freebsd-skq/lib/libc/rpc/clnt_vc.c
pfg 872b698bd4 General further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 3-Clause license.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
2017-11-20 19:49:47 +00:00

850 lines
23 KiB
C

/* $NetBSD: clnt_vc.c,v 1.4 2000/07/14 08:40:42 fvdl Exp $ */
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2009, Sun Microsystems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of Sun Microsystems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(LIBC_SCCS) && !defined(lint)
static char *sccsid2 = "@(#)clnt_tcp.c 1.37 87/10/05 Copyr 1984 Sun Micro";
static char *sccsid = "@(#)clnt_tcp.c 2.2 88/08/01 4.0 RPCSRC";
static char sccsid3[] = "@(#)clnt_vc.c 1.19 89/03/16 Copyr 1988 Sun Micro";
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* clnt_tcp.c, Implements a TCP/IP based, client side RPC.
*
* Copyright (C) 1984, Sun Microsystems, Inc.
*
* TCP based RPC supports 'batched calls'.
* A sequence of calls may be batched-up in a send buffer. The rpc call
* return immediately to the client even though the call was not necessarily
* sent. The batching occurs if the results' xdr routine is NULL (0) AND
* the rpc timeout value is zero (see clnt.h, rpc).
*
* Clients should NOT casually batch calls that in fact return results; that is,
* the server side should be aware that a call is batched and not produce any
* return message. Batched calls that produce many result messages can
* deadlock (netlock) the client and the server....
*
* Now go hang yourself.
*/
#include "namespace.h"
#include "reentrant.h"
#include <sys/types.h>
#include <sys/poll.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/uio.h>
#include <arpa/inet.h>
#include <assert.h>
#include <err.h>
#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <rpc/rpc.h>
#include <rpc/rpcsec_gss.h>
#include "un-namespace.h"
#include "rpc_com.h"
#include "mt_misc.h"
#define MCALL_MSG_SIZE 24
struct cmessage {
struct cmsghdr cmsg;
struct cmsgcred cmcred;
};
static enum clnt_stat clnt_vc_call(CLIENT *, rpcproc_t, xdrproc_t, void *,
xdrproc_t, void *, struct timeval);
static void clnt_vc_geterr(CLIENT *, struct rpc_err *);
static bool_t clnt_vc_freeres(CLIENT *, xdrproc_t, void *);
static void clnt_vc_abort(CLIENT *);
static bool_t clnt_vc_control(CLIENT *, u_int, void *);
static void clnt_vc_destroy(CLIENT *);
static struct clnt_ops *clnt_vc_ops(void);
static bool_t time_not_ok(struct timeval *);
static int read_vc(void *, void *, int);
static int write_vc(void *, void *, int);
static int __msgwrite(int, void *, size_t);
static int __msgread(int, void *, size_t);
struct ct_data {
int ct_fd; /* connection's fd */
bool_t ct_closeit; /* close it on destroy */
struct timeval ct_wait; /* wait interval in milliseconds */
bool_t ct_waitset; /* wait set by clnt_control? */
struct netbuf ct_addr; /* remote addr */
struct rpc_err ct_error;
union {
char ct_mcallc[MCALL_MSG_SIZE]; /* marshalled callmsg */
u_int32_t ct_mcalli;
} ct_u;
u_int ct_mpos; /* pos after marshal */
XDR ct_xdrs; /* XDR stream */
};
/*
* This machinery implements per-fd locks for MT-safety. It is not
* sufficient to do per-CLIENT handle locks for MT-safety because a
* user may create more than one CLIENT handle with the same fd behind
* it. Therfore, we allocate an array of flags (vc_fd_locks), protected
* by the clnt_fd_lock mutex, and an array (vc_cv) of condition variables
* similarly protected. Vc_fd_lock[fd] == 1 => a call is activte on some
* CLIENT handle created for that fd.
* The current implementation holds locks across the entire RPC and reply.
* Yes, this is silly, and as soon as this code is proven to work, this
* should be the first thing fixed. One step at a time.
*/
static int *vc_fd_locks;
static cond_t *vc_cv;
#define release_fd_lock(fd, mask) { \
mutex_lock(&clnt_fd_lock); \
vc_fd_locks[fd] = 0; \
mutex_unlock(&clnt_fd_lock); \
thr_sigsetmask(SIG_SETMASK, &(mask), (sigset_t *) NULL); \
cond_signal(&vc_cv[fd]); \
}
static const char clnt_vc_errstr[] = "%s : %s";
static const char clnt_vc_str[] = "clnt_vc_create";
static const char __no_mem_str[] = "out of memory";
/*
* Create a client handle for a connection.
* Default options are set, which the user can change using clnt_control()'s.
* The rpc/vc package does buffering similar to stdio, so the client
* must pick send and receive buffer sizes, 0 => use the default.
* NB: fd is copied into a private area.
* NB: The rpch->cl_auth is set null authentication. Caller may wish to
* set this something more useful.
*
* fd should be an open socket
*
* fd - open file descriptor
* raddr - servers address
* prog - program number
* vers - version number
* sendsz - buffer send size
* recvsz - buffer recv size
*/
CLIENT *
clnt_vc_create(int fd, const struct netbuf *raddr, const rpcprog_t prog,
const rpcvers_t vers, u_int sendsz, u_int recvsz)
{
CLIENT *cl; /* client handle */
struct ct_data *ct = NULL; /* client handle */
struct timeval now;
struct rpc_msg call_msg;
static u_int32_t disrupt;
sigset_t mask;
sigset_t newmask;
struct sockaddr_storage ss;
socklen_t slen;
struct __rpc_sockinfo si;
if (disrupt == 0)
disrupt = (u_int32_t)(long)raddr;
cl = (CLIENT *)mem_alloc(sizeof (*cl));
ct = (struct ct_data *)mem_alloc(sizeof (*ct));
if ((cl == (CLIENT *)NULL) || (ct == (struct ct_data *)NULL)) {
(void) syslog(LOG_ERR, clnt_vc_errstr,
clnt_vc_str, __no_mem_str);
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
rpc_createerr.cf_error.re_errno = errno;
goto err;
}
ct->ct_addr.buf = NULL;
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&clnt_fd_lock);
if (vc_fd_locks == (int *) NULL) {
int cv_allocsz, fd_allocsz;
int dtbsize = __rpc_dtbsize();
fd_allocsz = dtbsize * sizeof (int);
vc_fd_locks = (int *) mem_alloc(fd_allocsz);
if (vc_fd_locks == (int *) NULL) {
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
goto err;
} else
memset(vc_fd_locks, '\0', fd_allocsz);
assert(vc_cv == (cond_t *) NULL);
cv_allocsz = dtbsize * sizeof (cond_t);
vc_cv = (cond_t *) mem_alloc(cv_allocsz);
if (vc_cv == (cond_t *) NULL) {
mem_free(vc_fd_locks, fd_allocsz);
vc_fd_locks = (int *) NULL;
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
goto err;
} else {
int i;
for (i = 0; i < dtbsize; i++)
cond_init(&vc_cv[i], 0, (void *) 0);
}
} else
assert(vc_cv != (cond_t *) NULL);
/*
* XXX - fvdl connecting while holding a mutex?
*/
slen = sizeof ss;
if (_getpeername(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) {
if (errno != ENOTCONN) {
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
rpc_createerr.cf_error.re_errno = errno;
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
goto err;
}
if (_connect(fd, (struct sockaddr *)raddr->buf, raddr->len) < 0){
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
rpc_createerr.cf_error.re_errno = errno;
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
goto err;
}
}
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
if (!__rpc_fd2sockinfo(fd, &si))
goto err;
ct->ct_closeit = FALSE;
/*
* Set up private data struct
*/
ct->ct_fd = fd;
ct->ct_wait.tv_usec = 0;
ct->ct_waitset = FALSE;
ct->ct_addr.buf = malloc(raddr->maxlen);
if (ct->ct_addr.buf == NULL)
goto err;
memcpy(ct->ct_addr.buf, raddr->buf, raddr->len);
ct->ct_addr.len = raddr->len;
ct->ct_addr.maxlen = raddr->maxlen;
/*
* Initialize call message
*/
(void)gettimeofday(&now, NULL);
call_msg.rm_xid = ((u_int32_t)++disrupt) ^ __RPC_GETXID(&now);
call_msg.rm_direction = CALL;
call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION;
call_msg.rm_call.cb_prog = (u_int32_t)prog;
call_msg.rm_call.cb_vers = (u_int32_t)vers;
/*
* pre-serialize the static part of the call msg and stash it away
*/
xdrmem_create(&(ct->ct_xdrs), ct->ct_u.ct_mcallc, MCALL_MSG_SIZE,
XDR_ENCODE);
if (! xdr_callhdr(&(ct->ct_xdrs), &call_msg)) {
if (ct->ct_closeit) {
(void)_close(fd);
}
goto err;
}
ct->ct_mpos = XDR_GETPOS(&(ct->ct_xdrs));
XDR_DESTROY(&(ct->ct_xdrs));
assert(ct->ct_mpos + sizeof(uint32_t) <= MCALL_MSG_SIZE);
/*
* Create a client handle which uses xdrrec for serialization
* and authnone for authentication.
*/
cl->cl_ops = clnt_vc_ops();
cl->cl_private = ct;
cl->cl_auth = authnone_create();
sendsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsz);
recvsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsz);
xdrrec_create(&(ct->ct_xdrs), sendsz, recvsz,
cl->cl_private, read_vc, write_vc);
return (cl);
err:
if (ct) {
if (ct->ct_addr.len)
mem_free(ct->ct_addr.buf, ct->ct_addr.len);
mem_free(ct, sizeof (struct ct_data));
}
if (cl)
mem_free(cl, sizeof (CLIENT));
return ((CLIENT *)NULL);
}
static enum clnt_stat
clnt_vc_call(CLIENT *cl, rpcproc_t proc, xdrproc_t xdr_args, void *args_ptr,
xdrproc_t xdr_results, void *results_ptr, struct timeval timeout)
{
struct ct_data *ct = (struct ct_data *) cl->cl_private;
XDR *xdrs = &(ct->ct_xdrs);
struct rpc_msg reply_msg;
u_int32_t x_id;
u_int32_t *msg_x_id = &ct->ct_u.ct_mcalli; /* yuk */
bool_t shipnow;
int refreshes = 2;
sigset_t mask, newmask;
int rpc_lock_value;
bool_t reply_stat;
assert(cl != NULL);
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&clnt_fd_lock);
while (vc_fd_locks[ct->ct_fd])
cond_wait(&vc_cv[ct->ct_fd], &clnt_fd_lock);
if (__isthreaded)
rpc_lock_value = 1;
else
rpc_lock_value = 0;
vc_fd_locks[ct->ct_fd] = rpc_lock_value;
mutex_unlock(&clnt_fd_lock);
if (!ct->ct_waitset) {
/* If time is not within limits, we ignore it. */
if (time_not_ok(&timeout) == FALSE)
ct->ct_wait = timeout;
}
shipnow =
(xdr_results == NULL && timeout.tv_sec == 0
&& timeout.tv_usec == 0) ? FALSE : TRUE;
call_again:
xdrs->x_op = XDR_ENCODE;
ct->ct_error.re_status = RPC_SUCCESS;
x_id = ntohl(--(*msg_x_id));
if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
if ((! XDR_PUTBYTES(xdrs, ct->ct_u.ct_mcallc, ct->ct_mpos)) ||
(! XDR_PUTINT32(xdrs, &proc)) ||
(! AUTH_MARSHALL(cl->cl_auth, xdrs)) ||
(! (*xdr_args)(xdrs, args_ptr))) {
if (ct->ct_error.re_status == RPC_SUCCESS)
ct->ct_error.re_status = RPC_CANTENCODEARGS;
(void)xdrrec_endofrecord(xdrs, TRUE);
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status);
}
} else {
*(uint32_t *) &ct->ct_u.ct_mcallc[ct->ct_mpos] = htonl(proc);
if (! __rpc_gss_wrap(cl->cl_auth, ct->ct_u.ct_mcallc,
ct->ct_mpos + sizeof(uint32_t),
xdrs, xdr_args, args_ptr)) {
if (ct->ct_error.re_status == RPC_SUCCESS)
ct->ct_error.re_status = RPC_CANTENCODEARGS;
(void)xdrrec_endofrecord(xdrs, TRUE);
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status);
}
}
if (! xdrrec_endofrecord(xdrs, shipnow)) {
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status = RPC_CANTSEND);
}
if (! shipnow) {
release_fd_lock(ct->ct_fd, mask);
return (RPC_SUCCESS);
}
/*
* Hack to provide rpc-based message passing
*/
if (timeout.tv_sec == 0 && timeout.tv_usec == 0) {
release_fd_lock(ct->ct_fd, mask);
return(ct->ct_error.re_status = RPC_TIMEDOUT);
}
/*
* Keep receiving until we get a valid transaction id
*/
xdrs->x_op = XDR_DECODE;
while (TRUE) {
reply_msg.acpted_rply.ar_verf = _null_auth;
reply_msg.acpted_rply.ar_results.where = NULL;
reply_msg.acpted_rply.ar_results.proc = (xdrproc_t)xdr_void;
if (! xdrrec_skiprecord(xdrs)) {
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status);
}
/* now decode and validate the response header */
if (! xdr_replymsg(xdrs, &reply_msg)) {
if (ct->ct_error.re_status == RPC_SUCCESS)
continue;
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status);
}
if (reply_msg.rm_xid == x_id)
break;
}
/*
* process header
*/
_seterr_reply(&reply_msg, &(ct->ct_error));
if (ct->ct_error.re_status == RPC_SUCCESS) {
if (! AUTH_VALIDATE(cl->cl_auth,
&reply_msg.acpted_rply.ar_verf)) {
ct->ct_error.re_status = RPC_AUTHERROR;
ct->ct_error.re_why = AUTH_INVALIDRESP;
} else {
if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
reply_stat = (*xdr_results)(xdrs, results_ptr);
} else {
reply_stat = __rpc_gss_unwrap(cl->cl_auth,
xdrs, xdr_results, results_ptr);
}
if (! reply_stat) {
if (ct->ct_error.re_status == RPC_SUCCESS)
ct->ct_error.re_status =
RPC_CANTDECODERES;
}
}
/* free verifier ... */
if (reply_msg.acpted_rply.ar_verf.oa_base != NULL) {
xdrs->x_op = XDR_FREE;
(void)xdr_opaque_auth(xdrs,
&(reply_msg.acpted_rply.ar_verf));
}
} /* end successful completion */
else {
/* maybe our credentials need to be refreshed ... */
if (refreshes-- && AUTH_REFRESH(cl->cl_auth, &reply_msg))
goto call_again;
} /* end of unsuccessful completion */
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status);
}
static void
clnt_vc_geterr(CLIENT *cl, struct rpc_err *errp)
{
struct ct_data *ct;
assert(cl != NULL);
assert(errp != NULL);
ct = (struct ct_data *) cl->cl_private;
*errp = ct->ct_error;
}
static bool_t
clnt_vc_freeres(CLIENT *cl, xdrproc_t xdr_res, void *res_ptr)
{
struct ct_data *ct;
XDR *xdrs;
bool_t dummy;
sigset_t mask;
sigset_t newmask;
assert(cl != NULL);
ct = (struct ct_data *)cl->cl_private;
xdrs = &(ct->ct_xdrs);
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&clnt_fd_lock);
while (vc_fd_locks[ct->ct_fd])
cond_wait(&vc_cv[ct->ct_fd], &clnt_fd_lock);
xdrs->x_op = XDR_FREE;
dummy = (*xdr_res)(xdrs, res_ptr);
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
cond_signal(&vc_cv[ct->ct_fd]);
return dummy;
}
/*ARGSUSED*/
static void
clnt_vc_abort(CLIENT *cl)
{
}
static __inline void
htonlp(void *dst, const void *src, uint32_t incr)
{
/* We are aligned, so we think */
*(uint32_t *)dst = htonl(*(const uint32_t *)src + incr);
}
static __inline void
ntohlp(void *dst, const void *src)
{
/* We are aligned, so we think */
*(uint32_t *)dst = htonl(*(const uint32_t *)src);
}
static bool_t
clnt_vc_control(CLIENT *cl, u_int request, void *info)
{
struct ct_data *ct;
void *infop = info;
sigset_t mask;
sigset_t newmask;
int rpc_lock_value;
assert(cl != NULL);
ct = (struct ct_data *)cl->cl_private;
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&clnt_fd_lock);
while (vc_fd_locks[ct->ct_fd])
cond_wait(&vc_cv[ct->ct_fd], &clnt_fd_lock);
if (__isthreaded)
rpc_lock_value = 1;
else
rpc_lock_value = 0;
vc_fd_locks[ct->ct_fd] = rpc_lock_value;
mutex_unlock(&clnt_fd_lock);
switch (request) {
case CLSET_FD_CLOSE:
ct->ct_closeit = TRUE;
release_fd_lock(ct->ct_fd, mask);
return (TRUE);
case CLSET_FD_NCLOSE:
ct->ct_closeit = FALSE;
release_fd_lock(ct->ct_fd, mask);
return (TRUE);
default:
break;
}
/* for other requests which use info */
if (info == NULL) {
release_fd_lock(ct->ct_fd, mask);
return (FALSE);
}
switch (request) {
case CLSET_TIMEOUT:
if (time_not_ok((struct timeval *)info)) {
release_fd_lock(ct->ct_fd, mask);
return (FALSE);
}
ct->ct_wait = *(struct timeval *)infop;
ct->ct_waitset = TRUE;
break;
case CLGET_TIMEOUT:
*(struct timeval *)infop = ct->ct_wait;
break;
case CLGET_SERVER_ADDR:
(void) memcpy(info, ct->ct_addr.buf, (size_t)ct->ct_addr.len);
break;
case CLGET_FD:
*(int *)info = ct->ct_fd;
break;
case CLGET_SVC_ADDR:
/* The caller should not free this memory area */
*(struct netbuf *)info = ct->ct_addr;
break;
case CLSET_SVC_ADDR: /* set to new address */
release_fd_lock(ct->ct_fd, mask);
return (FALSE);
case CLGET_XID:
/*
* use the knowledge that xid is the
* first element in the call structure
* This will get the xid of the PREVIOUS call
*/
ntohlp(info, &ct->ct_u.ct_mcalli);
break;
case CLSET_XID:
/* This will set the xid of the NEXT call */
/* increment by 1 as clnt_vc_call() decrements once */
htonlp(&ct->ct_u.ct_mcalli, info, 1);
break;
case CLGET_VERS:
/*
* This RELIES on the information that, in the call body,
* the version number field is the fifth field from the
* beginning of the RPC header. MUST be changed if the
* call_struct is changed
*/
ntohlp(info, ct->ct_u.ct_mcallc + 4 * BYTES_PER_XDR_UNIT);
break;
case CLSET_VERS:
htonlp(ct->ct_u.ct_mcallc + 4 * BYTES_PER_XDR_UNIT, info, 0);
break;
case CLGET_PROG:
/*
* This RELIES on the information that, in the call body,
* the program number field is the fourth field from the
* beginning of the RPC header. MUST be changed if the
* call_struct is changed
*/
ntohlp(info, ct->ct_u.ct_mcallc + 3 * BYTES_PER_XDR_UNIT);
break;
case CLSET_PROG:
htonlp(ct->ct_u.ct_mcallc + 3 * BYTES_PER_XDR_UNIT, info, 0);
break;
default:
release_fd_lock(ct->ct_fd, mask);
return (FALSE);
}
release_fd_lock(ct->ct_fd, mask);
return (TRUE);
}
static void
clnt_vc_destroy(CLIENT *cl)
{
struct ct_data *ct = (struct ct_data *) cl->cl_private;
int ct_fd = ct->ct_fd;
sigset_t mask;
sigset_t newmask;
assert(cl != NULL);
ct = (struct ct_data *) cl->cl_private;
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&clnt_fd_lock);
while (vc_fd_locks[ct_fd])
cond_wait(&vc_cv[ct_fd], &clnt_fd_lock);
if (ct->ct_closeit && ct->ct_fd != -1) {
(void)_close(ct->ct_fd);
}
XDR_DESTROY(&(ct->ct_xdrs));
free(ct->ct_addr.buf);
mem_free(ct, sizeof(struct ct_data));
if (cl->cl_netid && cl->cl_netid[0])
mem_free(cl->cl_netid, strlen(cl->cl_netid) +1);
if (cl->cl_tp && cl->cl_tp[0])
mem_free(cl->cl_tp, strlen(cl->cl_tp) +1);
mem_free(cl, sizeof(CLIENT));
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
cond_signal(&vc_cv[ct_fd]);
}
/*
* Interface between xdr serializer and tcp connection.
* Behaves like the system calls, read & write, but keeps some error state
* around for the rpc level.
*/
static int
read_vc(void *ctp, void *buf, int len)
{
struct sockaddr sa;
socklen_t sal;
struct ct_data *ct = (struct ct_data *)ctp;
struct pollfd fd;
int milliseconds = (int)((ct->ct_wait.tv_sec * 1000) +
(ct->ct_wait.tv_usec / 1000));
if (len == 0)
return (0);
fd.fd = ct->ct_fd;
fd.events = POLLIN;
for (;;) {
switch (_poll(&fd, 1, milliseconds)) {
case 0:
ct->ct_error.re_status = RPC_TIMEDOUT;
return (-1);
case -1:
if (errno == EINTR)
continue;
ct->ct_error.re_status = RPC_CANTRECV;
ct->ct_error.re_errno = errno;
return (-1);
}
break;
}
sal = sizeof(sa);
if ((_getpeername(ct->ct_fd, &sa, &sal) == 0) &&
(sa.sa_family == AF_LOCAL)) {
len = __msgread(ct->ct_fd, buf, (size_t)len);
} else {
len = _read(ct->ct_fd, buf, (size_t)len);
}
switch (len) {
case 0:
/* premature eof */
ct->ct_error.re_errno = ECONNRESET;
ct->ct_error.re_status = RPC_CANTRECV;
len = -1; /* it's really an error */
break;
case -1:
ct->ct_error.re_errno = errno;
ct->ct_error.re_status = RPC_CANTRECV;
break;
}
return (len);
}
static int
write_vc(void *ctp, void *buf, int len)
{
struct sockaddr sa;
socklen_t sal;
struct ct_data *ct = (struct ct_data *)ctp;
int i, cnt;
sal = sizeof(sa);
if ((_getpeername(ct->ct_fd, &sa, &sal) == 0) &&
(sa.sa_family == AF_LOCAL)) {
for (cnt = len; cnt > 0; cnt -= i, buf = (char *)buf + i) {
if ((i = __msgwrite(ct->ct_fd, buf,
(size_t)cnt)) == -1) {
ct->ct_error.re_errno = errno;
ct->ct_error.re_status = RPC_CANTSEND;
return (-1);
}
}
} else {
for (cnt = len; cnt > 0; cnt -= i, buf = (char *)buf + i) {
if ((i = _write(ct->ct_fd, buf, (size_t)cnt)) == -1) {
ct->ct_error.re_errno = errno;
ct->ct_error.re_status = RPC_CANTSEND;
return (-1);
}
}
}
return (len);
}
static struct clnt_ops *
clnt_vc_ops(void)
{
static struct clnt_ops ops;
sigset_t mask, newmask;
/* VARIABLES PROTECTED BY ops_lock: ops */
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&ops_lock);
if (ops.cl_call == NULL) {
ops.cl_call = clnt_vc_call;
ops.cl_abort = clnt_vc_abort;
ops.cl_geterr = clnt_vc_geterr;
ops.cl_freeres = clnt_vc_freeres;
ops.cl_destroy = clnt_vc_destroy;
ops.cl_control = clnt_vc_control;
}
mutex_unlock(&ops_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
return (&ops);
}
/*
* Make sure that the time is not garbage. -1 value is disallowed.
* Note this is different from time_not_ok in clnt_dg.c
*/
static bool_t
time_not_ok(struct timeval *t)
{
return (t->tv_sec <= -1 || t->tv_sec > 100000000 ||
t->tv_usec <= -1 || t->tv_usec > 1000000);
}
static int
__msgread(int sock, void *buf, size_t cnt)
{
struct iovec iov[1];
struct msghdr msg;
union {
struct cmsghdr cmsg;
char control[CMSG_SPACE(sizeof(struct cmsgcred))];
} cm;
bzero((char *)&cm, sizeof(cm));
iov[0].iov_base = buf;
iov[0].iov_len = cnt;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_control = (caddr_t)&cm;
msg.msg_controllen = CMSG_SPACE(sizeof(struct cmsgcred));
msg.msg_flags = 0;
return(_recvmsg(sock, &msg, 0));
}
static int
__msgwrite(int sock, void *buf, size_t cnt)
{
struct iovec iov[1];
struct msghdr msg;
union {
struct cmsghdr cmsg;
char control[CMSG_SPACE(sizeof(struct cmsgcred))];
} cm;
bzero((char *)&cm, sizeof(cm));
iov[0].iov_base = buf;
iov[0].iov_len = cnt;
cm.cmsg.cmsg_type = SCM_CREDS;
cm.cmsg.cmsg_level = SOL_SOCKET;
cm.cmsg.cmsg_len = CMSG_LEN(sizeof(struct cmsgcred));
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_control = (caddr_t)&cm;
msg.msg_controllen = CMSG_SPACE(sizeof(struct cmsgcred));
msg.msg_flags = 0;
return(_sendmsg(sock, &msg, 0));
}