_E1H(sc))
reset_mask2 = 0x1ffff;
else if (CHIP_IS_E2(sc))
reset_mask2 = 0xfffff;
else /* CHIP_IS_E3 */
reset_mask2 = 0x3ffffff;
/* Don't reset global blocks unless we need to */
if (!global)
reset_mask2 &= ~global_bits2;
/*
* In case of attention in the QM, we need to reset PXP
* (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
* because otherwise QM reset would release 'close the gates' shortly
* before resetting the PXP, then the PSWRQ would send a write
* request to PGLUE. Then when PXP is reset, PGLUE would try to
* read the payload data from PSWWR, but PSWWR would not
* respond. The write queue in PGLUE would stuck, dmae commands
* would not return. Therefore it's important to reset the second
* reset register (containing the
* MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
* first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
* bit).
*/
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
reset_mask2 & (~not_reset_mask2));
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
reset_mask1 & (~not_reset_mask1));
mb();
wmb();
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
reset_mask2 & (~stay_reset2));
mb();
wmb();
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
wmb();
}
static int
bxe_process_kill(struct bxe_softc *sc,
uint8_t global)
{
int cnt = 1000;
uint32_t val = 0;
uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
uint32_t tags_63_32 = 0;
/* Empty the Tetris buffer, wait for 1s */
do {
sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
if (CHIP_IS_E3(sc)) {
tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
}
if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
((port_is_idle_0 & 0x1) == 0x1) &&
((port_is_idle_1 & 0x1) == 0x1) &&
(pgl_exp_rom2 == 0xffffffff) &&
(!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
break;
DELAY(1000);
} while (cnt-- > 0);
if (cnt <= 0) {
BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
"are still outstanding read requests after 1s! "
"sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
"port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
sr_cnt, blk_cnt, port_is_idle_0,
port_is_idle_1, pgl_exp_rom2);
return (-1);
}
mb();
/* Close gates #2, #3 and #4 */
bxe_set_234_gates(sc, TRUE);
/* Poll for IGU VQs for 57712 and newer chips */
if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
return (-1);
}
/* XXX indicate that "process kill" is in progress to MCP */
/* clear "unprepared" bit */
REG_WR(sc, MISC_REG_UNPREPARED, 0);
mb();
/* Make sure all is written to the chip before the reset */
wmb();
/*
* Wait for 1ms to empty GLUE and PCI-E core queues,
* PSWHST, GRC and PSWRD Tetris buffer.
*/
DELAY(1000);
/* Prepare to chip reset: */
/* MCP */
if (global) {
bxe_reset_mcp_prep(sc, &val);
}
/* PXP */
bxe_pxp_prep(sc);
mb();
/* reset the chip */
bxe_process_kill_chip_reset(sc, global);
mb();
/* clear errors in PGB */
if (!CHIP_IS_E1(sc))
REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
/* Recover after reset: */
/* MCP */
if (global && bxe_reset_mcp_comp(sc, val)) {
return (-1);
}
/* XXX add resetting the NO_MCP mode DB here */
/* Open the gates #2, #3 and #4 */
bxe_set_234_gates(sc, FALSE);
/* XXX
* IGU/AEU preparation bring back the AEU/IGU to a reset state
* re-enable attentions
*/
return (0);
}
static int
bxe_leader_reset(struct bxe_softc *sc)
{
int rc = 0;
uint8_t global = bxe_reset_is_global(sc);
uint32_t load_code;
/*
* If not going to reset MCP, load "fake" driver to reset HW while
* driver is owner of the HW.
*/
if (!global && !BXE_NOMCP(sc)) {
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
if (!load_code) {
BLOGE(sc, "MCP response failure, aborting\n");
rc = -1;
goto exit_leader_reset;
}
if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
(load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
BLOGE(sc, "MCP unexpected response, aborting\n");
rc = -1;
goto exit_leader_reset2;
}
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
if (!load_code) {
BLOGE(sc, "MCP response failure, aborting\n");
rc = -1;
goto exit_leader_reset2;
}
}
/* try to recover after the failure */
if (bxe_process_kill(sc, global)) {
BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
rc = -1;
goto exit_leader_reset2;
}
/*
* Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
* state.
*/
bxe_set_reset_done(sc);
if (global) {
bxe_clear_reset_global(sc);
}
exit_leader_reset2:
/* unload "fake driver" if it was loaded */
if (!global && !BXE_NOMCP(sc)) {
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
}
exit_leader_reset:
sc->is_leader = 0;
bxe_release_leader_lock(sc);
mb();
return (rc);
}
/*
* prepare INIT transition, parameters configured:
* - HC configuration
* - Queue's CDU context
*/
static void
bxe_pf_q_prep_init(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct ecore_queue_init_params *init_params)
{
uint8_t cos;
int cxt_index, cxt_offset;
bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
/* HC rate */
init_params->rx.hc_rate =
sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
init_params->tx.hc_rate =
sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
/* FW SB ID */
init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
/* CQ index among the SB indices */
init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
/* set maximum number of COSs supported by this queue */
init_params->max_cos = sc->max_cos;
BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
fp->index, init_params->max_cos);
/* set the context pointers queue object */
for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
/* XXX change index/cid here if ever support multiple tx CoS */
/* fp->txdata[cos]->cid */
cxt_index = fp->index / ILT_PAGE_CIDS;
cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
}
}
/* set flags that are common for the Tx-only and not normal connections */
static unsigned long
bxe_get_common_flags(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint8_t zero_stats)
{
unsigned long flags = 0;
/* PF driver will always initialize the Queue to an ACTIVE state */
bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
/*
* tx only connections collect statistics (on the same index as the
* parent connection). The statistics are zeroed when the parent
* connection is initialized.
*/
bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
if (zero_stats) {
bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
}
/*
* tx only connections can support tx-switching, though their
* CoS-ness doesn't survive the loopback
*/
if (sc->flags & BXE_TX_SWITCHING) {
bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
}
bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
return (flags);
}
static unsigned long
bxe_get_q_flags(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint8_t leading)
{
unsigned long flags = 0;
if (IS_MF_SD(sc)) {
bxe_set_bit(ECORE_Q_FLG_OV, &flags);
}
if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
#if __FreeBSD_version >= 800000
bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
#endif
}
if (leading) {
bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
}
bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
/* merge with common flags */
return (flags | bxe_get_common_flags(sc, fp, TRUE));
}
static void
bxe_pf_q_prep_general(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct ecore_general_setup_params *gen_init,
uint8_t cos)
{
gen_init->stat_id = bxe_stats_id(fp);
gen_init->spcl_id = fp->cl_id;
gen_init->mtu = sc->mtu;
gen_init->cos = cos;
}
static void
bxe_pf_rx_q_prep(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct rxq_pause_params *pause,
struct ecore_rxq_setup_params *rxq_init)
{
uint8_t max_sge = 0;
uint16_t sge_sz = 0;
uint16_t tpa_agg_size = 0;
pause->sge_th_lo = SGE_TH_LO(sc);
pause->sge_th_hi = SGE_TH_HI(sc);
/* validate SGE ring has enough to cross high threshold */
if (sc->dropless_fc &&
(pause->sge_th_hi + FW_PREFETCH_CNT) >
(RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
BLOGW(sc, "sge ring threshold limit\n");
}
/* minimum max_aggregation_size is 2*MTU (two full buffers) */
tpa_agg_size = (2 * sc->mtu);
if (tpa_agg_size < sc->max_aggregation_size) {
tpa_agg_size = sc->max_aggregation_size;
}
max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
max_sge = ((max_sge + PAGES_PER_SGE - 1) &
(~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
/* pause - not for e1 */
if (!CHIP_IS_E1(sc)) {
pause->bd_th_lo = BD_TH_LO(sc);
pause->bd_th_hi = BD_TH_HI(sc);
pause->rcq_th_lo = RCQ_TH_LO(sc);
pause->rcq_th_hi = RCQ_TH_HI(sc);
/* validate rings have enough entries to cross high thresholds */
if (sc->dropless_fc &&
pause->bd_th_hi + FW_PREFETCH_CNT >
sc->rx_ring_size) {
BLOGW(sc, "rx bd ring threshold limit\n");
}
if (sc->dropless_fc &&
pause->rcq_th_hi + FW_PREFETCH_CNT >
RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
BLOGW(sc, "rcq ring threshold limit\n");
}
pause->pri_map = 1;
}
/* rxq setup */
rxq_init->dscr_map = fp->rx_dma.paddr;
rxq_init->sge_map = fp->rx_sge_dma.paddr;
rxq_init->rcq_map = fp->rcq_dma.paddr;
rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
/*
* This should be a maximum number of data bytes that may be
* placed on the BD (not including paddings).
*/
rxq_init->buf_sz = (fp->rx_buf_size -
IP_HEADER_ALIGNMENT_PADDING);
rxq_init->cl_qzone_id = fp->cl_qzone_id;
rxq_init->tpa_agg_sz = tpa_agg_size;
rxq_init->sge_buf_sz = sge_sz;
rxq_init->max_sges_pkt = max_sge;
rxq_init->rss_engine_id = SC_FUNC(sc);
rxq_init->mcast_engine_id = SC_FUNC(sc);
/*
* Maximum number or simultaneous TPA aggregation for this Queue.
* For PF Clients it should be the maximum available number.
* VF driver(s) may want to define it to a smaller value.
*/
rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
rxq_init->fw_sb_id = fp->fw_sb_id;
rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
/*
* configure silent vlan removal
* if multi function mode is afex, then mask default vlan
*/
if (IS_MF_AFEX(sc)) {
rxq_init->silent_removal_value =
sc->devinfo.mf_info.afex_def_vlan_tag;
rxq_init->silent_removal_mask = EVL_VLID_MASK;
}
}
static void
bxe_pf_tx_q_prep(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct ecore_txq_setup_params *txq_init,
uint8_t cos)
{
/*
* XXX If multiple CoS is ever supported then each fastpath structure
* will need to maintain tx producer/consumer/dma/etc values *per* CoS.
* fp->txdata[cos]->tx_dma.paddr;
*/
txq_init->dscr_map = fp->tx_dma.paddr;
txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
txq_init->fw_sb_id = fp->fw_sb_id;
/*
* set the TSS leading client id for TX classfication to the
* leading RSS client id
*/
txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
}
/*
* This function performs 2 steps in a queue state machine:
* 1) RESET->INIT
* 2) INIT->SETUP
*/
static int
bxe_setup_queue(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint8_t leading)
{
struct ecore_queue_state_params q_params = { NULL };
struct ecore_queue_setup_params *setup_params =
&q_params.params.setup;
int rc;
BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
/* we want to wait for completion in this context */
bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
/* prepare the INIT parameters */
bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
/* Set the command */
q_params.cmd = ECORE_Q_CMD_INIT;
/* Change the state to INIT */
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
return (rc);
}
BLOGD(sc, DBG_LOAD, "init complete\n");
/* now move the Queue to the SETUP state */
memset(setup_params, 0, sizeof(*setup_params));
/* set Queue flags */
setup_params->flags = bxe_get_q_flags(sc, fp, leading);
/* set general SETUP parameters */
bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
FIRST_TX_COS_INDEX);
bxe_pf_rx_q_prep(sc, fp,
&setup_params->pause_params,
&setup_params->rxq_params);
bxe_pf_tx_q_prep(sc, fp,
&setup_params->txq_params,
FIRST_TX_COS_INDEX);
/* Set the command */
q_params.cmd = ECORE_Q_CMD_SETUP;
/* change the state to SETUP */
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
return (rc);
}
return (rc);
}
static int
bxe_setup_leading(struct bxe_softc *sc)
{
return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
}
static int
bxe_config_rss_pf(struct bxe_softc *sc,
struct ecore_rss_config_obj *rss_obj,
uint8_t config_hash)
{
struct ecore_config_rss_params params = { NULL };
int i;
/*
* Although RSS is meaningless when there is a single HW queue we
* still need it enabled in order to have HW Rx hash generated.
*/
params.rss_obj = rss_obj;
bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
/* RSS configuration */
bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
if (rss_obj->udp_rss_v4) {
bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
}
if (rss_obj->udp_rss_v6) {
bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
}
/* Hash bits */
params.rss_result_mask = MULTI_MASK;
memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
if (config_hash) {
/* RSS keys */
for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
params.rss_key[i] = arc4random();
}
bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
}
return (ecore_config_rss(sc, &params));
}
static int
bxe_config_rss_eth(struct bxe_softc *sc,
uint8_t config_hash)
{
return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
}
static int
bxe_init_rss_pf(struct bxe_softc *sc)
{
uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
int i;
/*
* Prepare the initial contents of the indirection table if
* RSS is enabled
*/
for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
sc->rss_conf_obj.ind_table[i] =
(sc->fp->cl_id + (i % num_eth_queues));
}
if (sc->udp_rss) {
sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
}
/*
* For 57710 and 57711 SEARCHER configuration (rss_keys) is
* per-port, so if explicit configuration is needed, do it only
* for a PMF.
*
* For 57712 and newer it's a per-function configuration.
*/
return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
}
static int
bxe_set_mac_one(struct bxe_softc *sc,
uint8_t *mac,
struct ecore_vlan_mac_obj *obj,
uint8_t set,
int mac_type,
unsigned long *ramrod_flags)
{
struct ecore_vlan_mac_ramrod_params ramrod_param;
int rc;
memset(&ramrod_param, 0, sizeof(ramrod_param));
/* fill in general parameters */
ramrod_param.vlan_mac_obj = obj;
ramrod_param.ramrod_flags = *ramrod_flags;
/* fill a user request section if needed */
if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
/* Set the command: ADD or DEL */
ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
ECORE_VLAN_MAC_DEL;
}
rc = ecore_config_vlan_mac(sc, &ramrod_param);
if (rc == ECORE_EXISTS) {
BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
/* do not treat adding same MAC as error */
rc = 0;
} else if (rc < 0) {
BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
}
return (rc);
}
static int
bxe_set_eth_mac(struct bxe_softc *sc,
uint8_t set)
{
unsigned long ramrod_flags = 0;
BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
/* Eth MAC is set on RSS leading client (fp[0]) */
return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
&sc->sp_objs->mac_obj,
set, ECORE_ETH_MAC, &ramrod_flags));
}
static int
bxe_get_cur_phy_idx(struct bxe_softc *sc)
{
uint32_t sel_phy_idx = 0;
if (sc->link_params.num_phys <= 1) {
return (ELINK_INT_PHY);
}
if (sc->link_vars.link_up) {
sel_phy_idx = ELINK_EXT_PHY1;
/* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
(sc->link_params.phy[ELINK_EXT_PHY2].supported &
ELINK_SUPPORTED_FIBRE))
sel_phy_idx = ELINK_EXT_PHY2;
} else {
switch (elink_phy_selection(&sc->link_params)) {
case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
sel_phy_idx = ELINK_EXT_PHY1;
break;
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
sel_phy_idx = ELINK_EXT_PHY2;
break;
}
}
return (sel_phy_idx);
}
static int
bxe_get_link_cfg_idx(struct bxe_softc *sc)
{
uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
/*
* The selected activated PHY is always after swapping (in case PHY
* swapping is enabled). So when swapping is enabled, we need to reverse
* the configuration
*/
if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
if (sel_phy_idx == ELINK_EXT_PHY1)
sel_phy_idx = ELINK_EXT_PHY2;
else if (sel_phy_idx == ELINK_EXT_PHY2)
sel_phy_idx = ELINK_EXT_PHY1;
}
return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
}
static void
bxe_set_requested_fc(struct bxe_softc *sc)
{
/*
* Initialize link parameters structure variables
* It is recommended to turn off RX FC for jumbo frames
* for better performance
*/
if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
} else {
sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
}
}
static void
bxe_calc_fc_adv(struct bxe_softc *sc)
{
uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
switch (sc->link_vars.ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
break;
default:
break;
}
}
static uint16_t
bxe_get_mf_speed(struct bxe_softc *sc)
{
uint16_t line_speed = sc->link_vars.line_speed;
if (IS_MF(sc)) {
uint16_t maxCfg =
bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
/* calculate the current MAX line speed limit for the MF devices */
if (IS_MF_SI(sc)) {
line_speed = (line_speed * maxCfg) / 100;
} else { /* SD mode */
uint16_t vn_max_rate = maxCfg * 100;
if (vn_max_rate < line_speed) {
line_speed = vn_max_rate;
}
}
}
return (line_speed);
}
static void
bxe_fill_report_data(struct bxe_softc *sc,
struct bxe_link_report_data *data)
{
uint16_t line_speed = bxe_get_mf_speed(sc);
memset(data, 0, sizeof(*data));
/* fill the report data with the effective line speed */
data->line_speed = line_speed;
/* Link is down */
if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
}
/* Full DUPLEX */
if (sc->link_vars.duplex == DUPLEX_FULL) {
bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
}
/* Rx Flow Control is ON */
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
}
/* Tx Flow Control is ON */
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
}
}
/* report link status to OS, should be called under phy_lock */
static void
bxe_link_report_locked(struct bxe_softc *sc)
{
struct bxe_link_report_data cur_data;
/* reread mf_cfg */
if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
bxe_read_mf_cfg(sc);
}
/* Read the current link report info */
bxe_fill_report_data(sc, &cur_data);
/* Don't report link down or exactly the same link status twice */
if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
(bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
&sc->last_reported_link.link_report_flags) &&
bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
&cur_data.link_report_flags))) {
return;
}
ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
sc->link_cnt++;
ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
/* report new link params and remember the state for the next time */
memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
&cur_data.link_report_flags)) {
if_link_state_change(sc->ifp, LINK_STATE_DOWN);
} else {
const char *duplex;
const char *flow;
if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
&cur_data.link_report_flags)) {
duplex = "full";
ELINK_DEBUG_P0(sc, "link set to full duplex\n");
} else {
duplex = "half";
ELINK_DEBUG_P0(sc, "link set to half duplex\n");
}
/*
* Handle the FC at the end so that only these flags would be
* possibly set. This way we may easily check if there is no FC
* enabled.
*/
if (cur_data.link_report_flags) {
if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
&cur_data.link_report_flags) &&
bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
&cur_data.link_report_flags)) {
flow = "ON - receive & transmit";
} else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
&cur_data.link_report_flags) &&
!bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
&cur_data.link_report_flags)) {
flow = "ON - receive";
} else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
&cur_data.link_report_flags) &&
bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
&cur_data.link_report_flags)) {
flow = "ON - transmit";
} else {
flow = "none"; /* possible? */
}
} else {
flow = "none";
}
if_link_state_change(sc->ifp, LINK_STATE_UP);
BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
cur_data.line_speed, duplex, flow);
}
}
static void
bxe_link_report(struct bxe_softc *sc)
{
bxe_acquire_phy_lock(sc);
bxe_link_report_locked(sc);
bxe_release_phy_lock(sc);
}
static void
bxe_link_status_update(struct bxe_softc *sc)
{
if (sc->state != BXE_STATE_OPEN) {
return;
}
if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
elink_link_status_update(&sc->link_params, &sc->link_vars);
} else {
sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full |
ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_2500baseX_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause);
sc->port.advertising[0] = sc->port.supported[0];
sc->link_params.sc = sc;
sc->link_params.port = SC_PORT(sc);
sc->link_params.req_duplex[0] = DUPLEX_FULL;
sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
sc->link_params.req_line_speed[0] = SPEED_10000;
sc->link_params.speed_cap_mask[0] = 0x7f0000;
sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
if (CHIP_REV_IS_FPGA(sc)) {
sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
sc->link_vars.line_speed = ELINK_SPEED_1000;
sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
} else {
sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
sc->link_vars.line_speed = ELINK_SPEED_10000;
sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
}
sc->link_vars.link_up = 1;
sc->link_vars.duplex = DUPLEX_FULL;
sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
if (IS_PF(sc)) {
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
bxe_link_report(sc);
}
}
if (IS_PF(sc)) {
if (sc->link_vars.link_up) {
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
} else {
bxe_stats_handle(sc, STATS_EVENT_STOP);
}
bxe_link_report(sc);
} else {
bxe_link_report(sc);
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
}
}
static int
bxe_initial_phy_init(struct bxe_softc *sc,
int load_mode)
{
int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
struct elink_params *lp = &sc->link_params;
bxe_set_requested_fc(sc);
if (CHIP_REV_IS_SLOW(sc)) {
uint32_t bond = CHIP_BOND_ID(sc);
uint32_t feat = 0;
if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
} else if (bond & 0x4) {
if (CHIP_IS_E3(sc)) {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
} else {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
}
} else if (bond & 0x8) {
if (CHIP_IS_E3(sc)) {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
} else {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
}
}
/* disable EMAC for E3 and above */
if (bond & 0x2) {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
}
sc->link_params.feature_config_flags |= feat;
}
bxe_acquire_phy_lock(sc);
if (load_mode == LOAD_DIAG) {
lp->loopback_mode = ELINK_LOOPBACK_XGXS;
/* Prefer doing PHY loopback at 10G speed, if possible */
if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
if (lp->speed_cap_mask[cfg_idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
} else {
lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
}
}
}
if (load_mode == LOAD_LOOPBACK_EXT) {
lp->loopback_mode = ELINK_LOOPBACK_EXT;
}
rc = elink_phy_init(&sc->link_params, &sc->link_vars);
bxe_release_phy_lock(sc);
bxe_calc_fc_adv(sc);
if (sc->link_vars.link_up) {
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
bxe_link_report(sc);
}
if (!CHIP_REV_IS_SLOW(sc)) {
bxe_periodic_start(sc);
}
sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
return (rc);
}
static u_int
bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
struct ecore_mcast_list_elem *mc_mac = arg;
mc_mac += cnt;
mc_mac->mac = (uint8_t *)LLADDR(sdl);
return (1);
}
static int
bxe_init_mcast_macs_list(struct bxe_softc *sc,
struct ecore_mcast_ramrod_params *p)
{
if_t ifp = sc->ifp;
int mc_count;
struct ecore_mcast_list_elem *mc_mac;
ECORE_LIST_INIT(&p->mcast_list);
p->mcast_list_len = 0;
/* XXXGL: multicast count may change later */
mc_count = if_llmaddr_count(ifp);
if (!mc_count) {
return (0);
}
mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
(M_NOWAIT | M_ZERO));
if (!mc_mac) {
BLOGE(sc, "Failed to allocate temp mcast list\n");
return (-1);
}
bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac);
for (int i = 0; i < mc_count; i ++) {
ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list);
BLOGD(sc, DBG_LOAD,
"Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n",
mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2],
mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5],
mc_count);
}
p->mcast_list_len = mc_count;
return (0);
}
static void
bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
{
struct ecore_mcast_list_elem *mc_mac =
ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
struct ecore_mcast_list_elem,
link);
if (mc_mac) {
/* only a single free as all mc_macs are in the same heap array */
free(mc_mac, M_DEVBUF);
}
}
static int
bxe_set_mc_list(struct bxe_softc *sc)
{
struct ecore_mcast_ramrod_params rparam = { NULL };
int rc = 0;
rparam.mcast_obj = &sc->mcast_obj;
BXE_MCAST_LOCK(sc);
/* first, clear all configured multicast MACs */
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
if (rc < 0) {
BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
/* Manual backport parts of FreeBSD upstream r284470. */
BXE_MCAST_UNLOCK(sc);
return (rc);
}
/* configure a new MACs list */
rc = bxe_init_mcast_macs_list(sc, &rparam);
if (rc) {
BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
BXE_MCAST_UNLOCK(sc);
return (rc);
}
/* Now add the new MACs */
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
if (rc < 0) {
BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
}
bxe_free_mcast_macs_list(&rparam);
BXE_MCAST_UNLOCK(sc);
return (rc);
}
struct bxe_set_addr_ctx {
struct bxe_softc *sc;
unsigned long ramrod_flags;
int rc;
};
static u_int
bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
struct bxe_set_addr_ctx *ctx = arg;
struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj;
int rc;
if (ctx->rc < 0)
return (0);
rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE,
ECORE_UC_LIST_MAC, &ctx->ramrod_flags);
/* do not treat adding same MAC as an error */
if (rc == -EEXIST)
BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
else if (rc < 0) {
BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc);
ctx->rc = rc;
}
return (1);
}
static int
bxe_set_uc_list(struct bxe_softc *sc)
{
if_t ifp = sc->ifp;
struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
struct bxe_set_addr_ctx ctx = { sc, 0, 0 };
int rc;
/* first schedule a cleanup up of old configuration */
rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
if (rc < 0) {
BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
return (rc);
}
if_foreach_lladdr(ifp, bxe_set_addr, &ctx);
if (ctx.rc < 0)
return (ctx.rc);
/* Execute the pending commands */
bit_set(&ctx.ramrod_flags, RAMROD_CONT);
return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
ECORE_UC_LIST_MAC, &ctx.ramrod_flags));
}
static void
bxe_set_rx_mode(struct bxe_softc *sc)
{
if_t ifp = sc->ifp;
uint32_t rx_mode = BXE_RX_MODE_NORMAL;
if (sc->state != BXE_STATE_OPEN) {
BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
return;
}
BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
if (if_getflags(ifp) & IFF_PROMISC) {
rx_mode = BXE_RX_MODE_PROMISC;
} else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
CHIP_IS_E1(sc))) {
rx_mode = BXE_RX_MODE_ALLMULTI;
} else {
if (IS_PF(sc)) {
/* some multicasts */
if (bxe_set_mc_list(sc) < 0) {
rx_mode = BXE_RX_MODE_ALLMULTI;
}
if (bxe_set_uc_list(sc) < 0) {
rx_mode = BXE_RX_MODE_PROMISC;
}
}
}
sc->rx_mode = rx_mode;
/* schedule the rx_mode command */
if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
return;
}
if (IS_PF(sc)) {
bxe_set_storm_rx_mode(sc);
}
}
/* update flags in shmem */
static void
bxe_update_drv_flags(struct bxe_softc *sc,
uint32_t flags,
uint32_t set)
{
uint32_t drv_flags;
if (SHMEM2_HAS(sc, drv_flags)) {
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
drv_flags = SHMEM2_RD(sc, drv_flags);
if (set) {
SET_FLAGS(drv_flags, flags);
} else {
RESET_FLAGS(drv_flags, flags);
}
SHMEM2_WR(sc, drv_flags, drv_flags);
BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
}
}
/* periodic timer callout routine, only runs when the interface is up */
static void
bxe_periodic_callout_func(void *xsc)
{
struct bxe_softc *sc = (struct bxe_softc *)xsc;
int i;
if (!BXE_CORE_TRYLOCK(sc)) {
/* just bail and try again next time */
if ((sc->state == BXE_STATE_OPEN) &&
(atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
/* schedule the next periodic callout */
callout_reset(&sc->periodic_callout, hz,
bxe_periodic_callout_func, sc);
}
return;
}
if ((sc->state != BXE_STATE_OPEN) ||
(atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
BXE_CORE_UNLOCK(sc);
return;
}
/* Check for TX timeouts on any fastpath. */
FOR_EACH_QUEUE(sc, i) {
if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
/* Ruh-Roh, chip was reset! */
break;
}
}
if (!CHIP_REV_IS_SLOW(sc)) {
/*
* This barrier is needed to ensure the ordering between the writing
* to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
* the reading here.
*/
mb();
if (sc->port.pmf) {
bxe_acquire_phy_lock(sc);
elink_period_func(&sc->link_params, &sc->link_vars);
bxe_release_phy_lock(sc);
}
}
if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
int mb_idx = SC_FW_MB_IDX(sc);
uint32_t drv_pulse;
uint32_t mcp_pulse;
++sc->fw_drv_pulse_wr_seq;
sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
drv_pulse = sc->fw_drv_pulse_wr_seq;
bxe_drv_pulse(sc);
mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
MCP_PULSE_SEQ_MASK);
/*
* The delta between driver pulse and mcp response should
* be 1 (before mcp response) or 0 (after mcp response).
*/
if ((drv_pulse != mcp_pulse) &&
(drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
/* someone lost a heartbeat... */
BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
drv_pulse, mcp_pulse);
}
}
/* state is BXE_STATE_OPEN */
bxe_stats_handle(sc, STATS_EVENT_UPDATE);
BXE_CORE_UNLOCK(sc);
if ((sc->state == BXE_STATE_OPEN) &&
(atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
/* schedule the next periodic callout */
callout_reset(&sc->periodic_callout, hz,
bxe_periodic_callout_func, sc);
}
}
static void
bxe_periodic_start(struct bxe_softc *sc)
{
atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
}
static void
bxe_periodic_stop(struct bxe_softc *sc)
{
atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
callout_drain(&sc->periodic_callout);
}
void
bxe_parity_recover(struct bxe_softc *sc)
{
uint8_t global = FALSE;
uint32_t error_recovered, error_unrecovered;
bool is_parity;
if ((sc->recovery_state == BXE_RECOVERY_FAILED) &&
(sc->state == BXE_STATE_ERROR)) {
BLOGE(sc, "RECOVERY failed, "
"stack notified driver is NOT running! "
"Please reboot/power cycle the system.\n");
return;
}
while (1) {
BLOGD(sc, DBG_SP,
"%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n",
__func__, sc, sc->state, sc->recovery_state, sc->error_status);
switch(sc->recovery_state) {
case BXE_RECOVERY_INIT:
is_parity = bxe_chk_parity_attn(sc, &global, FALSE);
if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ||
(sc->error_status & BXE_ERR_MCP_ASSERT) ||
(sc->error_status & BXE_ERR_GLOBAL)) {
BXE_CORE_LOCK(sc);
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
bxe_periodic_stop(sc);
}
bxe_nic_unload(sc, UNLOAD_RECOVERY, false);
sc->state = BXE_STATE_ERROR;
sc->recovery_state = BXE_RECOVERY_FAILED;
BLOGE(sc, " No Recovery tried for error 0x%x"
" stack notified driver is NOT running!"
" Please reboot/power cycle the system.\n",
sc->error_status);
BXE_CORE_UNLOCK(sc);
return;
}
/* Try to get a LEADER_LOCK HW lock */
if (bxe_trylock_leader_lock(sc)) {
bxe_set_reset_in_progress(sc);
/*
* Check if there is a global attention and if
* there was a global attention, set the global
* reset bit.
*/
if (global) {
bxe_set_reset_global(sc);
}
sc->is_leader = 1;
}
/* If interface has been removed - break */
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
bxe_periodic_stop(sc);
}
BXE_CORE_LOCK(sc);
bxe_nic_unload(sc,UNLOAD_RECOVERY, false);
sc->recovery_state = BXE_RECOVERY_WAIT;
BXE_CORE_UNLOCK(sc);
/*
* Ensure "is_leader", MCP command sequence and
* "recovery_state" update values are seen on other
* CPUs.
*/
mb();
break;
case BXE_RECOVERY_WAIT:
if (sc->is_leader) {
int other_engine = SC_PATH(sc) ? 0 : 1;
bool other_load_status =
bxe_get_load_status(sc, other_engine);
bool load_status =
bxe_get_load_status(sc, SC_PATH(sc));
global = bxe_reset_is_global(sc);
/*
* In case of a parity in a global block, let
* the first leader that performs a
* leader_reset() reset the global blocks in
* order to clear global attentions. Otherwise
* the gates will remain closed for that
* engine.
*/
if (load_status ||
(global && other_load_status)) {
/*
* Wait until all other functions get
* down.
*/
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
return;
} else {
/*
* If all other functions got down
* try to bring the chip back to
* normal. In any case it's an exit
* point for a leader.
*/
if (bxe_leader_reset(sc)) {
BLOGE(sc, "RECOVERY failed, "
"stack notified driver is NOT running!\n");
sc->recovery_state = BXE_RECOVERY_FAILED;
sc->state = BXE_STATE_ERROR;
mb();
return;
}
/*
* If we are here, means that the
* leader has succeeded and doesn't
* want to be a leader any more. Try
* to continue as a none-leader.
*/
break;
}
} else { /* non-leader */
if (!bxe_reset_is_done(sc, SC_PATH(sc))) {
/*
* Try to get a LEADER_LOCK HW lock as
* long as a former leader may have
* been unloaded by the user or
* released a leadership by another
* reason.
*/
if (bxe_trylock_leader_lock(sc)) {
/*
* I'm a leader now! Restart a
* switch case.
*/
sc->is_leader = 1;
break;
}
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
return;
} else {
/*
* If there was a global attention, wait
* for it to be cleared.
*/
if (bxe_reset_is_global(sc)) {
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
return;
}
error_recovered =
sc->eth_stats.recoverable_error;
error_unrecovered =
sc->eth_stats.unrecoverable_error;
BXE_CORE_LOCK(sc);
sc->recovery_state =
BXE_RECOVERY_NIC_LOADING;
if (bxe_nic_load(sc, LOAD_NORMAL)) {
error_unrecovered++;
sc->recovery_state = BXE_RECOVERY_FAILED;
sc->state = BXE_STATE_ERROR;
BLOGE(sc, "Recovery is NOT successfull, "
" state=0x%x recovery_state=0x%x error=%x\n",
sc->state, sc->recovery_state, sc->error_status);
sc->error_status = 0;
} else {
sc->recovery_state =
BXE_RECOVERY_DONE;
error_recovered++;
BLOGI(sc, "Recovery is successfull from errors %x,"
" state=0x%x"
" recovery_state=0x%x \n", sc->error_status,
sc->state, sc->recovery_state);
mb();
}
sc->error_status = 0;
BXE_CORE_UNLOCK(sc);
sc->eth_stats.recoverable_error =
error_recovered;
sc->eth_stats.unrecoverable_error =
error_unrecovered;
return;
}
}
default:
return;
}
}
}
void
bxe_handle_error(struct bxe_softc * sc)
{
if(sc->recovery_state == BXE_RECOVERY_WAIT) {
return;
}
if(sc->error_status) {
if (sc->state == BXE_STATE_OPEN) {
bxe_int_disable(sc);
}
if (sc->link_vars.link_up) {
if_link_state_change(sc->ifp, LINK_STATE_DOWN);
}
sc->recovery_state = BXE_RECOVERY_INIT;
BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n",
sc->unit, sc->error_status, sc->recovery_state);
bxe_parity_recover(sc);
}
}
static void
bxe_sp_err_timeout_task(void *arg, int pending)
{
struct bxe_softc *sc = (struct bxe_softc *)arg;
BLOGD(sc, DBG_SP,
"%s state = 0x%x rec state=0x%x error_status=%x\n",
__func__, sc->state, sc->recovery_state, sc->error_status);
if((sc->recovery_state == BXE_RECOVERY_FAILED) &&
(sc->state == BXE_STATE_ERROR)) {
return;
}
/* if can be taken */
if ((sc->error_status) && (sc->trigger_grcdump)) {
bxe_grc_dump(sc);
}
if (sc->recovery_state != BXE_RECOVERY_DONE) {
bxe_handle_error(sc);
bxe_parity_recover(sc);
} else if (sc->error_status) {
bxe_handle_error(sc);
}
return;
}
/* start the controller */
static __noinline int
bxe_nic_load(struct bxe_softc *sc,
int load_mode)
{
uint32_t val;
int load_code = 0;
int i, rc = 0;
BXE_CORE_LOCK_ASSERT(sc);
BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
sc->state = BXE_STATE_OPENING_WAITING_LOAD;
if (IS_PF(sc)) {
/* must be called before memory allocation and HW init */
bxe_ilt_set_info(sc);
}
sc->last_reported_link_state = LINK_STATE_UNKNOWN;
bxe_set_fp_rx_buf_size(sc);
if (bxe_alloc_fp_buffers(sc) != 0) {
BLOGE(sc, "Failed to allocate fastpath memory\n");
sc->state = BXE_STATE_CLOSED;
rc = ENOMEM;
goto bxe_nic_load_error0;
}
if (bxe_alloc_mem(sc) != 0) {
sc->state = BXE_STATE_CLOSED;
rc = ENOMEM;
goto bxe_nic_load_error0;
}
if (bxe_alloc_fw_stats_mem(sc) != 0) {
sc->state = BXE_STATE_CLOSED;
rc = ENOMEM;
goto bxe_nic_load_error0;
}
if (IS_PF(sc)) {
/* set pf load just before approaching the MCP */
bxe_set_pf_load(sc);
/* if MCP exists send load request and analyze response */
if (!BXE_NOMCP(sc)) {
/* attempt to load pf */
if (bxe_nic_load_request(sc, &load_code) != 0) {
sc->state = BXE_STATE_CLOSED;
rc = ENXIO;
goto bxe_nic_load_error1;
}
/* what did the MCP say? */
if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
sc->state = BXE_STATE_CLOSED;
rc = ENXIO;
goto bxe_nic_load_error2;
}
} else {
BLOGI(sc, "Device has no MCP!\n");
load_code = bxe_nic_load_no_mcp(sc);
}
/* mark PMF if applicable */
bxe_nic_load_pmf(sc, load_code);
/* Init Function state controlling object */
bxe_init_func_obj(sc);
/* Initialize HW */
if (bxe_init_hw(sc, load_code) != 0) {
BLOGE(sc, "HW init failed\n");
bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
sc->state = BXE_STATE_CLOSED;
rc = ENXIO;
goto bxe_nic_load_error2;
}
}
/* set ALWAYS_ALIVE bit in shmem */
sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
bxe_drv_pulse(sc);
sc->flags |= BXE_NO_PULSE;
/* attach interrupts */
if (bxe_interrupt_attach(sc) != 0) {
sc->state = BXE_STATE_CLOSED;
rc = ENXIO;
goto bxe_nic_load_error2;
}
bxe_nic_init(sc, load_code);
/* Init per-function objects */
if (IS_PF(sc)) {
bxe_init_objs(sc);
// XXX bxe_iov_nic_init(sc);
/* set AFEX default VLAN tag to an invalid value */
sc->devinfo.mf_info.afex_def_vlan_tag = -1;
// XXX bxe_nic_load_afex_dcc(sc, load_code);
sc->state = BXE_STATE_OPENING_WAITING_PORT;
rc = bxe_func_start(sc);
if (rc) {
BLOGE(sc, "Function start failed! rc = %d\n", rc);
bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
/* send LOAD_DONE command to MCP */
if (!BXE_NOMCP(sc)) {
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
if (!load_code) {
BLOGE(sc, "MCP response failure, aborting\n");
sc->state = BXE_STATE_ERROR;
rc = ENXIO;
goto bxe_nic_load_error3;
}
}
rc = bxe_setup_leading(sc);
if (rc) {
BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
if (rc) {
BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
}
rc = bxe_init_rss_pf(sc);
if (rc) {
BLOGE(sc, "PF RSS init failed\n");
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
}
/* XXX VF */
/* now when Clients are configured we are ready to work */
sc->state = BXE_STATE_OPEN;
/* Configure a ucast MAC */
if (IS_PF(sc)) {
rc = bxe_set_eth_mac(sc, TRUE);
}
if (rc) {
BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
if (sc->port.pmf) {
rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
if (rc) {
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
}
sc->link_params.feature_config_flags &=
~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
/* start fast path */
/* Initialize Rx filter */
bxe_set_rx_mode(sc);
/* start the Tx */
switch (/* XXX load_mode */LOAD_OPEN) {
case LOAD_NORMAL:
case LOAD_OPEN:
break;
case LOAD_DIAG:
case LOAD_LOOPBACK_EXT:
sc->state = BXE_STATE_DIAG;
break;
default:
break;
}
if (sc->port.pmf) {
bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
} else {
bxe_link_status_update(sc);
}
/* start the periodic timer callout */
bxe_periodic_start(sc);
if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
/* mark driver is loaded in shmem2 */
val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
(val |
DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
DRV_FLAGS_CAPABILITIES_LOADED_L2));
}
/* wait for all pending SP commands to complete */
if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
bxe_periodic_stop(sc);
bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
return (ENXIO);
}
/* Tell the stack the driver is running! */
if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
return (0);
bxe_nic_load_error3:
if (IS_PF(sc)) {
bxe_int_disable_sync(sc, 1);
/* clean out queued objects */
bxe_squeeze_objects(sc);
}
bxe_interrupt_detach(sc);
bxe_nic_load_error2:
if (IS_PF(sc) && !BXE_NOMCP(sc)) {
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
}
sc->port.pmf = 0;
bxe_nic_load_error1:
/* clear pf_load status, as it was already set */
if (IS_PF(sc)) {
bxe_clear_pf_load(sc);
}
bxe_nic_load_error0:
bxe_free_fw_stats_mem(sc);
bxe_free_fp_buffers(sc);
bxe_free_mem(sc);
return (rc);
}
static int
bxe_init_locked(struct bxe_softc *sc)
{
int other_engine = SC_PATH(sc) ? 0 : 1;
uint8_t other_load_status, load_status;
uint8_t global = FALSE;
int rc;
BXE_CORE_LOCK_ASSERT(sc);
/* check if the driver is already running */
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
return (0);
}
if((sc->state == BXE_STATE_ERROR) &&
(sc->recovery_state == BXE_RECOVERY_FAILED)) {
BLOGE(sc, "Initialization not done, "
"as previous recovery failed."
"Reboot/Power-cycle the system\n" );
return (ENXIO);
}
bxe_set_power_state(sc, PCI_PM_D0);
/*
* If parity occurred during the unload, then attentions and/or
* RECOVERY_IN_PROGRES may still be set. If so we want the first function
* loaded on the current engine to complete the recovery. Parity recovery
* is only relevant for PF driver.
*/
if (IS_PF(sc)) {
other_load_status = bxe_get_load_status(sc, other_engine);
load_status = bxe_get_load_status(sc, SC_PATH(sc));
if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
bxe_chk_parity_attn(sc, &global, TRUE)) {
do {
/*
* If there are attentions and they are in global blocks, set
* the GLOBAL_RESET bit regardless whether it will be this
* function that will complete the recovery or not.
*/
if (global) {
bxe_set_reset_global(sc);
}
/*
* Only the first function on the current engine should try
* to recover in open. In case of attentions in global blocks
* only the first in the chip should try to recover.
*/
if ((!load_status && (!global || !other_load_status)) &&
bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
BLOGI(sc, "Recovered during init\n");
break;
}
/* recovery has failed... */
bxe_set_power_state(sc, PCI_PM_D3hot);
sc->recovery_state = BXE_RECOVERY_FAILED;
BLOGE(sc, "Recovery flow hasn't properly "
"completed yet, try again later. "
"If you still see this message after a "
"few retries then power cycle is required.\n");
rc = ENXIO;
goto bxe_init_locked_done;
} while (0);
}
}
sc->recovery_state = BXE_RECOVERY_DONE;
rc = bxe_nic_load(sc, LOAD_OPEN);
bxe_init_locked_done:
if (rc) {
/* Tell the stack the driver is NOT running! */
BLOGE(sc, "Initialization failed, "
"stack notified driver is NOT running!\n");
if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
}
return (rc);
}
static int
bxe_stop_locked(struct bxe_softc *sc)
{
BXE_CORE_LOCK_ASSERT(sc);
return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
}
/*
* Handles controller initialization when called from an unlocked routine.
* ifconfig calls this function.
*
* Returns:
* void
*/
static void
bxe_init(void *xsc)
{
struct bxe_softc *sc = (struct bxe_softc *)xsc;
BXE_CORE_LOCK(sc);
bxe_init_locked(sc);
BXE_CORE_UNLOCK(sc);
}
static int
bxe_init_ifnet(struct bxe_softc *sc)
{
if_t ifp;
int capabilities;
/* ifconfig entrypoint for media type/status reporting */
ifmedia_init(&sc->ifmedia, IFM_IMASK,
bxe_ifmedia_update,
bxe_ifmedia_status);
/* set the default interface values */
ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
/* allocate the ifnet structure */
if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
BLOGE(sc, "Interface allocation failed!\n");
return (ENXIO);
}
if_setsoftc(ifp, sc);
if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
if_setioctlfn(ifp, bxe_ioctl);
if_setstartfn(ifp, bxe_tx_start);
if_setgetcounterfn(ifp, bxe_get_counter);
#if __FreeBSD_version >= 901504
if_settransmitfn(ifp, bxe_tx_mq_start);
if_setqflushfn(ifp, bxe_mq_flush);
#endif
#ifdef FreeBSD8_0
if_settimer(ifp, 0);
#endif
if_setinitfn(ifp, bxe_init);
if_setmtu(ifp, sc->mtu);
if_sethwassist(ifp, (CSUM_IP |
CSUM_TCP |
CSUM_UDP |
CSUM_TSO |
CSUM_TCP_IPV6 |
CSUM_UDP_IPV6));
capabilities =
#if __FreeBSD_version < 700000
(IFCAP_VLAN_MTU |
IFCAP_VLAN_HWTAGGING |
IFCAP_HWCSUM |
IFCAP_JUMBO_MTU |
IFCAP_LRO);
#else
(IFCAP_VLAN_MTU |
IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWTSO |
IFCAP_VLAN_HWFILTER |
IFCAP_VLAN_HWCSUM |
IFCAP_HWCSUM |
IFCAP_JUMBO_MTU |
IFCAP_LRO |
IFCAP_TSO4 |
IFCAP_TSO6 |
IFCAP_WOL_MAGIC);
#endif
if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
if_setcapenable(ifp, if_getcapabilities(ifp));
if_setbaudrate(ifp, IF_Gbps(10));
/* XXX */
if_setsendqlen(ifp, sc->tx_ring_size);
if_setsendqready(ifp);
/* XXX */
sc->ifp = ifp;
/* attach to the Ethernet interface list */
ether_ifattach(ifp, sc->link_params.mac_addr);
/* Attach driver debugnet methods. */
DEBUGNET_SET(ifp, bxe);
return (0);
}
static void
bxe_deallocate_bars(struct bxe_softc *sc)
{
int i;
for (i = 0; i < MAX_BARS; i++) {
if (sc->bar[i].resource != NULL) {
bus_release_resource(sc->dev,
SYS_RES_MEMORY,
sc->bar[i].rid,
sc->bar[i].resource);
BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
i, PCIR_BAR(i));
}
}
}
static int
bxe_allocate_bars(struct bxe_softc *sc)
{
u_int flags;
int i;
memset(sc->bar, 0, sizeof(sc->bar));
for (i = 0; i < MAX_BARS; i++) {
/* memory resources reside at BARs 0, 2, 4 */
/* Run `pciconf -lb` to see mappings */
if ((i != 0) && (i != 2) && (i != 4)) {
continue;
}
sc->bar[i].rid = PCIR_BAR(i);
flags = RF_ACTIVE;
if (i == 0) {
flags |= RF_SHAREABLE;
}
if ((sc->bar[i].resource =
bus_alloc_resource_any(sc->dev,
SYS_RES_MEMORY,
&sc->bar[i].rid,
flags)) == NULL) {
return (0);
}
sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource);
sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n",
i, PCIR_BAR(i),
rman_get_start(sc->bar[i].resource),
rman_get_end(sc->bar[i].resource),
rman_get_size(sc->bar[i].resource),
(uintmax_t)sc->bar[i].kva);
}
return (0);
}
static void
bxe_get_function_num(struct bxe_softc *sc)
{
uint32_t val = 0;
/*
* Read the ME register to get the function number. The ME register
* holds the relative-function number and absolute-function number. The
* absolute-function number appears only in E2 and above. Before that
* these bits always contained zero, therefore we cannot blindly use them.
*/
val = REG_RD(sc, BAR_ME_REGISTER);
sc->pfunc_rel =
(uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
sc->path_id =
(uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
} else {
sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
}
BLOGD(sc, DBG_LOAD,
"Relative function %d, Absolute function %d, Path %d\n",
sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
}
static uint32_t
bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
{
uint32_t shmem2_size;
uint32_t offset;
uint32_t mf_cfg_offset_value;
/* Non 57712 */
offset = (SHMEM_RD(sc, func_mb) +
(MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
/* 57712 plus */
if (sc->devinfo.shmem2_base != 0) {
shmem2_size = SHMEM2_RD(sc, size);
if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
offset = mf_cfg_offset_value;
}
}
}
return (offset);
}
static uint32_t
bxe_pcie_capability_read(struct bxe_softc *sc,
int reg,
int width)
{
int pcie_reg;
/* ensure PCIe capability is enabled */
if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
if (pcie_reg != 0) {
BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
return (pci_read_config(sc->dev, (pcie_reg + reg), width));
}
}
BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
return (0);
}
static uint8_t
bxe_is_pcie_pending(struct bxe_softc *sc)
{
return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
PCIM_EXP_STA_TRANSACTION_PND);
}
/*
* Walk the PCI capabiites list for the device to find what features are
* supported. These capabilites may be enabled/disabled by firmware so it's
* best to walk the list rather than make assumptions.
*/
static void
bxe_probe_pci_caps(struct bxe_softc *sc)
{
uint16_t link_status;
int reg;
/* check if PCI Power Management is enabled */
if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
if (reg != 0) {
BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
}
}
link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
/* handle PCIe 2.0 workarounds for 57710 */
if (CHIP_IS_E1(sc)) {
/* workaround for 57710 errata E4_57710_27462 */
sc->devinfo.pcie_link_speed =
(REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
/* workaround for 57710 errata E4_57710_27488 */
sc->devinfo.pcie_link_width =
((link_status & PCIM_LINK_STA_WIDTH) >> 4);
if (sc->devinfo.pcie_link_speed > 1) {
sc->devinfo.pcie_link_width =
((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
}
} else {
sc->devinfo.pcie_link_speed =
(link_status & PCIM_LINK_STA_SPEED);
sc->devinfo.pcie_link_width =
((link_status & PCIM_LINK_STA_WIDTH) >> 4);
}
BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
/* check if MSI capability is enabled */
if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
if (reg != 0) {
BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
}
}
/* check if MSI-X capability is enabled */
if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
if (reg != 0) {
BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
}
}
}
static int
bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
{
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t val;
/* get the outer vlan if we're in switch-dependent mode */
val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
mf_info->ext_id = (uint16_t)val;
mf_info->multi_vnics_mode = 1;
if (!VALID_OVLAN(mf_info->ext_id)) {
BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
return (1);
}
/* get the capabilities */
if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
FUNC_MF_CFG_PROTOCOL_ISCSI) {
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
} else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
FUNC_MF_CFG_PROTOCOL_FCOE) {
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
} else {
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
}
mf_info->vnics_per_port =
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
return (0);
}
static uint32_t
bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
{
uint32_t retval = 0;
uint32_t val;
val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
retval |= MF_PROTO_SUPPORT_ETHERNET;
}
if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
retval |= MF_PROTO_SUPPORT_ISCSI;
}
if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
retval |= MF_PROTO_SUPPORT_FCOE;
}
}
return (retval);
}
static int
bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
{
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t val;
/*
* There is no outer vlan if we're in switch-independent mode.
* If the mac is valid then assume multi-function.
*/
val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
mf_info->vnics_per_port =
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
return (0);
}
static int
bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
{
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t e1hov_tag;
uint32_t func_config;
uint32_t niv_config;
mf_info->multi_vnics_mode = 1;
e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
mf_info->ext_id =
(uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
FUNC_MF_CFG_E1HOV_TAG_SHIFT);
mf_info->default_vlan =
(uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
FUNC_MF_CFG_AFEX_VLAN_SHIFT);
mf_info->niv_allowed_priorities =
(uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
mf_info->niv_default_cos =
(uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
mf_info->afex_vlan_mode =
((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
mf_info->niv_mba_enabled =
((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
mf_info->vnics_per_port =
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
return (0);
}
static int
bxe_check_valid_mf_cfg(struct bxe_softc *sc)
{
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t mf_cfg1;
uint32_t mf_cfg2;
uint32_t ovlan1;
uint32_t ovlan2;
uint8_t i, j;
BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
SC_PORT(sc));
BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
mf_info->mf_config[SC_VN(sc)]);
BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
mf_info->multi_vnics_mode);
BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
mf_info->vnics_per_port);
BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
mf_info->ext_id);
BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
mf_info->min_bw[0], mf_info->min_bw[1],
mf_info->min_bw[2], mf_info->min_bw[3]);
BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
mf_info->max_bw[0], mf_info->max_bw[1],
mf_info->max_bw[2], mf_info->max_bw[3]);
BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
sc->mac_addr_str);
/* various MF mode sanity checks... */
if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
BLOGE(sc, "Enumerated function %d is marked as hidden\n",
SC_PORT(sc));
return (1);
}
if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
mf_info->vnics_per_port, mf_info->multi_vnics_mode);
return (1);
}
if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
/* vnic id > 0 must have valid ovlan in switch-dependent mode */
if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
SC_VN(sc), OVLAN(sc));
return (1);
}
if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
mf_info->multi_vnics_mode, OVLAN(sc));
return (1);
}
/*
* Verify all functions are either MF or SF mode. If MF, make sure
* sure that all non-hidden functions have a valid ovlan. If SF,
* make sure that all non-hidden functions have an invalid ovlan.
*/
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
(((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
BLOGE(sc, "mf_mode=SD function %d MF config "
"mismatch, multi_vnics_mode=%d ovlan=%d\n",
i, mf_info->multi_vnics_mode, ovlan1);
return (1);
}
}
/* Verify all funcs on the same port each have a different ovlan. */
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
/* iterate from the next function on the port to the max func */
for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
VALID_OVLAN(ovlan1) &&
!(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
VALID_OVLAN(ovlan2) &&
(ovlan1 == ovlan2)) {
BLOGE(sc, "mf_mode=SD functions %d and %d "
"have the same ovlan (%d)\n",
i, j, ovlan1);
return (1);
}
}
}
} /* MULTI_FUNCTION_SD */
return (0);
}
static int
bxe_get_mf_cfg_info(struct bxe_softc *sc)
{
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t val, mac_upper;
uint8_t i, vnic;
/* initialize mf_info defaults */
mf_info->vnics_per_port = 1;
mf_info->multi_vnics_mode = FALSE;
mf_info->path_has_ovlan = FALSE;
mf_info->mf_mode = SINGLE_FUNCTION;
if (!CHIP_IS_MF_CAP(sc)) {
return (0);
}
if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
BLOGE(sc, "Invalid mf_cfg_base!\n");
return (1);
}
/* get the MF mode (switch dependent / independent / single-function) */
val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
{
case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
/* check for legal upper mac bytes */
if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
mf_info->mf_mode = MULTI_FUNCTION_SI;
} else {
BLOGE(sc, "Invalid config for Switch Independent mode\n");
}
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
/* get outer vlan configuration */
val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
mf_info->mf_mode = MULTI_FUNCTION_SD;
} else {
BLOGE(sc, "Invalid config for Switch Dependent mode\n");
}
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
/* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
return (0);
case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
/*
* Mark MF mode as NIV if MCP version includes NPAR-SD support
* and the MAC address is valid.
*/
mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
if ((SHMEM2_HAS(sc, afex_driver_support)) &&
(mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
mf_info->mf_mode = MULTI_FUNCTION_AFEX;
} else {
BLOGE(sc, "Invalid config for AFEX mode\n");
}
break;
default:
BLOGE(sc, "Unknown MF mode (0x%08x)\n",
(val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
return (1);
}
/* set path mf_mode (which could be different than function mf_mode) */
if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
mf_info->path_has_ovlan = TRUE;
} else if (mf_info->mf_mode == SINGLE_FUNCTION) {
/*
* Decide on path multi vnics mode. If we're not in MF mode and in
* 4-port mode, this is good enough to check vnic-0 of the other port
* on the same path
*/
if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
uint8_t other_port = !(PORT_ID(sc) & 1);
uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
}
}
if (mf_info->mf_mode == SINGLE_FUNCTION) {
/* invalid MF config */
if (SC_VN(sc) >= 1) {
BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
return (1);
}
return (0);
}
/* get the MF configuration */
mf_info->mf_config[SC_VN(sc)] =
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
switch(mf_info->mf_mode)
{
case MULTI_FUNCTION_SD:
bxe_get_shmem_mf_cfg_info_sd(sc);
break;
case MULTI_FUNCTION_SI:
bxe_get_shmem_mf_cfg_info_si(sc);
break;
case MULTI_FUNCTION_AFEX:
bxe_get_shmem_mf_cfg_info_niv(sc);
break;
default:
BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
mf_info->mf_mode);
return (1);
}
/* get the congestion management parameters */
vnic = 0;
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
/* get min/max bw */
val = MFCFG_RD(sc, func_mf_config[i].config);
mf_info->min_bw[vnic] =
((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
mf_info->max_bw[vnic] =
((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
vnic++;
}
return (bxe_check_valid_mf_cfg(sc));
}
static int
bxe_get_shmem_info(struct bxe_softc *sc)
{
int port;
uint32_t mac_hi, mac_lo, val;
port = SC_PORT(sc);
mac_hi = mac_lo = 0;
sc->link_params.sc = sc;
sc->link_params.port = port;
/* get the hardware config info */
sc->devinfo.hw_config =
SHMEM_RD(sc, dev_info.shared_hw_config.config);
sc->devinfo.hw_config2 =
SHMEM_RD(sc, dev_info.shared_hw_config.config2);
sc->link_params.hw_led_mode =
((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
SHARED_HW_CFG_LED_MODE_SHIFT);
/* get the port feature config */
sc->port.config =
SHMEM_RD(sc, dev_info.port_feature_config[port].config);
/* get the link params */
sc->link_params.speed_cap_mask[0] =
SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
sc->link_params.speed_cap_mask[1] =
SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
/* get the lane config */
sc->link_params.lane_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
/* get the link config */
val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
sc->port.link_config[ELINK_INT_PHY] = val;
sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
sc->port.link_config[ELINK_EXT_PHY1] =
SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
/* get the override preemphasis flag and enable it or turn it off */
val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
sc->link_params.feature_config_flags |=
ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
} else {
sc->link_params.feature_config_flags &=
~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
}
/* get the initial value of the link params */
sc->link_params.multi_phy_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
/* get external phy info */
sc->port.ext_phy_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
/* get the multifunction configuration */
bxe_get_mf_cfg_info(sc);
/* get the mac address */
if (IS_MF(sc)) {
mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
} else {
mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
}
if ((mac_lo == 0) && (mac_hi == 0)) {
*sc->mac_addr_str = 0;
BLOGE(sc, "No Ethernet address programmed!\n");
} else {
sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
"%02x:%02x:%02x:%02x:%02x:%02x",
sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
}
return (0);
}
static void
bxe_get_tunable_params(struct bxe_softc *sc)
{
/* sanity checks */
if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
(bxe_interrupt_mode != INTR_MODE_MSI) &&
(bxe_interrupt_mode != INTR_MODE_MSIX)) {
BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
bxe_interrupt_mode = INTR_MODE_MSIX;
}
if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
bxe_queue_count = 0;
}
if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
if (bxe_max_rx_bufs == 0) {
bxe_max_rx_bufs = RX_BD_USABLE;
} else {
BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
bxe_max_rx_bufs = 2048;
}
}
if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
bxe_hc_rx_ticks = 25;
}
if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
bxe_hc_tx_ticks = 50;
}
if (bxe_max_aggregation_size == 0) {
bxe_max_aggregation_size = TPA_AGG_SIZE;
}
if (bxe_max_aggregation_size > 0xffff) {
BLOGW(sc, "invalid max_aggregation_size (%d)\n",
bxe_max_aggregation_size);
bxe_max_aggregation_size = TPA_AGG_SIZE;
}
if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
bxe_mrrs = -1;
}
if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
bxe_autogreeen = 0;
}
if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
bxe_udp_rss = 0;
}
/* pull in user settings */
sc->interrupt_mode = bxe_interrupt_mode;
sc->max_rx_bufs = bxe_max_rx_bufs;
sc->hc_rx_ticks = bxe_hc_rx_ticks;
sc->hc_tx_ticks = bxe_hc_tx_ticks;
sc->max_aggregation_size = bxe_max_aggregation_size;
sc->mrrs = bxe_mrrs;
sc->autogreeen = bxe_autogreeen;
sc->udp_rss = bxe_udp_rss;
if (bxe_interrupt_mode == INTR_MODE_INTX) {
sc->num_queues = 1;
} else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
sc->num_queues =
min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
MAX_RSS_CHAINS);
if (sc->num_queues > mp_ncpus) {
sc->num_queues = mp_ncpus;
}
}
BLOGD(sc, DBG_LOAD,
"User Config: "
"debug=0x%lx "
"interrupt_mode=%d "
"queue_count=%d "
"hc_rx_ticks=%d "
"hc_tx_ticks=%d "
"rx_budget=%d "
"max_aggregation_size=%d "
"mrrs=%d "
"autogreeen=%d "
"udp_rss=%d\n",
bxe_debug,
sc->interrupt_mode,
sc->num_queues,
sc->hc_rx_ticks,
sc->hc_tx_ticks,
bxe_rx_budget,
sc->max_aggregation_size,
sc->mrrs,
sc->autogreeen,
sc->udp_rss);
}
static int
bxe_media_detect(struct bxe_softc *sc)
{
int port_type;
uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
switch (sc->link_params.phy[phy_idx].media_type) {
case ELINK_ETH_PHY_SFPP_10G_FIBER:
case ELINK_ETH_PHY_XFP_FIBER:
BLOGI(sc, "Found 10Gb Fiber media.\n");
sc->media = IFM_10G_SR;
port_type = PORT_FIBRE;
break;
case ELINK_ETH_PHY_SFP_1G_FIBER:
BLOGI(sc, "Found 1Gb Fiber media.\n");
sc->media = IFM_1000_SX;
port_type = PORT_FIBRE;
break;
case ELINK_ETH_PHY_KR:
case ELINK_ETH_PHY_CX4:
BLOGI(sc, "Found 10GBase-CX4 media.\n");
sc->media = IFM_10G_CX4;
port_type = PORT_FIBRE;
break;
case ELINK_ETH_PHY_DA_TWINAX:
BLOGI(sc, "Found 10Gb Twinax media.\n");
sc->media = IFM_10G_TWINAX;
port_type = PORT_DA;
break;
case ELINK_ETH_PHY_BASE_T:
if (sc->link_params.speed_cap_mask[0] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
BLOGI(sc, "Found 10GBase-T media.\n");
sc->media = IFM_10G_T;
port_type = PORT_TP;
} else {
BLOGI(sc, "Found 1000Base-T media.\n");
sc->media = IFM_1000_T;
port_type = PORT_TP;
}
break;
case ELINK_ETH_PHY_NOT_PRESENT:
BLOGI(sc, "Media not present.\n");
sc->media = 0;
port_type = PORT_OTHER;
break;
case ELINK_ETH_PHY_UNSPECIFIED:
default:
BLOGI(sc, "Unknown media!\n");
sc->media = 0;
port_type = PORT_OTHER;
break;
}
return port_type;
}
#define GET_FIELD(value, fname) \
(((value) & (fname##_MASK)) >> (fname##_SHIFT))
#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
static int
bxe_get_igu_cam_info(struct bxe_softc *sc)
{
int pfid = SC_FUNC(sc);
int igu_sb_id;
uint32_t val;
uint8_t fid, igu_sb_cnt = 0;
sc->igu_base_sb = 0xff;
if (CHIP_INT_MODE_IS_BC(sc)) {
int vn = SC_VN(sc);
igu_sb_cnt = sc->igu_sb_cnt;
sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
FP_SB_MAX_E1x);
sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
(CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
return (0);
}
/* IGU in normal mode - read CAM */
for (igu_sb_id = 0;
igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
igu_sb_id++) {
val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
continue;
}
fid = IGU_FID(val);
if ((fid & IGU_FID_ENCODE_IS_PF)) {
if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
continue;
}
if (IGU_VEC(val) == 0) {
/* default status block */
sc->igu_dsb_id = igu_sb_id;
} else {
if (sc->igu_base_sb == 0xff) {
sc->igu_base_sb = igu_sb_id;
}
igu_sb_cnt++;
}
}
}
/*
* Due to new PF resource allocation by MFW T7.4 and above, it's optional
* that number of CAM entries will not be equal to the value advertised in
* PCI. Driver should use the minimal value of both as the actual status
* block count
*/
sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
if (igu_sb_cnt == 0) {
BLOGE(sc, "CAM configuration error\n");
return (-1);
}
return (0);
}
/*
* Gather various information from the device config space, the device itself,
* shmem, and the user input.
*/
static int
bxe_get_device_info(struct bxe_softc *sc)
{
uint32_t val;
int rc;
/* Get the data for the device */
sc->devinfo.vendor_id = pci_get_vendor(sc->dev);
sc->devinfo.device_id = pci_get_device(sc->dev);
sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
/* get the chip revision (chip metal comes from pci config space) */
sc->devinfo.chip_id =
sc->link_params.chip_id =
(((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
(((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
/* force 57811 according to MISC register */
if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
if (CHIP_IS_57810(sc)) {
sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
(sc->devinfo.chip_id & 0x0000ffff));
} else if (CHIP_IS_57810_MF(sc)) {
sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
(sc->devinfo.chip_id & 0x0000ffff));
}
sc->devinfo.chip_id |= 0x1;
}
BLOGD(sc, DBG_LOAD,
"chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
sc->devinfo.chip_id,
((sc->devinfo.chip_id >> 16) & 0xffff),
((sc->devinfo.chip_id >> 12) & 0xf),
((sc->devinfo.chip_id >> 4) & 0xff),
((sc->devinfo.chip_id >> 0) & 0xf));
val = (REG_RD(sc, 0x2874) & 0x55);
if ((sc->devinfo.chip_id & 0x1) ||
(CHIP_IS_E1(sc) && val) ||
(CHIP_IS_E1H(sc) && (val == 0x55))) {
sc->flags |= BXE_ONE_PORT_FLAG;
BLOGD(sc, DBG_LOAD, "single port device\n");
}
/* set the doorbell size */
sc->doorbell_size = (1 << BXE_DB_SHIFT);
/* determine whether the device is in 2 port or 4 port mode */
sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
if (CHIP_IS_E2E3(sc)) {
/*
* Read port4mode_en_ovwr[0]:
* If 1, four port mode is in port4mode_en_ovwr[1].
* If 0, four port mode is in port4mode_en[0].
*/
val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
if (val & 1) {
val = ((val >> 1) & 1);
} else {
val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
}
sc->devinfo.chip_port_mode =
(val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
}
/* get the function and path info for the device */
bxe_get_function_num(sc);
/* get the shared memory base address */
sc->devinfo.shmem_base =
sc->link_params.shmem_base =
REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
sc->devinfo.shmem2_base =
REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
MISC_REG_GENERIC_CR_0));
BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
if (!sc->devinfo.shmem_base) {
/* this should ONLY prevent upcoming shmem reads */
BLOGI(sc, "MCP not active\n");
sc->flags |= BXE_NO_MCP_FLAG;
return (0);
}
/* make sure the shared memory contents are valid */
val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
(SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
return (0);
}
BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
/* get the bootcode version */
sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
snprintf(sc->devinfo.bc_ver_str,
sizeof(sc->devinfo.bc_ver_str),
"%d.%d.%d",
((sc->devinfo.bc_ver >> 24) & 0xff),
((sc->devinfo.bc_ver >> 16) & 0xff),
((sc->devinfo.bc_ver >> 8) & 0xff));
BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
/* get the bootcode shmem address */
sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
/* clean indirect addresses as they're not used */
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
if (IS_PF(sc)) {
REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
if (CHIP_IS_E1x(sc)) {
REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
}
/*
* Enable internal target-read (in case we are probed after PF
* FLR). Must be done prior to any BAR read access. Only for
* 57712 and up
*/
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
}
}
/* get the nvram size */
val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
sc->devinfo.flash_size =
(NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
/* get PCI capabilites */
bxe_probe_pci_caps(sc);
bxe_set_power_state(sc, PCI_PM_D0);
/* get various configuration parameters from shmem */
bxe_get_shmem_info(sc);
if (sc->devinfo.pcie_msix_cap_reg != 0) {
val = pci_read_config(sc->dev,
(sc->devinfo.pcie_msix_cap_reg +
PCIR_MSIX_CTRL),
2);
sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
} else {
sc->igu_sb_cnt = 1;
}
sc->igu_base_addr = BAR_IGU_INTMEM;
/* initialize IGU parameters */
if (CHIP_IS_E1x(sc)) {
sc->devinfo.int_block = INT_BLOCK_HC;
sc->igu_dsb_id = DEF_SB_IGU_ID;
sc->igu_base_sb = 0;
} else {
sc->devinfo.int_block = INT_BLOCK_IGU;
/* do not allow device reset during IGU info preocessing */
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
int tout = 5000;
BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
tout--;
DELAY(1000);
}
if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
return (-1);
}
}
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
} else {
BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
}
rc = bxe_get_igu_cam_info(sc);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
if (rc) {
return (rc);
}
}
/*
* Get base FW non-default (fast path) status block ID. This value is
* used to initialize the fw_sb_id saved on the fp/queue structure to
* determine the id used by the FW.
*/
if (CHIP_IS_E1x(sc)) {
sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
} else {
/*
* 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
* the same queue are indicated on the same IGU SB). So we prefer
* FW and IGU SBs to be the same value.
*/
sc->base_fw_ndsb = sc->igu_base_sb;
}
BLOGD(sc, DBG_LOAD,
"igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
sc->igu_dsb_id, sc->igu_base_sb,
sc->igu_sb_cnt, sc->base_fw_ndsb);
elink_phy_probe(&sc->link_params);
return (0);
}
static void
bxe_link_settings_supported(struct bxe_softc *sc,
uint32_t switch_cfg)
{
uint32_t cfg_size = 0;
uint32_t idx;
uint8_t port = SC_PORT(sc);
/* aggregation of supported attributes of all external phys */
sc->port.supported[0] = 0;
sc->port.supported[1] = 0;
switch (sc->link_params.num_phys) {
case 1:
sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
cfg_size = 1;
break;
case 2:
sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
cfg_size = 1;
break;
case 3:
if (sc->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
sc->port.supported[1] =
sc->link_params.phy[ELINK_EXT_PHY1].supported;
sc->port.supported[0] =
sc->link_params.phy[ELINK_EXT_PHY2].supported;
} else {
sc->port.supported[0] =
sc->link_params.phy[ELINK_EXT_PHY1].supported;
sc->port.supported[1] =
sc->link_params.phy[ELINK_EXT_PHY2].supported;
}
cfg_size = 2;
break;
}
if (!(sc->port.supported[0] || sc->port.supported[1])) {
BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
SHMEM_RD(sc,
dev_info.port_hw_config[port].external_phy_config),
SHMEM_RD(sc,
dev_info.port_hw_config[port].external_phy_config2));
return;
}
if (CHIP_IS_E3(sc))
sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
else {
switch (switch_cfg) {
case ELINK_SWITCH_CFG_1G:
sc->port.phy_addr =
REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
break;
case ELINK_SWITCH_CFG_10G:
sc->port.phy_addr =
REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
break;
default:
BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
sc->port.link_config[0]);
return;
}
}
BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
/* mask what we support according to speed_cap_mask per configuration */
for (idx = 0; idx < cfg_size; idx++) {
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
}
}
BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
sc->port.supported[0], sc->port.supported[1]);
ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
sc->port.supported[0], sc->port.supported[1]);
}
static void
bxe_link_settings_requested(struct bxe_softc *sc)
{
uint32_t link_config;
uint32_t idx;
uint32_t cfg_size = 0;
sc->port.advertising[0] = 0;
sc->port.advertising[1] = 0;
switch (sc->link_params.num_phys) {
case 1:
case 2:
cfg_size = 1;
break;
case 3:
cfg_size = 2;
break;
}
for (idx = 0; idx < cfg_size; idx++) {
sc->link_params.req_duplex[idx] = DUPLEX_FULL;
link_config = sc->port.link_config[idx];
switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
case PORT_FEATURE_LINK_SPEED_AUTO:
if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
sc->port.advertising[idx] |= sc->port.supported[idx];
if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
sc->port.advertising[idx] |=
(ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full);
} else {
/* force 10G, no AN */
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
sc->port.advertising[idx] |=
(ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
continue;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_FULL:
if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
ADVERTISED_TP);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_HALF:
if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
sc->link_params.req_duplex[idx] = DUPLEX_HALF;
sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
ADVERTISED_TP);
ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
sc->link_params.req_duplex[idx]);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_FULL:
if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
ADVERTISED_TP);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_HALF:
if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
sc->link_params.req_duplex[idx] = DUPLEX_HALF;
sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
ADVERTISED_TP);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_1G:
if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
ADVERTISED_TP);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_2_5G:
if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
ADVERTISED_TP);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_10G_CX4:
if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_20G:
sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
break;
default:
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
sc->port.advertising[idx] = sc->port.supported[idx];
break;
}
sc->link_params.req_flow_ctrl[idx] =
(link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
} else {
bxe_set_requested_fc(sc);
}
}
BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
"req_flow_ctrl=0x%x advertising=0x%x\n",
sc->link_params.req_line_speed[idx],
sc->link_params.req_duplex[idx],
sc->link_params.req_flow_ctrl[idx],
sc->port.advertising[idx]);
ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
"advertising=0x%x\n",
sc->link_params.req_line_speed[idx],
sc->link_params.req_duplex[idx],
sc->port.advertising[idx]);
}
}
static void
bxe_get_phy_info(struct bxe_softc *sc)
{
uint8_t port = SC_PORT(sc);
uint32_t config = sc->port.config;
uint32_t eee_mode;
/* shmem data already read in bxe_get_shmem_info() */
ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
"link_config0=0x%08x\n",
sc->link_params.lane_config,
sc->link_params.speed_cap_mask[0],
sc->port.link_config[0]);
bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
bxe_link_settings_requested(sc);
if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
sc->link_params.feature_config_flags |=
ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
} else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
sc->link_params.feature_config_flags &=
~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
} else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
sc->link_params.feature_config_flags |=
ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
}
/* configure link feature according to nvram value */
eee_mode =
(((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
ELINK_EEE_MODE_ENABLE_LPI |
ELINK_EEE_MODE_OUTPUT_TIME);
} else {
sc->link_params.eee_mode = 0;
}
/* get the media type */
bxe_media_detect(sc);
ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
}
static void
bxe_get_params(struct bxe_softc *sc)
{
/* get user tunable params */
bxe_get_tunable_params(sc);
/* select the RX and TX ring sizes */
sc->tx_ring_size = TX_BD_USABLE;
sc->rx_ring_size = RX_BD_USABLE;
/* XXX disable WoL */
sc->wol = 0;
}
static void
bxe_set_modes_bitmap(struct bxe_softc *sc)
{
uint32_t flags = 0;
if (CHIP_REV_IS_FPGA(sc)) {
SET_FLAGS(flags, MODE_FPGA);
} else if (CHIP_REV_IS_EMUL(sc)) {
SET_FLAGS(flags, MODE_EMUL);
} else {
SET_FLAGS(flags, MODE_ASIC);
}
if (CHIP_IS_MODE_4_PORT(sc)) {
SET_FLAGS(flags, MODE_PORT4);
} else {
SET_FLAGS(flags, MODE_PORT2);
}
if (CHIP_IS_E2(sc)) {
SET_FLAGS(flags, MODE_E2);
} else if (CHIP_IS_E3(sc)) {
SET_FLAGS(flags, MODE_E3);
if (CHIP_REV(sc) == CHIP_REV_Ax) {
SET_FLAGS(flags, MODE_E3_A0);
} else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
}
}
if (IS_MF(sc)) {
SET_FLAGS(flags, MODE_MF);
switch (sc->devinfo.mf_info.mf_mode) {
case MULTI_FUNCTION_SD:
SET_FLAGS(flags, MODE_MF_SD);
break;
case MULTI_FUNCTION_SI:
SET_FLAGS(flags, MODE_MF_SI);
break;
case MULTI_FUNCTION_AFEX:
SET_FLAGS(flags, MODE_MF_AFEX);
break;
}
} else {
SET_FLAGS(flags, MODE_SF);
}
#if defined(__LITTLE_ENDIAN)
SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
#else /* __BIG_ENDIAN */
SET_FLAGS(flags, MODE_BIG_ENDIAN);
#endif
INIT_MODE_FLAGS(sc) = flags;
}
static int
bxe_alloc_hsi_mem(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
bus_addr_t busaddr;
int max_agg_queues;
int max_segments;
bus_size_t max_size;
bus_size_t max_seg_size;
char buf[32];
int rc;
int i, j;
/* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
/* allocate the parent bus DMA tag */
rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
1, /* alignment */
0, /* boundary limit */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* addr filter() */
NULL, /* addr filter() arg */
BUS_SPACE_MAXSIZE_32BIT, /* max map size */
BUS_SPACE_UNRESTRICTED, /* num discontinuous */
BUS_SPACE_MAXSIZE_32BIT, /* max seg size */
0, /* flags */
NULL, /* lock() */
NULL, /* lock() arg */
&sc->parent_dma_tag); /* returned dma tag */
if (rc != 0) {
BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
return (1);
}
/************************/
/* DEFAULT STATUS BLOCK */
/************************/
if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
&sc->def_sb_dma, "default status block") != 0) {
/* XXX */
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
/***************/
/* EVENT QUEUE */
/***************/
if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
&sc->eq_dma, "event queue") != 0) {
/* XXX */
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
/*************/
/* SLOW PATH */
/*************/
if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
&sc->sp_dma, "slow path") != 0) {
/* XXX */
bxe_dma_free(sc, &sc->eq_dma);
sc->eq = NULL;
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
/*******************/
/* SLOW PATH QUEUE */
/*******************/
if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
&sc->spq_dma, "slow path queue") != 0) {
/* XXX */
bxe_dma_free(sc, &sc->sp_dma);
sc->sp = NULL;
bxe_dma_free(sc, &sc->eq_dma);
sc->eq = NULL;
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
/***************************/
/* FW DECOMPRESSION BUFFER */
/***************************/
if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
"fw decompression buffer") != 0) {
/* XXX */
bxe_dma_free(sc, &sc->spq_dma);
sc->spq = NULL;
bxe_dma_free(sc, &sc->sp_dma);
sc->sp = NULL;
bxe_dma_free(sc, &sc->eq_dma);
sc->eq = NULL;
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
if ((sc->gz_strm =
malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
/* XXX */
bxe_dma_free(sc, &sc->gz_buf_dma);
sc->gz_buf = NULL;
bxe_dma_free(sc, &sc->spq_dma);
sc->spq = NULL;
bxe_dma_free(sc, &sc->sp_dma);
sc->sp = NULL;
bxe_dma_free(sc, &sc->eq_dma);
sc->eq = NULL;
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
/*************/
/* FASTPATHS */
/*************/
/* allocate DMA memory for each fastpath structure */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
fp->sc = sc;
fp->index = i;
/*******************/
/* FP STATUS BLOCK */
/*******************/
snprintf(buf, sizeof(buf), "fp %d status block", i);
if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
&fp->sb_dma, buf) != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to alloc %s\n", buf);
return (1);
} else {
if (CHIP_IS_E2E3(sc)) {
fp->status_block.e2_sb =
(struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
} else {
fp->status_block.e1x_sb =
(struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
}
}
/******************/
/* FP TX BD CHAIN */
/******************/
snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
&fp->tx_dma, buf) != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to alloc %s\n", buf);
return (1);
} else {
fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
}
/* link together the tx bd chain pages */
for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
/* index into the tx bd chain array to last entry per page */
struct eth_tx_next_bd *tx_next_bd =
&fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
/* point to the next page and wrap from last page */
busaddr = (fp->tx_dma.paddr +
(BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
}
/******************/
/* FP RX BD CHAIN */
/******************/
snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
&fp->rx_dma, buf) != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to alloc %s\n", buf);
return (1);
} else {
fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
}
/* link together the rx bd chain pages */
for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
/* index into the rx bd chain array to last entry per page */
struct eth_rx_bd *rx_bd =
&fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
/* point to the next page and wrap from last page */
busaddr = (fp->rx_dma.paddr +
(BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
rx_bd->addr_hi = htole32(U64_HI(busaddr));
rx_bd->addr_lo = htole32(U64_LO(busaddr));
}
/*******************/
/* FP RX RCQ CHAIN */
/*******************/
snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
&fp->rcq_dma, buf) != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to alloc %s\n", buf);
return (1);
} else {
fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
}
/* link together the rcq chain pages */
for (j = 1; j <= RCQ_NUM_PAGES; j++) {
/* index into the rcq chain array to last entry per page */
struct eth_rx_cqe_next_page *rx_cqe_next =
(struct eth_rx_cqe_next_page *)
&fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
/* point to the next page and wrap from last page */
busaddr = (fp->rcq_dma.paddr +
(BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
}
/*******************/
/* FP RX SGE CHAIN */
/*******************/
snprintf(buf, sizeof(buf), "fp %d sge chain", i);
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
&fp->rx_sge_dma, buf) != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to alloc %s\n", buf);
return (1);
} else {
fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
}
/* link together the sge chain pages */
for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
/* index into the rcq chain array to last entry per page */
struct eth_rx_sge *rx_sge =
&fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
/* point to the next page and wrap from last page */
busaddr = (fp->rx_sge_dma.paddr +
(BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
rx_sge->addr_hi = htole32(U64_HI(busaddr));
rx_sge->addr_lo = htole32(U64_LO(busaddr));
}
/***********************/
/* FP TX MBUF DMA MAPS */
/***********************/
/* set required sizes before mapping to conserve resources */
if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
max_size = BXE_TSO_MAX_SIZE;
max_segments = BXE_TSO_MAX_SEGMENTS;
max_seg_size = BXE_TSO_MAX_SEG_SIZE;
} else {
max_size = (MCLBYTES * BXE_MAX_SEGMENTS);
max_segments = BXE_MAX_SEGMENTS;
max_seg_size = MCLBYTES;
}
/* create a dma tag for the tx mbufs */
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
1, /* alignment */
0, /* boundary limit */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* addr filter() */
NULL, /* addr filter() arg */
max_size, /* max map size */
max_segments, /* num discontinuous */
max_seg_size, /* max seg size */
0, /* flags */
NULL, /* lock() */
NULL, /* lock() arg */
&fp->tx_mbuf_tag); /* returned dma tag */
if (rc != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma tag for "
"'fp %d tx mbufs' (%d)\n", i, rc);
return (1);
}
/* create dma maps for each of the tx mbuf clusters */
for (j = 0; j < TX_BD_TOTAL; j++) {
if (bus_dmamap_create(fp->tx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->tx_mbuf_chain[j].m_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d tx mbuf %d' (%d)\n", i, j, rc);
return (1);
}
}
/***********************/
/* FP RX MBUF DMA MAPS */
/***********************/
/* create a dma tag for the rx mbufs */
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
1, /* alignment */
0, /* boundary limit */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* addr filter() */
NULL, /* addr filter() arg */
MJUM9BYTES, /* max map size */
1, /* num discontinuous */
MJUM9BYTES, /* max seg size */
0, /* flags */
NULL, /* lock() */
NULL, /* lock() arg */
&fp->rx_mbuf_tag); /* returned dma tag */
if (rc != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma tag for "
"'fp %d rx mbufs' (%d)\n", i, rc);
return (1);
}
/* create dma maps for each of the rx mbuf clusters */
for (j = 0; j < RX_BD_TOTAL; j++) {
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_mbuf_chain[j].m_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d rx mbuf %d' (%d)\n", i, j, rc);
return (1);
}
}
/* create dma map for the spare rx mbuf cluster */
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_mbuf_spare_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d spare rx mbuf' (%d)\n", i, rc);
return (1);
}
/***************************/
/* FP RX SGE MBUF DMA MAPS */
/***************************/
/* create a dma tag for the rx sge mbufs */
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
1, /* alignment */
0, /* boundary limit */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* addr filter() */
NULL, /* addr filter() arg */
BCM_PAGE_SIZE, /* max map size */
1, /* num discontinuous */
BCM_PAGE_SIZE, /* max seg size */
0, /* flags */
NULL, /* lock() */
NULL, /* lock() arg */
&fp->rx_sge_mbuf_tag); /* returned dma tag */
if (rc != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma tag for "
"'fp %d rx sge mbufs' (%d)\n", i, rc);
return (1);
}
/* create dma maps for the rx sge mbuf clusters */
for (j = 0; j < RX_SGE_TOTAL; j++) {
if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_sge_mbuf_chain[j].m_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
return (1);
}
}
/* create dma map for the spare rx sge mbuf cluster */
if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_sge_mbuf_spare_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d spare rx sge mbuf' (%d)\n", i, rc);
return (1);
}
/***************************/
/* FP RX TPA MBUF DMA MAPS */
/***************************/
/* create dma maps for the rx tpa mbuf clusters */
max_agg_queues = MAX_AGG_QS(sc);
for (j = 0; j < max_agg_queues; j++) {
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_tpa_info[j].bd.m_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
return (1);
}
}
/* create dma map for the spare rx tpa mbuf cluster */
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_tpa_info_mbuf_spare_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
return (1);
}
bxe_init_sge_ring_bit_mask(fp);
}
return (0);
}
static void
bxe_free_hsi_mem(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int max_agg_queues;
int i, j;
if (sc->parent_dma_tag == NULL) {
return; /* assume nothing was allocated */
}
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
/*******************/
/* FP STATUS BLOCK */
/*******************/
bxe_dma_free(sc, &fp->sb_dma);
memset(&fp->status_block, 0, sizeof(fp->status_block));
/******************/
/* FP TX BD CHAIN */
/******************/
bxe_dma_free(sc, &fp->tx_dma);
fp->tx_chain = NULL;
/******************/
/* FP RX BD CHAIN */
/******************/
bxe_dma_free(sc, &fp->rx_dma);
fp->rx_chain = NULL;
/*******************/
/* FP RX RCQ CHAIN */
/*******************/
bxe_dma_free(sc, &fp->rcq_dma);
fp->rcq_chain = NULL;
/*******************/
/* FP RX SGE CHAIN */
/*******************/
bxe_dma_free(sc, &fp->rx_sge_dma);
fp->rx_sge_chain = NULL;
/***********************/
/* FP TX MBUF DMA MAPS */
/***********************/
if (fp->tx_mbuf_tag != NULL) {
for (j = 0; j < TX_BD_TOTAL; j++) {
if (fp->tx_mbuf_chain[j].m_map != NULL) {
bus_dmamap_unload(fp->tx_mbuf_tag,
fp->tx_mbuf_chain[j].m_map);
bus_dmamap_destroy(fp->tx_mbuf_tag,
fp->tx_mbuf_chain[j].m_map);
}
}
bus_dma_tag_destroy(fp->tx_mbuf_tag);
fp->tx_mbuf_tag = NULL;
}
/***********************/
/* FP RX MBUF DMA MAPS */
/***********************/
if (fp->rx_mbuf_tag != NULL) {
for (j = 0; j < RX_BD_TOTAL; j++) {
if (fp->rx_mbuf_chain[j].m_map != NULL) {
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_mbuf_chain[j].m_map);
bus_dmamap_destroy(fp->rx_mbuf_tag,
fp->rx_mbuf_chain[j].m_map);
}
}
if (fp->rx_mbuf_spare_map != NULL) {
bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
}
/***************************/
/* FP RX TPA MBUF DMA MAPS */
/***************************/
max_agg_queues = MAX_AGG_QS(sc);
for (j = 0; j < max_agg_queues; j++) {
if (fp->rx_tpa_info[j].bd.m_map != NULL) {
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_tpa_info[j].bd.m_map);
bus_dmamap_destroy(fp->rx_mbuf_tag,
fp->rx_tpa_info[j].bd.m_map);
}
}
if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_tpa_info_mbuf_spare_map);
bus_dmamap_destroy(fp->rx_mbuf_tag,
fp->rx_tpa_info_mbuf_spare_map);
}
bus_dma_tag_destroy(fp->rx_mbuf_tag);
fp->rx_mbuf_tag = NULL;
}
/***************************/
/* FP RX SGE MBUF DMA MAPS */
/***************************/
if (fp->rx_sge_mbuf_tag != NULL) {
for (j = 0; j < RX_SGE_TOTAL; j++) {
if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
bus_dmamap_unload(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_chain[j].m_map);
bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_chain[j].m_map);
}
}
if (fp->rx_sge_mbuf_spare_map != NULL) {
bus_dmamap_unload(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_spare_map);
bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_spare_map);
}
bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
fp->rx_sge_mbuf_tag = NULL;
}
}
/***************************/
/* FW DECOMPRESSION BUFFER */
/***************************/
bxe_dma_free(sc, &sc->gz_buf_dma);
sc->gz_buf = NULL;
free(sc->gz_strm, M_DEVBUF);
sc->gz_strm = NULL;
/*******************/
/* SLOW PATH QUEUE */
/*******************/
bxe_dma_free(sc, &sc->spq_dma);
sc->spq = NULL;
/*************/
/* SLOW PATH */
/*************/
bxe_dma_free(sc, &sc->sp_dma);
sc->sp = NULL;
/***************/
/* EVENT QUEUE */
/***************/
bxe_dma_free(sc, &sc->eq_dma);
sc->eq = NULL;
/************************/
/* DEFAULT STATUS BLOCK */
/************************/
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
sc->parent_dma_tag = NULL;
}
/*
* Previous driver DMAE transaction may have occurred when pre-boot stage
* ended and boot began. This would invalidate the addresses of the
* transaction, resulting in was-error bit set in the PCI causing all
* hw-to-host PCIe transactions to timeout. If this happened we want to clear
* the interrupt which detected this from the pglueb and the was-done bit
*/
static void
bxe_prev_interrupted_dmae(struct bxe_softc *sc)
{
uint32_t val;
if (!CHIP_IS_E1x(sc)) {
val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
BLOGD(sc, DBG_LOAD,
"Clearing 'was-error' bit that was set in pglueb");
REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
}
}
}
static int
bxe_prev_mcp_done(struct bxe_softc *sc)
{
uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
if (!rc) {
BLOGE(sc, "MCP response failure, aborting\n");
return (-1);
}
return (0);
}
static struct bxe_prev_list_node *
bxe_prev_path_get_entry(struct bxe_softc *sc)
{
struct bxe_prev_list_node *tmp;
LIST_FOREACH(tmp, &bxe_prev_list, node) {
if ((sc->pcie_bus == tmp->bus) &&
(sc->pcie_device == tmp->slot) &&
(SC_PATH(sc) == tmp->path)) {
return (tmp);
}
}
return (NULL);
}
static uint8_t
bxe_prev_is_path_marked(struct bxe_softc *sc)
{
struct bxe_prev_list_node *tmp;
int rc = FALSE;
mtx_lock(&bxe_prev_mtx);
tmp = bxe_prev_path_get_entry(sc);
if (tmp) {
if (tmp->aer) {
BLOGD(sc, DBG_LOAD,
"Path %d/%d/%d was marked by AER\n",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
} else {
rc = TRUE;
BLOGD(sc, DBG_LOAD,
"Path %d/%d/%d was already cleaned from previous drivers\n",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
}
}
mtx_unlock(&bxe_prev_mtx);
return (rc);
}
static int
bxe_prev_mark_path(struct bxe_softc *sc,
uint8_t after_undi)
{
struct bxe_prev_list_node *tmp;
mtx_lock(&bxe_prev_mtx);
/* Check whether the entry for this path already exists */
tmp = bxe_prev_path_get_entry(sc);
if (tmp) {
if (!tmp->aer) {
BLOGD(sc, DBG_LOAD,
"Re-marking AER in path %d/%d/%d\n",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
} else {
BLOGD(sc, DBG_LOAD,
"Removing AER indication from path %d/%d/%d\n",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
tmp->aer = 0;
}
mtx_unlock(&bxe_prev_mtx);
return (0);
}
mtx_unlock(&bxe_prev_mtx);
/* Create an entry for this path and add it */
tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
(M_NOWAIT | M_ZERO));
if (!tmp) {
BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
return (-1);
}
tmp->bus = sc->pcie_bus;
tmp->slot = sc->pcie_device;
tmp->path = SC_PATH(sc);
tmp->aer = 0;
tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
mtx_lock(&bxe_prev_mtx);
BLOGD(sc, DBG_LOAD,
"Marked path %d/%d/%d - finished previous unload\n",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
mtx_unlock(&bxe_prev_mtx);
return (0);
}
static int
bxe_do_flr(struct bxe_softc *sc)
{
int i;
/* only E2 and onwards support FLR */
if (CHIP_IS_E1x(sc)) {
BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
return (-1);
}
/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
sc->devinfo.bc_ver);
return (-1);
}
/* Wait for Transaction Pending bit clean */
for (i = 0; i < 4; i++) {
if (i) {
DELAY(((1 << (i - 1)) * 100) * 1000);
}
if (!bxe_is_pcie_pending(sc)) {
goto clear;
}
}
BLOGE(sc, "PCIE transaction is not cleared, "
"proceeding with reset anyway\n");
clear:
BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
return (0);
}
struct bxe_mac_vals {
uint32_t xmac_addr;
uint32_t xmac_val;
uint32_t emac_addr;
uint32_t emac_val;
uint32_t umac_addr;
uint32_t umac_val;
uint32_t bmac_addr;
uint32_t bmac_val[2];
};
static void
bxe_prev_unload_close_mac(struct bxe_softc *sc,
struct bxe_mac_vals *vals)
{
uint32_t val, base_addr, offset, mask, reset_reg;
uint8_t mac_stopped = FALSE;
uint8_t port = SC_PORT(sc);
uint32_t wb_data[2];
/* reset addresses as they also mark which values were changed */
vals->bmac_addr = 0;
vals->umac_addr = 0;
vals->xmac_addr = 0;
vals->emac_addr = 0;
reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
if (!CHIP_IS_E3(sc)) {
val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
if ((mask & reset_reg) && val) {
BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
: NIG_REG_INGRESS_BMAC0_MEM;
offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
: BIGMAC_REGISTER_BMAC_CONTROL;
/*
* use rd/wr since we cannot use dmae. This is safe
* since MCP won't access the bus due to the request
* to unload, and no function on the path can be
* loaded at this time.
*/
wb_data[0] = REG_RD(sc, base_addr + offset);
wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
vals->bmac_addr = base_addr + offset;
vals->bmac_val[0] = wb_data[0];
vals->bmac_val[1] = wb_data[1];
wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
REG_WR(sc, vals->bmac_addr, wb_data[0]);
REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
}
BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
vals->emac_val = REG_RD(sc, vals->emac_addr);
REG_WR(sc, vals->emac_addr, 0);
mac_stopped = TRUE;
} else {
if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
vals->xmac_addr = base_addr + XMAC_REG_CTRL;
vals->xmac_val = REG_RD(sc, vals->xmac_addr);
REG_WR(sc, vals->xmac_addr, 0);
mac_stopped = TRUE;
}
mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
if (mask & reset_reg) {
BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
vals->umac_val = REG_RD(sc, vals->umac_addr);
REG_WR(sc, vals->umac_addr, 0);
mac_stopped = TRUE;
}
}
if (mac_stopped) {
DELAY(20000);
}
}
#define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
#define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff)
#define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
static void
bxe_prev_unload_undi_inc(struct bxe_softc *sc,
uint8_t port,
uint8_t inc)
{
uint16_t rcq, bd;
uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
BLOGD(sc, DBG_LOAD,
"UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
port, bd, rcq);
}
static int
bxe_prev_unload_common(struct bxe_softc *sc)
{
uint32_t reset_reg, tmp_reg = 0, rc;
uint8_t prev_undi = FALSE;
struct bxe_mac_vals mac_vals;
uint32_t timer_count = 1000;
uint32_t prev_brb;
/*
* It is possible a previous function received 'common' answer,
* but hasn't loaded yet, therefore creating a scenario of
* multiple functions receiving 'common' on the same path.
*/
BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
memset(&mac_vals, 0, sizeof(mac_vals));
if (bxe_prev_is_path_marked(sc)) {
return (bxe_prev_mcp_done(sc));
}
reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
/* Reset should be performed after BRB is emptied */
if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
/* Close the MAC Rx to prevent BRB from filling up */
bxe_prev_unload_close_mac(sc, &mac_vals);
/* close LLH filters towards the BRB */
elink_set_rx_filter(&sc->link_params, 0);
/*
* Check if the UNDI driver was previously loaded.
* UNDI driver initializes CID offset for normal bell to 0x7
*/
if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
if (tmp_reg == 0x7) {
BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
prev_undi = TRUE;
/* clear the UNDI indication */
REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
/* clear possible idle check errors */
REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
}
}
/* wait until BRB is empty */
tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
while (timer_count) {
prev_brb = tmp_reg;
tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
if (!tmp_reg) {
break;
}
BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
/* reset timer as long as BRB actually gets emptied */
if (prev_brb > tmp_reg) {
timer_count = 1000;
} else {
timer_count--;
}
/* If UNDI resides in memory, manually increment it */
if (prev_undi) {
bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
}
DELAY(10);
}
if (!timer_count) {
BLOGE(sc, "Failed to empty BRB\n");
}
}
/* No packets are in the pipeline, path is ready for reset */
bxe_reset_common(sc);
if (mac_vals.xmac_addr) {
REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
}
if (mac_vals.umac_addr) {
REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
}
if (mac_vals.emac_addr) {
REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
}
if (mac_vals.bmac_addr) {
REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
}
rc = bxe_prev_mark_path(sc, prev_undi);
if (rc) {
bxe_prev_mcp_done(sc);
return (rc);
}
return (bxe_prev_mcp_done(sc));
}
static int
bxe_prev_unload_uncommon(struct bxe_softc *sc)
{
int rc;
BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
/* Test if previous unload process was already finished for this path */
if (bxe_prev_is_path_marked(sc)) {
return (bxe_prev_mcp_done(sc));
}
BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
/*
* If function has FLR capabilities, and existing FW version matches
* the one required, then FLR will be sufficient to clean any residue
* left by previous driver
*/
rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
if (!rc) {
/* fw version is good */
BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
rc = bxe_do_flr(sc);
}
if (!rc) {
/* FLR was performed */
BLOGD(sc, DBG_LOAD, "FLR successful\n");
return (0);
}
BLOGD(sc, DBG_LOAD, "Could not FLR\n");
/* Close the MCP request, return failure*/
rc = bxe_prev_mcp_done(sc);
if (!rc) {
rc = BXE_PREV_WAIT_NEEDED;
}
return (rc);
}
static int
bxe_prev_unload(struct bxe_softc *sc)
{
int time_counter = 10;
uint32_t fw, hw_lock_reg, hw_lock_val;
uint32_t rc = 0;
/*
* Clear HW from errors which may have resulted from an interrupted
* DMAE transaction.
*/
bxe_prev_interrupted_dmae(sc);
/* Release previously held locks */
hw_lock_reg =
(SC_FUNC(sc) <= 5) ?
(MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
(MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
hw_lock_val = (REG_RD(sc, hw_lock_reg));
if (hw_lock_val) {
if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
}
BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
REG_WR(sc, hw_lock_reg, 0xffffffff);
} else {
BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
}
if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
}
do {
/* Lock MCP using an unload request */
fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
if (!fw) {
BLOGE(sc, "MCP response failure, aborting\n");
rc = -1;
break;
}
if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
rc = bxe_prev_unload_common(sc);
break;
}
/* non-common reply from MCP night require looping */
rc = bxe_prev_unload_uncommon(sc);
if (rc != BXE_PREV_WAIT_NEEDED) {
break;
}
DELAY(20000);
} while (--time_counter);
if (!time_counter || rc) {
BLOGE(sc, "Failed to unload previous driver!"
" time_counter %d rc %d\n", time_counter, rc);
rc = -1;
}
return (rc);
}
void
bxe_dcbx_set_state(struct bxe_softc *sc,
uint8_t dcb_on,
uint32_t dcbx_enabled)
{
if (!CHIP_IS_E1x(sc)) {
sc->dcb_state = dcb_on;
sc->dcbx_enabled = dcbx_enabled;
} else {
sc->dcb_state = FALSE;
sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
}
BLOGD(sc, DBG_LOAD,
"DCB state [%s:%s]\n",
dcb_on ? "ON" : "OFF",
(dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
(dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
(dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
"on-chip with negotiation" : "invalid");
}
/* must be called after sriov-enable */
static int
bxe_set_qm_cid_count(struct bxe_softc *sc)
{
int cid_count = BXE_L2_MAX_CID(sc);
if (IS_SRIOV(sc)) {
cid_count += BXE_VF_CIDS;
}
if (CNIC_SUPPORT(sc)) {
cid_count += CNIC_CID_MAX;
}
return (roundup(cid_count, QM_CID_ROUND));
}
static void
bxe_init_multi_cos(struct bxe_softc *sc)
{
int pri, cos;
uint32_t pri_map = 0; /* XXX change to user config */
for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
if (cos < sc->max_cos) {
sc->prio_to_cos[pri] = cos;
} else {
BLOGW(sc, "Invalid COS %d for priority %d "
"(max COS is %d), setting to 0\n",
cos, pri, (sc->max_cos - 1));
sc->prio_to_cos[pri] = 0;
}
}
}
static int
bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
int error, result;
result = 0;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr) {
return (error);
}
if (result == 1) {
uint32_t temp;
sc = (struct bxe_softc *)arg1;
BLOGI(sc, "... dumping driver state ...\n");
temp = SHMEM2_RD(sc, temperature_in_half_celsius);
BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
}
return (error);
}
static int
bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc = (struct bxe_softc *)arg1;
uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
uint32_t *offset;
uint64_t value = 0;
int index = (int)arg2;
if (index >= BXE_NUM_ETH_STATS) {
BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
return (-1);
}
offset = (eth_stats + bxe_eth_stats_arr[index].offset);
switch (bxe_eth_stats_arr[index].size) {
case 4:
value = (uint64_t)*offset;
break;
case 8:
value = HILO_U64(*offset, *(offset + 1));
break;
default:
BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
index, bxe_eth_stats_arr[index].size);
return (-1);
}
return (sysctl_handle_64(oidp, &value, 0, req));
}
static int
bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc = (struct bxe_softc *)arg1;
uint32_t *eth_stats;
uint32_t *offset;
uint64_t value = 0;
uint32_t q_stat = (uint32_t)arg2;
uint32_t fp_index = ((q_stat >> 16) & 0xffff);
uint32_t index = (q_stat & 0xffff);
eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
if (index >= BXE_NUM_ETH_Q_STATS) {
BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
return (-1);
}
offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
switch (bxe_eth_q_stats_arr[index].size) {
case 4:
value = (uint64_t)*offset;
break;
case 8:
value = HILO_U64(*offset, *(offset + 1));
break;
default:
BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
index, bxe_eth_q_stats_arr[index].size);
return (-1);
}
return (sysctl_handle_64(oidp, &value, 0, req));
}
static void bxe_force_link_reset(struct bxe_softc *sc)
{
bxe_acquire_phy_lock(sc);
elink_link_reset(&sc->link_params, &sc->link_vars, 1);
bxe_release_phy_lock(sc);
}
static int
bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc = (struct bxe_softc *)arg1;;
uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
int rc = 0;
int error;
int result;
error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
if (error || !req->newptr) {
return (error);
}
if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) {
BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param);
sc->bxe_pause_param = 8;
}
result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) {
BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
return -EINVAL;
}
if(IS_MF(sc))
return 0;
sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
if(result & ELINK_FLOW_CTRL_RX)
sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
if(result & ELINK_FLOW_CTRL_TX)
sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
if(result & 0x400) {
if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
sc->link_params.req_flow_ctrl[cfg_idx] =
ELINK_FLOW_CTRL_AUTO;
}
sc->link_params.req_fc_auto_adv = 0;
if (result & ELINK_FLOW_CTRL_RX)
sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
if (result & ELINK_FLOW_CTRL_TX)
sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
if (!sc->link_params.req_fc_auto_adv)
sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
}
if (IS_PF(sc)) {
if (sc->link_vars.link_up) {
bxe_stats_handle(sc, STATS_EVENT_STOP);
}
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
bxe_force_link_reset(sc);
bxe_acquire_phy_lock(sc);
rc = elink_phy_init(&sc->link_params, &sc->link_vars);
bxe_release_phy_lock(sc);
bxe_calc_fc_adv(sc);
}
}
return rc;
}
static void
bxe_add_sysctls(struct bxe_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
struct sysctl_oid *queue_top, *queue;
struct sysctl_oid_list *queue_top_children, *queue_children;
char queue_num_buf[32];
uint32_t q_stat;
int i, j;
ctx = device_get_sysctl_ctx(sc->dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
"version");
snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
BCM_5710_FW_MAJOR_VERSION,
BCM_5710_FW_MINOR_VERSION,
BCM_5710_FW_REVISION_VERSION,
BCM_5710_FW_ENGINEERING_VERSION);
snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" :
(sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" :
(sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" :
(sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
"Unknown"));
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
"multifunction vnics per port");
snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
(sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
(sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
"???GT/s"),
sc->devinfo.pcie_link_width);
sc->debug = bxe_debug;
#if __FreeBSD_version >= 900000
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
"bootcode version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
CTLFLAG_RD, sc->fw_ver_str, 0,
"firmware version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
CTLFLAG_RD, sc->mf_mode_str, 0,
"multifunction mode");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
CTLFLAG_RD, sc->mac_addr_str, 0,
"mac address");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
CTLFLAG_RD, sc->pci_link_str, 0,
"pci link status");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
CTLFLAG_RW, &sc->debug,
"debug logging mode");
#else
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
"bootcode version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
CTLFLAG_RD, &sc->fw_ver_str, 0,
"firmware version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
CTLFLAG_RD, &sc->mf_mode_str, 0,
"multifunction mode");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
CTLFLAG_RD, &sc->mac_addr_str, 0,
"mac address");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
CTLFLAG_RD, &sc->pci_link_str, 0,
"pci link status");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
CTLFLAG_RW, &sc->debug, 0,
"debug logging mode");
#endif /* #if __FreeBSD_version >= 900000 */
sc->trigger_grcdump = 0;
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
CTLFLAG_RW, &sc->trigger_grcdump, 0,
"trigger grcdump should be invoked"
" before collecting grcdump");
sc->grcdump_started = 0;
sc->grcdump_done = 0;
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
CTLFLAG_RD, &sc->grcdump_done, 0,
"set by driver when grcdump is done");
sc->rx_budget = bxe_rx_budget;
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
CTLFLAG_RW, &sc->rx_budget, 0,
"rx processing budget");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
bxe_sysctl_pauseparam, "IU",
"need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
bxe_sysctl_state, "IU", "dump driver state");
for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
bxe_eth_stats_arr[i].string,
CTLTYPE_U64 | CTLFLAG_RD, sc, i,
bxe_sysctl_eth_stat, "LU",
bxe_eth_stats_arr[i].string);
}
/* add a new parent node for all queues "dev.bxe.#.queue" */
queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
CTLFLAG_RD, NULL, "queue");
queue_top_children = SYSCTL_CHILDREN(queue_top);
for (i = 0; i < sc->num_queues; i++) {
/* add a new parent node for a single queue "dev.bxe.#.queue.#" */
snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
queue_num_buf, CTLFLAG_RD, NULL,
"single queue");
queue_children = SYSCTL_CHILDREN(queue);
for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
q_stat = ((i << 16) | j);
SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
bxe_eth_q_stats_arr[j].string,
CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
bxe_sysctl_eth_q_stat, "LU",
bxe_eth_q_stats_arr[j].string);
}
}
}
static int
bxe_alloc_buf_rings(struct bxe_softc *sc)
{
#if __FreeBSD_version >= 901504
int i;
struct bxe_fastpath *fp;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
M_NOWAIT, &fp->tx_mtx);
if (fp->tx_br == NULL)
return (-1);
}
#endif
return (0);
}
static void
bxe_free_buf_rings(struct bxe_softc *sc)
{
#if __FreeBSD_version >= 901504
int i;
struct bxe_fastpath *fp;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->tx_br) {
buf_ring_free(fp->tx_br, M_DEVBUF);
fp->tx_br = NULL;
}
}
#endif
}
static void
bxe_init_fp_mutexs(struct bxe_softc *sc)
{
int i;
struct bxe_fastpath *fp;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
"bxe%d_fp%d_tx_lock", sc->unit, i);
mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
"bxe%d_fp%d_rx_lock", sc->unit, i);
mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
}
}
static void
bxe_destroy_fp_mutexs(struct bxe_softc *sc)
{
int i;
struct bxe_fastpath *fp;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (mtx_initialized(&fp->tx_mtx)) {
mtx_destroy(&fp->tx_mtx);
}
if (mtx_initialized(&fp->rx_mtx)) {
mtx_destroy(&fp->rx_mtx);
}
}
}
/*
* Device attach function.
*
* Allocates device resources, performs secondary chip identification, and
* initializes driver instance variables. This function is called from driver
* load after a successful probe.
*
* Returns:
* 0 = Success, >0 = Failure
*/
static int
bxe_attach(device_t dev)
{
struct bxe_softc *sc;
sc = device_get_softc(dev);
BLOGD(sc, DBG_LOAD, "Starting attach...\n");
sc->state = BXE_STATE_CLOSED;
sc->dev = dev;
sc->unit = device_get_unit(dev);
BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
sc->pcie_bus = pci_get_bus(dev);
sc->pcie_device = pci_get_slot(dev);
sc->pcie_func = pci_get_function(dev);
/* enable bus master capability */
pci_enable_busmaster(dev);
/* get the BARs */
if (bxe_allocate_bars(sc) != 0) {
return (ENXIO);
}
/* initialize the mutexes */
bxe_init_mutexes(sc);
/* prepare the periodic callout */
callout_init(&sc->periodic_callout, 0);
/* prepare the chip taskqueue */
sc->chip_tq_flags = CHIP_TQ_NONE;
snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
"bxe%d_chip_tq", sc->unit);
TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
taskqueue_thread_enqueue,
&sc->chip_tq);
taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
"%s", sc->chip_tq_name);
TIMEOUT_TASK_INIT(taskqueue_thread,
&sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task, sc);
/* get device info and set params */
if (bxe_get_device_info(sc) != 0) {
BLOGE(sc, "getting device info\n");
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
/* get final misc params */
bxe_get_params(sc);
/* set the default MTU (changed via ifconfig) */
sc->mtu = ETHERMTU;
bxe_set_modes_bitmap(sc);
/* XXX
* If in AFEX mode and the function is configured for FCoE
* then bail... no L2 allowed.
*/
/* get phy settings from shmem and 'and' against admin settings */
bxe_get_phy_info(sc);
/* initialize the FreeBSD ifnet interface */
if (bxe_init_ifnet(sc) != 0) {
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
if (bxe_add_cdev(sc) != 0) {
if (sc->ifp != NULL) {
ether_ifdetach(sc->ifp);
}
ifmedia_removeall(&sc->ifmedia);
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
/* allocate device interrupts */
if (bxe_interrupt_alloc(sc) != 0) {
bxe_del_cdev(sc);
if (sc->ifp != NULL) {
ether_ifdetach(sc->ifp);
}
ifmedia_removeall(&sc->ifmedia);
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
bxe_init_fp_mutexs(sc);
if (bxe_alloc_buf_rings(sc) != 0) {
bxe_free_buf_rings(sc);
bxe_interrupt_free(sc);
bxe_del_cdev(sc);
if (sc->ifp != NULL) {
ether_ifdetach(sc->ifp);
}
ifmedia_removeall(&sc->ifmedia);
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
/* allocate ilt */
if (bxe_alloc_ilt_mem(sc) != 0) {
bxe_free_buf_rings(sc);
bxe_interrupt_free(sc);
bxe_del_cdev(sc);
if (sc->ifp != NULL) {
ether_ifdetach(sc->ifp);
}
ifmedia_removeall(&sc->ifmedia);
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
/* allocate the host hardware/software hsi structures */
if (bxe_alloc_hsi_mem(sc) != 0) {
bxe_free_ilt_mem(sc);
bxe_free_buf_rings(sc);
bxe_interrupt_free(sc);
bxe_del_cdev(sc);
if (sc->ifp != NULL) {
ether_ifdetach(sc->ifp);
}
ifmedia_removeall(&sc->ifmedia);
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
/* need to reset chip if UNDI was active */
if (IS_PF(sc) && !BXE_NOMCP(sc)) {
/* init fw_seq */
sc->fw_seq =
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
bxe_prev_unload(sc);
}
#if 1
/* XXX */
bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
#else
if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
bxe_dcbx_init_params(sc);
} else {
bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
}
#endif
/* calculate qm_cid_count */
sc->qm_cid_count = bxe_set_qm_cid_count(sc);
BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
sc->max_cos = 1;
bxe_init_multi_cos(sc);
bxe_add_sysctls(sc);
return (0);
}
/*
* Device detach function.
*
* Stops the controller, resets the controller, and releases resources.
*
* Returns:
* 0 = Success, >0 = Failure
*/
static int
bxe_detach(device_t dev)
{
struct bxe_softc *sc;
if_t ifp;
sc = device_get_softc(dev);
BLOGD(sc, DBG_LOAD, "Starting detach...\n");
ifp = sc->ifp;
if (ifp != NULL && if_vlantrunkinuse(ifp)) {
BLOGE(sc, "Cannot detach while VLANs are in use.\n");
return(EBUSY);
}
bxe_del_cdev(sc);
/* stop the periodic callout */
bxe_periodic_stop(sc);
/* stop the chip taskqueue */
atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
if (sc->chip_tq) {
taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
taskqueue_free(sc->chip_tq);
sc->chip_tq = NULL;
taskqueue_drain_timeout(taskqueue_thread,
&sc->sp_err_timeout_task);
}
/* stop and reset the controller if it was open */
if (sc->state != BXE_STATE_CLOSED) {
BXE_CORE_LOCK(sc);
bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
sc->state = BXE_STATE_DISABLED;
BXE_CORE_UNLOCK(sc);
}
/* release the network interface */
if (ifp != NULL) {
ether_ifdetach(ifp);
}
ifmedia_removeall(&sc->ifmedia);
/* XXX do the following based on driver state... */
/* free the host hardware/software hsi structures */
bxe_free_hsi_mem(sc);
/* free ilt */
bxe_free_ilt_mem(sc);
bxe_free_buf_rings(sc);
/* release the interrupts */
bxe_interrupt_free(sc);
/* Release the mutexes*/
bxe_destroy_fp_mutexs(sc);
bxe_release_mutexes(sc);
/* Release the PCIe BAR mapped memory */
bxe_deallocate_bars(sc);
/* Release the FreeBSD interface. */
if (sc->ifp != NULL) {
if_free(sc->ifp);
}
pci_disable_busmaster(dev);
return (0);
}
/*
* Device shutdown function.
*
* Stops and resets the controller.
*
* Returns:
* Nothing
*/
static int
bxe_shutdown(device_t dev)
{
struct bxe_softc *sc;
sc = device_get_softc(dev);
BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
/* stop the periodic callout */
bxe_periodic_stop(sc);
if (sc->state != BXE_STATE_CLOSED) {
BXE_CORE_LOCK(sc);
bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
BXE_CORE_UNLOCK(sc);
}
return (0);
}
void
bxe_igu_ack_sb(struct bxe_softc *sc,
uint8_t igu_sb_id,
uint8_t segment,
uint16_t index,
uint8_t op,
uint8_t update)
{
uint32_t igu_addr = sc->igu_base_addr;
igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
}
static void
bxe_igu_clear_sb_gen(struct bxe_softc *sc,
uint8_t func,
uint8_t idu_sb_id,
uint8_t is_pf)
{
uint32_t data, ctl, cnt = 100;
uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
uint32_t sb_bit = 1 << (idu_sb_id%32);
uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
/* Not supported in BC mode */
if (CHIP_INT_MODE_IS_BC(sc)) {
return;
}
data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
IGU_REGULAR_CLEANUP_SET |
IGU_REGULAR_BCLEANUP);
ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
(func_encode << IGU_CTRL_REG_FID_SHIFT) |
(IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
data, igu_addr_data);
REG_WR(sc, igu_addr_data, data);
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
BUS_SPACE_BARRIER_WRITE);
mb();
BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
ctl, igu_addr_ctl);
REG_WR(sc, igu_addr_ctl, ctl);
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
BUS_SPACE_BARRIER_WRITE);
mb();
/* wait for clean up to finish */
while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
DELAY(20000);
}
if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
BLOGD(sc, DBG_LOAD,
"Unable to finish IGU cleanup: "
"idu_sb_id %d offset %d bit %d (cnt %d)\n",
idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
}
}
static void
bxe_igu_clear_sb(struct bxe_softc *sc,
uint8_t idu_sb_id)
{
bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
}
/*******************/
/* ECORE CALLBACKS */
/*******************/
static void
bxe_reset_common(struct bxe_softc *sc)
{
uint32_t val = 0x1400;
/* reset_common */
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
if (CHIP_IS_E3(sc)) {
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
}
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
}
static void
bxe_common_init_phy(struct bxe_softc *sc)
{
uint32_t shmem_base[2];
uint32_t shmem2_base[2];
/* Avoid common init in case MFW supports LFA */
if (SHMEM2_RD(sc, size) >
(uint32_t)offsetof(struct shmem2_region,
lfa_host_addr[SC_PORT(sc)])) {
return;
}
shmem_base[0] = sc->devinfo.shmem_base;
shmem2_base[0] = sc->devinfo.shmem2_base;
if (!CHIP_IS_E1x(sc)) {
shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
}
bxe_acquire_phy_lock(sc);
elink_common_init_phy(sc, shmem_base, shmem2_base,
sc->devinfo.chip_id, 0);
bxe_release_phy_lock(sc);
}
static void
bxe_pf_disable(struct bxe_softc *sc)
{
uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
val &= ~IGU_PF_CONF_FUNC_EN;
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
}
static void
bxe_init_pxp(struct bxe_softc *sc)
{
uint16_t devctl;
int r_order, w_order;
devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
if (sc->mrrs == -1) {
r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
} else {
BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
r_order = sc->mrrs;
}
ecore_init_pxp_arb(sc, r_order, w_order);
}
static uint32_t
bxe_get_pretend_reg(struct bxe_softc *sc)
{
uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
return (base + (SC_ABS_FUNC(sc)) * stride);
}
/*
* Called only on E1H or E2.
* When pretending to be PF, the pretend value is the function number 0..7.
* When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
* combination.
*/
static int
bxe_pretend_func(struct bxe_softc *sc,
uint16_t pretend_func_val)
{
uint32_t pretend_reg;
if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
return (-1);
}
/* get my own pretend register */
pretend_reg = bxe_get_pretend_reg(sc);
REG_WR(sc, pretend_reg, pretend_func_val);
REG_RD(sc, pretend_reg);
return (0);
}
static void
bxe_iov_init_dmae(struct bxe_softc *sc)
{
return;
}
static void
bxe_iov_init_dq(struct bxe_softc *sc)
{
return;
}
/* send a NIG loopback debug packet */
static void
bxe_lb_pckt(struct bxe_softc *sc)
{
uint32_t wb_write[3];
/* Ethernet source and destination addresses */
wb_write[0] = 0x55555555;
wb_write[1] = 0x55555555;
wb_write[2] = 0x20; /* SOP */
REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
/* NON-IP protocol */
wb_write[0] = 0x09000000;
wb_write[1] = 0x55555555;
wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
}
/*
* Some of the internal memories are not directly readable from the driver.
* To test them we send debug packets.
*/
static int
bxe_int_mem_test(struct bxe_softc *sc)
{
int factor;
int count, i;
uint32_t val = 0;
if (CHIP_REV_IS_FPGA(sc)) {
factor = 120;
} else if (CHIP_REV_IS_EMUL(sc)) {
factor = 200;
} else {
factor = 1;
}
/* disable inputs of parser neighbor blocks */
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
REG_WR(sc, CFC_REG_DEBUG0, 0x1);
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
/* write 0 to parser credits for CFC search request */
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
/* send Ethernet packet */
bxe_lb_pckt(sc);
/* TODO do i reset NIG statistic? */
/* Wait until NIG register shows 1 packet of size 0x10 */
count = 1000 * factor;
while (count) {
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
val = *BXE_SP(sc, wb_data[0]);
if (val == 0x10) {
break;
}
DELAY(10000);
count--;
}
if (val != 0x10) {
BLOGE(sc, "NIG timeout val=0x%x\n", val);
return (-1);
}
/* wait until PRS register shows 1 packet */
count = (1000 * factor);
while (count) {
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
if (val == 1) {
break;
}
DELAY(10000);
count--;
}
if (val != 0x1) {
BLOGE(sc, "PRS timeout val=0x%x\n", val);
return (-2);
}
/* Reset and init BRB, PRS */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
DELAY(50000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
DELAY(50000);
ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
/* Disable inputs of parser neighbor blocks */
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
REG_WR(sc, CFC_REG_DEBUG0, 0x1);
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
/* Write 0 to parser credits for CFC search request */
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
/* send 10 Ethernet packets */
for (i = 0; i < 10; i++) {
bxe_lb_pckt(sc);
}
/* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
count = (1000 * factor);
while (count) {
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
val = *BXE_SP(sc, wb_data[0]);
if (val == 0xb0) {
break;
}
DELAY(10000);
count--;
}
if (val != 0xb0) {
BLOGE(sc, "NIG timeout val=0x%x\n", val);
return (-3);
}
/* Wait until PRS register shows 2 packets */
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
if (val != 2) {
BLOGE(sc, "PRS timeout val=0x%x\n", val);
}
/* Write 1 to parser credits for CFC search request */
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
/* Wait until PRS register shows 3 packets */
DELAY(10000 * factor);
/* Wait until NIG register shows 1 packet of size 0x10 */
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
if (val != 3) {
BLOGE(sc, "PRS timeout val=0x%x\n", val);
}
/* clear NIG EOP FIFO */
for (i = 0; i < 11; i++) {
REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
}
val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
if (val != 1) {
BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
return (-4);
}
/* Reset and init BRB, PRS, NIG */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
DELAY(50000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
DELAY(50000);
ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
if (!CNIC_SUPPORT(sc)) {
/* set NIC mode */
REG_WR(sc, PRS_REG_NIC_MODE, 1);
}
/* Enable inputs of parser neighbor blocks */
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
REG_WR(sc, CFC_REG_DEBUG0, 0x0);
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
return (0);
}
static void
bxe_setup_fan_failure_detection(struct bxe_softc *sc)
{
int is_required;
uint32_t val;
int port;
is_required = 0;
val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
SHARED_HW_CFG_FAN_FAILURE_MASK);
if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
is_required = 1;
}
/*
* The fan failure mechanism is usually related to the PHY type since
* the power consumption of the board is affected by the PHY. Currently,
* fan is required for most designs with SFX7101, BCM8727 and BCM8481.
*/
else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
for (port = PORT_0; port < PORT_MAX; port++) {
is_required |= elink_fan_failure_det_req(sc,
sc->devinfo.shmem_base,
sc->devinfo.shmem2_base,
port);
}
}
BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
if (is_required == 0) {
return;
}
/* Fan failure is indicated by SPIO 5 */
bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
/* set to active low mode */
val = REG_RD(sc, MISC_REG_SPIO_INT);
val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
REG_WR(sc, MISC_REG_SPIO_INT, val);
/* enable interrupt to signal the IGU */
val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
val |= MISC_SPIO_SPIO5;
REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
}
static void
bxe_enable_blocks_attention(struct bxe_softc *sc)
{
uint32_t val;
REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
} else {
REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
}
REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
/*
* mask read length error interrupts in brb for parser
* (parsing unit and 'checksum and crc' unit)
* these errors are legal (PU reads fixed length and CAC can cause
* read length error on truncated packets)
*/
REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
REG_WR(sc, QM_REG_QM_INT_MASK, 0);
REG_WR(sc, TM_REG_TM_INT_MASK, 0);
REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
/* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
/* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
if (!CHIP_IS_E1x(sc)) {
val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
}
REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
/* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
if (!CHIP_IS_E1x(sc)) {
/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
}
REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
/* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
}
/**
* bxe_init_hw_common - initialize the HW at the COMMON phase.
*
* @sc: driver handle
*/
static int
bxe_init_hw_common(struct bxe_softc *sc)
{
uint8_t abs_func_id;
uint32_t val;
BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
SC_ABS_FUNC(sc));
/*
* take the RESET lock to protect undi_unload flow from accessing
* registers while we are resetting the chip
*/
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
bxe_reset_common(sc);
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
val = 0xfffc;
if (CHIP_IS_E3(sc)) {
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
}
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
BLOGD(sc, DBG_LOAD, "after misc block init\n");
if (!CHIP_IS_E1x(sc)) {
/*
* 4-port mode or 2-port mode we need to turn off master-enable for
* everyone. After that we turn it back on for self. So, we disregard
* multi-function, and always disable all functions on the given path,
* this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
*/
for (abs_func_id = SC_PATH(sc);
abs_func_id < (E2_FUNC_MAX * 2);
abs_func_id += 2) {
if (abs_func_id == SC_ABS_FUNC(sc)) {
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
continue;
}
bxe_pretend_func(sc, abs_func_id);
/* clear pf enable */
bxe_pf_disable(sc);
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
}
}
BLOGD(sc, DBG_LOAD, "after pf disable\n");
ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
if (CHIP_IS_E1(sc)) {
/*
* enable HW interrupt from PXP on USDM overflow
* bit 16 on INT_MASK_0
*/
REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
}
ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
bxe_init_pxp(sc);
#ifdef __BIG_ENDIAN
REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
/* make sure this value is 0 */
REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
//REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
#endif
ecore_ilt_init_page_size(sc, INITOP_SET);
if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
}
/* let the HW do it's magic... */
DELAY(100000);
/* finish PXP init */
val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
if (val != 1) {
BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
val);
return (-1);
}
val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
if (val != 1) {
BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
return (-1);
}
BLOGD(sc, DBG_LOAD, "after pxp init\n");
/*
* Timer bug workaround for E2 only. We need to set the entire ILT to have
* entries with value "0" and valid bit on. This needs to be done by the
* first PF that is loaded in a path (i.e. common phase)
*/
if (!CHIP_IS_E1x(sc)) {
/*
* In E2 there is a bug in the timers block that can cause function 6 / 7
* (i.e. vnic3) to start even if it is marked as "scan-off".
* This occurs when a different function (func2,3) is being marked
* as "scan-off". Real-life scenario for example: if a driver is being
* load-unloaded while func6,7 are down. This will cause the timer to access
* the ilt, translate to a logical address and send a request to read/write.
* Since the ilt for the function that is down is not valid, this will cause
* a translation error which is unrecoverable.
* The Workaround is intended to make sure that when this happens nothing
* fatal will occur. The workaround:
* 1. First PF driver which loads on a path will:
* a. After taking the chip out of reset, by using pretend,
* it will write "0" to the following registers of
* the other vnics.
* REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
* REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
* REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
* And for itself it will write '1' to
* PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
* dmae-operations (writing to pram for example.)
* note: can be done for only function 6,7 but cleaner this
* way.
* b. Write zero+valid to the entire ILT.
* c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
* VNIC3 (of that port). The range allocated will be the
* entire ILT. This is needed to prevent ILT range error.
* 2. Any PF driver load flow:
* a. ILT update with the physical addresses of the allocated
* logical pages.
* b. Wait 20msec. - note that this timeout is needed to make
* sure there are no requests in one of the PXP internal
* queues with "old" ILT addresses.
* c. PF enable in the PGLC.
* d. Clear the was_error of the PF in the PGLC. (could have
* occurred while driver was down)
* e. PF enable in the CFC (WEAK + STRONG)
* f. Timers scan enable
* 3. PF driver unload flow:
* a. Clear the Timers scan_en.
* b. Polling for scan_on=0 for that PF.
* c. Clear the PF enable bit in the PXP.
* d. Clear the PF enable in the CFC (WEAK + STRONG)
* e. Write zero+valid to all ILT entries (The valid bit must
* stay set)
* f. If this is VNIC 3 of a port then also init
* first_timers_ilt_entry to zero and last_timers_ilt_entry
* to the last enrty in the ILT.
*
* Notes:
* Currently the PF error in the PGLC is non recoverable.
* In the future the there will be a recovery routine for this error.
* Currently attention is masked.
* Having an MCP lock on the load/unload process does not guarantee that
* there is no Timer disable during Func6/7 enable. This is because the
* Timers scan is currently being cleared by the MCP on FLR.
* Step 2.d can be done only for PF6/7 and the driver can also check if
* there is error before clearing it. But the flow above is simpler and
* more general.
* All ILT entries are written by zero+valid and not just PF6/7
* ILT entries since in the future the ILT entries allocation for
* PF-s might be dynamic.
*/
struct ilt_client_info ilt_cli;
struct ecore_ilt ilt;
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
memset(&ilt, 0, sizeof(struct ecore_ilt));
/* initialize dummy TM client */
ilt_cli.start = 0;
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
ilt_cli.client_num = ILT_CLIENT_TM;
/*
* Step 1: set zeroes to all ilt page entries with valid bit on
* Step 2: set the timers first/last ilt entry to point
* to the entire range to prevent ILT range error for 3rd/4th
* vnic (this code assumes existence of the vnic)
*
* both steps performed by call to ecore_ilt_client_init_op()
* with dummy TM client
*
* we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
* and his brother are split registers
*/
bxe_pretend_func(sc, (SC_PATH(sc) + 6));
ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
}
REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
if (!CHIP_IS_E1x(sc)) {
int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
(CHIP_REV_IS_FPGA(sc) ? 400 : 0);
ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
/* let the HW do it's magic... */
do {
DELAY(200000);
val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
} while (factor-- && (val != 1));
if (val != 1) {
BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
return (-1);
}
}
BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
bxe_iov_init_dmae(sc);
/* clean the DMAE memory */
sc->dmae_ready = 1;
ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
/* QM queues pointers table */
ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
/* soft reset pulse */
REG_WR(sc, QM_REG_SOFT_RESET, 1);
REG_WR(sc, QM_REG_SOFT_RESET, 0);
if (CNIC_SUPPORT(sc))
ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
if (!CHIP_REV_IS_SLOW(sc)) {
/* enable hw interrupt from doorbell Q */
REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
}
ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
if (!CHIP_IS_E1(sc)) {
REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
}
if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
if (IS_MF_AFEX(sc)) {
/*
* configure that AFEX and VLAN headers must be
* received in AFEX mode
*/
REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
} else {
/*
* Bit-map indicating which L2 hdrs may appear
* after the basic Ethernet header
*/
REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
}
}
ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
if (!CHIP_IS_E1x(sc)) {
/* reset VFC memories */
REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
VFC_MEMORIES_RST_REG_CAM_RST |
VFC_MEMORIES_RST_REG_RAM_RST);
REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
VFC_MEMORIES_RST_REG_CAM_RST |
VFC_MEMORIES_RST_REG_RAM_RST);
DELAY(20000);
}
ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
/* sync semi rtc */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
0x80000000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
0x80000000);
ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
if (!CHIP_IS_E1x(sc)) {
if (IS_MF_AFEX(sc)) {
/*
* configure that AFEX and VLAN headers must be
* sent in AFEX mode
*/
REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
} else {
REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
}
}
REG_WR(sc, SRC_REG_SOFT_RST, 1);
ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
if (CNIC_SUPPORT(sc)) {
REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
}
REG_WR(sc, SRC_REG_SOFT_RST, 0);
if (sizeof(union cdu_context) != 1024) {
/* we currently assume that a context is 1024 bytes */
BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
(long)sizeof(union cdu_context));
}
ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
val = (4 << 24) + (0 << 12) + 1024;
REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
/* enable context validation interrupt from CFC */
REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
/* set the thresholds to prevent CFC/CDU race */
REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
}
ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
/* Reset PCIE errors for debug */
REG_WR(sc, 0x2814, 0xffffffff);
REG_WR(sc, 0x3820, 0xffffffff);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
(PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
(PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
(PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
}
ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
if (!CHIP_IS_E1(sc)) {
/* in E3 this done in per-port section */
if (!CHIP_IS_E3(sc))
REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
}
if (CHIP_IS_E1H(sc)) {
/* not applicable for E2 (and above ...) */
REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
}
if (CHIP_REV_IS_SLOW(sc)) {
DELAY(200000);
}
/* finish CFC init */
val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
if (val != 1) {
BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
return (-1);
}
val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
if (val != 1) {
BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
return (-1);
}
val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
if (val != 1) {
BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
return (-1);
}
REG_WR(sc, CFC_REG_DEBUG0, 0);
if (CHIP_IS_E1(sc)) {
/* read NIG statistic to see if this is our first up since powerup */
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
val = *BXE_SP(sc, wb_data[0]);
/* do internal memory self test */
if ((val == 0) && bxe_int_mem_test(sc)) {
BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
return (-1);
}
}
bxe_setup_fan_failure_detection(sc);
/* clear PXP2 attentions */
REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
bxe_enable_blocks_attention(sc);
if (!CHIP_REV_IS_SLOW(sc)) {
ecore_enable_blocks_parity(sc);
}
if (!BXE_NOMCP(sc)) {
if (CHIP_IS_E1x(sc)) {
bxe_common_init_phy(sc);
}
}
return (0);
}
/**
* bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
*
* @sc: driver handle
*/
static int
bxe_init_hw_common_chip(struct bxe_softc *sc)
{
int rc = bxe_init_hw_common(sc);
if (rc) {
BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
return (rc);
}
/* In E2 2-PORT mode, same ext phy is used for the two paths */
if (!BXE_NOMCP(sc)) {
bxe_common_init_phy(sc);
}
return (0);
}
static int
bxe_init_hw_port(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
uint32_t low, high;
uint32_t val;
BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
ecore_init_block(sc, BLOCK_MISC, init_phase);
ecore_init_block(sc, BLOCK_PXP, init_phase);
ecore_init_block(sc, BLOCK_PXP2, init_phase);
/*
* Timers bug workaround: disables the pf_master bit in pglue at
* common phase, we need to enable it here before any dmae access are
* attempted. Therefore we manually added the enable-master to the
* port phase (it also happens in the function phase)
*/
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
}
ecore_init_block(sc, BLOCK_ATC, init_phase);
ecore_init_block(sc, BLOCK_DMAE, init_phase);
ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
ecore_init_block(sc, BLOCK_QM, init_phase);
ecore_init_block(sc, BLOCK_TCM, init_phase);
ecore_init_block(sc, BLOCK_UCM, init_phase);
ecore_init_block(sc, BLOCK_CCM, init_phase);
ecore_init_block(sc, BLOCK_XCM, init_phase);
/* QM cid (connection) count */
ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
if (CNIC_SUPPORT(sc)) {
ecore_init_block(sc, BLOCK_TM, init_phase);
REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
}
ecore_init_block(sc, BLOCK_DORQ, init_phase);
ecore_init_block(sc, BLOCK_BRB1, init_phase);
if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
if (IS_MF(sc)) {
low = (BXE_ONE_PORT(sc) ? 160 : 246);
} else if (sc->mtu > 4096) {
if (BXE_ONE_PORT(sc)) {
low = 160;
} else {
val = sc->mtu;
/* (24*1024 + val*4)/256 */
low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
}
} else {
low = (BXE_ONE_PORT(sc) ? 80 : 160);
}
high = (low + 56); /* 14*1024/256 */
REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
}
if (CHIP_IS_MODE_4_PORT(sc)) {
REG_WR(sc, SC_PORT(sc) ?
BRB1_REG_MAC_GUARANTIED_1 :
BRB1_REG_MAC_GUARANTIED_0, 40);
}
ecore_init_block(sc, BLOCK_PRS, init_phase);
if (CHIP_IS_E3B0(sc)) {
if (IS_MF_AFEX(sc)) {
/* configure headers for AFEX mode */
REG_WR(sc, SC_PORT(sc) ?
PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
REG_WR(sc, SC_PORT(sc) ?
PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
REG_WR(sc, SC_PORT(sc) ?
PRS_REG_MUST_HAVE_HDRS_PORT_1 :
PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
} else {
/* Ovlan exists only if we are in multi-function +
* switch-dependent mode, in switch-independent there
* is no ovlan headers
*/
REG_WR(sc, SC_PORT(sc) ?
PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
PRS_REG_HDRS_AFTER_BASIC_PORT_0,
(sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
}
}
ecore_init_block(sc, BLOCK_TSDM, init_phase);
ecore_init_block(sc, BLOCK_CSDM, init_phase);
ecore_init_block(sc, BLOCK_USDM, init_phase);
ecore_init_block(sc, BLOCK_XSDM, init_phase);
ecore_init_block(sc, BLOCK_TSEM, init_phase);
ecore_init_block(sc, BLOCK_USEM, init_phase);
ecore_init_block(sc, BLOCK_CSEM, init_phase);
ecore_init_block(sc, BLOCK_XSEM, init_phase);
ecore_init_block(sc, BLOCK_UPB, init_phase);
ecore_init_block(sc, BLOCK_XPB, init_phase);
ecore_init_block(sc, BLOCK_PBF, init_phase);
if (CHIP_IS_E1x(sc)) {
/* configure PBF to work without PAUSE mtu 9000 */
REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
/* update threshold */
REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
/* update init credit */
REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
/* probe changes */
REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
DELAY(50);
REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
}
if (CNIC_SUPPORT(sc)) {
ecore_init_block(sc, BLOCK_SRC, init_phase);
}
ecore_init_block(sc, BLOCK_CDU, init_phase);
ecore_init_block(sc, BLOCK_CFC, init_phase);
if (CHIP_IS_E1(sc)) {
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
}
ecore_init_block(sc, BLOCK_HC, init_phase);
ecore_init_block(sc, BLOCK_IGU, init_phase);
ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
/* init aeu_mask_attn_func_0/1:
* - SF mode: bits 3-7 are masked. only bits 0-2 are in use
* - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
* bits 4-7 are used for "per vn group attention" */
val = IS_MF(sc) ? 0xF7 : 0x7;
/* Enable DCBX attention for all but E1 */
val |= CHIP_IS_E1(sc) ? 0 : 0x10;
REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
ecore_init_block(sc, BLOCK_NIG, init_phase);
if (!CHIP_IS_E1x(sc)) {
/* Bit-map indicating which L2 hdrs may appear after the
* basic Ethernet header
*/
if (IS_MF_AFEX(sc)) {
REG_WR(sc, SC_PORT(sc) ?
NIG_REG_P1_HDRS_AFTER_BASIC :
NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
} else {
REG_WR(sc, SC_PORT(sc) ?
NIG_REG_P1_HDRS_AFTER_BASIC :
NIG_REG_P0_HDRS_AFTER_BASIC,
IS_MF_SD(sc) ? 7 : 6);
}
if (CHIP_IS_E3(sc)) {
REG_WR(sc, SC_PORT(sc) ?
NIG_REG_LLH1_MF_MODE :
NIG_REG_LLH_MF_MODE, IS_MF(sc));
}
}
if (!CHIP_IS_E3(sc)) {
REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
}
if (!CHIP_IS_E1(sc)) {
/* 0x2 disable mf_ov, 0x1 enable */
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
(IS_MF_SD(sc) ? 0x1 : 0x2));
if (!CHIP_IS_E1x(sc)) {
val = 0;
switch (sc->devinfo.mf_info.mf_mode) {
case MULTI_FUNCTION_SD:
val = 1;
break;
case MULTI_FUNCTION_SI:
case MULTI_FUNCTION_AFEX:
val = 2;
break;
}
REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
NIG_REG_LLH0_CLS_TYPE), val);
}
REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
}
/* If SPIO5 is set to generate interrupts, enable it for this port */
val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
if (val & MISC_SPIO_SPIO5) {
uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
val = REG_RD(sc, reg_addr);
val |= AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(sc, reg_addr, val);
}
return (0);
}
static uint32_t
bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
uint32_t reg,
uint32_t expected,
uint32_t poll_count)
{
uint32_t cur_cnt = poll_count;
uint32_t val;
while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
DELAY(FLR_WAIT_INTERVAL);
}
return (val);
}
static int
bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
uint32_t reg,
char *msg,
uint32_t poll_cnt)
{
uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
if (val != 0) {
BLOGE(sc, "%s usage count=%d\n", msg, val);
return (1);
}
return (0);
}
/* Common routines with VF FLR cleanup */
static uint32_t
bxe_flr_clnup_poll_count(struct bxe_softc *sc)
{
/* adjust polling timeout */
if (CHIP_REV_IS_EMUL(sc)) {
return (FLR_POLL_CNT * 2000);
}
if (CHIP_REV_IS_FPGA(sc)) {
return (FLR_POLL_CNT * 120);
}
return (FLR_POLL_CNT);
}
static int
bxe_poll_hw_usage_counters(struct bxe_softc *sc,
uint32_t poll_cnt)
{
/* wait for CFC PF usage-counter to zero (includes all the VFs) */
if (bxe_flr_clnup_poll_hw_counter(sc,
CFC_REG_NUM_LCIDS_INSIDE_PF,
"CFC PF usage counter timed out",
poll_cnt)) {
return (1);
}
/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
if (bxe_flr_clnup_poll_hw_counter(sc,
DORQ_REG_PF_USAGE_CNT,
"DQ PF usage counter timed out",
poll_cnt)) {
return (1);
}
/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
if (bxe_flr_clnup_poll_hw_counter(sc,
QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
"QM PF usage counter timed out",
poll_cnt)) {
return (1);
}
/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
if (bxe_flr_clnup_poll_hw_counter(sc,
TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
"Timers VNIC usage counter timed out",
poll_cnt)) {
return (1);
}
if (bxe_flr_clnup_poll_hw_counter(sc,
TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
"Timers NUM_SCANS usage counter timed out",
poll_cnt)) {
return (1);
}
/* Wait DMAE PF usage counter to zero */
if (bxe_flr_clnup_poll_hw_counter(sc,
dmae_reg_go_c[INIT_DMAE_C(sc)],
"DMAE dommand register timed out",
poll_cnt)) {
return (1);
}
return (0);
}
#define OP_GEN_PARAM(param) \
(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
#define OP_GEN_TYPE(type) \
(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
#define OP_GEN_AGG_VECT(index) \
(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
static int
bxe_send_final_clnup(struct bxe_softc *sc,
uint8_t clnup_func,
uint32_t poll_cnt)
{
uint32_t op_gen_command = 0;
uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
int ret = 0;
if (REG_RD(sc, comp_addr)) {
BLOGE(sc, "Cleanup complete was not 0 before sending\n");
return (1);
}
op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
BLOGE(sc, "FW final cleanup did not succeed\n");
BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
(REG_RD(sc, comp_addr)));
bxe_panic(sc, ("FLR cleanup failed\n"));
return (1);
}
/* Zero completion for nxt FLR */
REG_WR(sc, comp_addr, 0);
return (ret);
}
static void
bxe_pbf_pN_buf_flushed(struct bxe_softc *sc,
struct pbf_pN_buf_regs *regs,
uint32_t poll_count)
{
uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
uint32_t cur_cnt = poll_count;
crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
crd = crd_start = REG_RD(sc, regs->crd);
init_crd = REG_RD(sc, regs->init_crd);
BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd);
BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
while ((crd != init_crd) &&
((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
(init_crd - crd_start))) {
if (cur_cnt--) {
DELAY(FLR_WAIT_INTERVAL);
crd = REG_RD(sc, regs->crd);
crd_freed = REG_RD(sc, regs->crd_freed);
} else {
BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd);
BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
break;
}
}
BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
}
static void
bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc,
struct pbf_pN_cmd_regs *regs,
uint32_t poll_count)
{
uint32_t occup, to_free, freed, freed_start;
uint32_t cur_cnt = poll_count;
occup = to_free = REG_RD(sc, regs->lines_occup);
freed = freed_start = REG_RD(sc, regs->lines_freed);
BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
while (occup &&
((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
if (cur_cnt--) {
DELAY(FLR_WAIT_INTERVAL);
occup = REG_RD(sc, regs->lines_occup);
freed = REG_RD(sc, regs->lines_freed);
} else {
BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
break;
}
}
BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
}
static void
bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
{
struct pbf_pN_cmd_regs cmd_regs[] = {
{0, (CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_OCCUPANCY_Q0 :
PBF_REG_P0_TQ_OCCUPANCY,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_LINES_FREED_CNT_Q0 :
PBF_REG_P0_TQ_LINES_FREED_CNT},
{1, (CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_OCCUPANCY_Q1 :
PBF_REG_P1_TQ_OCCUPANCY,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_LINES_FREED_CNT_Q1 :
PBF_REG_P1_TQ_LINES_FREED_CNT},
{4, (CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_OCCUPANCY_LB_Q :
PBF_REG_P4_TQ_OCCUPANCY,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
PBF_REG_P4_TQ_LINES_FREED_CNT}
};
struct pbf_pN_buf_regs buf_regs[] = {
{0, (CHIP_IS_E3B0(sc)) ?
PBF_REG_INIT_CRD_Q0 :
PBF_REG_P0_INIT_CRD ,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_CREDIT_Q0 :
PBF_REG_P0_CREDIT,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
{1, (CHIP_IS_E3B0(sc)) ?
PBF_REG_INIT_CRD_Q1 :
PBF_REG_P1_INIT_CRD,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_CREDIT_Q1 :
PBF_REG_P1_CREDIT,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
{4, (CHIP_IS_E3B0(sc)) ?
PBF_REG_INIT_CRD_LB_Q :
PBF_REG_P4_INIT_CRD,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_CREDIT_LB_Q :
PBF_REG_P4_CREDIT,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
};
int i;
/* Verify the command queues are flushed P0, P1, P4 */
for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
}
/* Verify the transmission buffers are flushed P0, P1, P4 */
for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
}
}
static void
bxe_hw_enable_status(struct bxe_softc *sc)
{
uint32_t val;
val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
val = REG_RD(sc, PBF_REG_DISABLE_PF);
BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
}
static int
bxe_pf_flr_clnup(struct bxe_softc *sc)
{
uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
/* Re-enable PF target read access */
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
/* Poll HW usage counters */
BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
return (-1);
}
/* Zero the igu 'trailing edge' and 'leading edge' */
/* Send the FW cleanup command */
if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
return (-1);
}
/* ATC cleanup */
/* Verify TX hw is flushed */
bxe_tx_hw_flushed(sc, poll_cnt);
/* Wait 100ms (not adjusted according to platform) */
DELAY(100000);
/* Verify no pending pci transactions */
if (bxe_is_pcie_pending(sc)) {
BLOGE(sc, "PCIE Transactions still pending\n");
}
/* Debug */
bxe_hw_enable_status(sc);
/*
* Master enable - Due to WB DMAE writes performed before this
* register is re-initialized as part of the regular function init
*/
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
return (0);
}
static int
bxe_init_hw_func(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
int func = SC_FUNC(sc);
int init_phase = PHASE_PF0 + func;
struct ecore_ilt *ilt = sc->ilt;
uint16_t cdu_ilt_start;
uint32_t addr, val;
uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
int i, main_mem_width, rc;
BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
/* FLR cleanup */
if (!CHIP_IS_E1x(sc)) {
rc = bxe_pf_flr_clnup(sc);
if (rc) {
BLOGE(sc, "FLR cleanup failed!\n");
// XXX bxe_fw_dump(sc);
// XXX bxe_idle_chk(sc);
return (rc);
}
}
/* set MSI reconfigure capability */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
val = REG_RD(sc, addr);
val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
REG_WR(sc, addr, val);
}
ecore_init_block(sc, BLOCK_PXP, init_phase);
ecore_init_block(sc, BLOCK_PXP2, init_phase);
ilt = sc->ilt;
cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
for (i = 0; i < L2_ILT_LINES(sc); i++) {
ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
ilt->lines[cdu_ilt_start + i].page_mapping =
sc->context[i].vcxt_dma.paddr;
ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
}
ecore_ilt_init_op(sc, INITOP_SET);
/* Set NIC mode */
REG_WR(sc, PRS_REG_NIC_MODE, 1);
BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
if (!CHIP_IS_E1x(sc)) {
uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
/* Turn on a single ISR mode in IGU if driver is going to use
* INT#x or MSI
*/
if (sc->interrupt_mode != INTR_MODE_MSIX) {
pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
}
/*
* Timers workaround bug: function init part.
* Need to wait 20msec after initializing ILT,
* needed to make sure there are no requests in
* one of the PXP internal queues with "old" ILT addresses
*/
DELAY(20000);
/*
* Master enable - Due to WB DMAE writes performed before this
* register is re-initialized as part of the regular function
* init
*/
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
/* Enable the function in IGU */
REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
}
sc->dmae_ready = 1;
ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
ecore_init_block(sc, BLOCK_ATC, init_phase);
ecore_init_block(sc, BLOCK_DMAE, init_phase);
ecore_init_block(sc, BLOCK_NIG, init_phase);
ecore_init_block(sc, BLOCK_SRC, init_phase);
ecore_init_block(sc, BLOCK_MISC, init_phase);
ecore_init_block(sc, BLOCK_TCM, init_phase);
ecore_init_block(sc, BLOCK_UCM, init_phase);
ecore_init_block(sc, BLOCK_CCM, init_phase);
ecore_init_block(sc, BLOCK_XCM, init_phase);
ecore_init_block(sc, BLOCK_TSEM, init_phase);
ecore_init_block(sc, BLOCK_USEM, init_phase);
ecore_init_block(sc, BLOCK_CSEM, init_phase);
ecore_init_block(sc, BLOCK_XSEM, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, QM_REG_PF_EN, 1);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
}
ecore_init_block(sc, BLOCK_QM, init_phase);
ecore_init_block(sc, BLOCK_TM, init_phase);
ecore_init_block(sc, BLOCK_DORQ, init_phase);
bxe_iov_init_dq(sc);
ecore_init_block(sc, BLOCK_BRB1, init_phase);
ecore_init_block(sc, BLOCK_PRS, init_phase);
ecore_init_block(sc, BLOCK_TSDM, init_phase);
ecore_init_block(sc, BLOCK_CSDM, init_phase);
ecore_init_block(sc, BLOCK_USDM, init_phase);
ecore_init_block(sc, BLOCK_XSDM, init_phase);
ecore_init_block(sc, BLOCK_UPB, init_phase);
ecore_init_block(sc, BLOCK_XPB, init_phase);
ecore_init_block(sc, BLOCK_PBF, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, PBF_REG_DISABLE_PF, 0);
ecore_init_block(sc, BLOCK_CDU, init_phase);
ecore_init_block(sc, BLOCK_CFC, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
if (IS_MF(sc)) {
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
}
ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
/* HC init per function */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
if (CHIP_IS_E1H(sc)) {
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
}
ecore_init_block(sc, BLOCK_HC, init_phase);
} else {
int num_segs, sb_idx, prod_offset;
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
}
ecore_init_block(sc, BLOCK_IGU, init_phase);
if (!CHIP_IS_E1x(sc)) {
int dsb_idx = 0;
/**
* Producer memory:
* E2 mode: address 0-135 match to the mapping memory;
* 136 - PF0 default prod; 137 - PF1 default prod;
* 138 - PF2 default prod; 139 - PF3 default prod;
* 140 - PF0 attn prod; 141 - PF1 attn prod;
* 142 - PF2 attn prod; 143 - PF3 attn prod;
* 144-147 reserved.
*
* E1.5 mode - In backward compatible mode;
* for non default SB; each even line in the memory
* holds the U producer and each odd line hold
* the C producer. The first 128 producers are for
* NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
* producers are for the DSB for each PF.
* Each PF has five segments: (the order inside each
* segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
* 132-135 C prods; 136-139 X prods; 140-143 T prods;
* 144-147 attn prods;
*/
/* non-default-status-blocks */
num_segs = CHIP_INT_MODE_IS_BC(sc) ?
IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
prod_offset = (sc->igu_base_sb + sb_idx) *
num_segs;
for (i = 0; i < num_segs; i++) {
addr = IGU_REG_PROD_CONS_MEMORY +
(prod_offset + i) * 4;
REG_WR(sc, addr, 0);
}
/* send consumer update with value 0 */
bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
USTORM_ID, 0, IGU_INT_NOP, 1);
bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
}
/* default-status-blocks */
num_segs = CHIP_INT_MODE_IS_BC(sc) ?
IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
if (CHIP_IS_MODE_4_PORT(sc))
dsb_idx = SC_FUNC(sc);
else
dsb_idx = SC_VN(sc);
prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
IGU_BC_BASE_DSB_PROD + dsb_idx :
IGU_NORM_BASE_DSB_PROD + dsb_idx);
/*
* igu prods come in chunks of E1HVN_MAX (4) -
* does not matters what is the current chip mode
*/
for (i = 0; i < (num_segs * E1HVN_MAX);
i += E1HVN_MAX) {
addr = IGU_REG_PROD_CONS_MEMORY +
(prod_offset + i)*4;
REG_WR(sc, addr, 0);
}
/* send consumer update with 0 */
if (CHIP_INT_MODE_IS_BC(sc)) {
bxe_ack_sb(sc, sc->igu_dsb_id,
USTORM_ID, 0, IGU_INT_NOP, 1);
bxe_ack_sb(sc, sc->igu_dsb_id,
CSTORM_ID, 0, IGU_INT_NOP, 1);
bxe_ack_sb(sc, sc->igu_dsb_id,
XSTORM_ID, 0, IGU_INT_NOP, 1);
bxe_ack_sb(sc, sc->igu_dsb_id,
TSTORM_ID, 0, IGU_INT_NOP, 1);
bxe_ack_sb(sc, sc->igu_dsb_id,
ATTENTION_ID, 0, IGU_INT_NOP, 1);
} else {
bxe_ack_sb(sc, sc->igu_dsb_id,
USTORM_ID, 0, IGU_INT_NOP, 1);
bxe_ack_sb(sc, sc->igu_dsb_id,
ATTENTION_ID, 0, IGU_INT_NOP, 1);
}
bxe_igu_clear_sb(sc, sc->igu_dsb_id);
/* !!! these should become driver const once
rf-tool supports split-68 const */
REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
}
}
/* Reset PCIE errors for debug */
REG_WR(sc, 0x2114, 0xffffffff);
REG_WR(sc, 0x2120, 0xffffffff);
if (CHIP_IS_E1x(sc)) {
main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
main_mem_base = HC_REG_MAIN_MEMORY +
SC_PORT(sc) * (main_mem_size * 4);
main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
main_mem_width = 8;
val = REG_RD(sc, main_mem_prty_clr);
if (val) {
BLOGD(sc, DBG_LOAD,
"Parity errors in HC block during function init (0x%x)!\n",
val);
}
/* Clear "false" parity errors in MSI-X table */
for (i = main_mem_base;
i < main_mem_base + main_mem_size * 4;
i += main_mem_width) {
bxe_read_dmae(sc, i, main_mem_width / 4);
bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
i, main_mem_width / 4);
}
/* Clear HC parity attention */
REG_RD(sc, main_mem_prty_clr);
}
#if 1
/* Enable STORMs SP logging */
REG_WR8(sc, BAR_USTRORM_INTMEM +
USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
REG_WR8(sc, BAR_TSTRORM_INTMEM +
TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
REG_WR8(sc, BAR_CSTRORM_INTMEM +
CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
REG_WR8(sc, BAR_XSTRORM_INTMEM +
XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
#endif
elink_phy_probe(&sc->link_params);
return (0);
}
static void
bxe_link_reset(struct bxe_softc *sc)
{
if (!BXE_NOMCP(sc)) {
bxe_acquire_phy_lock(sc);
elink_lfa_reset(&sc->link_params, &sc->link_vars);
bxe_release_phy_lock(sc);
} else {
if (!CHIP_REV_IS_SLOW(sc)) {
BLOGW(sc, "Bootcode is missing - cannot reset link\n");
}
}
}
static void
bxe_reset_port(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
uint32_t val;
ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
/* reset physical Link */
bxe_link_reset(sc);
REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
/* Do not rcv packets to BRB */
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
/* Do not direct rcv packets that are not for MCP to the BRB */
REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
/* Configure AEU */
REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
DELAY(100000);
/* Check for BRB port occupancy */
val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
if (val) {
BLOGD(sc, DBG_LOAD,
"BRB1 is not empty, %d blocks are occupied\n", val);
}
/* TODO: Close Doorbell port? */
}
static void
bxe_ilt_wr(struct bxe_softc *sc,
uint32_t index,
bus_addr_t addr)
{
int reg;
uint32_t wb_write[2];
if (CHIP_IS_E1(sc)) {
reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
} else {
reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
}
wb_write[0] = ONCHIP_ADDR1(addr);
wb_write[1] = ONCHIP_ADDR2(addr);
REG_WR_DMAE(sc, reg, wb_write, 2);
}
static void
bxe_clear_func_ilt(struct bxe_softc *sc,
uint32_t func)
{
uint32_t i, base = FUNC_ILT_BASE(func);
for (i = base; i < base + ILT_PER_FUNC; i++) {
bxe_ilt_wr(sc, i, 0);
}
}
static void
bxe_reset_func(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int port = SC_PORT(sc);
int func = SC_FUNC(sc);
int i;
/* Disable the function in the FW */
REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
/* FP SBs */
FOR_EACH_ETH_QUEUE(sc, i) {
fp = &sc->fp[i];
REG_WR8(sc, BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
SB_DISABLED);
}
/* SP SB */
REG_WR8(sc, BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
SB_DISABLED);
for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
}
/* Configure IGU */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
} else {
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
}
if (CNIC_LOADED(sc)) {
/* Disable Timer scan */
REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
/*
* Wait for at least 10ms and up to 2 second for the timers
* scan to complete
*/
for (i = 0; i < 200; i++) {
DELAY(10000);
if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
break;
}
}
/* Clear ILT */
bxe_clear_func_ilt(sc, func);
/*
* Timers workaround bug for E2: if this is vnic-3,
* we need to set the entire ilt range for this timers.
*/
if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
struct ilt_client_info ilt_cli;
/* use dummy TM client */
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
ilt_cli.start = 0;
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
ilt_cli.client_num = ILT_CLIENT_TM;
ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
}
/* this assumes that reset_port() called before reset_func()*/
if (!CHIP_IS_E1x(sc)) {
bxe_pf_disable(sc);
}
sc->dmae_ready = 0;
}
static int
bxe_gunzip_init(struct bxe_softc *sc)
{
return (0);
}
static void
bxe_gunzip_end(struct bxe_softc *sc)
{
return;
}
static int
bxe_init_firmware(struct bxe_softc *sc)
{
if (CHIP_IS_E1(sc)) {
ecore_init_e1_firmware(sc);
sc->iro_array = e1_iro_arr;
} else if (CHIP_IS_E1H(sc)) {
ecore_init_e1h_firmware(sc);
sc->iro_array = e1h_iro_arr;
} else if (!CHIP_IS_E1x(sc)) {
ecore_init_e2_firmware(sc);
sc->iro_array = e2_iro_arr;
} else {
BLOGE(sc, "Unsupported chip revision\n");
return (-1);
}
return (0);
}
static void
bxe_release_firmware(struct bxe_softc *sc)
{
/* Do nothing */
return;
}
static int
ecore_gunzip(struct bxe_softc *sc,
const uint8_t *zbuf,
int len)
{
/* XXX : Implement... */
BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
return (FALSE);
}
static void
ecore_reg_wr_ind(struct bxe_softc *sc,
uint32_t addr,
uint32_t val)
{
bxe_reg_wr_ind(sc, addr, val);
}
static void
ecore_write_dmae_phys_len(struct bxe_softc *sc,
bus_addr_t phys_addr,
uint32_t addr,
uint32_t len)
{
bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
}
void
ecore_storm_memset_struct(struct bxe_softc *sc,
uint32_t addr,
size_t size,
uint32_t *data)
{
uint8_t i;
for (i = 0; i < size/4; i++) {
REG_WR(sc, addr + (i * 4), data[i]);
}
}
/*
* character device - ioctl interface definitions
*/
#include "bxe_dump.h"
#include "bxe_ioctl.h"
#include <sys/conf.h>
static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td);
static struct cdevsw bxe_cdevsw = {
.d_version = D_VERSION,
.d_ioctl = bxe_eioctl,
.d_name = "bxecnic",
};
#define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
#define DUMP_ALL_PRESETS 0x1FFF
#define DUMP_MAX_PRESETS 13
#define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
#define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
#define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
#define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
#define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
#define IS_REG_IN_PRESET(presets, idx) \
((presets & (1 << (idx-1))) == (1 << (idx-1)))
static int
bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
{
if (CHIP_IS_E1(sc))
return dump_num_registers[0][preset-1];
else if (CHIP_IS_E1H(sc))
return dump_num_registers[1][preset-1];
else if (CHIP_IS_E2(sc))
return dump_num_registers[2][preset-1];
else if (CHIP_IS_E3A0(sc))
return dump_num_registers[3][preset-1];
else if (CHIP_IS_E3B0(sc))
return dump_num_registers[4][preset-1];
else
return 0;
}
static int
bxe_get_total_regs_len32(struct bxe_softc *sc)
{
uint32_t preset_idx;
int regdump_len32 = 0;
/* Calculate the total preset regs length */
for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
}
return regdump_len32;
}
static const uint32_t *
__bxe_get_page_addr_ar(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return page_vals_e2;
else if (CHIP_IS_E3(sc))
return page_vals_e3;
else
return NULL;
}
static uint32_t
__bxe_get_page_reg_num(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return PAGE_MODE_VALUES_E2;
else if (CHIP_IS_E3(sc))
return PAGE_MODE_VALUES_E3;
else
return 0;
}
static const uint32_t *
__bxe_get_page_write_ar(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return page_write_regs_e2;
else if (CHIP_IS_E3(sc))
return page_write_regs_e3;
else
return NULL;
}
static uint32_t
__bxe_get_page_write_num(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return PAGE_WRITE_REGS_E2;
else if (CHIP_IS_E3(sc))
return PAGE_WRITE_REGS_E3;
else
return 0;
}
static const struct reg_addr *
__bxe_get_page_read_ar(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return page_read_regs_e2;
else if (CHIP_IS_E3(sc))
return page_read_regs_e3;
else
return NULL;
}
static uint32_t
__bxe_get_page_read_num(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return PAGE_READ_REGS_E2;
else if (CHIP_IS_E3(sc))
return PAGE_READ_REGS_E3;
else
return 0;
}
static bool
bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
{
if (CHIP_IS_E1(sc))
return IS_E1_REG(reg_info->chips);
else if (CHIP_IS_E1H(sc))
return IS_E1H_REG(reg_info->chips);
else if (CHIP_IS_E2(sc))
return IS_E2_REG(reg_info->chips);
else if (CHIP_IS_E3A0(sc))
return IS_E3A0_REG(reg_info->chips);
else if (CHIP_IS_E3B0(sc))
return IS_E3B0_REG(reg_info->chips);
else
return 0;
}
static bool
bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
{
if (CHIP_IS_E1(sc))
return IS_E1_REG(wreg_info->chips);
else if (CHIP_IS_E1H(sc))
return IS_E1H_REG(wreg_info->chips);
else if (CHIP_IS_E2(sc))
return IS_E2_REG(wreg_info->chips);
else if (CHIP_IS_E3A0(sc))
return IS_E3A0_REG(wreg_info->chips);
else if (CHIP_IS_E3B0(sc))
return IS_E3B0_REG(wreg_info->chips);
else
return 0;
}
/**
* bxe_read_pages_regs - read "paged" registers
*
* @bp device handle
* @p output buffer
*
* Reads "paged" memories: memories that may only be read by first writing to a
* specific address ("write address") and then reading from a specific address
* ("read address"). There may be more than one write address per "page" and
* more than one read address per write address.
*/
static void
bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
{
uint32_t i, j, k, n;
/* addresses of the paged registers */
const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
/* number of paged registers */
int num_pages = __bxe_get_page_reg_num(sc);
/* write addresses */
const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
/* number of write addresses */
int write_num = __bxe_get_page_write_num(sc);
/* read addresses info */
const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
/* number of read addresses */
int read_num = __bxe_get_page_read_num(sc);
uint32_t addr, size;
for (i = 0; i < num_pages; i++) {
for (j = 0; j < write_num; j++) {
REG_WR(sc, write_addr[j], page_addr[i]);
for (k = 0; k < read_num; k++) {
if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
size = read_addr[k].size;
for (n = 0; n < size; n++) {
addr = read_addr[k].addr + n*4;
*p++ = REG_RD(sc, addr);
}
}
}
}
}
return;
}
static int
bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
{
uint32_t i, j, addr;
const struct wreg_addr *wreg_addr_p = NULL;
if (CHIP_IS_E1(sc))
wreg_addr_p = &wreg_addr_e1;
else if (CHIP_IS_E1H(sc))
wreg_addr_p = &wreg_addr_e1h;
else if (CHIP_IS_E2(sc))
wreg_addr_p = &wreg_addr_e2;
else if (CHIP_IS_E3A0(sc))
wreg_addr_p = &wreg_addr_e3;
else if (CHIP_IS_E3B0(sc))
wreg_addr_p = &wreg_addr_e3b0;
else
return (-1);
/* Read the idle_chk registers */
for (i = 0; i < IDLE_REGS_COUNT; i++) {
if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
for (j = 0; j < idle_reg_addrs[i].size; j++)
*p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
}
}
/* Read the regular registers */
for (i = 0; i < REGS_COUNT; i++) {
if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
for (j = 0; j < reg_addrs[i].size; j++)
*p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
}
}
/* Read the CAM registers */
if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
for (i = 0; i < wreg_addr_p->size; i++) {
*p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
/* In case of wreg_addr register, read additional
registers from read_regs array
*/
for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
addr = *(wreg_addr_p->read_regs);
*p++ = REG_RD(sc, addr + j*4);
}
}
}
/* Paged registers are supported in E2 & E3 only */
if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
/* Read "paged" registers */
bxe_read_pages_regs(sc, p, preset);
}
return 0;
}
int
bxe_grc_dump(struct bxe_softc *sc)
{
int rval = 0;
uint32_t preset_idx;
uint8_t *buf;
uint32_t size;
struct dump_header *d_hdr;
uint32_t i;
uint32_t reg_val;
uint32_t reg_addr;
uint32_t cmd_offset;
struct ecore_ilt *ilt = SC_ILT(sc);
struct bxe_fastpath *fp;
struct ilt_client_info *ilt_cli;
int grc_dump_size;
if (sc->grcdump_done || sc->grcdump_started)
return (rval);
sc->grcdump_started = 1;
BLOGI(sc, "Started collecting grcdump\n");
grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
sizeof(struct dump_header);
sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
if (sc->grc_dump == NULL) {
BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
return(ENOMEM);
}
/* Disable parity attentions as long as following dump may
* cause false alarms by reading never written registers. We
* will re-enable parity attentions right after the dump.
*/
/* Disable parity on path 0 */
bxe_pretend_func(sc, 0);
ecore_disable_blocks_parity(sc);
/* Disable parity on path 1 */
bxe_pretend_func(sc, 1);
ecore_disable_blocks_parity(sc);
/* Return to current function */
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
buf = sc->grc_dump;
d_hdr = sc->grc_dump;
d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1;
d_hdr->version = BNX2X_DUMP_VERSION;
d_hdr->preset = DUMP_ALL_PRESETS;
if (CHIP_IS_E1(sc)) {
d_hdr->dump_meta_data = DUMP_CHIP_E1;
} else if (CHIP_IS_E1H(sc)) {
d_hdr->dump_meta_data = DUMP_CHIP_E1H;
} else if (CHIP_IS_E2(sc)) {
d_hdr->dump_meta_data = DUMP_CHIP_E2 |
(BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
} else if (CHIP_IS_E3A0(sc)) {
d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
(BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
} else if (CHIP_IS_E3B0(sc)) {
d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
(BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
}
buf += sizeof(struct dump_header);
for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
/* Skip presets with IOR */
if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
(preset_idx == 11))
continue;
rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
if (rval)
break;
size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
buf += size;
}
bxe_pretend_func(sc, 0);
ecore_clear_blocks_parity(sc);
ecore_enable_blocks_parity(sc);
bxe_pretend_func(sc, 1);
ecore_clear_blocks_parity(sc);
ecore_enable_blocks_parity(sc);
/* Return to current function */
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
if(sc->state == BXE_STATE_OPEN) {
if(sc->fw_stats_req != NULL) {
BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
(uintmax_t)sc->fw_stats_req_mapping,
(uintmax_t)sc->fw_stats_data_mapping,
sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
}
if(sc->def_sb != NULL) {
BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
(void *)sc->def_sb_dma.paddr, sc->def_sb,
sizeof(struct host_sp_status_block));
}
if(sc->eq_dma.vaddr != NULL) {
BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
(uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
}
if(sc->sp_dma.vaddr != NULL) {
BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
(uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
sizeof(struct bxe_slowpath));
}
if(sc->spq_dma.vaddr != NULL) {
BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
(uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
}
if(sc->gz_buf_dma.vaddr != NULL) {
BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
(uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
FW_BUF_SIZE);
}
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
fp->rx_sge_dma.vaddr != NULL) {
BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
(uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
sizeof(union bxe_host_hc_status_block));
BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
(uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
(BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
(uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
(BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
(uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
(BCM_PAGE_SIZE * RCQ_NUM_PAGES));
BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
(uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
(BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
}
}
if(ilt != NULL ) {
ilt_cli = &ilt->clients[1];
if(ilt->lines != NULL) {
for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
(uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
}
}
}
cmd_offset = DMAE_REG_CMD_MEM;
for (i = 0; i < 224; i++) {
reg_addr = (cmd_offset +(i * 4));
reg_val = REG_RD(sc, reg_addr);
BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
reg_addr, reg_val);
}
}
BLOGI(sc, "Collection of grcdump done\n");
sc->grcdump_done = 1;
return(rval);
}
static int
bxe_add_cdev(struct bxe_softc *sc)
{
sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
if (sc->eeprom == NULL) {
BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
return (-1);
}
sc->ioctl_dev = make_dev(&bxe_cdevsw,
sc->ifp->if_dunit,
UID_ROOT,
GID_WHEEL,
0600,
"%s",
if_name(sc->ifp));
if (sc->ioctl_dev == NULL) {
free(sc->eeprom, M_DEVBUF);
sc->eeprom = NULL;
return (-1);
}
sc->ioctl_dev->si_drv1 = sc;
return (0);
}
static void
bxe_del_cdev(struct bxe_softc *sc)
{
if (sc->ioctl_dev != NULL)
destroy_dev(sc->ioctl_dev);
if (sc->eeprom != NULL) {
free(sc->eeprom, M_DEVBUF);
sc->eeprom = NULL;
}
sc->ioctl_dev = NULL;
return;
}
static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
{
if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
return FALSE;
return TRUE;
}
static int
bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
{
int rval = 0;
if(!bxe_is_nvram_accessible(sc)) {
BLOGW(sc, "Cannot access eeprom when interface is down\n");
return (-EAGAIN);
}
rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
return (rval);
}
static int
bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
{
int rval = 0;
if(!bxe_is_nvram_accessible(sc)) {
BLOGW(sc, "Cannot access eeprom when interface is down\n");
return (-EAGAIN);
}
rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
return (rval);
}
static int
bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
{
int rval = 0;
switch (eeprom->eeprom_cmd) {
case BXE_EEPROM_CMD_SET_EEPROM:
rval = copyin(eeprom->eeprom_data, sc->eeprom,
eeprom->eeprom_data_len);
if (rval)
break;
rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
eeprom->eeprom_data_len);
break;
case BXE_EEPROM_CMD_GET_EEPROM:
rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
eeprom->eeprom_data_len);
if (rval) {
break;
}
rval = copyout(sc->eeprom, eeprom->eeprom_data,
eeprom->eeprom_data_len);
break;
default:
rval = EINVAL;
break;
}
if (rval) {
BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval);
}
return (rval);
}
static int
bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
{
uint32_t ext_phy_config;
int port = SC_PORT(sc);
int cfg_idx = bxe_get_link_cfg_idx(sc);
dev_p->supported = sc->port.supported[cfg_idx] |
(sc->port.supported[cfg_idx ^ 1] &
(ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
dev_p->advertising = sc->port.advertising[cfg_idx];
if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
ELINK_ETH_PHY_SFP_1G_FIBER) {
dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
}
if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
!(sc->flags & BXE_MF_FUNC_DIS)) {
dev_p->duplex = sc->link_vars.duplex;
if (IS_MF(sc) && !BXE_NOMCP(sc))
dev_p->speed = bxe_get_mf_speed(sc);
else
dev_p->speed = sc->link_vars.line_speed;
} else {
dev_p->duplex = DUPLEX_UNKNOWN;
dev_p->speed = SPEED_UNKNOWN;
}
dev_p->port = bxe_media_detect(sc);
ext_phy_config = SHMEM_RD(sc,
dev_info.port_hw_config[port].external_phy_config);
if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
dev_p->phy_address = sc->port.phy_addr;
else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
else
dev_p->phy_address = 0;
if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
dev_p->autoneg = AUTONEG_ENABLE;
else
dev_p->autoneg = AUTONEG_DISABLE;
return 0;
}
static int
bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
struct bxe_softc *sc;
int rval = 0;
device_t pci_dev;
bxe_grcdump_t *dump = NULL;
int grc_dump_size;
bxe_drvinfo_t *drv_infop = NULL;
bxe_dev_setting_t *dev_p;
bxe_dev_setting_t dev_set;
bxe_get_regs_t *reg_p;
bxe_reg_rdw_t *reg_rdw_p;
bxe_pcicfg_rdw_t *cfg_rdw_p;
bxe_perm_mac_addr_t *mac_addr_p;
if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
return ENXIO;
pci_dev= sc->dev;
dump = (bxe_grcdump_t *)data;
switch(cmd) {
case BXE_GRC_DUMP_SIZE:
dump->pci_func = sc->pcie_func;
dump->grcdump_size =
(bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
sizeof(struct dump_header);
break;
case BXE_GRC_DUMP:
grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
sizeof(struct dump_header);
if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
(dump->grcdump_size < grc_dump_size)) {
rval = EINVAL;
break;
}
if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
(!sc->grcdump_started)) {
rval = bxe_grc_dump(sc);
}
if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
(sc->grc_dump != NULL)) {
dump->grcdump_dwords = grc_dump_size >> 2;
rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
free(sc->grc_dump, M_DEVBUF);
sc->grc_dump = NULL;
sc->grcdump_started = 0;
sc->grcdump_done = 0;
}
break;
case BXE_DRV_INFO:
drv_infop = (bxe_drvinfo_t *)data;
snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
BXE_DRIVER_VERSION);
snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
sc->devinfo.bc_ver_str);
snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
"%s", sc->fw_ver_str);
drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
drv_infop->reg_dump_len =
(bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
+ sizeof(struct dump_header);
snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
sc->pcie_bus, sc->pcie_device, sc->pcie_func);
break;
case BXE_DEV_SETTING:
dev_p = (bxe_dev_setting_t *)data;
bxe_get_settings(sc, &dev_set);
dev_p->supported = dev_set.supported;
dev_p->advertising = dev_set.advertising;
dev_p->speed = dev_set.speed;
dev_p->duplex = dev_set.duplex;
dev_p->port = dev_set.port;
dev_p->phy_address = dev_set.phy_address;
dev_p->autoneg = dev_set.autoneg;
break;
case BXE_GET_REGS:
reg_p = (bxe_get_regs_t *)data;
grc_dump_size = reg_p->reg_buf_len;
if((!sc->grcdump_done) && (!sc->grcdump_started)) {
bxe_grc_dump(sc);
}
if((sc->grcdump_done) && (sc->grcdump_started) &&
(sc->grc_dump != NULL)) {
rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
free(sc->grc_dump, M_DEVBUF);
sc->grc_dump = NULL;
sc->grcdump_started = 0;
sc->grcdump_done = 0;
}
break;
case BXE_RDW_REG:
reg_rdw_p = (bxe_reg_rdw_t *)data;
if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
(reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
(reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
break;
case BXE_RDW_PCICFG:
cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
cfg_rdw_p->cfg_width);
} else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
cfg_rdw_p->cfg_width);
} else {
BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
}
break;
case BXE_MAC_ADDR:
mac_addr_p = (bxe_perm_mac_addr_t *)data;
snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
sc->mac_addr_str);
break;
case BXE_EEPROM:
rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
break;
default:
break;
}
return (rval);
}
#ifdef DEBUGNET
static void
bxe_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
{
struct bxe_softc *sc;
sc = if_getsoftc(ifp);
BXE_CORE_LOCK(sc);
*nrxr = sc->num_queues;
*ncl = DEBUGNET_MAX_IN_FLIGHT;
*clsize = sc->fp[0].mbuf_alloc_size;
BXE_CORE_UNLOCK(sc);
}
static void
bxe_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused)
{
}
static int
bxe_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct bxe_softc *sc;
int error;
sc = if_getsoftc(ifp);
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || !sc->link_vars.link_up)
return (ENOENT);
error = bxe_tx_encap(&sc->fp[0], &m);
if (error != 0 && m != NULL)
m_freem(m);
return (error);
}
static int
bxe_debugnet_poll(struct ifnet *ifp, int count)
{
struct bxe_softc *sc;
int i;
sc = if_getsoftc(ifp);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
!sc->link_vars.link_up)
return (ENOENT);
for (i = 0; i < sc->num_queues; i++)
(void)bxe_rxeof(sc, &sc->fp[i]);
(void)bxe_txeof(sc, &sc->fp[0]);
return (0);
}
#endif /* DEBUGNET */