freebsd-skq/sys/dev/fdc/fdc.c
John Baldwin 5f6fcd82a2 Always protect the kthread flags with the lock and close a race with
module unload and kthread_exit().

MFC after:	3 days
2007-02-27 17:16:52 +00:00

2051 lines
48 KiB
C

/*-
* Copyright (c) 2004 Poul-Henning Kamp
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Don Ahn.
*
* Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu)
* aided by the Linux floppy driver modifications from David Bateman
* (dbateman@eng.uts.edu.au).
*
* Copyright (c) 1993, 1994 by
* jc@irbs.UUCP (John Capo)
* vak@zebub.msk.su (Serge Vakulenko)
* ache@astral.msk.su (Andrew A. Chernov)
*
* Copyright (c) 1993, 1994, 1995 by
* joerg_wunsch@uriah.sax.de (Joerg Wunsch)
* dufault@hda.com (Peter Dufault)
*
* Copyright (c) 2001 Joerg Wunsch,
* joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)fd.c 7.4 (Berkeley) 5/25/91
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_fdc.h"
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/devicestat.h>
#include <sys/disk.h>
#include <sys/fcntl.h>
#include <sys/fdcio.h>
#include <sys/filio.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <geom/geom.h>
#include <machine/bus.h>
#include <machine/clock.h>
#include <machine/stdarg.h>
#include <isa/isavar.h>
#include <isa/isareg.h>
#include <dev/fdc/fdcvar.h>
#include <isa/rtc.h>
#include <dev/ic/nec765.h>
/*
* Runtime configuration hints/flags
*/
/* configuration flags for fd */
#define FD_TYPEMASK 0x0f /* drive type, matches enum
* fd_drivetype; on i386 machines, if
* given as 0, use RTC type for fd0
* and fd1 */
#define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just
* assume it is there */
/*
* Things that could conceiveably considered parameters or tweakables
*/
/*
* Maximal number of bytes in a cylinder.
* This is used for ISADMA bouncebuffer allocation and sets the max
* xfersize we support.
*
* 2.88M format has 2 x 36 x 512, allow for hacked up density.
*/
#define MAX_BYTES_PER_CYL (2 * 40 * 512)
/*
* Timeout value for the PIO loops to wait until the FDC main status
* register matches our expectations (request for master, direction
* bit). This is supposed to be a number of microseconds, although
* timing might actually not be very accurate.
*
* Timeouts of 100 msec are believed to be required for some broken
* (old) hardware.
*/
#define FDSTS_TIMEOUT 100000
/*
* After this many errors, stop whining. Close will reset this count.
*/
#define FDC_ERRMAX 100
/*
* AutoDensity search lists for each drive type.
*/
static struct fd_type fd_searchlist_360k[] = {
{ FDF_5_360 },
{ 0 }
};
static struct fd_type fd_searchlist_12m[] = {
{ FDF_5_1200 | FL_AUTO },
{ FDF_5_360 | FL_2STEP | FL_AUTO},
{ 0 }
};
static struct fd_type fd_searchlist_720k[] = {
{ FDF_3_720 },
{ 0 }
};
static struct fd_type fd_searchlist_144m[] = {
{ FDF_3_1440 | FL_AUTO},
{ FDF_3_720 | FL_AUTO},
{ 0 }
};
static struct fd_type fd_searchlist_288m[] = {
{ FDF_3_1440 | FL_AUTO },
#if 0
{ FDF_3_2880 | FL_AUTO }, /* XXX: probably doesn't work */
#endif
{ FDF_3_720 | FL_AUTO},
{ 0 }
};
/*
* Order must match enum fd_drivetype in <sys/fdcio.h>.
*/
static struct fd_type *fd_native_types[] = {
NULL, /* FDT_NONE */
fd_searchlist_360k, /* FDT_360K */
fd_searchlist_12m, /* FDT_12M */
fd_searchlist_720k, /* FDT_720K */
fd_searchlist_144m, /* FDT_144M */
fd_searchlist_288m, /* FDT_288M_1 (mapped to FDT_288M) */
fd_searchlist_288m, /* FDT_288M */
};
/*
* Internals start here
*/
/* registers */
#define FDOUT 2 /* Digital Output Register (W) */
#define FDO_FDSEL 0x03 /* floppy device select */
#define FDO_FRST 0x04 /* floppy controller reset */
#define FDO_FDMAEN 0x08 /* enable floppy DMA and Interrupt */
#define FDO_MOEN0 0x10 /* motor enable drive 0 */
#define FDO_MOEN1 0x20 /* motor enable drive 1 */
#define FDO_MOEN2 0x40 /* motor enable drive 2 */
#define FDO_MOEN3 0x80 /* motor enable drive 3 */
#define FDSTS 4 /* NEC 765 Main Status Register (R) */
#define FDDSR 4 /* Data Rate Select Register (W) */
#define FDDATA 5 /* NEC 765 Data Register (R/W) */
#define FDCTL 7 /* Control Register (W) */
/*
* The YE-DATA PC Card floppies use PIO to read in the data rather
* than DMA due to the wild variability of DMA for the PC Card
* devices. DMA was deleted from the PC Card specification in version
* 7.2 of the standard, but that post-dates the YE-DATA devices by many
* years.
*
* In addition, if we cannot setup the DMA resources for the ISA
* attachment, we'll use this same offset for data transfer. However,
* that almost certainly won't work.
*
* For this mode, offset 0 and 1 must be used to setup the transfer
* for this floppy. This is OK for PC Card YE Data devices, but for
* ISA this is likely wrong. These registers are only available on
* those systems that map them to the floppy drive. Newer systems do
* not do this, and we should likely prohibit access to them (or
* disallow NODMA to be set).
*/
#define FDBCDR 0 /* And 1 */
#define FD_YE_DATAPORT 6 /* Drive Data port */
#define FDI_DCHG 0x80 /* diskette has been changed */
/* requires drive and motor being selected */
/* is cleared by any step pulse to drive */
/*
* We have three private BIO commands.
*/
#define BIO_PROBE BIO_CMD0
#define BIO_RDID BIO_CMD1
#define BIO_FMT BIO_CMD2
/*
* Per drive structure (softc).
*/
struct fd_data {
u_char *fd_ioptr; /* IO pointer */
u_int fd_iosize; /* Size of IO chunks */
u_int fd_iocount; /* Outstanding requests */
struct fdc_data *fdc; /* pointer to controller structure */
int fdsu; /* this units number on this controller */
enum fd_drivetype type; /* drive type */
struct fd_type *ft; /* pointer to current type descriptor */
struct fd_type fts; /* type descriptors */
int sectorsize;
int flags;
#define FD_WP (1<<0) /* Write protected */
#define FD_MOTOR (1<<1) /* motor should be on */
#define FD_MOTORWAIT (1<<2) /* motor should be on */
#define FD_EMPTY (1<<3) /* no media */
#define FD_NEWDISK (1<<4) /* media changed */
#define FD_ISADMA (1<<5) /* isa dma started */
int track; /* where we think the head is */
#define FD_NO_TRACK -2
int options; /* FDOPT_* */
struct callout toffhandle;
struct g_geom *fd_geom;
struct g_provider *fd_provider;
device_t dev;
struct bio_queue_head fd_bq;
};
#define FD_NOT_VALID -2
static driver_intr_t fdc_intr;
static driver_filter_t fdc_intr_fast;
static void fdc_reset(struct fdc_data *);
SYSCTL_NODE(_debug, OID_AUTO, fdc, CTLFLAG_RW, 0, "fdc driver");
static int fifo_threshold = 8;
SYSCTL_INT(_debug_fdc, OID_AUTO, fifo, CTLFLAG_RW, &fifo_threshold, 0,
"FIFO threshold setting");
static int debugflags = 0;
SYSCTL_INT(_debug_fdc, OID_AUTO, debugflags, CTLFLAG_RW, &debugflags, 0,
"Debug flags");
static int retries = 10;
SYSCTL_INT(_debug_fdc, OID_AUTO, retries, CTLFLAG_RW, &retries, 0,
"Number of retries to attempt");
static int spec1 = 0xaf;
SYSCTL_INT(_debug_fdc, OID_AUTO, spec1, CTLFLAG_RW, &spec1, 0,
"Specification byte one (step-rate + head unload)");
static int spec2 = 0x10;
SYSCTL_INT(_debug_fdc, OID_AUTO, spec2, CTLFLAG_RW, &spec2, 0,
"Specification byte two (head load time + no-dma)");
static int settle;
SYSCTL_INT(_debug_fdc, OID_AUTO, settle, CTLFLAG_RW, &settle, 0,
"Head settling time in sec/hz");
static void
fdprinttype(struct fd_type *ft)
{
printf("(%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,0x%x)",
ft->sectrac, ft->secsize, ft->datalen, ft->gap, ft->tracks,
ft->size, ft->trans, ft->heads, ft->f_gap, ft->f_inter,
ft->offset_side2, ft->flags);
}
static void
fdsettype(struct fd_data *fd, struct fd_type *ft)
{
fd->ft = ft;
ft->size = ft->sectrac * ft->heads * ft->tracks;
fd->sectorsize = 128 << fd->ft->secsize;
}
/*
* Bus space handling (access to low-level IO).
*/
__inline static void
fdregwr(struct fdc_data *fdc, int reg, uint8_t v)
{
bus_space_write_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg], v);
}
__inline static uint8_t
fdregrd(struct fdc_data *fdc, int reg)
{
return bus_space_read_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg]);
}
static void
fdctl_wr(struct fdc_data *fdc, u_int8_t v)
{
fdregwr(fdc, FDCTL, v);
}
static void
fdout_wr(struct fdc_data *fdc, u_int8_t v)
{
fdregwr(fdc, FDOUT, v);
}
static u_int8_t
fdsts_rd(struct fdc_data *fdc)
{
return fdregrd(fdc, FDSTS);
}
static void
fddsr_wr(struct fdc_data *fdc, u_int8_t v)
{
fdregwr(fdc, FDDSR, v);
}
static void
fddata_wr(struct fdc_data *fdc, u_int8_t v)
{
fdregwr(fdc, FDDATA, v);
}
static u_int8_t
fddata_rd(struct fdc_data *fdc)
{
return fdregrd(fdc, FDDATA);
}
static u_int8_t
fdin_rd(struct fdc_data *fdc)
{
return fdregrd(fdc, FDCTL);
}
/*
* Magic pseudo-DMA initialization for YE FDC. Sets count and
* direction.
*/
static void
fdbcdr_wr(struct fdc_data *fdc, int iswrite, uint16_t count)
{
fdregwr(fdc, FDBCDR, (count - 1) & 0xff);
fdregwr(fdc, FDBCDR + 1,
(iswrite ? 0x80 : 0) | (((count - 1) >> 8) & 0x7f));
}
static int
fdc_err(struct fdc_data *fdc, const char *s)
{
fdc->fdc_errs++;
if (s) {
if (fdc->fdc_errs < FDC_ERRMAX)
device_printf(fdc->fdc_dev, "%s", s);
else if (fdc->fdc_errs == FDC_ERRMAX)
device_printf(fdc->fdc_dev, "too many errors, not "
"logging any more\n");
}
return (1);
}
/*
* FDC IO functions, take care of the main status register, timeout
* in case the desired status bits are never set.
*
* These PIO loops initially start out with short delays between
* each iteration in the expectation that the required condition
* is usually met quickly, so it can be handled immediately.
*/
static int
fdc_in(struct fdc_data *fdc, int *ptr)
{
int i, j, step;
step = 1;
for (j = 0; j < FDSTS_TIMEOUT; j += step) {
i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM);
if (i == (NE7_DIO|NE7_RQM)) {
i = fddata_rd(fdc);
if (ptr)
*ptr = i;
return (0);
}
if (i == NE7_RQM)
return (fdc_err(fdc, "ready for output in input\n"));
step += step;
DELAY(step);
}
return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0));
}
static int
fdc_out(struct fdc_data *fdc, int x)
{
int i, j, step;
step = 1;
for (j = 0; j < FDSTS_TIMEOUT; j += step) {
i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM);
if (i == NE7_RQM) {
fddata_wr(fdc, x);
return (0);
}
if (i == (NE7_DIO|NE7_RQM))
return (fdc_err(fdc, "ready for input in output\n"));
step += step;
DELAY(step);
}
return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0));
}
/*
* fdc_cmd: Send a command to the chip.
* Takes a varargs with this structure:
* # of output bytes
* output bytes as int [...]
* # of input bytes
* input bytes as int* [...]
*/
static int
fdc_cmd(struct fdc_data *fdc, int n_out, ...)
{
u_char cmd = 0;
int n_in;
int n, i;
va_list ap;
va_start(ap, n_out);
for (n = 0; n < n_out; n++) {
i = va_arg(ap, int);
if (n == 0)
cmd = i;
if (fdc_out(fdc, i) < 0) {
char msg[50];
snprintf(msg, sizeof(msg),
"cmd %x failed at out byte %d of %d\n",
cmd, n + 1, n_out);
fdc->flags |= FDC_NEEDS_RESET;
va_end(ap);
return fdc_err(fdc, msg);
}
}
n_in = va_arg(ap, int);
for (n = 0; n < n_in; n++) {
int *ptr = va_arg(ap, int *);
if (fdc_in(fdc, ptr) < 0) {
char msg[50];
snprintf(msg, sizeof(msg),
"cmd %02x failed at in byte %d of %d\n",
cmd, n + 1, n_in);
fdc->flags |= FDC_NEEDS_RESET;
va_end(ap);
return fdc_err(fdc, msg);
}
}
va_end(ap);
return (0);
}
static void
fdc_reset(struct fdc_data *fdc)
{
int i, r[10];
if (fdc->fdct == FDC_ENHANCED) {
/* Try a software reset, default precomp, and 500 kb/s */
fddsr_wr(fdc, I8207X_DSR_SR);
} else {
/* Try a hardware reset, keep motor on */
fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
DELAY(100);
/* enable FDC, but defer interrupts a moment */
fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN);
}
DELAY(100);
fdout_wr(fdc, fdc->fdout);
/* XXX after a reset, silently believe the FDC will accept commands */
if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, spec1, spec2, 0))
device_printf(fdc->fdc_dev, " SPECIFY failed in reset\n");
if (fdc->fdct == FDC_ENHANCED) {
if (fdc_cmd(fdc, 4,
I8207X_CONFIG,
0,
0x40 | /* Enable Implied Seek */
0x10 | /* Polling disabled */
(fifo_threshold - 1), /* Fifo threshold */
0x00, /* Precomp track */
0))
device_printf(fdc->fdc_dev,
" CONFIGURE failed in reset\n");
if (debugflags & 1) {
if (fdc_cmd(fdc, 1,
I8207X_DUMPREG,
10, &r[0], &r[1], &r[2], &r[3], &r[4],
&r[5], &r[6], &r[7], &r[8], &r[9]))
device_printf(fdc->fdc_dev,
" DUMPREG failed in reset\n");
for (i = 0; i < 10; i++)
printf(" %02x", r[i]);
printf("\n");
}
}
}
static int
fdc_sense_drive(struct fdc_data *fdc, int *st3p)
{
int st3;
if (fdc_cmd(fdc, 2, NE7CMD_SENSED, fdc->fd->fdsu, 1, &st3))
return (fdc_err(fdc, "Sense Drive Status failed\n"));
if (st3p)
*st3p = st3;
return (0);
}
static int
fdc_sense_int(struct fdc_data *fdc, int *st0p, int *cylp)
{
int cyl, st0, ret;
ret = fdc_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0);
if (ret) {
(void)fdc_err(fdc, "sense intr err reading stat reg 0\n");
return (ret);
}
if (st0p)
*st0p = st0;
if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) {
/*
* There doesn't seem to have been an interrupt.
*/
return (FD_NOT_VALID);
}
if (fdc_in(fdc, &cyl) < 0)
return fdc_err(fdc, "can't get cyl num\n");
if (cylp)
*cylp = cyl;
return (0);
}
static int
fdc_read_status(struct fdc_data *fdc)
{
int i, ret, status;
for (i = ret = 0; i < 7; i++) {
ret = fdc_in(fdc, &status);
fdc->status[i] = status;
if (ret != 0)
break;
}
if (ret == 0)
fdc->flags |= FDC_STAT_VALID;
else
fdc->flags &= ~FDC_STAT_VALID;
return ret;
}
/*
* Select this drive
*/
static void
fd_select(struct fd_data *fd)
{
struct fdc_data *fdc;
/* XXX: lock controller */
fdc = fd->fdc;
fdc->fdout &= ~FDO_FDSEL;
fdc->fdout |= FDO_FDMAEN | FDO_FRST | fd->fdsu;
fdout_wr(fdc, fdc->fdout);
}
static void
fd_turnon(void *arg)
{
struct fd_data *fd;
struct bio *bp;
int once;
fd = arg;
mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED);
fd->flags &= ~FD_MOTORWAIT;
fd->flags |= FD_MOTOR;
once = 0;
for (;;) {
bp = bioq_takefirst(&fd->fd_bq);
if (bp == NULL)
break;
bioq_disksort(&fd->fdc->head, bp);
once = 1;
}
if (once)
wakeup(&fd->fdc->head);
}
static void
fd_motor(struct fd_data *fd, int turnon)
{
struct fdc_data *fdc;
fdc = fd->fdc;
/*
mtx_assert(&fdc->fdc_mtx, MA_OWNED);
*/
if (turnon) {
fd->flags |= FD_MOTORWAIT;
fdc->fdout |= (FDO_MOEN0 << fd->fdsu);
callout_reset(&fd->toffhandle, hz, fd_turnon, fd);
} else {
callout_stop(&fd->toffhandle);
fd->flags &= ~(FD_MOTOR|FD_MOTORWAIT);
fdc->fdout &= ~(FDO_MOEN0 << fd->fdsu);
}
fdout_wr(fdc, fdc->fdout);
}
static void
fd_turnoff(void *xfd)
{
struct fd_data *fd = xfd;
mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED);
fd_motor(fd, 0);
}
/*
* fdc_intr - wake up the worker thread.
*/
static void
fdc_intr(void *arg)
{
wakeup(arg);
}
static int
fdc_intr_fast(void *arg)
{
wakeup(arg);
return(FILTER_HANDLED);
}
/*
* fdc_pio(): perform programmed IO read/write for YE PCMCIA floppy.
*/
static void
fdc_pio(struct fdc_data *fdc)
{
u_char *cptr;
struct bio *bp;
u_int count;
bp = fdc->bp;
cptr = fdc->fd->fd_ioptr;
count = fdc->fd->fd_iosize;
if (bp->bio_cmd == BIO_READ) {
fdbcdr_wr(fdc, 0, count);
bus_space_read_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT],
fdc->ioff[FD_YE_DATAPORT], cptr, count);
} else {
bus_space_write_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT],
fdc->ioff[FD_YE_DATAPORT], cptr, count);
fdbcdr_wr(fdc, 0, count); /* needed? */
}
}
static int
fdc_biodone(struct fdc_data *fdc, int error)
{
struct fd_data *fd;
struct bio *bp;
fd = fdc->fd;
bp = fdc->bp;
mtx_lock(&fdc->fdc_mtx);
if (--fd->fd_iocount == 0)
callout_reset(&fd->toffhandle, 4 * hz, fd_turnoff, fd);
fdc->bp = NULL;
fdc->fd = NULL;
mtx_unlock(&fdc->fdc_mtx);
if (bp->bio_to != NULL) {
if ((debugflags & 2) && fd->fdc->retry > 0)
printf("retries: %d\n", fd->fdc->retry);
g_io_deliver(bp, error);
return (0);
}
bp->bio_error = error;
bp->bio_flags |= BIO_DONE;
wakeup(bp);
return (0);
}
static int retry_line;
static int
fdc_worker(struct fdc_data *fdc)
{
struct fd_data *fd;
struct bio *bp;
int i, nsect;
int st0, st3, cyl, mfm, steptrac, cylinder, descyl, sec;
int head;
static int need_recal;
struct fdc_readid *idp;
struct fd_formb *finfo;
/* Have we exhausted our retries ? */
bp = fdc->bp;
fd = fdc->fd;
if (bp != NULL &&
(fdc->retry >= retries || (fd->options & FDOPT_NORETRY))) {
if ((debugflags & 4))
printf("Too many retries (EIO)\n");
mtx_lock(&fdc->fdc_mtx);
fd->flags |= FD_EMPTY;
mtx_unlock(&fdc->fdc_mtx);
return (fdc_biodone(fdc, EIO));
}
/* Disable ISADMA if we bailed while it was active */
if (fd != NULL && (fd->flags & FD_ISADMA)) {
mtx_lock(&Giant);
isa_dmadone(
bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE,
fd->fd_ioptr, fd->fd_iosize, fdc->dmachan);
mtx_unlock(&Giant);
mtx_lock(&fdc->fdc_mtx);
fd->flags &= ~FD_ISADMA;
mtx_unlock(&fdc->fdc_mtx);
}
/* Unwedge the controller ? */
if (fdc->flags & FDC_NEEDS_RESET) {
fdc->flags &= ~FDC_NEEDS_RESET;
fdc_reset(fdc);
tsleep(fdc, PRIBIO, "fdcrst", hz);
/* Discard results */
for (i = 0; i < 4; i++)
fdc_sense_int(fdc, &st0, &cyl);
/* All drives must recal */
need_recal = 0xf;
}
/* Pick up a request, if need be wait for it */
if (fdc->bp == NULL) {
mtx_lock(&fdc->fdc_mtx);
do {
fdc->bp = bioq_takefirst(&fdc->head);
if (fdc->bp == NULL)
msleep(&fdc->head, &fdc->fdc_mtx,
PRIBIO, "-", hz);
} while (fdc->bp == NULL &&
(fdc->flags & FDC_KTHREAD_EXIT) == 0);
mtx_unlock(&fdc->fdc_mtx);
if (fdc->bp == NULL)
/*
* Nothing to do, worker thread has been
* requested to stop.
*/
return (0);
bp = fdc->bp;
fd = fdc->fd = bp->bio_driver1;
fdc->retry = 0;
fd->fd_ioptr = bp->bio_data;
if (bp->bio_cmd & BIO_FMT) {
i = offsetof(struct fd_formb, fd_formb_cylno(0));
fd->fd_ioptr += i;
fd->fd_iosize = bp->bio_length - i;
}
}
/* Select drive, setup params */
fd_select(fd);
if (fdc->fdct == FDC_ENHANCED)
fddsr_wr(fdc, fd->ft->trans);
else
fdctl_wr(fdc, fd->ft->trans);
if (bp->bio_cmd & BIO_PROBE) {
if (!(fdin_rd(fdc) & FDI_DCHG) && !(fd->flags & FD_EMPTY))
return (fdc_biodone(fdc, 0));
/*
* Try to find out if we have a disk in the drive
*
* First recal, then seek to cyl#1, this clears the
* old condition on the disk change line so we can
* examine it for current status
*/
if (debugflags & 0x40)
printf("New disk in probe\n");
mtx_lock(&fdc->fdc_mtx);
fd->flags |= FD_NEWDISK;
mtx_unlock(&fdc->fdc_mtx);
retry_line = __LINE__;
if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0))
return (1);
tsleep(fdc, PRIBIO, "fdrecal", hz);
retry_line = __LINE__;
if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
return (1); /* XXX */
retry_line = __LINE__;
if ((st0 & 0xc0) || cyl != 0)
return (1);
/* Seek to track 1 */
retry_line = __LINE__;
if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, 1, 0))
return (1);
tsleep(fdc, PRIBIO, "fdseek", hz);
retry_line = __LINE__;
if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
return (1); /* XXX */
need_recal |= (1 << fd->fdsu);
if (fdin_rd(fdc) & FDI_DCHG) {
if (debugflags & 0x40)
printf("Empty in probe\n");
mtx_lock(&fdc->fdc_mtx);
fd->flags |= FD_EMPTY;
mtx_unlock(&fdc->fdc_mtx);
} else {
if (debugflags & 0x40)
printf("Got disk in probe\n");
mtx_lock(&fdc->fdc_mtx);
fd->flags &= ~FD_EMPTY;
mtx_unlock(&fdc->fdc_mtx);
retry_line = __LINE__;
if(fdc_sense_drive(fdc, &st3) != 0)
return (1);
mtx_lock(&fdc->fdc_mtx);
if(st3 & NE7_ST3_WP)
fd->flags |= FD_WP;
else
fd->flags &= ~FD_WP;
mtx_unlock(&fdc->fdc_mtx);
}
return (fdc_biodone(fdc, 0));
}
/*
* If we are dead just flush the requests
*/
if (fd->flags & FD_EMPTY)
return (fdc_biodone(fdc, ENXIO));
/* Check if we lost our media */
if (fdin_rd(fdc) & FDI_DCHG) {
if (debugflags & 0x40)
printf("Lost disk\n");
mtx_lock(&fdc->fdc_mtx);
fd->flags |= FD_EMPTY;
fd->flags |= FD_NEWDISK;
mtx_unlock(&fdc->fdc_mtx);
g_topology_lock();
g_orphan_provider(fd->fd_provider, EXDEV);
fd->fd_provider->flags |= G_PF_WITHER;
fd->fd_provider =
g_new_providerf(fd->fd_geom, fd->fd_geom->name);
g_error_provider(fd->fd_provider, 0);
g_topology_unlock();
return (fdc_biodone(fdc, ENXIO));
}
/* Check if the floppy is write-protected */
if(bp->bio_cmd & (BIO_FMT | BIO_WRITE)) {
retry_line = __LINE__;
if(fdc_sense_drive(fdc, &st3) != 0)
return (1);
if(st3 & NE7_ST3_WP)
return (fdc_biodone(fdc, EROFS));
}
mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0;
steptrac = (fd->ft->flags & FL_2STEP)? 2: 1;
i = fd->ft->sectrac * fd->ft->heads;
cylinder = bp->bio_pblkno / i;
descyl = cylinder * steptrac;
sec = bp->bio_pblkno % i;
nsect = i - sec;
head = sec / fd->ft->sectrac;
sec = sec % fd->ft->sectrac + 1;
/* If everything is going swimmingly, use multisector xfer */
if (fdc->retry == 0 && bp->bio_cmd & (BIO_READ|BIO_WRITE)) {
fd->fd_iosize = imin(nsect * fd->sectorsize, bp->bio_resid);
nsect = fd->fd_iosize / fd->sectorsize;
} else if (bp->bio_cmd & (BIO_READ|BIO_WRITE)) {
fd->fd_iosize = fd->sectorsize;
nsect = 1;
}
/* Do RECAL if we need to or are going to track zero anyway */
if ((need_recal & (1 << fd->fdsu)) ||
(cylinder == 0 && fd->track != 0) ||
fdc->retry > 2) {
retry_line = __LINE__;
if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0))
return (1);
tsleep(fdc, PRIBIO, "fdrecal", hz);
retry_line = __LINE__;
if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
return (1); /* XXX */
retry_line = __LINE__;
if ((st0 & 0xc0) || cyl != 0)
return (1);
need_recal &= ~(1 << fd->fdsu);
fd->track = 0;
/* let the heads settle */
if (settle)
tsleep(fdc->fd, PRIBIO, "fdhdstl", settle);
}
/*
* SEEK to where we want to be
*
* Enhanced controllers do implied seeks for read&write as long as
* we do not need multiple steps per track.
*/
if (cylinder != fd->track && (
fdc->fdct != FDC_ENHANCED ||
descyl != cylinder ||
(bp->bio_cmd & (BIO_RDID|BIO_FMT)))) {
retry_line = __LINE__;
if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, descyl, 0))
return (1);
tsleep(fdc, PRIBIO, "fdseek", hz);
retry_line = __LINE__;
if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
return (1); /* XXX */
retry_line = __LINE__;
if ((st0 & 0xc0) || cyl != descyl) {
need_recal |= (1 << fd->fdsu);
return (1);
}
/* let the heads settle */
if (settle)
tsleep(fdc->fd, PRIBIO, "fdhdstl", settle);
}
fd->track = cylinder;
if (debugflags & 8)
printf("op %x bn %ju siz %u ptr %p retry %d\n",
bp->bio_cmd, bp->bio_pblkno, fd->fd_iosize,
fd->fd_ioptr, fdc->retry);
/* Setup ISADMA if we need it and have it */
if ((bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT))
&& !(fdc->flags & FDC_NODMA)) {
mtx_lock(&Giant);
isa_dmastart(
bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE,
fd->fd_ioptr, fd->fd_iosize, fdc->dmachan);
mtx_unlock(&Giant);
mtx_lock(&fdc->fdc_mtx);
fd->flags |= FD_ISADMA;
mtx_unlock(&fdc->fdc_mtx);
}
/* Do PIO if we have to */
if (fdc->flags & FDC_NODMA) {
if (bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT))
fdbcdr_wr(fdc, 1, fd->fd_iosize);
if (bp->bio_cmd & (BIO_WRITE|BIO_FMT))
fdc_pio(fdc);
}
switch(bp->bio_cmd) {
case BIO_FMT:
/* formatting */
finfo = (struct fd_formb *)bp->bio_data;
retry_line = __LINE__;
if (fdc_cmd(fdc, 6,
NE7CMD_FORMAT | mfm,
head << 2 | fd->fdsu,
finfo->fd_formb_secshift,
finfo->fd_formb_nsecs,
finfo->fd_formb_gaplen,
finfo->fd_formb_fillbyte, 0))
return (1);
break;
case BIO_RDID:
retry_line = __LINE__;
if (fdc_cmd(fdc, 2,
NE7CMD_READID | mfm,
head << 2 | fd->fdsu, 0))
return (1);
break;
case BIO_READ:
retry_line = __LINE__;
if (fdc_cmd(fdc, 9,
NE7CMD_READ | NE7CMD_SK | mfm | NE7CMD_MT,
head << 2 | fd->fdsu, /* head & unit */
fd->track, /* track */
head, /* head */
sec, /* sector + 1 */
fd->ft->secsize, /* sector size */
fd->ft->sectrac, /* sectors/track */
fd->ft->gap, /* gap size */
fd->ft->datalen, /* data length */
0))
return (1);
break;
case BIO_WRITE:
retry_line = __LINE__;
if (fdc_cmd(fdc, 9,
NE7CMD_WRITE | mfm | NE7CMD_MT,
head << 2 | fd->fdsu, /* head & unit */
fd->track, /* track */
head, /* head */
sec, /* sector + 1 */
fd->ft->secsize, /* sector size */
fd->ft->sectrac, /* sectors/track */
fd->ft->gap, /* gap size */
fd->ft->datalen, /* data length */
0))
return (1);
break;
default:
KASSERT(0 == 1, ("Wrong bio_cmd %x\n", bp->bio_cmd));
}
/* Wait for interrupt */
i = tsleep(fdc, PRIBIO, "fddata", hz);
/* PIO if the read looks good */
if (i == 0 && (fdc->flags & FDC_NODMA) && (bp->bio_cmd & BIO_READ))
fdc_pio(fdc);
/* Finish DMA */
if (fd->flags & FD_ISADMA) {
mtx_lock(&Giant);
isa_dmadone(
bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE,
fd->fd_ioptr, fd->fd_iosize, fdc->dmachan);
mtx_unlock(&Giant);
mtx_lock(&fdc->fdc_mtx);
fd->flags &= ~FD_ISADMA;
mtx_unlock(&fdc->fdc_mtx);
}
if (i != 0) {
/*
* Timeout.
*
* Due to IBM's brain-dead design, the FDC has a faked ready
* signal, hardwired to ready == true. Thus, any command
* issued if there's no diskette in the drive will _never_
* complete, and must be aborted by resetting the FDC.
* Many thanks, Big Blue!
*/
retry_line = __LINE__;
fdc->flags |= FDC_NEEDS_RESET;
return (1);
}
retry_line = __LINE__;
if (fdc_read_status(fdc))
return (1);
if (debugflags & 0x10)
printf(" -> %x %x %x %x\n",
fdc->status[0], fdc->status[1],
fdc->status[2], fdc->status[3]);
st0 = fdc->status[0] & NE7_ST0_IC;
if (st0 != 0) {
retry_line = __LINE__;
if (st0 == NE7_ST0_IC_AT && fdc->status[1] & NE7_ST1_OR) {
/*
* DMA overrun. Someone hogged the bus and
* didn't release it in time for the next
* FDC transfer.
*/
return (1);
}
retry_line = __LINE__;
if(st0 == NE7_ST0_IC_IV) {
fdc->flags |= FDC_NEEDS_RESET;
return (1);
}
retry_line = __LINE__;
if(st0 == NE7_ST0_IC_AT && fdc->status[2] & NE7_ST2_WC) {
need_recal |= (1 << fd->fdsu);
return (1);
}
if (debugflags & 0x20) {
printf("status %02x %02x %02x %02x %02x %02x\n",
fdc->status[0], fdc->status[1], fdc->status[2],
fdc->status[3], fdc->status[4], fdc->status[5]);
}
retry_line = __LINE__;
return (1);
}
/* All OK */
switch(bp->bio_cmd) {
case BIO_RDID:
/* copy out ID field contents */
idp = (struct fdc_readid *)bp->bio_data;
idp->cyl = fdc->status[3];
idp->head = fdc->status[4];
idp->sec = fdc->status[5];
idp->secshift = fdc->status[6];
if (debugflags & 0x40)
printf("c %d h %d s %d z %d\n",
idp->cyl, idp->head, idp->sec, idp->secshift);
break;
case BIO_READ:
case BIO_WRITE:
bp->bio_pblkno += nsect;
bp->bio_resid -= fd->fd_iosize;
bp->bio_completed += fd->fd_iosize;
fd->fd_ioptr += fd->fd_iosize;
/* Since we managed to get something done, reset the retry */
fdc->retry = 0;
if (bp->bio_resid > 0)
return (0);
break;
case BIO_FMT:
break;
}
return (fdc_biodone(fdc, 0));
}
static void
fdc_thread(void *arg)
{
struct fdc_data *fdc;
fdc = arg;
int i;
mtx_lock(&fdc->fdc_mtx);
fdc->flags |= FDC_KTHREAD_ALIVE;
while ((fdc->flags & FDC_KTHREAD_EXIT) == 0) {
mtx_unlock(&fdc->fdc_mtx);
i = fdc_worker(fdc);
if (i && debugflags & 0x20) {
if (fdc->bp != NULL) {
g_print_bio(fdc->bp);
printf("\n");
}
printf("Retry line %d\n", retry_line);
}
fdc->retry += i;
mtx_lock(&fdc->fdc_mtx);
}
fdc->flags &= ~(FDC_KTHREAD_EXIT | FDC_KTHREAD_ALIVE);
mtx_unlock(&fdc->fdc_mtx);
kthread_exit(0);
}
/*
* Enqueue a request.
*/
static void
fd_enqueue(struct fd_data *fd, struct bio *bp)
{
struct fdc_data *fdc;
int call;
call = 0;
fdc = fd->fdc;
mtx_lock(&fdc->fdc_mtx);
/* If we go from idle, cancel motor turnoff */
if (fd->fd_iocount++ == 0)
callout_stop(&fd->toffhandle);
if (fd->flags & FD_MOTOR) {
/* The motor is on, send it directly to the controller */
bioq_disksort(&fdc->head, bp);
wakeup(&fdc->head);
} else {
/* Queue it on the drive until the motor has started */
bioq_insert_tail(&fd->fd_bq, bp);
if (!(fd->flags & FD_MOTORWAIT))
fd_motor(fd, 1);
}
mtx_unlock(&fdc->fdc_mtx);
}
static int
fdmisccmd(struct fd_data *fd, u_int cmd, void *data)
{
struct bio *bp;
struct fd_formb *finfo;
struct fdc_readid *idfield;
int error;
bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO);
/*
* Set up a bio request for fdstrategy(). bio_offset is faked
* so that fdstrategy() will seek to the the requested
* cylinder, and use the desired head.
*/
bp->bio_cmd = cmd;
if (cmd == BIO_FMT) {
finfo = (struct fd_formb *)data;
bp->bio_pblkno =
(finfo->cyl * fd->ft->heads + finfo->head) *
fd->ft->sectrac;
bp->bio_length = sizeof *finfo;
} else if (cmd == BIO_RDID) {
idfield = (struct fdc_readid *)data;
bp->bio_pblkno =
(idfield->cyl * fd->ft->heads + idfield->head) *
fd->ft->sectrac;
bp->bio_length = sizeof(struct fdc_readid);
} else if (cmd == BIO_PROBE) {
/* nothing */
} else
panic("wrong cmd in fdmisccmd()");
bp->bio_offset = bp->bio_pblkno * fd->sectorsize;
bp->bio_data = data;
bp->bio_driver1 = fd;
bp->bio_flags = 0;
fd_enqueue(fd, bp);
do {
tsleep(bp, PRIBIO, "fdwait", hz);
} while (!(bp->bio_flags & BIO_DONE));
error = bp->bio_error;
free(bp, M_TEMP);
return (error);
}
/*
* Try figuring out the density of the media present in our device.
*/
static int
fdautoselect(struct fd_data *fd)
{
struct fd_type *fdtp;
struct fdc_readid id;
int oopts, rv;
if (!(fd->ft->flags & FL_AUTO))
return (0);
fdtp = fd_native_types[fd->type];
fdsettype(fd, fdtp);
if (!(fd->ft->flags & FL_AUTO))
return (0);
/*
* Try reading sector ID fields, first at cylinder 0, head 0,
* then at cylinder 2, head N. We don't probe cylinder 1,
* since for 5.25in DD media in a HD drive, there are no data
* to read (2 step pulses per media cylinder required). For
* two-sided media, the second probe always goes to head 1, so
* we can tell them apart from single-sided media. As a
* side-effect this means that single-sided media should be
* mentioned in the search list after two-sided media of an
* otherwise identical density. Media with a different number
* of sectors per track but otherwise identical parameters
* cannot be distinguished at all.
*
* If we successfully read an ID field on both cylinders where
* the recorded values match our expectation, we are done.
* Otherwise, we try the next density entry from the table.
*
* Stepping to cylinder 2 has the side-effect of clearing the
* unit attention bit.
*/
oopts = fd->options;
fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY;
for (; fdtp->heads; fdtp++) {
fdsettype(fd, fdtp);
id.cyl = id.head = 0;
rv = fdmisccmd(fd, BIO_RDID, &id);
if (rv != 0)
continue;
if (id.cyl != 0 || id.head != 0 || id.secshift != fdtp->secsize)
continue;
id.cyl = 2;
id.head = fd->ft->heads - 1;
rv = fdmisccmd(fd, BIO_RDID, &id);
if (id.cyl != 2 || id.head != fdtp->heads - 1 ||
id.secshift != fdtp->secsize)
continue;
if (rv == 0)
break;
}
fd->options = oopts;
if (fdtp->heads == 0) {
if (debugflags & 0x40)
device_printf(fd->dev, "autoselection failed\n");
fdsettype(fd, fd_native_types[fd->type]);
return (0);
} else {
if (debugflags & 0x40) {
device_printf(fd->dev,
"autoselected %d KB medium\n", fd->ft->size / 2);
fdprinttype(fd->ft);
}
return (0);
}
}
/*
* GEOM class implementation
*/
static g_access_t fd_access;
static g_start_t fd_start;
static g_ioctl_t fd_ioctl;
struct g_class g_fd_class = {
.name = "FD",
.version = G_VERSION,
.start = fd_start,
.access = fd_access,
.ioctl = fd_ioctl,
};
static int
fd_access(struct g_provider *pp, int r, int w, int e)
{
struct fd_data *fd;
struct fdc_data *fdc;
int ar, aw, ae;
fd = pp->geom->softc;
fdc = fd->fdc;
/*
* If our provider is withering, we can only get negative requests
* and we don't want to even see them
*/
if (pp->flags & G_PF_WITHER)
return (0);
ar = r + pp->acr;
aw = w + pp->acw;
ae = e + pp->ace;
if (ar == 0 && aw == 0 && ae == 0) {
device_unbusy(fd->dev);
return (0);
}
if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) {
if (fdmisccmd(fd, BIO_PROBE, NULL))
return (ENXIO);
if (fd->flags & FD_EMPTY)
return (ENXIO);
if (fd->flags & FD_NEWDISK) {
fdautoselect(fd);
mtx_lock(&fdc->fdc_mtx);
fd->flags &= ~FD_NEWDISK;
mtx_unlock(&fdc->fdc_mtx);
}
device_busy(fd->dev);
}
if (w > 0 && (fd->flags & FD_WP))
return (EROFS);
pp->sectorsize = fd->sectorsize;
pp->stripesize = fd->ft->heads * fd->ft->sectrac * fd->sectorsize;
pp->mediasize = pp->stripesize * fd->ft->tracks;
return (0);
}
static void
fd_start(struct bio *bp)
{
struct fdc_data * fdc;
struct fd_data * fd;
fd = bp->bio_to->geom->softc;
fdc = fd->fdc;
bp->bio_driver1 = fd;
if (bp->bio_cmd & BIO_GETATTR) {
if (g_handleattr_int(bp, "GEOM::fwsectors", fd->ft->sectrac))
return;
if (g_handleattr_int(bp, "GEOM::fwheads", fd->ft->heads))
return;
g_io_deliver(bp, ENOIOCTL);
return;
}
if (!(bp->bio_cmd & (BIO_READ|BIO_WRITE))) {
g_io_deliver(bp, EOPNOTSUPP);
return;
}
bp->bio_pblkno = bp->bio_offset / fd->sectorsize;
bp->bio_resid = bp->bio_length;
fd_enqueue(fd, bp);
return;
}
static int
fd_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td)
{
struct fd_data *fd;
struct fdc_status *fsp;
struct fdc_readid *rid;
int error;
fd = pp->geom->softc;
switch (cmd) {
case FD_GTYPE: /* get drive type */
*(struct fd_type *)data = *fd->ft;
return (0);
case FD_STYPE: /* set drive type */
if (!(fflag & FWRITE))
return (EPERM);
/*
* Allow setting drive type temporarily iff
* currently unset. Used for fdformat so any
* user can set it, and then start formatting.
*/
fd->fts = *(struct fd_type *)data;
if (fd->fts.sectrac) {
/* XXX: check for rubbish */
fdsettype(fd, &fd->fts);
} else {
fdsettype(fd, fd_native_types[fd->type]);
}
if (debugflags & 0x40)
fdprinttype(fd->ft);
return (0);
case FD_GOPTS: /* get drive options */
*(int *)data = fd->options;
return (0);
case FD_SOPTS: /* set drive options */
if (!(fflag & FWRITE))
return (EPERM);
fd->options = *(int *)data;
return (0);
case FD_CLRERR:
error = priv_check(td, PRIV_DRIVER);
if (error)
return (error);
fd->fdc->fdc_errs = 0;
return (0);
case FD_GSTAT:
fsp = (struct fdc_status *)data;
if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
return (EINVAL);
memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
return (0);
case FD_GDTYPE:
*(enum fd_drivetype *)data = fd->type;
return (0);
case FD_FORM:
if (!(fflag & FWRITE))
return (EPERM);
if (((struct fd_formb *)data)->format_version !=
FD_FORMAT_VERSION)
return (EINVAL); /* wrong version of formatting prog */
error = fdmisccmd(fd, BIO_FMT, data);
mtx_lock(&fd->fdc->fdc_mtx);
fd->flags |= FD_NEWDISK;
mtx_unlock(&fd->fdc->fdc_mtx);
break;
case FD_READID:
rid = (struct fdc_readid *)data;
if (rid->cyl > 85 || rid->head > 1)
return (EINVAL);
error = fdmisccmd(fd, BIO_RDID, data);
break;
case FIONBIO:
case FIOASYNC:
/* For backwards compat with old fd*(8) tools */
error = 0;
break;
default:
if (debugflags & 0x80)
printf("Unknown ioctl %lx\n", cmd);
error = ENOIOCTL;
break;
}
return (error);
};
/*
* Configuration/initialization stuff, per controller.
*/
devclass_t fdc_devclass;
static devclass_t fd_devclass;
struct fdc_ivars {
int fdunit;
int fdtype;
};
void
fdc_release_resources(struct fdc_data *fdc)
{
device_t dev;
struct resource *last;
int i;
dev = fdc->fdc_dev;
if (fdc->fdc_intr)
bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr);
fdc->fdc_intr = NULL;
if (fdc->res_irq != NULL)
bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
fdc->res_irq);
fdc->res_irq = NULL;
last = NULL;
for (i = 0; i < FDC_MAXREG; i++) {
if (fdc->resio[i] != NULL && fdc->resio[i] != last) {
bus_release_resource(dev, SYS_RES_IOPORT,
fdc->ridio[i], fdc->resio[i]);
last = fdc->resio[i];
fdc->resio[i] = NULL;
}
}
if (fdc->res_drq != NULL)
bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
fdc->res_drq);
fdc->res_drq = NULL;
}
int
fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct fdc_ivars *ivars = device_get_ivars(child);
switch (which) {
case FDC_IVAR_FDUNIT:
*result = ivars->fdunit;
break;
case FDC_IVAR_FDTYPE:
*result = ivars->fdtype;
break;
default:
return (ENOENT);
}
return (0);
}
int
fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
struct fdc_ivars *ivars = device_get_ivars(child);
switch (which) {
case FDC_IVAR_FDUNIT:
ivars->fdunit = value;
break;
case FDC_IVAR_FDTYPE:
ivars->fdtype = value;
break;
default:
return (ENOENT);
}
return (0);
}
int
fdc_initial_reset(device_t dev, struct fdc_data *fdc)
{
int ic_type, part_id;
/*
* A status value of 0xff is very unlikely, but not theoretically
* impossible, but it is far more likely to indicate an empty bus.
*/
if (fdsts_rd(fdc) == 0xff)
return (ENXIO);
/*
* Assert a reset to the floppy controller and check that the status
* register goes to zero.
*/
fdout_wr(fdc, 0);
fdout_wr(fdc, 0);
if (fdsts_rd(fdc) != 0)
return (ENXIO);
/*
* Clear the reset and see it come ready.
*/
fdout_wr(fdc, FDO_FRST);
DELAY(100);
if (fdsts_rd(fdc) != 0x80)
return (ENXIO);
/* Then, see if it can handle a command. */
if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, 0xaf, 0x1e, 0))
return (ENXIO);
/*
* Try to identify the chip.
*
* The i8272 datasheet documents that unknown commands
* will return ST0 as 0x80. The i8272 is supposedly identical
* to the NEC765.
* The i82077SL datasheet says 0x90 for the VERSION command,
* and several "superio" chips emulate this.
*/
if (fdc_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type))
return (ENXIO);
if (fdc_cmd(fdc, 1, 0x18, 1, &part_id))
return (ENXIO);
if (bootverbose)
device_printf(dev,
"ic_type %02x part_id %02x\n", ic_type, part_id);
switch (ic_type & 0xff) {
case 0x80:
device_set_desc(dev, "NEC 765 or clone");
fdc->fdct = FDC_NE765;
break;
case 0x81:
case 0x90:
device_set_desc(dev,
"Enhanced floppy controller");
fdc->fdct = FDC_ENHANCED;
break;
default:
device_set_desc(dev, "Generic floppy controller");
fdc->fdct = FDC_UNKNOWN;
break;
}
return (0);
}
int
fdc_detach(device_t dev)
{
struct fdc_data *fdc;
int error;
fdc = device_get_softc(dev);
/* have our children detached first */
if ((error = bus_generic_detach(dev)))
return (error);
/* kill worker thread */
mtx_lock(&fdc->fdc_mtx);
fdc->flags |= FDC_KTHREAD_EXIT;
wakeup(&fdc->head);
while ((fdc->flags & FDC_KTHREAD_ALIVE) != 0)
msleep(&fdc->fdc_thread, &fdc->fdc_mtx, PRIBIO, "fdcdet", 0);
mtx_unlock(&fdc->fdc_mtx);
/* reset controller, turn motor off */
fdout_wr(fdc, 0);
if (!(fdc->flags & FDC_NODMA))
isa_dma_release(fdc->dmachan);
fdc_release_resources(fdc);
mtx_destroy(&fdc->fdc_mtx);
return (0);
}
/*
* Add a child device to the fdc controller. It will then be probed etc.
*/
device_t
fdc_add_child(device_t dev, const char *name, int unit)
{
struct fdc_ivars *ivar;
device_t child;
ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO);
if (ivar == NULL)
return (NULL);
child = device_add_child(dev, name, unit);
if (child == NULL) {
free(ivar, M_DEVBUF);
return (NULL);
}
device_set_ivars(child, ivar);
ivar->fdunit = unit;
ivar->fdtype = FDT_NONE;
if (resource_disabled(name, unit))
device_disable(child);
return (child);
}
int
fdc_attach(device_t dev)
{
struct fdc_data *fdc;
int error;
fdc = device_get_softc(dev);
fdc->fdc_dev = dev;
error = fdc_initial_reset(dev, fdc);
if (error) {
device_printf(dev, "does not respond\n");
return (error);
}
error = bus_setup_intr(dev, fdc->res_irq,
INTR_TYPE_BIO | INTR_ENTROPY |
((fdc->flags & FDC_NOFAST) ? INTR_MPSAFE : 0),
((fdc->flags & FDC_NOFAST) ? NULL : fdc_intr_fast),
((fdc->flags & FDC_NOFAST) ? fdc_intr : NULL),
fdc, &fdc->fdc_intr);
if (error) {
device_printf(dev, "cannot setup interrupt\n");
return (error);
}
if (!(fdc->flags & FDC_NODMA)) {
error = isa_dma_acquire(fdc->dmachan);
if (!error) {
error = isa_dma_init(fdc->dmachan,
MAX_BYTES_PER_CYL, M_WAITOK);
if (error)
isa_dma_release(fdc->dmachan);
}
if (error)
return (error);
}
fdc->fdcu = device_get_unit(dev);
fdc->flags |= FDC_NEEDS_RESET;
mtx_init(&fdc->fdc_mtx, "fdc lock", NULL, MTX_DEF);
/* reset controller, turn motor off, clear fdout mirror reg */
fdout_wr(fdc, fdc->fdout = 0);
bioq_init(&fdc->head);
kthread_create(fdc_thread, fdc, &fdc->fdc_thread, 0, 0,
"fdc%d", device_get_unit(dev));
settle = hz / 8;
return (0);
}
int
fdc_hints_probe(device_t dev)
{
const char *name, *dname;
int i, error, dunit;
/*
* Probe and attach any children. We should probably detect
* devices from the BIOS unless overridden.
*/
name = device_get_nameunit(dev);
i = 0;
while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) {
resource_int_value(dname, dunit, "drive", &dunit);
fdc_add_child(dev, dname, dunit);
}
if ((error = bus_generic_attach(dev)) != 0)
return (error);
return (0);
}
int
fdc_print_child(device_t me, device_t child)
{
int retval = 0, flags;
retval += bus_print_child_header(me, child);
retval += printf(" on %s drive %d", device_get_nameunit(me),
fdc_get_fdunit(child));
if ((flags = device_get_flags(me)) != 0)
retval += printf(" flags %#x", flags);
retval += printf("\n");
return (retval);
}
/*
* Configuration/initialization, per drive.
*/
static int
fd_probe(device_t dev)
{
int i, unit;
u_int st0, st3;
struct fd_data *fd;
struct fdc_data *fdc;
int fdsu;
int flags, type;
fdsu = fdc_get_fdunit(dev);
fd = device_get_softc(dev);
fdc = device_get_softc(device_get_parent(dev));
flags = device_get_flags(dev);
fd->dev = dev;
fd->fdc = fdc;
fd->fdsu = fdsu;
unit = device_get_unit(dev);
/* Auto-probe if fdinfo is present, but always allow override. */
type = flags & FD_TYPEMASK;
if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) {
fd->type = type;
goto done;
} else {
/* make sure fdautoselect() will be called */
fd->flags = FD_EMPTY;
fd->type = type;
}
#if (defined(__i386__) && !defined(PC98)) || defined(__amd64__)
if (fd->type == FDT_NONE && (unit == 0 || unit == 1)) {
/* Look up what the BIOS thinks we have. */
if (unit == 0)
fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4;
else
fd->type = rtcin(RTC_FDISKETTE) & 0x0f;
if (fd->type == FDT_288M_1)
fd->type = FDT_288M;
}
#endif /* __i386__ || __amd64__ */
/* is there a unit? */
if (fd->type == FDT_NONE)
return (ENXIO);
/*
mtx_lock(&fdc->fdc_mtx);
*/
/* select it */
fd_select(fd);
fd_motor(fd, 1);
fdc->fd = fd;
fdc_reset(fdc); /* XXX reset, then unreset, etc. */
DELAY(1000000); /* 1 sec */
if ((flags & FD_NO_PROBE) == 0) {
/* If we're at track 0 first seek inwards. */
if ((fdc_sense_drive(fdc, &st3) == 0) &&
(st3 & NE7_ST3_T0)) {
/* Seek some steps... */
if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) {
/* ...wait a moment... */
DELAY(300000);
/* make ctrlr happy: */
fdc_sense_int(fdc, NULL, NULL);
}
}
for (i = 0; i < 2; i++) {
/*
* we must recalibrate twice, just in case the
* heads have been beyond cylinder 76, since
* most FDCs still barf when attempting to
* recalibrate more than 77 steps
*/
/* go back to 0: */
if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) {
/* a second being enough for full stroke seek*/
DELAY(i == 0 ? 1000000 : 300000);
/* anything responding? */
if (fdc_sense_int(fdc, &st0, NULL) == 0 &&
(st0 & NE7_ST0_EC) == 0)
break; /* already probed succesfully */
}
}
}
fd_motor(fd, 0);
fdc->fd = NULL;
/*
mtx_unlock(&fdc->fdc_mtx);
*/
if ((flags & FD_NO_PROBE) == 0 &&
(st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */
return (ENXIO);
done:
switch (fd->type) {
case FDT_12M:
device_set_desc(dev, "1200-KB 5.25\" drive");
break;
case FDT_144M:
device_set_desc(dev, "1440-KB 3.5\" drive");
break;
case FDT_288M:
device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)");
break;
case FDT_360K:
device_set_desc(dev, "360-KB 5.25\" drive");
break;
case FDT_720K:
device_set_desc(dev, "720-KB 3.5\" drive");
break;
default:
return (ENXIO);
}
fd->track = FD_NO_TRACK;
fd->fdc = fdc;
fd->fdsu = fdsu;
fd->options = 0;
callout_init_mtx(&fd->toffhandle, &fd->fdc->fdc_mtx, 0);
/* initialize densities for subdevices */
fdsettype(fd, fd_native_types[fd->type]);
return (0);
}
/*
* We have to do this in a geom event because GEOM is not running
* when fd_attach() is.
* XXX: move fd_attach after geom like ata/scsi disks
*/
static void
fd_attach2(void *arg, int flag)
{
struct fd_data *fd;
fd = arg;
fd->fd_geom = g_new_geomf(&g_fd_class,
"fd%d", device_get_unit(fd->dev));
fd->fd_provider = g_new_providerf(fd->fd_geom, fd->fd_geom->name);
fd->fd_geom->softc = fd;
g_error_provider(fd->fd_provider, 0);
}
static int
fd_attach(device_t dev)
{
struct fd_data *fd;
fd = device_get_softc(dev);
g_post_event(fd_attach2, fd, M_WAITOK, NULL);
fd->flags |= FD_EMPTY;
bioq_init(&fd->fd_bq);
return (0);
}
static int
fd_detach(device_t dev)
{
struct fd_data *fd;
fd = device_get_softc(dev);
g_topology_lock();
g_wither_geom(fd->fd_geom, ENXIO);
g_topology_unlock();
while (device_get_state(dev) == DS_BUSY)
tsleep(fd, PZERO, "fdd", hz/10);
callout_drain(&fd->toffhandle);
return (0);
}
static device_method_t fd_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fd_probe),
DEVMETHOD(device_attach, fd_attach),
DEVMETHOD(device_detach, fd_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */
DEVMETHOD(device_resume, bus_generic_resume), /* XXX */
{ 0, 0 }
};
static driver_t fd_driver = {
"fd",
fd_methods,
sizeof(struct fd_data)
};
static int
fdc_modevent(module_t mod, int type, void *data)
{
g_modevent(NULL, type, &g_fd_class);
return (0);
}
DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, fdc_modevent, 0);