sam 8e449bffe3 resolve merge conflicts
MFC after:	3 weeks
2008-03-24 21:08:25 +00:00

3784 lines
99 KiB
C

/*
* hostapd - IEEE 802.11i-2004 / WPA Authenticator
* Copyright (c) 2004-2008, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*
* $FreeBSD$
*/
#include "includes.h"
#ifndef CONFIG_NATIVE_WINDOWS
#include "hostapd.h"
#include "eapol_sm.h"
#include "wpa.h"
#include "wme.h"
#include "sha1.h"
#include "md5.h"
#include "rc4.h"
#include "aes_wrap.h"
#include "crypto.h"
#include "eloop.h"
#include "ieee802_11.h"
#include "pmksa_cache.h"
#include "state_machine.h"
#define STATE_MACHINE_DATA struct wpa_state_machine
#define STATE_MACHINE_DEBUG_PREFIX "WPA"
#define STATE_MACHINE_ADDR sm->addr
#define RSN_NUM_REPLAY_COUNTERS_1 0
#define RSN_NUM_REPLAY_COUNTERS_2 1
#define RSN_NUM_REPLAY_COUNTERS_4 2
#define RSN_NUM_REPLAY_COUNTERS_16 3
struct wpa_group;
struct wpa_stsl_negotiation {
struct wpa_stsl_negotiation *next;
u8 initiator[ETH_ALEN];
u8 peer[ETH_ALEN];
};
struct wpa_state_machine {
struct wpa_authenticator *wpa_auth;
struct wpa_group *group;
u8 addr[ETH_ALEN];
enum {
WPA_PTK_INITIALIZE, WPA_PTK_DISCONNECT, WPA_PTK_DISCONNECTED,
WPA_PTK_AUTHENTICATION, WPA_PTK_AUTHENTICATION2,
WPA_PTK_INITPMK, WPA_PTK_INITPSK, WPA_PTK_PTKSTART,
WPA_PTK_PTKCALCNEGOTIATING, WPA_PTK_PTKCALCNEGOTIATING2,
WPA_PTK_PTKINITNEGOTIATING, WPA_PTK_PTKINITDONE
} wpa_ptk_state;
enum {
WPA_PTK_GROUP_IDLE = 0,
WPA_PTK_GROUP_REKEYNEGOTIATING,
WPA_PTK_GROUP_REKEYESTABLISHED,
WPA_PTK_GROUP_KEYERROR
} wpa_ptk_group_state;
Boolean Init;
Boolean DeauthenticationRequest;
Boolean AuthenticationRequest;
Boolean ReAuthenticationRequest;
Boolean Disconnect;
int TimeoutCtr;
int GTimeoutCtr;
Boolean TimeoutEvt;
Boolean EAPOLKeyReceived;
Boolean EAPOLKeyPairwise;
Boolean EAPOLKeyRequest;
Boolean MICVerified;
Boolean GUpdateStationKeys;
u8 ANonce[WPA_NONCE_LEN];
u8 SNonce[WPA_NONCE_LEN];
u8 PMK[WPA_PMK_LEN];
struct wpa_ptk PTK;
Boolean PTK_valid;
Boolean pairwise_set;
int keycount;
Boolean Pair;
u8 key_replay_counter[WPA_REPLAY_COUNTER_LEN];
Boolean key_replay_counter_valid;
Boolean PInitAKeys; /* WPA only, not in IEEE 802.11i */
Boolean PTKRequest; /* not in IEEE 802.11i state machine */
Boolean has_GTK;
u8 *last_rx_eapol_key; /* starting from IEEE 802.1X header */
size_t last_rx_eapol_key_len;
unsigned int changed:1;
unsigned int in_step_loop:1;
unsigned int pending_deinit:1;
unsigned int started:1;
unsigned int mgmt_frame_prot:1;
u8 req_replay_counter[WPA_REPLAY_COUNTER_LEN];
int req_replay_counter_used;
u8 *wpa_ie;
size_t wpa_ie_len;
enum {
WPA_VERSION_NO_WPA = 0 /* WPA not used */,
WPA_VERSION_WPA = 1 /* WPA / IEEE 802.11i/D3.0 */,
WPA_VERSION_WPA2 = 2 /* WPA2 / IEEE 802.11i */
} wpa;
int pairwise; /* Pairwise cipher suite, WPA_CIPHER_* */
int wpa_key_mgmt; /* the selected WPA_KEY_MGMT_* */
struct rsn_pmksa_cache_entry *pmksa;
u32 dot11RSNAStatsTKIPLocalMICFailures;
u32 dot11RSNAStatsTKIPRemoteMICFailures;
};
/* per group key state machine data */
struct wpa_group {
struct wpa_group *next;
int vlan_id;
Boolean GInit;
int GKeyDoneStations;
Boolean GTKReKey;
int GTK_len;
int GN, GM;
Boolean GTKAuthenticator;
u8 Counter[WPA_NONCE_LEN];
enum {
WPA_GROUP_GTK_INIT = 0,
WPA_GROUP_SETKEYS, WPA_GROUP_SETKEYSDONE
} wpa_group_state;
u8 GMK[WPA_GMK_LEN];
u8 GTK[2][WPA_GTK_MAX_LEN];
u8 GNonce[WPA_NONCE_LEN];
Boolean changed;
#ifdef CONFIG_IEEE80211W
u8 DGTK[WPA_DGTK_LEN];
u8 IGTK[2][WPA_IGTK_LEN];
#endif /* CONFIG_IEEE80211W */
};
/* per authenticator data */
struct wpa_authenticator {
struct wpa_group *group;
unsigned int dot11RSNAStatsTKIPRemoteMICFailures;
u8 dot11RSNAAuthenticationSuiteSelected[4];
u8 dot11RSNAPairwiseCipherSelected[4];
u8 dot11RSNAGroupCipherSelected[4];
u8 dot11RSNAPMKIDUsed[PMKID_LEN];
u8 dot11RSNAAuthenticationSuiteRequested[4]; /* FIX: update */
u8 dot11RSNAPairwiseCipherRequested[4]; /* FIX: update */
u8 dot11RSNAGroupCipherRequested[4]; /* FIX: update */
unsigned int dot11RSNATKIPCounterMeasuresInvoked;
unsigned int dot11RSNA4WayHandshakeFailures;
struct wpa_stsl_negotiation *stsl_negotiations;
struct wpa_auth_config conf;
struct wpa_auth_callbacks cb;
u8 *wpa_ie;
size_t wpa_ie_len;
u8 addr[ETH_ALEN];
struct rsn_pmksa_cache *pmksa;
};
static void wpa_send_eapol_timeout(void *eloop_ctx, void *timeout_ctx);
static void wpa_sm_step(struct wpa_state_machine *sm);
static int wpa_verify_key_mic(struct wpa_ptk *PTK, u8 *data, size_t data_len);
static void wpa_sm_call_step(void *eloop_ctx, void *timeout_ctx);
static void wpa_group_sm_step(struct wpa_authenticator *wpa_auth,
struct wpa_group *group);
static int wpa_stsl_remove(struct wpa_authenticator *wpa_auth,
struct wpa_stsl_negotiation *neg);
static void __wpa_send_eapol(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm, int key_info,
const u8 *key_rsc, const u8 *nonce,
const u8 *kde, size_t kde_len,
int keyidx, int encr, int force_version);
/* Default timeouts are 100 ms, but this seems to be a bit too fast for most
* WPA Supplicants, so use a bit longer timeout. */
static const u32 dot11RSNAConfigGroupUpdateTimeOut = 1000; /* ms */
static const u32 dot11RSNAConfigGroupUpdateCount = 3;
static const u32 dot11RSNAConfigPairwiseUpdateTimeOut = 1000; /* ms */
static const u32 dot11RSNAConfigPairwiseUpdateCount = 3;
/* TODO: make these configurable */
static const int dot11RSNAConfigPMKLifetime = 43200;
static const int dot11RSNAConfigPMKReauthThreshold = 70;
static const int dot11RSNAConfigSATimeout = 60;
static const int WPA_SELECTOR_LEN = 4;
static const u8 WPA_OUI_TYPE[] = { 0x00, 0x50, 0xf2, 1 };
static const u16 WPA_VERSION = 1;
static const u8 WPA_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x50, 0xf2, 1 };
static const u8 WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x50, 0xf2, 2 };
static const u8 WPA_CIPHER_SUITE_NONE[] = { 0x00, 0x50, 0xf2, 0 };
static const u8 WPA_CIPHER_SUITE_WEP40[] = { 0x00, 0x50, 0xf2, 1 };
static const u8 WPA_CIPHER_SUITE_TKIP[] = { 0x00, 0x50, 0xf2, 2 };
static const u8 WPA_CIPHER_SUITE_WRAP[] = { 0x00, 0x50, 0xf2, 3 };
static const u8 WPA_CIPHER_SUITE_CCMP[] = { 0x00, 0x50, 0xf2, 4 };
static const u8 WPA_CIPHER_SUITE_WEP104[] = { 0x00, 0x50, 0xf2, 5 };
#ifdef CONFIG_IEEE80211W
static const u8 RSN_CIPHER_SUITE_AES_128_CMAC[] = { 0x00, 0x0f, 0xac, 6 };
#endif /* CONFIG_IEEE80211W */
static const int RSN_SELECTOR_LEN = 4;
static const u16 RSN_VERSION = 1;
static const u8 RSN_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x0f, 0xac, 1 };
static const u8 RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x0f, 0xac, 2 };
static const u8 RSN_CIPHER_SUITE_NONE[] = { 0x00, 0x0f, 0xac, 0 };
static const u8 RSN_CIPHER_SUITE_WEP40[] = { 0x00, 0x0f, 0xac, 1 };
static const u8 RSN_CIPHER_SUITE_TKIP[] = { 0x00, 0x0f, 0xac, 2 };
static const u8 RSN_CIPHER_SUITE_WRAP[] = { 0x00, 0x0f, 0xac, 3 };
static const u8 RSN_CIPHER_SUITE_CCMP[] = { 0x00, 0x0f, 0xac, 4 };
static const u8 RSN_CIPHER_SUITE_WEP104[] = { 0x00, 0x0f, 0xac, 5 };
/* EAPOL-Key Key Data Encapsulation
* GroupKey and PeerKey require encryption, otherwise, encryption is optional.
*/
static const u8 RSN_KEY_DATA_GROUPKEY[] = { 0x00, 0x0f, 0xac, 1 };
#if 0
static const u8 RSN_KEY_DATA_STAKEY[] = { 0x00, 0x0f, 0xac, 2 };
#endif
static const u8 RSN_KEY_DATA_MAC_ADDR[] = { 0x00, 0x0f, 0xac, 3 };
static const u8 RSN_KEY_DATA_PMKID[] = { 0x00, 0x0f, 0xac, 4 };
#ifdef CONFIG_PEERKEY
static const u8 RSN_KEY_DATA_SMK[] = { 0x00, 0x0f, 0xac, 5 };
static const u8 RSN_KEY_DATA_NONCE[] = { 0x00, 0x0f, 0xac, 6 };
static const u8 RSN_KEY_DATA_LIFETIME[] = { 0x00, 0x0f, 0xac, 7 };
static const u8 RSN_KEY_DATA_ERROR[] = { 0x00, 0x0f, 0xac, 8 };
#endif /* CONFIG_PEERKEY */
#ifdef CONFIG_IEEE80211W
/* FIX: IEEE 802.11w/D1.0 is using subtypes 5 and 6 for these, but they were
* already taken by 802.11ma (PeerKey). Need to update the values here once
* IEEE 802.11w fixes these. */
static const u8 RSN_KEY_DATA_DHV[] = { 0x00, 0x0f, 0xac, 9 };
static const u8 RSN_KEY_DATA_IGTK[] = { 0x00, 0x0f, 0xac, 10 };
#endif /* CONFIG_IEEE80211W */
#ifdef CONFIG_PEERKEY
enum {
STK_MUI_4WAY_STA_AP = 1,
STK_MUI_4WAY_STAT_STA = 2,
STK_MUI_GTK = 3,
STK_MUI_SMK = 4
};
enum {
STK_ERR_STA_NR = 1,
STK_ERR_STA_NRSN = 2,
STK_ERR_CPHR_NS = 3,
STK_ERR_NO_STSL = 4
};
#endif /* CONFIG_PEERKEY */
#define GENERIC_INFO_ELEM 0xdd
#define RSN_INFO_ELEM 0x30
#ifdef _MSC_VER
#pragma pack(push, 1)
#endif /* _MSC_VER */
/* WPA IE version 1
* 00-50-f2:1 (OUI:OUI type)
* 0x01 0x00 (version; little endian)
* (all following fields are optional:)
* Group Suite Selector (4 octets) (default: TKIP)
* Pairwise Suite Count (2 octets, little endian) (default: 1)
* Pairwise Suite List (4 * n octets) (default: TKIP)
* Authenticated Key Management Suite Count (2 octets, little endian)
* (default: 1)
* Authenticated Key Management Suite List (4 * n octets)
* (default: unspec 802.1X)
* WPA Capabilities (2 octets, little endian) (default: 0)
*/
struct wpa_ie_hdr {
u8 elem_id;
u8 len;
u8 oui[3];
u8 oui_type;
u16 version;
} STRUCT_PACKED;
/* RSN IE version 1
* 0x01 0x00 (version; little endian)
* (all following fields are optional:)
* Group Suite Selector (4 octets) (default: CCMP)
* Pairwise Suite Count (2 octets, little endian) (default: 1)
* Pairwise Suite List (4 * n octets) (default: CCMP)
* Authenticated Key Management Suite Count (2 octets, little endian)
* (default: 1)
* Authenticated Key Management Suite List (4 * n octets)
* (default: unspec 802.1X)
* RSN Capabilities (2 octets, little endian) (default: 0)
* PMKID Count (2 octets) (default: 0)
* PMKID List (16 * n octets)
* Management Group Cipher Suite (4 octets) (default: AES-128-CMAC)
*/
struct rsn_ie_hdr {
u8 elem_id; /* WLAN_EID_RSN */
u8 len;
u16 version;
} STRUCT_PACKED;
struct rsn_error_kde {
u16 mui;
u16 error_type;
} STRUCT_PACKED;
#ifdef CONFIG_IEEE80211W
struct wpa_dhv_kde {
u8 dhv[WPA_DHV_LEN];
} STRUCT_PACKED;
struct wpa_igtk_kde {
u8 keyid[2];
u8 pn[6];
u8 igtk[WPA_IGTK_LEN];
} STRUCT_PACKED;
#endif /* CONFIG_IEEE80211W */
#ifdef _MSC_VER
#pragma pack(pop)
#endif /* _MSC_VER */
static inline void wpa_auth_mic_failure_report(
struct wpa_authenticator *wpa_auth, const u8 *addr)
{
if (wpa_auth->cb.mic_failure_report)
wpa_auth->cb.mic_failure_report(wpa_auth->cb.ctx, addr);
}
static inline void wpa_auth_set_eapol(struct wpa_authenticator *wpa_auth,
const u8 *addr, wpa_eapol_variable var,
int value)
{
if (wpa_auth->cb.set_eapol)
wpa_auth->cb.set_eapol(wpa_auth->cb.ctx, addr, var, value);
}
static inline int wpa_auth_get_eapol(struct wpa_authenticator *wpa_auth,
const u8 *addr, wpa_eapol_variable var)
{
if (wpa_auth->cb.get_eapol == NULL)
return -1;
return wpa_auth->cb.get_eapol(wpa_auth->cb.ctx, addr, var);
}
static inline const u8 * wpa_auth_get_psk(struct wpa_authenticator *wpa_auth,
const u8 *addr, const u8 *prev_psk)
{
if (wpa_auth->cb.get_psk == NULL)
return NULL;
return wpa_auth->cb.get_psk(wpa_auth->cb.ctx, addr, prev_psk);
}
static inline int wpa_auth_get_pmk(struct wpa_authenticator *wpa_auth,
const u8 *addr, u8 *pmk, size_t *len)
{
if (wpa_auth->cb.get_pmk == NULL)
return -1;
return wpa_auth->cb.get_pmk(wpa_auth->cb.ctx, addr, pmk, len);
}
static inline int wpa_auth_set_key(struct wpa_authenticator *wpa_auth,
int vlan_id,
const char *alg, const u8 *addr, int idx,
u8 *key, size_t key_len)
{
if (wpa_auth->cb.set_key == NULL)
return -1;
return wpa_auth->cb.set_key(wpa_auth->cb.ctx, vlan_id, alg, addr, idx,
key, key_len);
}
static inline int wpa_auth_get_seqnum(struct wpa_authenticator *wpa_auth,
const u8 *addr, int idx, u8 *seq)
{
if (wpa_auth->cb.get_seqnum == NULL)
return -1;
return wpa_auth->cb.get_seqnum(wpa_auth->cb.ctx, addr, idx, seq);
}
static inline int wpa_auth_get_seqnum_igtk(struct wpa_authenticator *wpa_auth,
const u8 *addr, int idx, u8 *seq)
{
if (wpa_auth->cb.get_seqnum_igtk == NULL)
return -1;
return wpa_auth->cb.get_seqnum_igtk(wpa_auth->cb.ctx, addr, idx, seq);
}
static inline int
wpa_auth_send_eapol(struct wpa_authenticator *wpa_auth, const u8 *addr,
const u8 *data, size_t data_len, int encrypt)
{
if (wpa_auth->cb.send_eapol == NULL)
return -1;
return wpa_auth->cb.send_eapol(wpa_auth->cb.ctx, addr, data, data_len,
encrypt);
}
static inline int wpa_auth_for_each_sta(struct wpa_authenticator *wpa_auth,
int (*cb)(struct wpa_state_machine *sm,
void *ctx),
void *cb_ctx)
{
if (wpa_auth->cb.for_each_sta == NULL)
return 0;
return wpa_auth->cb.for_each_sta(wpa_auth->cb.ctx, cb, cb_ctx);
}
static void wpa_auth_logger(struct wpa_authenticator *wpa_auth, const u8 *addr,
logger_level level, const char *txt)
{
if (wpa_auth->cb.logger == NULL)
return;
wpa_auth->cb.logger(wpa_auth->cb.ctx, addr, level, txt);
}
static void wpa_auth_vlogger(struct wpa_authenticator *wpa_auth,
const u8 *addr, logger_level level,
const char *fmt, ...)
{
char *format;
int maxlen;
va_list ap;
if (wpa_auth->cb.logger == NULL)
return;
maxlen = strlen(fmt) + 100;
format = malloc(maxlen);
if (!format)
return;
va_start(ap, fmt);
vsnprintf(format, maxlen, fmt, ap);
va_end(ap);
wpa_auth_logger(wpa_auth, addr, level, format);
free(format);
}
static int wpa_write_wpa_ie(struct wpa_auth_config *conf, u8 *buf, size_t len)
{
struct wpa_ie_hdr *hdr;
int num_suites;
u8 *pos, *count;
hdr = (struct wpa_ie_hdr *) buf;
hdr->elem_id = WLAN_EID_GENERIC;
memcpy(&hdr->oui, WPA_OUI_TYPE, WPA_SELECTOR_LEN);
hdr->version = host_to_le16(WPA_VERSION);
pos = (u8 *) (hdr + 1);
if (conf->wpa_group == WPA_CIPHER_CCMP) {
memcpy(pos, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN);
} else if (conf->wpa_group == WPA_CIPHER_TKIP) {
memcpy(pos, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN);
} else if (conf->wpa_group == WPA_CIPHER_WEP104) {
memcpy(pos, WPA_CIPHER_SUITE_WEP104, WPA_SELECTOR_LEN);
} else if (conf->wpa_group == WPA_CIPHER_WEP40) {
memcpy(pos, WPA_CIPHER_SUITE_WEP40, WPA_SELECTOR_LEN);
} else {
wpa_printf(MSG_DEBUG, "Invalid group cipher (%d).",
conf->wpa_group);
return -1;
}
pos += WPA_SELECTOR_LEN;
num_suites = 0;
count = pos;
pos += 2;
if (conf->wpa_pairwise & WPA_CIPHER_CCMP) {
memcpy(pos, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN);
pos += WPA_SELECTOR_LEN;
num_suites++;
}
if (conf->wpa_pairwise & WPA_CIPHER_TKIP) {
memcpy(pos, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN);
pos += WPA_SELECTOR_LEN;
num_suites++;
}
if (conf->wpa_pairwise & WPA_CIPHER_NONE) {
memcpy(pos, WPA_CIPHER_SUITE_NONE, WPA_SELECTOR_LEN);
pos += WPA_SELECTOR_LEN;
num_suites++;
}
if (num_suites == 0) {
wpa_printf(MSG_DEBUG, "Invalid pairwise cipher (%d).",
conf->wpa_pairwise);
return -1;
}
*count++ = num_suites & 0xff;
*count = (num_suites >> 8) & 0xff;
num_suites = 0;
count = pos;
pos += 2;
if (conf->wpa_key_mgmt & WPA_KEY_MGMT_IEEE8021X) {
memcpy(pos, WPA_AUTH_KEY_MGMT_UNSPEC_802_1X, WPA_SELECTOR_LEN);
pos += WPA_SELECTOR_LEN;
num_suites++;
}
if (conf->wpa_key_mgmt & WPA_KEY_MGMT_PSK) {
memcpy(pos, WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X,
WPA_SELECTOR_LEN);
pos += WPA_SELECTOR_LEN;
num_suites++;
}
if (num_suites == 0) {
wpa_printf(MSG_DEBUG, "Invalid key management type (%d).",
conf->wpa_key_mgmt);
return -1;
}
*count++ = num_suites & 0xff;
*count = (num_suites >> 8) & 0xff;
/* WPA Capabilities; use defaults, so no need to include it */
hdr->len = (pos - buf) - 2;
return pos - buf;
}
static int wpa_write_rsn_ie(struct wpa_auth_config *conf, u8 *buf, size_t len)
{
struct rsn_ie_hdr *hdr;
int num_suites;
u8 *pos, *count;
u16 capab;
hdr = (struct rsn_ie_hdr *) buf;
hdr->elem_id = WLAN_EID_RSN;
pos = (u8 *) &hdr->version;
*pos++ = RSN_VERSION & 0xff;
*pos++ = RSN_VERSION >> 8;
pos = (u8 *) (hdr + 1);
if (conf->wpa_group == WPA_CIPHER_CCMP) {
memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN);
} else if (conf->wpa_group == WPA_CIPHER_TKIP) {
memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN);
} else if (conf->wpa_group == WPA_CIPHER_WEP104) {
memcpy(pos, RSN_CIPHER_SUITE_WEP104, RSN_SELECTOR_LEN);
} else if (conf->wpa_group == WPA_CIPHER_WEP40) {
memcpy(pos, RSN_CIPHER_SUITE_WEP40, RSN_SELECTOR_LEN);
} else {
wpa_printf(MSG_DEBUG, "Invalid group cipher (%d).",
conf->wpa_group);
return -1;
}
pos += RSN_SELECTOR_LEN;
num_suites = 0;
count = pos;
pos += 2;
if (conf->wpa_pairwise & WPA_CIPHER_CCMP) {
memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
num_suites++;
}
if (conf->wpa_pairwise & WPA_CIPHER_TKIP) {
memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
num_suites++;
}
if (conf->wpa_pairwise & WPA_CIPHER_NONE) {
memcpy(pos, RSN_CIPHER_SUITE_NONE, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
num_suites++;
}
if (num_suites == 0) {
wpa_printf(MSG_DEBUG, "Invalid pairwise cipher (%d).",
conf->wpa_pairwise);
return -1;
}
*count++ = num_suites & 0xff;
*count = (num_suites >> 8) & 0xff;
num_suites = 0;
count = pos;
pos += 2;
if (conf->wpa_key_mgmt & WPA_KEY_MGMT_IEEE8021X) {
memcpy(pos, RSN_AUTH_KEY_MGMT_UNSPEC_802_1X, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
num_suites++;
}
if (conf->wpa_key_mgmt & WPA_KEY_MGMT_PSK) {
memcpy(pos, RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X,
RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
num_suites++;
}
if (num_suites == 0) {
wpa_printf(MSG_DEBUG, "Invalid key management type (%d).",
conf->wpa_key_mgmt);
return -1;
}
*count++ = num_suites & 0xff;
*count = (num_suites >> 8) & 0xff;
/* RSN Capabilities */
capab = 0;
if (conf->rsn_preauth)
capab |= WPA_CAPABILITY_PREAUTH;
if (conf->peerkey)
capab |= WPA_CAPABILITY_PEERKEY_ENABLED;
if (conf->wme_enabled) {
/* 4 PTKSA replay counters when using WME */
capab |= (RSN_NUM_REPLAY_COUNTERS_16 << 2);
}
#ifdef CONFIG_IEEE80211W
if (conf->ieee80211w != WPA_NO_IEEE80211W)
capab |= WPA_CAPABILITY_MGMT_FRAME_PROTECTION;
#endif /* CONFIG_IEEE80211W */
*pos++ = capab & 0xff;
*pos++ = capab >> 8;
#ifdef CONFIG_IEEE80211W
if (conf->ieee80211w != WPA_NO_IEEE80211W) {
if (pos + 2 + 4 > buf + len)
return -1;
/* PMKID Count */
WPA_PUT_LE16(pos, 0);
pos += 2;
/* Management Group Cipher Suite */
memcpy(pos, RSN_CIPHER_SUITE_AES_128_CMAC, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
}
#endif /* CONFIG_IEEE80211W */
hdr->len = (pos - buf) - 2;
return pos - buf;
}
static int wpa_gen_wpa_ie(struct wpa_authenticator *wpa_auth)
{
u8 *pos, buf[100];
int res;
pos = buf;
if (wpa_auth->conf.wpa & HOSTAPD_WPA_VERSION_WPA2) {
res = wpa_write_rsn_ie(&wpa_auth->conf,
pos, buf + sizeof(buf) - pos);
if (res < 0)
return res;
pos += res;
}
if (wpa_auth->conf.wpa & HOSTAPD_WPA_VERSION_WPA) {
res = wpa_write_wpa_ie(&wpa_auth->conf,
pos, buf + sizeof(buf) - pos);
if (res < 0)
return res;
pos += res;
}
free(wpa_auth->wpa_ie);
wpa_auth->wpa_ie = malloc(pos - buf);
if (wpa_auth->wpa_ie == NULL)
return -1;
memcpy(wpa_auth->wpa_ie, buf, pos - buf);
wpa_auth->wpa_ie_len = pos - buf;
return 0;
}
static void wpa_sta_disconnect(struct wpa_authenticator *wpa_auth,
const u8 *addr)
{
if (wpa_auth->cb.disconnect == NULL)
return;
wpa_auth->cb.disconnect(wpa_auth->cb.ctx, addr,
WLAN_REASON_PREV_AUTH_NOT_VALID);
}
static void wpa_rekey_gmk(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
if (hostapd_get_rand(wpa_auth->group->GMK, WPA_GMK_LEN)) {
wpa_printf(MSG_ERROR, "Failed to get random data for WPA "
"initialization.");
} else {
wpa_auth_logger(wpa_auth, NULL, LOGGER_DEBUG, "GMK rekeyd");
}
if (wpa_auth->conf.wpa_gmk_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_gmk_rekey, 0,
wpa_rekey_gmk, wpa_auth, NULL);
}
}
static void wpa_rekey_gtk(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
struct wpa_group *group;
wpa_auth_logger(wpa_auth, NULL, LOGGER_DEBUG, "rekeying GTK");
for (group = wpa_auth->group; group; group = group->next) {
group->GTKReKey = TRUE;
do {
group->changed = FALSE;
wpa_group_sm_step(wpa_auth, group);
} while (group->changed);
}
if (wpa_auth->conf.wpa_group_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_group_rekey,
0, wpa_rekey_gtk, wpa_auth, NULL);
}
}
static int wpa_auth_pmksa_clear_cb(struct wpa_state_machine *sm, void *ctx)
{
if (sm->pmksa == ctx)
sm->pmksa = NULL;
return 0;
}
static void wpa_auth_pmksa_free_cb(struct rsn_pmksa_cache_entry *entry,
void *ctx)
{
struct wpa_authenticator *wpa_auth = ctx;
wpa_auth_for_each_sta(wpa_auth, wpa_auth_pmksa_clear_cb, entry);
}
static struct wpa_group * wpa_group_init(struct wpa_authenticator *wpa_auth,
int vlan_id)
{
struct wpa_group *group;
u8 buf[ETH_ALEN + 8 + sizeof(group)];
u8 rkey[32];
group = wpa_zalloc(sizeof(struct wpa_group));
if (group == NULL)
return NULL;
group->GTKAuthenticator = TRUE;
group->vlan_id = vlan_id;
switch (wpa_auth->conf.wpa_group) {
case WPA_CIPHER_CCMP:
group->GTK_len = 16;
break;
case WPA_CIPHER_TKIP:
group->GTK_len = 32;
break;
case WPA_CIPHER_WEP104:
group->GTK_len = 13;
break;
case WPA_CIPHER_WEP40:
group->GTK_len = 5;
break;
}
/* Counter = PRF-256(Random number, "Init Counter",
* Local MAC Address || Time)
*/
memcpy(buf, wpa_auth->addr, ETH_ALEN);
wpa_get_ntp_timestamp(buf + ETH_ALEN);
memcpy(buf + ETH_ALEN + 8, &group, sizeof(group));
if (hostapd_get_rand(rkey, sizeof(rkey)) ||
hostapd_get_rand(group->GMK, WPA_GMK_LEN)) {
wpa_printf(MSG_ERROR, "Failed to get random data for WPA "
"initialization.");
free(group);
return NULL;
}
sha1_prf(rkey, sizeof(rkey), "Init Counter", buf, sizeof(buf),
group->Counter, WPA_NONCE_LEN);
group->GInit = TRUE;
wpa_group_sm_step(wpa_auth, group);
group->GInit = FALSE;
wpa_group_sm_step(wpa_auth, group);
return group;
}
/**
* wpa_init - Initialize WPA authenticator
* @addr: Authenticator address
* @conf: Configuration for WPA authenticator
* Returns: Pointer to WPA authenticator data or %NULL on failure
*/
struct wpa_authenticator * wpa_init(const u8 *addr,
struct wpa_auth_config *conf,
struct wpa_auth_callbacks *cb)
{
struct wpa_authenticator *wpa_auth;
wpa_auth = wpa_zalloc(sizeof(struct wpa_authenticator));
if (wpa_auth == NULL)
return NULL;
memcpy(wpa_auth->addr, addr, ETH_ALEN);
memcpy(&wpa_auth->conf, conf, sizeof(*conf));
memcpy(&wpa_auth->cb, cb, sizeof(*cb));
if (wpa_gen_wpa_ie(wpa_auth)) {
wpa_printf(MSG_ERROR, "Could not generate WPA IE.");
free(wpa_auth);
return NULL;
}
wpa_auth->group = wpa_group_init(wpa_auth, 0);
if (wpa_auth->group == NULL) {
free(wpa_auth->wpa_ie);
free(wpa_auth);
return NULL;
}
wpa_auth->pmksa = pmksa_cache_init(wpa_auth_pmksa_free_cb, wpa_auth);
if (wpa_auth->pmksa == NULL) {
wpa_printf(MSG_ERROR, "PMKSA cache initialization failed.");
free(wpa_auth->wpa_ie);
free(wpa_auth);
return NULL;
}
if (wpa_auth->conf.wpa_gmk_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_gmk_rekey, 0,
wpa_rekey_gmk, wpa_auth, NULL);
}
if (wpa_auth->conf.wpa_group_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_group_rekey, 0,
wpa_rekey_gtk, wpa_auth, NULL);
}
return wpa_auth;
}
/**
* wpa_deinit - Deinitialize WPA authenticator
* @wpa_auth: Pointer to WPA authenticator data from wpa_init()
*/
void wpa_deinit(struct wpa_authenticator *wpa_auth)
{
struct wpa_group *group, *prev;
eloop_cancel_timeout(wpa_rekey_gmk, wpa_auth, NULL);
eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL);
while (wpa_auth->stsl_negotiations)
wpa_stsl_remove(wpa_auth, wpa_auth->stsl_negotiations);
pmksa_cache_deinit(wpa_auth->pmksa);
free(wpa_auth->wpa_ie);
group = wpa_auth->group;
while (group) {
prev = group;
group = group->next;
free(prev);
}
free(wpa_auth);
}
/**
* wpa_reconfig - Update WPA authenticator configuration
* @wpa_auth: Pointer to WPA authenticator data from wpa_init()
* @conf: Configuration for WPA authenticator
*/
int wpa_reconfig(struct wpa_authenticator *wpa_auth,
struct wpa_auth_config *conf)
{
if (wpa_auth == NULL)
return 0;
memcpy(&wpa_auth->conf, conf, sizeof(*conf));
/*
* TODO:
* Disassociate stations if configuration changed
* Update WPA/RSN IE
*/
return 0;
}
static int wpa_selector_to_bitfield(u8 *s)
{
if (memcmp(s, WPA_CIPHER_SUITE_NONE, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_NONE;
if (memcmp(s, WPA_CIPHER_SUITE_WEP40, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP40;
if (memcmp(s, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_TKIP;
if (memcmp(s, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_CCMP;
if (memcmp(s, WPA_CIPHER_SUITE_WEP104, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP104;
return 0;
}
static int wpa_key_mgmt_to_bitfield(u8 *s)
{
if (memcmp(s, WPA_AUTH_KEY_MGMT_UNSPEC_802_1X, WPA_SELECTOR_LEN) == 0)
return WPA_KEY_MGMT_IEEE8021X;
if (memcmp(s, WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X, WPA_SELECTOR_LEN) ==
0)
return WPA_KEY_MGMT_PSK;
return 0;
}
static int rsn_selector_to_bitfield(u8 *s)
{
if (memcmp(s, RSN_CIPHER_SUITE_NONE, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_NONE;
if (memcmp(s, RSN_CIPHER_SUITE_WEP40, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP40;
if (memcmp(s, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_TKIP;
if (memcmp(s, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_CCMP;
if (memcmp(s, RSN_CIPHER_SUITE_WEP104, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP104;
#ifdef CONFIG_IEEE80211W
if (memcmp(s, RSN_CIPHER_SUITE_AES_128_CMAC, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_AES_128_CMAC;
#endif /* CONFIG_IEEE80211W */
return 0;
}
static int rsn_key_mgmt_to_bitfield(u8 *s)
{
if (memcmp(s, RSN_AUTH_KEY_MGMT_UNSPEC_802_1X, RSN_SELECTOR_LEN) == 0)
return WPA_KEY_MGMT_IEEE8021X;
if (memcmp(s, RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X, RSN_SELECTOR_LEN) ==
0)
return WPA_KEY_MGMT_PSK;
return 0;
}
static u8 * wpa_add_kde(u8 *pos, const u8 *kde, const u8 *data,
size_t data_len, const u8 *data2, size_t data2_len)
{
*pos++ = GENERIC_INFO_ELEM;
*pos++ = RSN_SELECTOR_LEN + data_len + data2_len;
memcpy(pos, kde, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
memcpy(pos, data, data_len);
pos += data_len;
if (data2) {
memcpy(pos, data2, data2_len);
pos += data2_len;
}
return pos;
}
struct wpa_ie_data {
int pairwise_cipher;
int group_cipher;
int key_mgmt;
int capabilities;
size_t num_pmkid;
u8 *pmkid;
int mgmt_group_cipher;
};
static int wpa_parse_wpa_ie_wpa(const u8 *wpa_ie, size_t wpa_ie_len,
struct wpa_ie_data *data)
{
struct wpa_ie_hdr *hdr;
u8 *pos;
int left;
int i, count;
memset(data, 0, sizeof(*data));
data->pairwise_cipher = WPA_CIPHER_TKIP;
data->group_cipher = WPA_CIPHER_TKIP;
data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
data->mgmt_group_cipher = 0;
if (wpa_ie_len < sizeof(struct wpa_ie_hdr))
return -1;
hdr = (struct wpa_ie_hdr *) wpa_ie;
if (hdr->elem_id != WLAN_EID_GENERIC ||
hdr->len != wpa_ie_len - 2 ||
memcmp(&hdr->oui, WPA_OUI_TYPE, WPA_SELECTOR_LEN) != 0 ||
le_to_host16(hdr->version) != WPA_VERSION) {
return -2;
}
pos = (u8 *) (hdr + 1);
left = wpa_ie_len - sizeof(*hdr);
if (left >= WPA_SELECTOR_LEN) {
data->group_cipher = wpa_selector_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
} else if (left > 0)
return -3;
if (left >= 2) {
data->pairwise_cipher = 0;
count = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
if (count == 0 || left < count * WPA_SELECTOR_LEN)
return -4;
for (i = 0; i < count; i++) {
data->pairwise_cipher |= wpa_selector_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
}
} else if (left == 1)
return -5;
if (left >= 2) {
data->key_mgmt = 0;
count = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
if (count == 0 || left < count * WPA_SELECTOR_LEN)
return -6;
for (i = 0; i < count; i++) {
data->key_mgmt |= wpa_key_mgmt_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
}
} else if (left == 1)
return -7;
if (left >= 2) {
data->capabilities = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
}
if (left > 0) {
return -8;
}
return 0;
}
static int wpa_parse_wpa_ie_rsn(const u8 *rsn_ie, size_t rsn_ie_len,
struct wpa_ie_data *data)
{
struct rsn_ie_hdr *hdr;
u8 *pos;
int left;
int i, count;
memset(data, 0, sizeof(*data));
data->pairwise_cipher = WPA_CIPHER_CCMP;
data->group_cipher = WPA_CIPHER_CCMP;
data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
#ifdef CONFIG_IEEE80211W
data->mgmt_group_cipher = WPA_CIPHER_AES_128_CMAC;
#else /* CONFIG_IEEE80211W */
data->mgmt_group_cipher = 0;
#endif /* CONFIG_IEEE80211W */
if (rsn_ie_len < sizeof(struct rsn_ie_hdr))
return -1;
hdr = (struct rsn_ie_hdr *) rsn_ie;
if (hdr->elem_id != WLAN_EID_RSN ||
hdr->len != rsn_ie_len - 2 ||
le_to_host16(hdr->version) != RSN_VERSION) {
return -2;
}
pos = (u8 *) (hdr + 1);
left = rsn_ie_len - sizeof(*hdr);
if (left >= RSN_SELECTOR_LEN) {
data->group_cipher = rsn_selector_to_bitfield(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
} else if (left > 0)
return -3;
if (left >= 2) {
data->pairwise_cipher = 0;
count = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
if (count == 0 || left < count * RSN_SELECTOR_LEN)
return -4;
for (i = 0; i < count; i++) {
data->pairwise_cipher |= rsn_selector_to_bitfield(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
} else if (left == 1)
return -5;
if (left >= 2) {
data->key_mgmt = 0;
count = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
if (count == 0 || left < count * RSN_SELECTOR_LEN)
return -6;
for (i = 0; i < count; i++) {
data->key_mgmt |= rsn_key_mgmt_to_bitfield(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
} else if (left == 1)
return -7;
if (left >= 2) {
data->capabilities = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
}
if (left >= 2) {
data->num_pmkid = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
if (left < (int) data->num_pmkid * PMKID_LEN) {
wpa_printf(MSG_DEBUG, "RSN: too short RSN IE for "
"PMKIDs (num=%lu, left=%d)",
(unsigned long) data->num_pmkid, left);
return -9;
}
data->pmkid = pos;
pos += data->num_pmkid * PMKID_LEN;
left -= data->num_pmkid * PMKID_LEN;
}
#ifdef CONFIG_IEEE80211W
if (left >= 4) {
data->mgmt_group_cipher = rsn_selector_to_bitfield(pos);
if (data->mgmt_group_cipher != WPA_CIPHER_AES_128_CMAC) {
wpa_printf(MSG_DEBUG, "RSN: Unsupported management "
"group cipher 0x%x",
data->mgmt_group_cipher);
return -10;
}
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
#endif /* CONFIG_IEEE80211W */
if (left > 0) {
return -8;
}
return 0;
}
int wpa_validate_wpa_ie(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm,
const u8 *wpa_ie, size_t wpa_ie_len)
{
struct wpa_ie_data data;
int ciphers, key_mgmt, res, version;
const u8 *selector;
size_t i;
if (wpa_auth == NULL || sm == NULL)
return WPA_NOT_ENABLED;
if (wpa_ie == NULL || wpa_ie_len < 1)
return WPA_INVALID_IE;
if (wpa_ie[0] == WLAN_EID_RSN)
version = HOSTAPD_WPA_VERSION_WPA2;
else
version = HOSTAPD_WPA_VERSION_WPA;
if (version == HOSTAPD_WPA_VERSION_WPA2) {
res = wpa_parse_wpa_ie_rsn(wpa_ie, wpa_ie_len, &data);
selector = RSN_AUTH_KEY_MGMT_UNSPEC_802_1X;
if (data.key_mgmt & WPA_KEY_MGMT_IEEE8021X)
selector = RSN_AUTH_KEY_MGMT_UNSPEC_802_1X;
else if (data.key_mgmt & WPA_KEY_MGMT_PSK)
selector = RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X;
memcpy(wpa_auth->dot11RSNAAuthenticationSuiteSelected,
selector, RSN_SELECTOR_LEN);
selector = RSN_CIPHER_SUITE_CCMP;
if (data.pairwise_cipher & WPA_CIPHER_CCMP)
selector = RSN_CIPHER_SUITE_CCMP;
else if (data.pairwise_cipher & WPA_CIPHER_TKIP)
selector = RSN_CIPHER_SUITE_TKIP;
else if (data.pairwise_cipher & WPA_CIPHER_WEP104)
selector = RSN_CIPHER_SUITE_WEP104;
else if (data.pairwise_cipher & WPA_CIPHER_WEP40)
selector = RSN_CIPHER_SUITE_WEP40;
else if (data.pairwise_cipher & WPA_CIPHER_NONE)
selector = RSN_CIPHER_SUITE_NONE;
memcpy(wpa_auth->dot11RSNAPairwiseCipherSelected,
selector, RSN_SELECTOR_LEN);
selector = RSN_CIPHER_SUITE_CCMP;
if (data.group_cipher & WPA_CIPHER_CCMP)
selector = RSN_CIPHER_SUITE_CCMP;
else if (data.group_cipher & WPA_CIPHER_TKIP)
selector = RSN_CIPHER_SUITE_TKIP;
else if (data.group_cipher & WPA_CIPHER_WEP104)
selector = RSN_CIPHER_SUITE_WEP104;
else if (data.group_cipher & WPA_CIPHER_WEP40)
selector = RSN_CIPHER_SUITE_WEP40;
else if (data.group_cipher & WPA_CIPHER_NONE)
selector = RSN_CIPHER_SUITE_NONE;
memcpy(wpa_auth->dot11RSNAGroupCipherSelected,
selector, RSN_SELECTOR_LEN);
} else {
res = wpa_parse_wpa_ie_wpa(wpa_ie, wpa_ie_len, &data);
selector = WPA_AUTH_KEY_MGMT_UNSPEC_802_1X;
if (data.key_mgmt & WPA_KEY_MGMT_IEEE8021X)
selector = WPA_AUTH_KEY_MGMT_UNSPEC_802_1X;
else if (data.key_mgmt & WPA_KEY_MGMT_PSK)
selector = WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X;
memcpy(wpa_auth->dot11RSNAAuthenticationSuiteSelected,
selector, WPA_SELECTOR_LEN);
selector = WPA_CIPHER_SUITE_TKIP;
if (data.pairwise_cipher & WPA_CIPHER_CCMP)
selector = WPA_CIPHER_SUITE_CCMP;
else if (data.pairwise_cipher & WPA_CIPHER_TKIP)
selector = WPA_CIPHER_SUITE_TKIP;
else if (data.pairwise_cipher & WPA_CIPHER_WEP104)
selector = WPA_CIPHER_SUITE_WEP104;
else if (data.pairwise_cipher & WPA_CIPHER_WEP40)
selector = WPA_CIPHER_SUITE_WEP40;
else if (data.pairwise_cipher & WPA_CIPHER_NONE)
selector = WPA_CIPHER_SUITE_NONE;
memcpy(wpa_auth->dot11RSNAPairwiseCipherSelected,
selector, WPA_SELECTOR_LEN);
selector = WPA_CIPHER_SUITE_TKIP;
if (data.group_cipher & WPA_CIPHER_CCMP)
selector = WPA_CIPHER_SUITE_CCMP;
else if (data.group_cipher & WPA_CIPHER_TKIP)
selector = WPA_CIPHER_SUITE_TKIP;
else if (data.group_cipher & WPA_CIPHER_WEP104)
selector = WPA_CIPHER_SUITE_WEP104;
else if (data.group_cipher & WPA_CIPHER_WEP40)
selector = WPA_CIPHER_SUITE_WEP40;
else if (data.group_cipher & WPA_CIPHER_NONE)
selector = WPA_CIPHER_SUITE_NONE;
memcpy(wpa_auth->dot11RSNAGroupCipherSelected,
selector, WPA_SELECTOR_LEN);
}
if (res) {
wpa_printf(MSG_DEBUG, "Failed to parse WPA/RSN IE from "
MACSTR " (res=%d)", MAC2STR(sm->addr), res);
wpa_hexdump(MSG_DEBUG, "WPA/RSN IE", wpa_ie, wpa_ie_len);
return WPA_INVALID_IE;
}
if (data.group_cipher != wpa_auth->conf.wpa_group) {
wpa_printf(MSG_DEBUG, "Invalid WPA group cipher (0x%x) from "
MACSTR, data.group_cipher, MAC2STR(sm->addr));
return WPA_INVALID_GROUP;
}
key_mgmt = data.key_mgmt & wpa_auth->conf.wpa_key_mgmt;
if (!key_mgmt) {
wpa_printf(MSG_DEBUG, "Invalid WPA key mgmt (0x%x) from "
MACSTR, data.key_mgmt, MAC2STR(sm->addr));
return WPA_INVALID_AKMP;
}
if (key_mgmt & WPA_KEY_MGMT_IEEE8021X)
sm->wpa_key_mgmt = WPA_KEY_MGMT_IEEE8021X;
else
sm->wpa_key_mgmt = WPA_KEY_MGMT_PSK;
ciphers = data.pairwise_cipher & wpa_auth->conf.wpa_pairwise;
if (!ciphers) {
wpa_printf(MSG_DEBUG, "Invalid WPA pairwise cipher (0x%x) "
"from " MACSTR,
data.pairwise_cipher, MAC2STR(sm->addr));
return WPA_INVALID_PAIRWISE;
}
#ifdef CONFIG_IEEE80211W
if (wpa_auth->conf.ieee80211w == WPA_IEEE80211W_REQUIRED) {
if (!(data.capabilities &
WPA_CAPABILITY_MGMT_FRAME_PROTECTION)) {
wpa_printf(MSG_DEBUG, "Management frame protection "
"required, but client did not enable it");
return WPA_MGMT_FRAME_PROTECTION_VIOLATION;
}
if (ciphers & WPA_CIPHER_TKIP) {
wpa_printf(MSG_DEBUG, "Management frame protection "
"cannot use TKIP");
return WPA_MGMT_FRAME_PROTECTION_VIOLATION;
}
if (data.mgmt_group_cipher != WPA_CIPHER_AES_128_CMAC) {
wpa_printf(MSG_DEBUG, "Unsupported management group "
"cipher %d", data.mgmt_group_cipher);
return WPA_INVALID_MGMT_GROUP_CIPHER;
}
}
if (wpa_auth->conf.ieee80211w == WPA_NO_IEEE80211W ||
!(data.capabilities & WPA_CAPABILITY_MGMT_FRAME_PROTECTION))
sm->mgmt_frame_prot = 0;
else
sm->mgmt_frame_prot = 1;
#endif /* CONFIG_IEEE80211W */
if (ciphers & WPA_CIPHER_CCMP)
sm->pairwise = WPA_CIPHER_CCMP;
else
sm->pairwise = WPA_CIPHER_TKIP;
/* TODO: clear WPA/WPA2 state if STA changes from one to another */
if (wpa_ie[0] == WLAN_EID_RSN)
sm->wpa = WPA_VERSION_WPA2;
else
sm->wpa = WPA_VERSION_WPA;
for (i = 0; i < data.num_pmkid; i++) {
wpa_hexdump(MSG_DEBUG, "RSN IE: STA PMKID",
&data.pmkid[i * PMKID_LEN], PMKID_LEN);
sm->pmksa = pmksa_cache_get(wpa_auth->pmksa, sm->addr,
&data.pmkid[i * PMKID_LEN]);
if (sm->pmksa) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"PMKID found from PMKSA cache "
"eap_type=%d vlan_id=%d",
sm->pmksa->eap_type_authsrv,
sm->pmksa->vlan_id);
memcpy(wpa_auth->dot11RSNAPMKIDUsed,
sm->pmksa->pmkid, PMKID_LEN);
break;
}
}
if (sm->wpa_ie == NULL || sm->wpa_ie_len < wpa_ie_len) {
free(sm->wpa_ie);
sm->wpa_ie = malloc(wpa_ie_len);
if (sm->wpa_ie == NULL)
return WPA_ALLOC_FAIL;
}
memcpy(sm->wpa_ie, wpa_ie, wpa_ie_len);
sm->wpa_ie_len = wpa_ie_len;
return WPA_IE_OK;
}
struct wpa_eapol_ie_parse {
const u8 *wpa_ie;
size_t wpa_ie_len;
const u8 *rsn_ie;
size_t rsn_ie_len;
const u8 *pmkid;
const u8 *gtk;
size_t gtk_len;
const u8 *mac_addr;
size_t mac_addr_len;
#ifdef CONFIG_PEERKEY
const u8 *smk;
size_t smk_len;
const u8 *nonce;
size_t nonce_len;
const u8 *lifetime;
size_t lifetime_len;
const u8 *error;
size_t error_len;
#endif /* CONFIG_PEERKEY */
};
/**
* wpa_parse_generic - Parse EAPOL-Key Key Data Generic IEs
* @pos: Pointer to the IE header
* @end: Pointer to the end of the Key Data buffer
* @ie: Pointer to parsed IE data
* Returns: 0 on success, 1 if end mark is found, -1 on failure
*/
static int wpa_parse_generic(const u8 *pos, const u8 *end,
struct wpa_eapol_ie_parse *ie)
{
if (pos[1] == 0)
return 1;
if (pos[1] >= 6 &&
memcmp(pos + 2, WPA_OUI_TYPE, WPA_SELECTOR_LEN) == 0 &&
pos[2 + WPA_SELECTOR_LEN] == 1 &&
pos[2 + WPA_SELECTOR_LEN + 1] == 0) {
ie->wpa_ie = pos;
ie->wpa_ie_len = pos[1] + 2;
return 0;
}
if (pos + 1 + RSN_SELECTOR_LEN < end &&
pos[1] >= RSN_SELECTOR_LEN + PMKID_LEN &&
memcmp(pos + 2, RSN_KEY_DATA_PMKID, RSN_SELECTOR_LEN) == 0) {
ie->pmkid = pos + 2 + RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
memcmp(pos + 2, RSN_KEY_DATA_GROUPKEY, RSN_SELECTOR_LEN) == 0) {
ie->gtk = pos + 2 + RSN_SELECTOR_LEN;
ie->gtk_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
memcmp(pos + 2, RSN_KEY_DATA_MAC_ADDR, RSN_SELECTOR_LEN) == 0) {
ie->mac_addr = pos + 2 + RSN_SELECTOR_LEN;
ie->mac_addr_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
#ifdef CONFIG_PEERKEY
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
memcmp(pos + 2, RSN_KEY_DATA_SMK, RSN_SELECTOR_LEN) == 0) {
ie->smk = pos + 2 + RSN_SELECTOR_LEN;
ie->smk_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
memcmp(pos + 2, RSN_KEY_DATA_NONCE, RSN_SELECTOR_LEN) == 0) {
ie->nonce = pos + 2 + RSN_SELECTOR_LEN;
ie->nonce_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
memcmp(pos + 2, RSN_KEY_DATA_LIFETIME, RSN_SELECTOR_LEN) == 0) {
ie->lifetime = pos + 2 + RSN_SELECTOR_LEN;
ie->lifetime_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
memcmp(pos + 2, RSN_KEY_DATA_ERROR, RSN_SELECTOR_LEN) == 0) {
ie->error = pos + 2 + RSN_SELECTOR_LEN;
ie->error_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
#endif /* CONFIG_PEERKEY */
return 0;
}
/**
* wpa_parse_kde_ies - Parse EAPOL-Key Key Data IEs
* @buf: Pointer to the Key Data buffer
* @len: Key Data Length
* @ie: Pointer to parsed IE data
* Returns: 0 on success, -1 on failure
*/
static int wpa_parse_kde_ies(const u8 *buf, size_t len,
struct wpa_eapol_ie_parse *ie)
{
const u8 *pos, *end;
int ret = 0;
memset(ie, 0, sizeof(*ie));
for (pos = buf, end = pos + len; pos + 1 < end; pos += 2 + pos[1]) {
if (pos[0] == 0xdd &&
((pos == buf + len - 1) || pos[1] == 0)) {
/* Ignore padding */
break;
}
if (pos + 2 + pos[1] > end) {
wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key Key Data "
"underflow (ie=%d len=%d)", pos[0], pos[1]);
ret = -1;
break;
}
if (*pos == RSN_INFO_ELEM) {
ie->rsn_ie = pos;
ie->rsn_ie_len = pos[1] + 2;
} else if (*pos == GENERIC_INFO_ELEM) {
ret = wpa_parse_generic(pos, end, ie);
if (ret < 0)
break;
if (ret > 0) {
ret = 0;
break;
}
} else {
wpa_hexdump(MSG_DEBUG, "WPA: Unrecognized EAPOL-Key "
"Key Data IE", pos, 2 + pos[1]);
}
}
return ret;
}
struct wpa_state_machine *
wpa_auth_sta_init(struct wpa_authenticator *wpa_auth, const u8 *addr)
{
struct wpa_state_machine *sm;
sm = wpa_zalloc(sizeof(struct wpa_state_machine));
if (sm == NULL)
return NULL;
memcpy(sm->addr, addr, ETH_ALEN);
sm->wpa_auth = wpa_auth;
sm->group = wpa_auth->group;
return sm;
}
void wpa_auth_sta_associated(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm)
{
if (wpa_auth == NULL || !wpa_auth->conf.wpa || sm == NULL)
return;
if (sm->started) {
memset(sm->key_replay_counter, 0, WPA_REPLAY_COUNTER_LEN);
sm->ReAuthenticationRequest = TRUE;
wpa_sm_step(sm);
return;
}
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"start authentication");
sm->started = 1;
sm->Init = TRUE;
wpa_sm_step(sm);
sm->Init = FALSE;
sm->AuthenticationRequest = TRUE;
wpa_sm_step(sm);
}
static void wpa_free_sta_sm(struct wpa_state_machine *sm)
{
free(sm->last_rx_eapol_key);
free(sm->wpa_ie);
free(sm);
}
void wpa_auth_sta_deinit(struct wpa_state_machine *sm)
{
if (sm == NULL)
return;
if (sm->wpa_auth->conf.wpa_strict_rekey && sm->has_GTK) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"strict rekeying - force GTK rekey since STA "
"is leaving");
eloop_cancel_timeout(wpa_rekey_gtk, sm->wpa_auth, NULL);
eloop_register_timeout(0, 500000, wpa_rekey_gtk, sm->wpa_auth,
NULL);
}
eloop_cancel_timeout(wpa_send_eapol_timeout, sm->wpa_auth, sm);
eloop_cancel_timeout(wpa_sm_call_step, sm, NULL);
if (sm->in_step_loop) {
/* Must not free state machine while wpa_sm_step() is running.
* Freeing will be completed in the end of wpa_sm_step(). */
wpa_printf(MSG_DEBUG, "WPA: Registering pending STA state "
"machine deinit for " MACSTR, MAC2STR(sm->addr));
sm->pending_deinit = 1;
} else
wpa_free_sta_sm(sm);
}
static void wpa_request_new_ptk(struct wpa_state_machine *sm)
{
if (sm == NULL)
return;
sm->PTKRequest = TRUE;
sm->PTK_valid = 0;
}
#ifdef CONFIG_PEERKEY
static void wpa_stsl_step(void *eloop_ctx, void *timeout_ctx)
{
#if 0
struct wpa_authenticator *wpa_auth = eloop_ctx;
struct wpa_stsl_negotiation *neg = timeout_ctx;
#endif
/* TODO: ? */
}
struct wpa_stsl_search {
const u8 *addr;
struct wpa_state_machine *sm;
};
static int wpa_stsl_select_sta(struct wpa_state_machine *sm, void *ctx)
{
struct wpa_stsl_search *search = ctx;
if (memcmp(search->addr, sm->addr, ETH_ALEN) == 0) {
search->sm = sm;
return 1;
}
return 0;
}
static void wpa_smk_send_error(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm, const u8 *peer,
u16 mui, u16 error_type)
{
u8 kde[2 + RSN_SELECTOR_LEN + ETH_ALEN +
2 + RSN_SELECTOR_LEN + sizeof(struct rsn_error_kde)];
size_t kde_len;
u8 *pos;
struct rsn_error_kde error;
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"Sending SMK Error");
kde_len = 2 + RSN_SELECTOR_LEN + sizeof(struct rsn_error_kde);
pos = kde;
if (peer) {
pos = wpa_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, peer, ETH_ALEN,
NULL, 0);
kde_len += 2 + RSN_SELECTOR_LEN + ETH_ALEN;
}
error.mui = host_to_be16(mui);
error.error_type = host_to_be16(error_type);
pos = wpa_add_kde(pos, RSN_KEY_DATA_ERROR,
(u8 *) &error, sizeof(error), NULL, 0);
__wpa_send_eapol(wpa_auth, sm,
WPA_KEY_INFO_SECURE | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_ERROR,
NULL, NULL, kde, kde_len, 0, 0, 0);
}
static void wpa_smk_m1(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm,
struct wpa_eapol_key *key)
{
struct wpa_eapol_ie_parse kde;
struct wpa_stsl_search search;
u8 *buf, *pos;
size_t buf_len;
if (wpa_parse_kde_ies((const u8 *) (key + 1),
ntohs(key->key_data_length), &kde) < 0) {
wpa_printf(MSG_INFO, "RSN: Failed to parse KDEs in SMK M1");
return;
}
if (kde.rsn_ie == NULL || kde.mac_addr == NULL ||
kde.mac_addr_len < ETH_ALEN) {
wpa_printf(MSG_INFO, "RSN: No RSN IE or MAC address KDE in "
"SMK M1");
return;
}
/* Initiator = sm->addr; Peer = kde.mac_addr */
search.addr = kde.mac_addr;
search.sm = NULL;
if (wpa_auth_for_each_sta(wpa_auth, wpa_stsl_select_sta, &search) ==
0 || search.sm == NULL) {
wpa_printf(MSG_DEBUG, "RSN: SMK handshake with " MACSTR
" aborted - STA not associated anymore",
MAC2STR(kde.mac_addr));
wpa_smk_send_error(wpa_auth, sm, kde.mac_addr, STK_MUI_SMK,
STK_ERR_STA_NR);
/* FIX: wpa_stsl_remove(wpa_auth, neg); */
return;
}
buf_len = kde.rsn_ie_len + 2 + RSN_SELECTOR_LEN + ETH_ALEN;
buf = malloc(buf_len);
if (buf == NULL)
return;
/* Initiator RSN IE */
memcpy(buf, kde.rsn_ie, kde.rsn_ie_len);
pos = buf + kde.rsn_ie_len;
/* Initiator MAC Address */
pos = wpa_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, sm->addr, ETH_ALEN,
NULL, 0);
/* SMK M2:
* EAPOL-Key(S=1, M=1, A=1, I=0, K=0, SM=1, KeyRSC=0, Nonce=INonce,
* MIC=MIC, DataKDs=(RSNIE_I, MAC_I KDE)
*/
wpa_auth_logger(wpa_auth, search.sm->addr, LOGGER_DEBUG,
"Sending SMK M2");
__wpa_send_eapol(wpa_auth, search.sm,
WPA_KEY_INFO_SECURE | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_ACK | WPA_KEY_INFO_SMK_MESSAGE,
NULL, key->key_nonce, buf, buf_len, 0, 0, 0);
free(buf);
}
static void wpa_send_smk_m4(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm,
struct wpa_eapol_key *key,
struct wpa_eapol_ie_parse *kde,
const u8 *smk)
{
u8 *buf, *pos;
size_t buf_len;
u32 lifetime;
/* SMK M4:
* EAPOL-Key(S=1, M=1, A=0, I=1, K=0, SM=1, KeyRSC=0, Nonce=PNonce,
* MIC=MIC, DataKDs=(MAC_I KDE, INonce KDE, SMK KDE,
* Lifetime KDE)
*/
buf_len = 2 + RSN_SELECTOR_LEN + ETH_ALEN +
2 + RSN_SELECTOR_LEN + WPA_NONCE_LEN +
2 + RSN_SELECTOR_LEN + WPA_PMK_LEN + WPA_NONCE_LEN +
2 + RSN_SELECTOR_LEN + sizeof(lifetime);
pos = buf = malloc(buf_len);
if (buf == NULL)
return;
/* Initiator MAC Address */
pos = wpa_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, kde->mac_addr, ETH_ALEN,
NULL, 0);
/* Initiator Nonce */
pos = wpa_add_kde(pos, RSN_KEY_DATA_NONCE, kde->nonce, WPA_NONCE_LEN,
NULL, 0);
/* SMK with PNonce */
pos = wpa_add_kde(pos, RSN_KEY_DATA_SMK, smk, WPA_PMK_LEN,
key->key_nonce, WPA_NONCE_LEN);
/* Lifetime */
lifetime = htonl(43200); /* dot11RSNAConfigSMKLifetime */
pos = wpa_add_kde(pos, RSN_KEY_DATA_LIFETIME,
(u8 *) &lifetime, sizeof(lifetime), NULL, 0);
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"Sending SMK M4");
__wpa_send_eapol(wpa_auth, sm,
WPA_KEY_INFO_SECURE | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_INSTALL | WPA_KEY_INFO_SMK_MESSAGE,
NULL, key->key_nonce, buf, buf_len, 0, 1, 0);
free(buf);
}
static void wpa_send_smk_m5(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm,
struct wpa_eapol_key *key,
struct wpa_eapol_ie_parse *kde,
const u8 *smk, const u8 *peer)
{
u8 *buf, *pos;
size_t buf_len;
u32 lifetime;
/* SMK M5:
* EAPOL-Key(S=1, M=1, A=0, I=0, K=0, SM=1, KeyRSC=0, Nonce=INonce,
* MIC=MIC, DataKDs=(RSNIE_P, MAC_P KDE, PNonce, SMK KDE,
* Lifetime KDE))
*/
buf_len = kde->rsn_ie_len +
2 + RSN_SELECTOR_LEN + ETH_ALEN +
2 + RSN_SELECTOR_LEN + WPA_NONCE_LEN +
2 + RSN_SELECTOR_LEN + WPA_PMK_LEN + WPA_NONCE_LEN +
2 + RSN_SELECTOR_LEN + sizeof(lifetime);
pos = buf = malloc(buf_len);
if (buf == NULL)
return;
/* Peer RSN IE */
memcpy(buf, kde->rsn_ie, kde->rsn_ie_len);
pos = buf + kde->rsn_ie_len;
/* Peer MAC Address */
pos = wpa_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, peer, ETH_ALEN, NULL, 0);
/* PNonce */
pos = wpa_add_kde(pos, RSN_KEY_DATA_NONCE, key->key_nonce,
WPA_NONCE_LEN, NULL, 0);
/* SMK and INonce */
pos = wpa_add_kde(pos, RSN_KEY_DATA_SMK, smk, WPA_PMK_LEN,
kde->nonce, WPA_NONCE_LEN);
/* Lifetime */
lifetime = htonl(43200); /* dot11RSNAConfigSMKLifetime */
pos = wpa_add_kde(pos, RSN_KEY_DATA_LIFETIME,
(u8 *) &lifetime, sizeof(lifetime), NULL, 0);
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"Sending SMK M5");
__wpa_send_eapol(wpa_auth, sm,
WPA_KEY_INFO_SECURE | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_SMK_MESSAGE,
NULL, kde->nonce, buf, buf_len, 0, 1, 0);
free(buf);
}
static void wpa_smk_m3(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm,
struct wpa_eapol_key *key)
{
struct wpa_eapol_ie_parse kde;
struct wpa_stsl_search search;
u8 smk[32], buf[ETH_ALEN + 8 + 2 * WPA_NONCE_LEN], *pos;
if (wpa_parse_kde_ies((const u8 *) (key + 1),
ntohs(key->key_data_length), &kde) < 0) {
wpa_printf(MSG_INFO, "RSN: Failed to parse KDEs in SMK M3");
return;
}
if (kde.rsn_ie == NULL ||
kde.mac_addr == NULL || kde.mac_addr_len < ETH_ALEN ||
kde.nonce == NULL || kde.nonce_len < WPA_NONCE_LEN) {
wpa_printf(MSG_INFO, "RSN: No RSN IE, MAC address KDE, or "
"Nonce KDE in SMK M3");
return;
}
/* Peer = sm->addr; Initiator = kde.mac_addr;
* Peer Nonce = key->key_nonce; Initiator Nonce = kde.nonce */
search.addr = kde.mac_addr;
search.sm = NULL;
if (wpa_auth_for_each_sta(wpa_auth, wpa_stsl_select_sta, &search) ==
0 || search.sm == NULL) {
wpa_printf(MSG_DEBUG, "RSN: SMK handshake with " MACSTR
" aborted - STA not associated anymore",
MAC2STR(kde.mac_addr));
wpa_smk_send_error(wpa_auth, sm, kde.mac_addr, STK_MUI_SMK,
STK_ERR_STA_NR);
/* FIX: wpa_stsl_remove(wpa_auth, neg); */
return;
}
if (hostapd_get_rand(smk, WPA_PMK_LEN)) {
wpa_printf(MSG_DEBUG, "RSN: Failed to generate SMK");
return;
}
/* SMK = PRF-256(Random number, "SMK Derivation",
* AA || Time || INonce || PNonce)
*/
memcpy(buf, wpa_auth->addr, ETH_ALEN);
pos = buf + ETH_ALEN;
wpa_get_ntp_timestamp(pos);
pos += 8;
memcpy(pos, kde.nonce, WPA_NONCE_LEN);
pos += WPA_NONCE_LEN;
memcpy(pos, key->key_nonce, WPA_NONCE_LEN);
sha1_prf(smk, WPA_PMK_LEN, "SMK Derivation", buf, sizeof(buf),
smk, WPA_PMK_LEN);
wpa_hexdump_key(MSG_DEBUG, "RSN: SMK", smk, WPA_PMK_LEN);
wpa_send_smk_m4(wpa_auth, sm, key, &kde, smk);
wpa_send_smk_m5(wpa_auth, search.sm, key, &kde, smk, sm->addr);
/* Authenticator does not need SMK anymore and it is required to forget
* it. */
memset(smk, 0, sizeof(*smk));
}
static void wpa_smk_error(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm,
struct wpa_eapol_key *key)
{
struct wpa_eapol_ie_parse kde;
struct wpa_stsl_search search;
struct rsn_error_kde error;
u16 mui, error_type;
if (wpa_parse_kde_ies((const u8 *) (key + 1),
ntohs(key->key_data_length), &kde) < 0) {
wpa_printf(MSG_INFO, "RSN: Failed to parse KDEs in SMK Error");
return;
}
if (kde.mac_addr == NULL || kde.mac_addr_len < ETH_ALEN ||
kde.error == NULL || kde.error_len < sizeof(error)) {
wpa_printf(MSG_INFO, "RSN: No MAC address or Error KDE in "
"SMK Error");
return;
}
search.addr = kde.mac_addr;
search.sm = NULL;
if (wpa_auth_for_each_sta(wpa_auth, wpa_stsl_select_sta, &search) ==
0 || search.sm == NULL) {
wpa_printf(MSG_DEBUG, "RSN: Peer STA " MACSTR " not "
"associated for SMK Error message from " MACSTR,
MAC2STR(kde.mac_addr), MAC2STR(sm->addr));
return;
}
memcpy(&error, kde.error, sizeof(error));
mui = be_to_host16(error.mui);
error_type = be_to_host16(error.error_type);
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"STA reported SMK Error: Peer " MACSTR
" MUI %d Error Type %d",
MAC2STR(kde.mac_addr), mui, error_type);
wpa_smk_send_error(wpa_auth, search.sm, sm->addr, mui, error_type);
}
#endif /* CONFIG_PEERKEY */
static int wpa_stsl_remove(struct wpa_authenticator *wpa_auth,
struct wpa_stsl_negotiation *neg)
{
#ifdef CONFIG_PEERKEY
struct wpa_stsl_negotiation *pos, *prev;
if (wpa_auth == NULL)
return -1;
pos = wpa_auth->stsl_negotiations;
prev = NULL;
while (pos) {
if (pos == neg) {
if (prev)
prev->next = pos->next;
else
wpa_auth->stsl_negotiations = pos->next;
eloop_cancel_timeout(wpa_stsl_step, wpa_auth, pos);
free(pos);
return 0;
}
prev = pos;
pos = pos->next;
}
#endif /* CONFIG_PEERKEY */
return -1;
}
void wpa_receive(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm,
u8 *data, size_t data_len)
{
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u16 key_info, key_data_length;
enum { PAIRWISE_2, PAIRWISE_4, GROUP_2, REQUEST,
SMK_M1, SMK_M3, SMK_ERROR } msg;
char *msgtxt;
struct wpa_eapol_ie_parse kde;
if (wpa_auth == NULL || !wpa_auth->conf.wpa || sm == NULL)
return;
if (data_len < sizeof(*hdr) + sizeof(*key))
return;
hdr = (struct ieee802_1x_hdr *) data;
key = (struct wpa_eapol_key *) (hdr + 1);
key_info = ntohs(key->key_info);
key_data_length = ntohs(key->key_data_length);
if (key_data_length > data_len - sizeof(*hdr) - sizeof(*key)) {
wpa_printf(MSG_INFO, "WPA: Invalid EAPOL-Key frame - "
"key_data overflow (%d > %lu)",
key_data_length,
(unsigned long) (data_len - sizeof(*hdr) -
sizeof(*key)));
return;
}
/* FIX: verify that the EAPOL-Key frame was encrypted if pairwise keys
* are set */
if ((key_info & (WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_REQUEST)) ==
(WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_REQUEST)) {
if (key_info & WPA_KEY_INFO_ERROR) {
msg = SMK_ERROR;
msgtxt = "SMK Error";
} else {
msg = SMK_M1;
msgtxt = "SMK M1";
}
} else if (key_info & WPA_KEY_INFO_SMK_MESSAGE) {
msg = SMK_M3;
msgtxt = "SMK M3";
} else if (key_info & WPA_KEY_INFO_REQUEST) {
msg = REQUEST;
msgtxt = "Request";
} else if (!(key_info & WPA_KEY_INFO_KEY_TYPE)) {
msg = GROUP_2;
msgtxt = "2/2 Group";
} else if (key_data_length == 0) {
msg = PAIRWISE_4;
msgtxt = "4/4 Pairwise";
} else {
msg = PAIRWISE_2;
msgtxt = "2/4 Pairwise";
}
if (key_info & WPA_KEY_INFO_REQUEST) {
if (sm->req_replay_counter_used &&
memcmp(key->replay_counter, sm->req_replay_counter,
WPA_REPLAY_COUNTER_LEN) <= 0) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_WARNING,
"received EAPOL-Key request with "
"replayed counter");
return;
}
}
if (!(key_info & WPA_KEY_INFO_REQUEST) &&
(!sm->key_replay_counter_valid ||
memcmp(key->replay_counter, sm->key_replay_counter,
WPA_REPLAY_COUNTER_LEN) != 0)) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key %s with unexpected "
"replay counter", msgtxt);
wpa_hexdump(MSG_DEBUG, "expected replay counter",
sm->key_replay_counter, WPA_REPLAY_COUNTER_LEN);
wpa_hexdump(MSG_DEBUG, "received replay counter",
key->replay_counter, WPA_REPLAY_COUNTER_LEN);
return;
}
switch (msg) {
case PAIRWISE_2:
if (sm->wpa_ptk_state != WPA_PTK_PTKSTART &&
sm->wpa_ptk_state != WPA_PTK_PTKCALCNEGOTIATING) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg 2/4 in "
"invalid state (%d) - dropped",
sm->wpa_ptk_state);
return;
}
if (sm->wpa_ie == NULL ||
sm->wpa_ie_len != key_data_length ||
memcmp(sm->wpa_ie, key + 1, key_data_length) != 0) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"WPA IE from (Re)AssocReq did not "
"match with msg 2/4");
if (sm->wpa_ie) {
wpa_hexdump(MSG_DEBUG, "WPA IE in AssocReq",
sm->wpa_ie, sm->wpa_ie_len);
}
wpa_hexdump(MSG_DEBUG, "WPA IE in msg 2/4",
(u8 *) (key + 1), key_data_length);
/* MLME-DEAUTHENTICATE.request */
wpa_sta_disconnect(wpa_auth, sm->addr);
return;
}
break;
case PAIRWISE_4:
if (sm->wpa_ptk_state != WPA_PTK_PTKINITNEGOTIATING ||
!sm->PTK_valid) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg 4/4 in "
"invalid state (%d) - dropped",
sm->wpa_ptk_state);
return;
}
break;
case GROUP_2:
if (sm->wpa_ptk_group_state != WPA_PTK_GROUP_REKEYNEGOTIATING
|| !sm->PTK_valid) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg 2/2 in "
"invalid state (%d) - dropped",
sm->wpa_ptk_group_state);
return;
}
break;
#ifdef CONFIG_PEERKEY
case SMK_M1:
case SMK_M3:
case SMK_ERROR:
if (!wpa_auth->conf.peerkey) {
wpa_printf(MSG_DEBUG, "RSN: SMK M1/M3/Error, but "
"PeerKey use disabled - ignoring message");
return;
}
if (!sm->PTK_valid) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg SMK in "
"invalid state - dropped");
return;
}
break;
#else /* CONFIG_PEERKEY */
case SMK_M1:
case SMK_M3:
case SMK_ERROR:
return; /* STSL disabled - ignore SMK messages */
#endif /* CONFIG_PEERKEY */
case REQUEST:
break;
}
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"received EAPOL-Key frame (%s)", msgtxt);
if (key_info & WPA_KEY_INFO_ACK) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received invalid EAPOL-Key: Key Ack set");
return;
}
if (!(key_info & WPA_KEY_INFO_MIC)) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received invalid EAPOL-Key: Key MIC not set");
return;
}
sm->MICVerified = FALSE;
if (sm->PTK_valid) {
if (wpa_verify_key_mic(&sm->PTK, data, data_len)) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key with invalid MIC");
return;
}
sm->MICVerified = TRUE;
eloop_cancel_timeout(wpa_send_eapol_timeout, wpa_auth, sm);
}
if (key_info & WPA_KEY_INFO_REQUEST) {
if (sm->MICVerified) {
sm->req_replay_counter_used = 1;
memcpy(sm->req_replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
} else {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key request with "
"invalid MIC");
return;
}
/*
* TODO: should decrypt key data field if encryption was used;
* even though MAC address KDE is not normally encrypted,
* supplicant is allowed to encrypt it.
*/
if (msg == SMK_ERROR) {
#ifdef CONFIG_PEERKEY
wpa_smk_error(wpa_auth, sm, key);
#endif /* CONFIG_PEERKEY */
return;
} else if (key_info & WPA_KEY_INFO_ERROR) {
/* Supplicant reported a Michael MIC error */
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key Error Request "
"(STA detected Michael MIC failure)");
wpa_auth_mic_failure_report(wpa_auth, sm->addr);
sm->dot11RSNAStatsTKIPRemoteMICFailures++;
wpa_auth->dot11RSNAStatsTKIPRemoteMICFailures++;
/* Error report is not a request for a new key
* handshake, but since Authenticator may do it, let's
* change the keys now anyway. */
wpa_request_new_ptk(sm);
} else if (key_info & WPA_KEY_INFO_KEY_TYPE) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key Request for new "
"4-Way Handshake");
wpa_request_new_ptk(sm);
#ifdef CONFIG_PEERKEY
} else if (msg == SMK_M1) {
wpa_smk_m1(wpa_auth, sm, key);
#endif /* CONFIG_PEERKEY */
} else if (key_data_length > 0 &&
wpa_parse_kde_ies((const u8 *) (key + 1),
key_data_length, &kde) == 0 &&
kde.mac_addr) {
} else {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key Request for GTK "
"rekeying");
/* FIX: why was this triggering PTK rekeying for the
* STA that requested Group Key rekeying?? */
/* wpa_request_new_ptk(sta->wpa_sm); */
eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL);
wpa_rekey_gtk(wpa_auth, NULL);
}
} else {
/* Do not allow the same key replay counter to be reused. */
sm->key_replay_counter_valid = FALSE;
}
#ifdef CONFIG_PEERKEY
if (msg == SMK_M3) {
wpa_smk_m3(wpa_auth, sm, key);
return;
}
#endif /* CONFIG_PEERKEY */
free(sm->last_rx_eapol_key);
sm->last_rx_eapol_key = malloc(data_len);
if (sm->last_rx_eapol_key == NULL)
return;
memcpy(sm->last_rx_eapol_key, data, data_len);
sm->last_rx_eapol_key_len = data_len;
sm->EAPOLKeyReceived = TRUE;
sm->EAPOLKeyPairwise = !!(key_info & WPA_KEY_INFO_KEY_TYPE);
sm->EAPOLKeyRequest = !!(key_info & WPA_KEY_INFO_REQUEST);
memcpy(sm->SNonce, key->key_nonce, WPA_NONCE_LEN);
wpa_sm_step(sm);
}
static void wpa_pmk_to_ptk(const u8 *pmk, const u8 *addr1, const u8 *addr2,
const u8 *nonce1, const u8 *nonce2,
u8 *ptk, size_t ptk_len)
{
u8 data[2 * ETH_ALEN + 2 * WPA_NONCE_LEN];
/* PTK = PRF-X(PMK, "Pairwise key expansion",
* Min(AA, SA) || Max(AA, SA) ||
* Min(ANonce, SNonce) || Max(ANonce, SNonce)) */
if (memcmp(addr1, addr2, ETH_ALEN) < 0) {
memcpy(data, addr1, ETH_ALEN);
memcpy(data + ETH_ALEN, addr2, ETH_ALEN);
} else {
memcpy(data, addr2, ETH_ALEN);
memcpy(data + ETH_ALEN, addr1, ETH_ALEN);
}
if (memcmp(nonce1, nonce2, WPA_NONCE_LEN) < 0) {
memcpy(data + 2 * ETH_ALEN, nonce1, WPA_NONCE_LEN);
memcpy(data + 2 * ETH_ALEN + WPA_NONCE_LEN, nonce2,
WPA_NONCE_LEN);
} else {
memcpy(data + 2 * ETH_ALEN, nonce2, WPA_NONCE_LEN);
memcpy(data + 2 * ETH_ALEN + WPA_NONCE_LEN, nonce1,
WPA_NONCE_LEN);
}
sha1_prf(pmk, WPA_PMK_LEN, "Pairwise key expansion",
data, sizeof(data), ptk, ptk_len);
wpa_hexdump_key(MSG_DEBUG, "PMK", pmk, WPA_PMK_LEN);
wpa_hexdump_key(MSG_DEBUG, "PTK", ptk, ptk_len);
}
static void wpa_gmk_to_gtk(const u8 *gmk, const u8 *addr, const u8 *gnonce,
u8 *gtk, size_t gtk_len)
{
u8 data[ETH_ALEN + WPA_NONCE_LEN];
/* GTK = PRF-X(GMK, "Group key expansion", AA || GNonce) */
memcpy(data, addr, ETH_ALEN);
memcpy(data + ETH_ALEN, gnonce, WPA_NONCE_LEN);
sha1_prf(gmk, WPA_GMK_LEN, "Group key expansion",
data, sizeof(data), gtk, gtk_len);
wpa_hexdump_key(MSG_DEBUG, "GMK", gmk, WPA_GMK_LEN);
wpa_hexdump_key(MSG_DEBUG, "GTK", gtk, gtk_len);
}
static void wpa_send_eapol_timeout(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
struct wpa_state_machine *sm = timeout_ctx;
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "EAPOL-Key timeout");
sm->TimeoutEvt = TRUE;
wpa_sm_step(sm);
}
static int wpa_calc_eapol_key_mic(int ver, u8 *key, u8 *data, size_t len,
u8 *mic)
{
u8 hash[SHA1_MAC_LEN];
switch (ver) {
case WPA_KEY_INFO_TYPE_HMAC_MD5_RC4:
hmac_md5(key, 16, data, len, mic);
break;
case WPA_KEY_INFO_TYPE_HMAC_SHA1_AES:
hmac_sha1(key, 16, data, len, hash);
memcpy(mic, hash, MD5_MAC_LEN);
break;
default:
return -1;
}
return 0;
}
static void __wpa_send_eapol(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm, int key_info,
const u8 *key_rsc, const u8 *nonce,
const u8 *kde, size_t kde_len,
int keyidx, int encr, int force_version)
{
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
size_t len;
int alg;
int key_data_len, pad_len = 0;
u8 *buf, *pos;
int version, pairwise;
len = sizeof(struct ieee802_1x_hdr) + sizeof(struct wpa_eapol_key);
if (force_version)
version = force_version;
else if (sm->pairwise == WPA_CIPHER_CCMP)
version = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES;
else
version = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4;
pairwise = key_info & WPA_KEY_INFO_KEY_TYPE;
wpa_printf(MSG_DEBUG, "WPA: Send EAPOL(secure=%d mic=%d ack=%d "
"install=%d pairwise=%d kde_len=%lu keyidx=%d encr=%d)",
(key_info & WPA_KEY_INFO_SECURE) ? 1 : 0,
(key_info & WPA_KEY_INFO_MIC) ? 1 : 0,
(key_info & WPA_KEY_INFO_ACK) ? 1 : 0,
(key_info & WPA_KEY_INFO_INSTALL) ? 1 : 0,
pairwise, (unsigned long) kde_len, keyidx, encr);
key_data_len = kde_len;
if (version == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES && encr) {
pad_len = key_data_len % 8;
if (pad_len)
pad_len = 8 - pad_len;
key_data_len += pad_len + 8;
}
len += key_data_len;
hdr = wpa_zalloc(len);
if (hdr == NULL)
return;
hdr->version = wpa_auth->conf.eapol_version;
hdr->type = IEEE802_1X_TYPE_EAPOL_KEY;
hdr->length = htons(len - sizeof(*hdr));
key = (struct wpa_eapol_key *) (hdr + 1);
key->type = sm->wpa == WPA_VERSION_WPA2 ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info |= version;
if (encr && sm->wpa == WPA_VERSION_WPA2)
key_info |= WPA_KEY_INFO_ENCR_KEY_DATA;
if (sm->wpa != WPA_VERSION_WPA2)
key_info |= keyidx << WPA_KEY_INFO_KEY_INDEX_SHIFT;
key->key_info = htons(key_info);
alg = pairwise ? sm->pairwise : wpa_auth->conf.wpa_group;
switch (alg) {
case WPA_CIPHER_CCMP:
key->key_length = htons(16);
break;
case WPA_CIPHER_TKIP:
key->key_length = htons(32);
break;
case WPA_CIPHER_WEP40:
key->key_length = htons(5);
break;
case WPA_CIPHER_WEP104:
key->key_length = htons(13);
break;
}
if (key_info & WPA_KEY_INFO_SMK_MESSAGE)
key->key_length = htons(0);
/* FIX: STSL: what to use as key_replay_counter? */
inc_byte_array(sm->key_replay_counter, WPA_REPLAY_COUNTER_LEN);
memcpy(key->replay_counter, sm->key_replay_counter,
WPA_REPLAY_COUNTER_LEN);
sm->key_replay_counter_valid = TRUE;
if (nonce)
memcpy(key->key_nonce, nonce, WPA_NONCE_LEN);
if (key_rsc)
memcpy(key->key_rsc, key_rsc, WPA_KEY_RSC_LEN);
if (kde && !encr) {
memcpy(key + 1, kde, kde_len);
key->key_data_length = htons(kde_len);
} else if (encr && kde) {
buf = wpa_zalloc(key_data_len);
if (buf == NULL) {
free(hdr);
return;
}
pos = buf;
memcpy(pos, kde, kde_len);
pos += kde_len;
if (pad_len)
*pos++ = 0xdd;
wpa_hexdump_key(MSG_DEBUG, "Plaintext EAPOL-Key Key Data",
buf, key_data_len);
if (version == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
aes_wrap(sm->PTK.encr_key, (key_data_len - 8) / 8, buf,
(u8 *) (key + 1));
key->key_data_length = htons(key_data_len);
} else {
u8 ek[32];
memcpy(key->key_iv,
sm->group->Counter + WPA_NONCE_LEN - 16, 16);
inc_byte_array(sm->group->Counter, WPA_NONCE_LEN);
memcpy(ek, key->key_iv, 16);
memcpy(ek + 16, sm->PTK.encr_key, 16);
memcpy(key + 1, buf, key_data_len);
rc4_skip(ek, 32, 256, (u8 *) (key + 1), key_data_len);
key->key_data_length = htons(key_data_len);
}
free(buf);
}
if (key_info & WPA_KEY_INFO_MIC) {
if (!sm->PTK_valid) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"PTK not valid when sending EAPOL-Key "
"frame");
free(hdr);
return;
}
wpa_calc_eapol_key_mic(version,
sm->PTK.mic_key, (u8 *) hdr, len,
key->key_mic);
}
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_inc_EapolFramesTx,
1);
wpa_auth_send_eapol(wpa_auth, sm->addr, (u8 *) hdr, len,
sm->pairwise_set);
free(hdr);
}
static void wpa_send_eapol(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm, int key_info,
const u8 *key_rsc, const u8 *nonce,
const u8 *kde, size_t kde_len,
int keyidx, int encr)
{
int timeout_ms;
int pairwise = key_info & WPA_KEY_INFO_KEY_TYPE;
if (sm == NULL)
return;
__wpa_send_eapol(wpa_auth, sm, key_info, key_rsc, nonce, kde, kde_len,
keyidx, encr, 0);
timeout_ms = pairwise ? dot11RSNAConfigPairwiseUpdateTimeOut :
dot11RSNAConfigGroupUpdateTimeOut;
eloop_register_timeout(timeout_ms / 1000, (timeout_ms % 1000) * 1000,
wpa_send_eapol_timeout, wpa_auth, sm);
}
static int wpa_verify_key_mic(struct wpa_ptk *PTK, u8 *data, size_t data_len)
{
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u16 key_info;
int ret = 0;
u8 mic[16];
if (data_len < sizeof(*hdr) + sizeof(*key))
return -1;
hdr = (struct ieee802_1x_hdr *) data;
key = (struct wpa_eapol_key *) (hdr + 1);
key_info = ntohs(key->key_info);
memcpy(mic, key->key_mic, 16);
memset(key->key_mic, 0, 16);
if (wpa_calc_eapol_key_mic(key_info & WPA_KEY_INFO_TYPE_MASK,
PTK->mic_key, data, data_len, key->key_mic)
|| memcmp(mic, key->key_mic, 16) != 0)
ret = -1;
memcpy(key->key_mic, mic, 16);
return ret;
}
void wpa_remove_ptk(struct wpa_state_machine *sm)
{
sm->PTK_valid = FALSE;
memset(&sm->PTK, 0, sizeof(sm->PTK));
wpa_auth_set_key(sm->wpa_auth, 0, "none", sm->addr, 0, (u8 *) "", 0);
sm->pairwise_set = FALSE;
}
void wpa_auth_sm_event(struct wpa_state_machine *sm, wpa_event event)
{
if (sm == NULL)
return;
wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"event %d notification", event);
switch (event) {
case WPA_AUTH:
case WPA_ASSOC:
break;
case WPA_DEAUTH:
case WPA_DISASSOC:
sm->DeauthenticationRequest = TRUE;
break;
case WPA_REAUTH:
case WPA_REAUTH_EAPOL:
sm->ReAuthenticationRequest = TRUE;
break;
}
sm->PTK_valid = FALSE;
memset(&sm->PTK, 0, sizeof(sm->PTK));
if (event != WPA_REAUTH_EAPOL)
wpa_remove_ptk(sm);
wpa_sm_step(sm);
}
static const char * wpa_alg_txt(int alg)
{
switch (alg) {
case WPA_CIPHER_CCMP:
return "CCMP";
case WPA_CIPHER_TKIP:
return "TKIP";
case WPA_CIPHER_WEP104:
case WPA_CIPHER_WEP40:
return "WEP";
default:
return "";
}
}
SM_STATE(WPA_PTK, INITIALIZE)
{
SM_ENTRY_MA(WPA_PTK, INITIALIZE, wpa_ptk);
if (sm->Init) {
/* Init flag is not cleared here, so avoid busy
* loop by claiming nothing changed. */
sm->changed = FALSE;
}
sm->keycount = 0;
if (sm->GUpdateStationKeys)
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = FALSE;
if (sm->wpa == WPA_VERSION_WPA)
sm->PInitAKeys = FALSE;
if (1 /* Unicast cipher supported AND (ESS OR ((IBSS or WDS) and
* Local AA > Remote AA)) */) {
sm->Pair = TRUE;
}
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portEnabled, 0);
wpa_remove_ptk(sm);
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid, 0);
sm->TimeoutCtr = 0;
if (sm->wpa_key_mgmt == WPA_KEY_MGMT_PSK) {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_authorized, 0);
}
}
SM_STATE(WPA_PTK, DISCONNECT)
{
SM_ENTRY_MA(WPA_PTK, DISCONNECT, wpa_ptk);
sm->Disconnect = FALSE;
wpa_sta_disconnect(sm->wpa_auth, sm->addr);
}
SM_STATE(WPA_PTK, DISCONNECTED)
{
SM_ENTRY_MA(WPA_PTK, DISCONNECTED, wpa_ptk);
sm->DeauthenticationRequest = FALSE;
}
SM_STATE(WPA_PTK, AUTHENTICATION)
{
SM_ENTRY_MA(WPA_PTK, AUTHENTICATION, wpa_ptk);
memset(&sm->PTK, 0, sizeof(sm->PTK));
sm->PTK_valid = FALSE;
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portControl_Auto,
1);
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portEnabled, 1);
sm->AuthenticationRequest = FALSE;
}
SM_STATE(WPA_PTK, AUTHENTICATION2)
{
SM_ENTRY_MA(WPA_PTK, AUTHENTICATION2, wpa_ptk);
memcpy(sm->ANonce, sm->group->Counter, WPA_NONCE_LEN);
inc_byte_array(sm->group->Counter, WPA_NONCE_LEN);
sm->ReAuthenticationRequest = FALSE;
/* IEEE 802.11i does not clear TimeoutCtr here, but this is more
* logical place than INITIALIZE since AUTHENTICATION2 can be
* re-entered on ReAuthenticationRequest without going through
* INITIALIZE. */
sm->TimeoutCtr = 0;
}
SM_STATE(WPA_PTK, INITPMK)
{
size_t len = WPA_PMK_LEN;
SM_ENTRY_MA(WPA_PTK, INITPMK, wpa_ptk);
if (sm->pmksa) {
wpa_printf(MSG_DEBUG, "WPA: PMK from PMKSA cache");
memcpy(sm->PMK, sm->pmksa->pmk, WPA_PMK_LEN);
} else if (wpa_auth_get_pmk(sm->wpa_auth, sm->addr, sm->PMK, &len) ==
0) {
wpa_printf(MSG_DEBUG, "WPA: PMK from EAPOL state machine "
"(len=%lu)", (unsigned long) len);
} else {
wpa_printf(MSG_DEBUG, "WPA: Could not get PMK");
}
sm->req_replay_counter_used = 0;
/* IEEE 802.11i does not set keyRun to FALSE, but not doing this
* will break reauthentication since EAPOL state machines may not be
* get into AUTHENTICATING state that clears keyRun before WPA state
* machine enters AUTHENTICATION2 state and goes immediately to INITPMK
* state and takes PMK from the previously used AAA Key. This will
* eventually fail in 4-Way Handshake because Supplicant uses PMK
* derived from the new AAA Key. Setting keyRun = FALSE here seems to
* be good workaround for this issue. */
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyRun, 0);
}
SM_STATE(WPA_PTK, INITPSK)
{
const u8 *psk;
SM_ENTRY_MA(WPA_PTK, INITPSK, wpa_ptk);
psk = wpa_auth_get_psk(sm->wpa_auth, sm->addr, NULL);
if (psk)
memcpy(sm->PMK, psk, WPA_PMK_LEN);
sm->req_replay_counter_used = 0;
}
SM_STATE(WPA_PTK, PTKSTART)
{
u8 buf[2 + RSN_SELECTOR_LEN + PMKID_LEN], *pmkid = NULL;
size_t pmkid_len = 0;
SM_ENTRY_MA(WPA_PTK, PTKSTART, wpa_ptk);
sm->PTKRequest = FALSE;
sm->TimeoutEvt = FALSE;
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 1/4 msg of 4-Way Handshake");
/*
* TODO: Could add PMKID even with WPA2-PSK, but only if there is only
* one possible PSK for this STA.
*/
if (sm->wpa == WPA_VERSION_WPA2 &&
sm->wpa_key_mgmt != WPA_KEY_MGMT_PSK) {
pmkid = buf;
pmkid_len = 2 + RSN_SELECTOR_LEN + PMKID_LEN;
pmkid[0] = WLAN_EID_GENERIC;
pmkid[1] = RSN_SELECTOR_LEN + PMKID_LEN;
memcpy(&pmkid[2], RSN_KEY_DATA_PMKID, RSN_SELECTOR_LEN);
if (sm->pmksa)
memcpy(&pmkid[2 + RSN_SELECTOR_LEN], sm->pmksa->pmkid,
PMKID_LEN);
else {
/*
* Calculate PMKID since no PMKSA cache entry was
* available with pre-calculated PMKID.
*/
rsn_pmkid(sm->PMK, WPA_PMK_LEN, sm->wpa_auth->addr,
sm->addr, &pmkid[2 + RSN_SELECTOR_LEN]);
}
}
wpa_send_eapol(sm->wpa_auth, sm,
WPA_KEY_INFO_ACK | WPA_KEY_INFO_KEY_TYPE, NULL,
sm->ANonce, pmkid, pmkid_len, 0, 0);
sm->TimeoutCtr++;
}
SM_STATE(WPA_PTK, PTKCALCNEGOTIATING)
{
struct wpa_ptk PTK;
int ok = 0;
const u8 *pmk = NULL;
SM_ENTRY_MA(WPA_PTK, PTKCALCNEGOTIATING, wpa_ptk);
sm->EAPOLKeyReceived = FALSE;
/* WPA with IEEE 802.1X: use the derived PMK from EAP
* WPA-PSK: iterate through possible PSKs and select the one matching
* the packet */
for (;;) {
if (sm->wpa_key_mgmt == WPA_KEY_MGMT_PSK) {
pmk = wpa_auth_get_psk(sm->wpa_auth, sm->addr, pmk);
if (pmk == NULL)
break;
} else
pmk = sm->PMK;
wpa_pmk_to_ptk(pmk, sm->wpa_auth->addr, sm->addr,
sm->ANonce, sm->SNonce,
(u8 *) &PTK, sizeof(PTK));
if (wpa_verify_key_mic(&PTK, sm->last_rx_eapol_key,
sm->last_rx_eapol_key_len) == 0) {
ok = 1;
break;
}
if (sm->wpa_key_mgmt != WPA_KEY_MGMT_PSK)
break;
}
if (!ok) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"invalid MIC in msg 2/4 of 4-Way Handshake");
return;
}
eloop_cancel_timeout(wpa_send_eapol_timeout, sm->wpa_auth, sm);
if (sm->wpa_key_mgmt == WPA_KEY_MGMT_PSK) {
/* PSK may have changed from the previous choice, so update
* state machine data based on whatever PSK was selected here.
*/
memcpy(sm->PMK, pmk, WPA_PMK_LEN);
}
sm->MICVerified = TRUE;
memcpy(&sm->PTK, &PTK, sizeof(PTK));
sm->PTK_valid = TRUE;
}
SM_STATE(WPA_PTK, PTKCALCNEGOTIATING2)
{
SM_ENTRY_MA(WPA_PTK, PTKCALCNEGOTIATING2, wpa_ptk);
sm->TimeoutCtr = 0;
}
#ifdef CONFIG_IEEE80211W
static int ieee80211w_kde_len(struct wpa_state_machine *sm)
{
if (sm->mgmt_frame_prot) {
return 2 + RSN_SELECTOR_LEN + sizeof(struct wpa_dhv_kde) +
2 + RSN_SELECTOR_LEN + sizeof(struct wpa_igtk_kde);
}
return 0;
}
static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos)
{
struct wpa_dhv_kde dhv;
struct wpa_igtk_kde igtk;
struct wpa_group *gsm = sm->group;
u8 mac[32];
const u8 *addr[3];
size_t len[3];
if (!sm->mgmt_frame_prot)
return pos;
addr[0] = sm->wpa_auth->addr;
len[0] = ETH_ALEN;
addr[1] = sm->addr;
len[1] = ETH_ALEN;
addr[2] = gsm->DGTK;
len[2] = WPA_DGTK_LEN;
sha256_vector(3, addr, len, mac);
memcpy(dhv.dhv, mac, WPA_DHV_LEN);
wpa_hexdump_key(MSG_DEBUG, "WPA: DHV", dhv.dhv, WPA_DHV_LEN);
pos = wpa_add_kde(pos, RSN_KEY_DATA_DHV,
(const u8 *) &dhv, sizeof(dhv), NULL, 0);
igtk.keyid[0] = gsm->GN;
igtk.keyid[1] = 0;
if (wpa_auth_get_seqnum_igtk(sm->wpa_auth, NULL, gsm->GN, igtk.pn) < 0)
memset(igtk.pn, 0, sizeof(igtk.pn));
memcpy(igtk.igtk, gsm->IGTK[gsm->GN - 1], WPA_IGTK_LEN);
pos = wpa_add_kde(pos, RSN_KEY_DATA_IGTK,
(const u8 *) &igtk, sizeof(igtk), NULL, 0);
return pos;
}
#else /* CONFIG_IEEE80211W */
static int ieee80211w_kde_len(struct wpa_state_machine *sm)
{
return 0;
}
static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos)
{
return pos;
}
#endif /* CONFIG_IEEE80211W */
SM_STATE(WPA_PTK, PTKINITNEGOTIATING)
{
u8 rsc[WPA_KEY_RSC_LEN], *_rsc, *gtk, *kde, *pos;
size_t gtk_len, kde_len;
struct wpa_group *gsm = sm->group;
u8 *wpa_ie;
int wpa_ie_len, secure, keyidx, encr = 0;
SM_ENTRY_MA(WPA_PTK, PTKINITNEGOTIATING, wpa_ptk);
sm->TimeoutEvt = FALSE;
/* Send EAPOL(1, 1, 1, Pair, P, RSC, ANonce, MIC(PTK), RSNIE, GTK[GN])
*/
memset(rsc, 0, WPA_KEY_RSC_LEN);
wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, rsc);
wpa_ie = sm->wpa_auth->wpa_ie;
wpa_ie_len = sm->wpa_auth->wpa_ie_len;
if (sm->wpa == WPA_VERSION_WPA &&
(sm->wpa_auth->conf.wpa & HOSTAPD_WPA_VERSION_WPA2) &&
wpa_ie_len > wpa_ie[1] + 2 && wpa_ie[0] == WLAN_EID_RSN) {
/* WPA-only STA, remove RSN IE */
wpa_ie = wpa_ie + wpa_ie[1] + 2;
wpa_ie_len = wpa_ie[1] + 2;
}
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 3/4 msg of 4-Way Handshake");
if (sm->wpa == WPA_VERSION_WPA2) {
/* WPA2 send GTK in the 4-way handshake */
secure = 1;
gtk = gsm->GTK[gsm->GN - 1];
gtk_len = gsm->GTK_len;
keyidx = gsm->GN;
_rsc = rsc;
encr = 1;
} else {
/* WPA does not include GTK in msg 3/4 */
secure = 0;
gtk = NULL;
gtk_len = 0;
keyidx = 0;
_rsc = NULL;
}
kde_len = wpa_ie_len + ieee80211w_kde_len(sm);
if (gtk)
kde_len += 2 + RSN_SELECTOR_LEN + 2 + gtk_len;
kde = malloc(kde_len);
if (kde == NULL)
return;
pos = kde;
memcpy(pos, wpa_ie, wpa_ie_len);
pos += wpa_ie_len;
if (gtk) {
u8 hdr[2];
hdr[0] = keyidx & 0x03;
hdr[1] = 0;
pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2,
gtk, gtk_len);
}
pos = ieee80211w_kde_add(sm, pos);
wpa_send_eapol(sm->wpa_auth, sm,
(secure ? WPA_KEY_INFO_SECURE : 0) | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_ACK | WPA_KEY_INFO_INSTALL |
WPA_KEY_INFO_KEY_TYPE,
_rsc, sm->ANonce, kde, pos - kde, keyidx, encr);
free(kde);
sm->TimeoutCtr++;
}
SM_STATE(WPA_PTK, PTKINITDONE)
{
SM_ENTRY_MA(WPA_PTK, PTKINITDONE, wpa_ptk);
sm->EAPOLKeyReceived = FALSE;
if (sm->Pair) {
char *alg;
int klen;
if (sm->pairwise == WPA_CIPHER_TKIP) {
alg = "TKIP";
klen = 32;
} else {
alg = "CCMP";
klen = 16;
}
if (wpa_auth_set_key(sm->wpa_auth, 0, alg, sm->addr, 0,
sm->PTK.tk1, klen)) {
wpa_sta_disconnect(sm->wpa_auth, sm->addr);
return;
}
/* FIX: MLME-SetProtection.Request(TA, Tx_Rx) */
sm->pairwise_set = TRUE;
if (sm->wpa_key_mgmt == WPA_KEY_MGMT_PSK) {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_authorized, 1);
}
}
if (0 /* IBSS == TRUE */) {
sm->keycount++;
if (sm->keycount == 2) {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_portValid, 1);
}
} else {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid,
1);
}
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyAvailable, 0);
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyDone, 1);
if (sm->wpa == WPA_VERSION_WPA)
sm->PInitAKeys = TRUE;
else
sm->has_GTK = TRUE;
wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_INFO,
"pairwise key handshake completed (%s)",
sm->wpa == WPA_VERSION_WPA ? "WPA" : "RSN");
}
SM_STEP(WPA_PTK)
{
struct wpa_authenticator *wpa_auth = sm->wpa_auth;
if (sm->Init)
SM_ENTER(WPA_PTK, INITIALIZE);
else if (sm->Disconnect
/* || FIX: dot11RSNAConfigSALifetime timeout */)
SM_ENTER(WPA_PTK, DISCONNECT);
else if (sm->DeauthenticationRequest)
SM_ENTER(WPA_PTK, DISCONNECTED);
else if (sm->AuthenticationRequest)
SM_ENTER(WPA_PTK, AUTHENTICATION);
else if (sm->ReAuthenticationRequest)
SM_ENTER(WPA_PTK, AUTHENTICATION2);
else if (sm->PTKRequest)
SM_ENTER(WPA_PTK, PTKSTART);
else switch (sm->wpa_ptk_state) {
case WPA_PTK_INITIALIZE:
break;
case WPA_PTK_DISCONNECT:
SM_ENTER(WPA_PTK, DISCONNECTED);
break;
case WPA_PTK_DISCONNECTED:
SM_ENTER(WPA_PTK, INITIALIZE);
break;
case WPA_PTK_AUTHENTICATION:
SM_ENTER(WPA_PTK, AUTHENTICATION2);
break;
case WPA_PTK_AUTHENTICATION2:
if ((sm->wpa_key_mgmt == WPA_KEY_MGMT_IEEE8021X) &&
wpa_auth_get_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_keyRun) > 0)
SM_ENTER(WPA_PTK, INITPMK);
else if ((sm->wpa_key_mgmt == WPA_KEY_MGMT_PSK)
/* FIX: && 802.1X::keyRun */)
SM_ENTER(WPA_PTK, INITPSK);
break;
case WPA_PTK_INITPMK:
if (wpa_auth_get_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_keyAvailable) > 0)
SM_ENTER(WPA_PTK, PTKSTART);
else {
wpa_auth->dot11RSNA4WayHandshakeFailures++;
SM_ENTER(WPA_PTK, DISCONNECT);
}
break;
case WPA_PTK_INITPSK:
if (wpa_auth_get_psk(sm->wpa_auth, sm->addr, NULL))
SM_ENTER(WPA_PTK, PTKSTART);
else {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_INFO,
"no PSK configured for the STA");
wpa_auth->dot11RSNA4WayHandshakeFailures++;
SM_ENTER(WPA_PTK, DISCONNECT);
}
break;
case WPA_PTK_PTKSTART:
if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
sm->EAPOLKeyPairwise)
SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING);
else if (sm->TimeoutCtr >
(int) dot11RSNAConfigPairwiseUpdateCount) {
wpa_auth->dot11RSNA4WayHandshakeFailures++;
SM_ENTER(WPA_PTK, DISCONNECT);
} else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK, PTKSTART);
break;
case WPA_PTK_PTKCALCNEGOTIATING:
if (sm->MICVerified)
SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING2);
else if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
sm->EAPOLKeyPairwise)
SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING);
else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK, PTKSTART);
break;
case WPA_PTK_PTKCALCNEGOTIATING2:
SM_ENTER(WPA_PTK, PTKINITNEGOTIATING);
break;
case WPA_PTK_PTKINITNEGOTIATING:
if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
sm->EAPOLKeyPairwise && sm->MICVerified)
SM_ENTER(WPA_PTK, PTKINITDONE);
else if (sm->TimeoutCtr >
(int) dot11RSNAConfigPairwiseUpdateCount) {
wpa_auth->dot11RSNA4WayHandshakeFailures++;
SM_ENTER(WPA_PTK, DISCONNECT);
} else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK, PTKINITNEGOTIATING);
break;
case WPA_PTK_PTKINITDONE:
break;
}
}
SM_STATE(WPA_PTK_GROUP, IDLE)
{
SM_ENTRY_MA(WPA_PTK_GROUP, IDLE, wpa_ptk_group);
if (sm->Init) {
/* Init flag is not cleared here, so avoid busy
* loop by claiming nothing changed. */
sm->changed = FALSE;
}
sm->GTimeoutCtr = 0;
}
SM_STATE(WPA_PTK_GROUP, REKEYNEGOTIATING)
{
u8 rsc[WPA_KEY_RSC_LEN];
struct wpa_group *gsm = sm->group;
u8 *kde, *pos, hdr[2];
size_t kde_len;
SM_ENTRY_MA(WPA_PTK_GROUP, REKEYNEGOTIATING, wpa_ptk_group);
if (sm->wpa == WPA_VERSION_WPA)
sm->PInitAKeys = FALSE;
sm->TimeoutEvt = FALSE;
/* Send EAPOL(1, 1, 1, !Pair, G, RSC, GNonce, MIC(PTK), GTK[GN]) */
memset(rsc, 0, WPA_KEY_RSC_LEN);
if (gsm->wpa_group_state == WPA_GROUP_SETKEYSDONE)
wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, rsc);
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 1/2 msg of Group Key Handshake");
if (sm->wpa == WPA_VERSION_WPA2) {
kde_len = 2 + RSN_SELECTOR_LEN + 2 + gsm->GTK_len +
ieee80211w_kde_len(sm);
kde = malloc(kde_len);
if (kde == NULL)
return;
pos = kde;
hdr[0] = gsm->GN & 0x03;
hdr[1] = 0;
pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2,
gsm->GTK[gsm->GN - 1], gsm->GTK_len);
pos = ieee80211w_kde_add(sm, pos);
} else {
kde = gsm->GTK[gsm->GN - 1];
pos = kde + gsm->GTK_len;
}
wpa_send_eapol(sm->wpa_auth, sm,
WPA_KEY_INFO_SECURE | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_ACK |
(!sm->Pair ? WPA_KEY_INFO_INSTALL : 0),
rsc, gsm->GNonce, kde, pos - kde, gsm->GN, 1);
if (sm->wpa == WPA_VERSION_WPA2)
free(kde);
sm->GTimeoutCtr++;
}
SM_STATE(WPA_PTK_GROUP, REKEYESTABLISHED)
{
SM_ENTRY_MA(WPA_PTK_GROUP, REKEYESTABLISHED, wpa_ptk_group);
sm->EAPOLKeyReceived = FALSE;
if (sm->GUpdateStationKeys)
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = FALSE;
sm->GTimeoutCtr = 0;
/* FIX: MLME.SetProtection.Request(TA, Tx_Rx) */
wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_INFO,
"group key handshake completed (%s)",
sm->wpa == WPA_VERSION_WPA ? "WPA" : "RSN");
sm->has_GTK = TRUE;
}
SM_STATE(WPA_PTK_GROUP, KEYERROR)
{
SM_ENTRY_MA(WPA_PTK_GROUP, KEYERROR, wpa_ptk_group);
if (sm->GUpdateStationKeys)
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = FALSE;
sm->Disconnect = TRUE;
}
SM_STEP(WPA_PTK_GROUP)
{
if (sm->Init)
SM_ENTER(WPA_PTK_GROUP, IDLE);
else switch (sm->wpa_ptk_group_state) {
case WPA_PTK_GROUP_IDLE:
if (sm->GUpdateStationKeys ||
(sm->wpa == WPA_VERSION_WPA && sm->PInitAKeys))
SM_ENTER(WPA_PTK_GROUP, REKEYNEGOTIATING);
break;
case WPA_PTK_GROUP_REKEYNEGOTIATING:
if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
!sm->EAPOLKeyPairwise && sm->MICVerified)
SM_ENTER(WPA_PTK_GROUP, REKEYESTABLISHED);
else if (sm->GTimeoutCtr >
(int) dot11RSNAConfigGroupUpdateCount)
SM_ENTER(WPA_PTK_GROUP, KEYERROR);
else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK_GROUP, REKEYNEGOTIATING);
break;
case WPA_PTK_GROUP_KEYERROR:
SM_ENTER(WPA_PTK_GROUP, IDLE);
break;
case WPA_PTK_GROUP_REKEYESTABLISHED:
SM_ENTER(WPA_PTK_GROUP, IDLE);
break;
}
}
static void wpa_gtk_update(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
/* FIX: is this the correct way of getting GNonce? */
memcpy(group->GNonce, group->Counter, WPA_NONCE_LEN);
inc_byte_array(group->Counter, WPA_NONCE_LEN);
wpa_gmk_to_gtk(group->GMK, wpa_auth->addr, group->GNonce,
group->GTK[group->GN - 1], group->GTK_len);
#ifdef CONFIG_IEEE80211W
if (wpa_auth->conf.ieee80211w != WPA_NO_IEEE80211W) {
hostapd_get_rand(group->DGTK, WPA_DGTK_LEN);
wpa_hexdump_key(MSG_DEBUG, "DGTK", group->DGTK, WPA_DGTK_LEN);
hostapd_get_rand(group->IGTK[group->GN - 1], WPA_IGTK_LEN);
wpa_hexdump_key(MSG_DEBUG, "IGTK",
group->IGTK[group->GN - 1], WPA_IGTK_LEN);
}
#endif /* CONFIG_IEEE80211W */
}
static void wpa_group_gtk_init(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
wpa_printf(MSG_DEBUG, "WPA: group state machine entering state "
"GTK_INIT (VLAN-ID %d)", group->vlan_id);
group->changed = FALSE; /* GInit is not cleared here; avoid loop */
group->wpa_group_state = WPA_GROUP_GTK_INIT;
/* GTK[0..N] = 0 */
memset(group->GTK, 0, sizeof(group->GTK));
group->GN = 1;
group->GM = 2;
/* GTK[GN] = CalcGTK() */
wpa_gtk_update(wpa_auth, group);
}
static int wpa_group_update_sta(struct wpa_state_machine *sm, void *ctx)
{
if (sm->wpa_ptk_state != WPA_PTK_PTKINITDONE) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"Not in PTKINITDONE; skip Group Key update");
return 0;
}
sm->group->GKeyDoneStations++;
sm->GUpdateStationKeys = TRUE;
wpa_sm_step(sm);
return 0;
}
static void wpa_group_setkeys(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
int tmp;
wpa_printf(MSG_DEBUG, "WPA: group state machine entering state "
"SETKEYS (VLAN-ID %d)", group->vlan_id);
group->changed = TRUE;
group->wpa_group_state = WPA_GROUP_SETKEYS;
group->GTKReKey = FALSE;
tmp = group->GM;
group->GM = group->GN;
group->GN = tmp;
/* "GKeyDoneStations = GNoStations" is done in more robust way by
* counting the STAs that are marked with GUpdateStationKeys instead of
* including all STAs that could be in not-yet-completed state. */
wpa_gtk_update(wpa_auth, group);
wpa_auth_for_each_sta(wpa_auth, wpa_group_update_sta, NULL);
wpa_printf(MSG_DEBUG, "wpa_group_setkeys: GKeyDoneStations=%d",
group->GKeyDoneStations);
}
static void wpa_group_setkeysdone(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
wpa_printf(MSG_DEBUG, "WPA: group state machine entering state "
"SETKEYSDONE (VLAN-ID %d)", group->vlan_id);
group->changed = TRUE;
group->wpa_group_state = WPA_GROUP_SETKEYSDONE;
wpa_auth_set_key(wpa_auth, group->vlan_id,
wpa_alg_txt(wpa_auth->conf.wpa_group),
NULL, group->GN, group->GTK[group->GN - 1],
group->GTK_len);
#ifdef CONFIG_IEEE80211W
if (wpa_auth->conf.ieee80211w != WPA_NO_IEEE80211W) {
wpa_auth_set_key(wpa_auth, group->vlan_id, "IGTK",
NULL, group->GN, group->IGTK[group->GN - 1],
WPA_IGTK_LEN);
wpa_auth_set_key(wpa_auth, group->vlan_id, "DGTK",
NULL, 0, group->DGTK, WPA_DGTK_LEN);
}
#endif /* CONFIG_IEEE80211W */
}
static void wpa_group_sm_step(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
if (group->GInit) {
wpa_group_gtk_init(wpa_auth, group);
} else if (group->wpa_group_state == WPA_GROUP_GTK_INIT &&
group->GTKAuthenticator) {
wpa_group_setkeysdone(wpa_auth, group);
} else if (group->wpa_group_state == WPA_GROUP_SETKEYSDONE &&
group->GTKReKey) {
wpa_group_setkeys(wpa_auth, group);
} else if (group->wpa_group_state == WPA_GROUP_SETKEYS) {
if (group->GKeyDoneStations == 0)
wpa_group_setkeysdone(wpa_auth, group);
else if (group->GTKReKey)
wpa_group_setkeys(wpa_auth, group);
}
}
static void wpa_sm_step(struct wpa_state_machine *sm)
{
if (sm == NULL)
return;
if (sm->in_step_loop) {
/* This should not happen, but if it does, make sure we do not
* end up freeing the state machine too early by exiting the
* recursive call. */
wpa_printf(MSG_ERROR, "WPA: wpa_sm_step() called recursively");
return;
}
sm->in_step_loop = 1;
do {
if (sm->pending_deinit)
break;
sm->changed = FALSE;
sm->wpa_auth->group->changed = FALSE;
SM_STEP_RUN(WPA_PTK);
if (sm->pending_deinit)
break;
SM_STEP_RUN(WPA_PTK_GROUP);
if (sm->pending_deinit)
break;
wpa_group_sm_step(sm->wpa_auth, sm->group);
} while (sm->changed || sm->wpa_auth->group->changed);
sm->in_step_loop = 0;
if (sm->pending_deinit) {
wpa_printf(MSG_DEBUG, "WPA: Completing pending STA state "
"machine deinit for " MACSTR, MAC2STR(sm->addr));
wpa_free_sta_sm(sm);
}
}
static void wpa_sm_call_step(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_state_machine *sm = eloop_ctx;
wpa_sm_step(sm);
}
void wpa_auth_sm_notify(struct wpa_state_machine *sm)
{
if (sm == NULL)
return;
eloop_register_timeout(0, 0, wpa_sm_call_step, sm, NULL);
}
void wpa_gtk_rekey(struct wpa_authenticator *wpa_auth)
{
int tmp, i;
struct wpa_group *group;
if (wpa_auth == NULL)
return;
group = wpa_auth->group;
for (i = 0; i < 2; i++) {
tmp = group->GM;
group->GM = group->GN;
group->GN = tmp;
wpa_gtk_update(wpa_auth, group);
}
}
static const char * wpa_bool_txt(int bool)
{
return bool ? "TRUE" : "FALSE";
}
static int wpa_cipher_bits(int cipher)
{
switch (cipher) {
case WPA_CIPHER_CCMP:
return 128;
case WPA_CIPHER_TKIP:
return 256;
case WPA_CIPHER_WEP104:
return 104;
case WPA_CIPHER_WEP40:
return 40;
default:
return 0;
}
}
#define RSN_SUITE "%02x-%02x-%02x-%d"
#define RSN_SUITE_ARG(s) (s)[0], (s)[1], (s)[2], (s)[3]
int wpa_get_mib(struct wpa_authenticator *wpa_auth, char *buf, size_t buflen)
{
int len = 0, ret;
char pmkid_txt[PMKID_LEN * 2 + 1];
if (wpa_auth == NULL)
return len;
ret = snprintf(buf + len, buflen - len,
"dot11RSNAOptionImplemented=TRUE\n"
#ifdef CONFIG_RSN_PREAUTH
"dot11RSNAPreauthenticationImplemented=TRUE\n"
#else /* CONFIG_RSN_PREAUTH */
"dot11RSNAPreauthenticationImplemented=FALSE\n"
#endif /* CONFIG_RSN_PREAUTH */
"dot11RSNAEnabled=%s\n"
"dot11RSNAPreauthenticationEnabled=%s\n",
wpa_bool_txt(wpa_auth->conf.wpa &
HOSTAPD_WPA_VERSION_WPA2),
wpa_bool_txt(wpa_auth->conf.rsn_preauth));
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
wpa_snprintf_hex(pmkid_txt, sizeof(pmkid_txt),
wpa_auth->dot11RSNAPMKIDUsed, PMKID_LEN);
ret = snprintf(buf + len, buflen - len,
"dot11RSNAConfigVersion=%u\n"
"dot11RSNAConfigPairwiseKeysSupported=9999\n"
/* FIX: dot11RSNAConfigGroupCipher */
/* FIX: dot11RSNAConfigGroupRekeyMethod */
/* FIX: dot11RSNAConfigGroupRekeyTime */
/* FIX: dot11RSNAConfigGroupRekeyPackets */
"dot11RSNAConfigGroupRekeyStrict=%u\n"
"dot11RSNAConfigGroupUpdateCount=%u\n"
"dot11RSNAConfigPairwiseUpdateCount=%u\n"
"dot11RSNAConfigGroupCipherSize=%u\n"
"dot11RSNAConfigPMKLifetime=%u\n"
"dot11RSNAConfigPMKReauthThreshold=%u\n"
"dot11RSNAConfigNumberOfPTKSAReplayCounters=0\n"
"dot11RSNAConfigSATimeout=%u\n"
"dot11RSNAAuthenticationSuiteSelected=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherSelected=" RSN_SUITE "\n"
"dot11RSNAGroupCipherSelected=" RSN_SUITE "\n"
"dot11RSNAPMKIDUsed=%s\n"
"dot11RSNAAuthenticationSuiteRequested=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherRequested=" RSN_SUITE "\n"
"dot11RSNAGroupCipherRequested=" RSN_SUITE "\n"
"dot11RSNATKIPCounterMeasuresInvoked=%u\n"
"dot11RSNA4WayHandshakeFailures=%u\n"
"dot11RSNAConfigNumberOfGTKSAReplayCounters=0\n",
RSN_VERSION,
!!wpa_auth->conf.wpa_strict_rekey,
dot11RSNAConfigGroupUpdateCount,
dot11RSNAConfigPairwiseUpdateCount,
wpa_cipher_bits(wpa_auth->conf.wpa_group),
dot11RSNAConfigPMKLifetime,
dot11RSNAConfigPMKReauthThreshold,
dot11RSNAConfigSATimeout,
RSN_SUITE_ARG(wpa_auth->
dot11RSNAAuthenticationSuiteSelected),
RSN_SUITE_ARG(wpa_auth->
dot11RSNAPairwiseCipherSelected),
RSN_SUITE_ARG(wpa_auth->dot11RSNAGroupCipherSelected),
pmkid_txt,
RSN_SUITE_ARG(wpa_auth->
dot11RSNAAuthenticationSuiteRequested),
RSN_SUITE_ARG(wpa_auth->
dot11RSNAPairwiseCipherRequested),
RSN_SUITE_ARG(wpa_auth->dot11RSNAGroupCipherRequested),
wpa_auth->dot11RSNATKIPCounterMeasuresInvoked,
wpa_auth->dot11RSNA4WayHandshakeFailures);
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
/* TODO: dot11RSNAConfigPairwiseCiphersTable */
/* TODO: dot11RSNAConfigAuthenticationSuitesTable */
/* Private MIB */
ret = snprintf(buf + len, buflen - len, "hostapdWPAGroupState=%d\n",
wpa_auth->group->wpa_group_state);
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
return len;
}
int wpa_get_mib_sta(struct wpa_state_machine *sm, char *buf, size_t buflen)
{
int len = 0, ret;
u8 not_used[4] = { 0, 0, 0, 0 };
const u8 *pairwise = not_used;
if (sm == NULL)
return 0;
/* TODO: FF-FF-FF-FF-FF-FF entry for broadcast/multicast stats */
/* dot11RSNAStatsEntry */
if (sm->wpa == WPA_VERSION_WPA) {
if (sm->pairwise == WPA_CIPHER_CCMP)
pairwise = WPA_CIPHER_SUITE_CCMP;
else if (sm->pairwise == WPA_CIPHER_TKIP)
pairwise = WPA_CIPHER_SUITE_TKIP;
else if (sm->pairwise == WPA_CIPHER_WEP104)
pairwise = WPA_CIPHER_SUITE_WEP104;
else if (sm->pairwise == WPA_CIPHER_WEP40)
pairwise = WPA_CIPHER_SUITE_WEP40;
else if (sm->pairwise == WPA_CIPHER_NONE)
pairwise = WPA_CIPHER_SUITE_NONE;
} else if (sm->wpa == WPA_VERSION_WPA2) {
if (sm->pairwise == WPA_CIPHER_CCMP)
pairwise = RSN_CIPHER_SUITE_CCMP;
else if (sm->pairwise == WPA_CIPHER_TKIP)
pairwise = RSN_CIPHER_SUITE_TKIP;
else if (sm->pairwise == WPA_CIPHER_WEP104)
pairwise = RSN_CIPHER_SUITE_WEP104;
else if (sm->pairwise == WPA_CIPHER_WEP40)
pairwise = RSN_CIPHER_SUITE_WEP40;
else if (sm->pairwise == WPA_CIPHER_NONE)
pairwise = RSN_CIPHER_SUITE_NONE;
} else
return 0;
ret = snprintf(buf + len, buflen - len,
/* TODO: dot11RSNAStatsIndex */
"dot11RSNAStatsSTAAddress=" MACSTR "\n"
"dot11RSNAStatsVersion=1\n"
"dot11RSNAStatsSelectedPairwiseCipher=" RSN_SUITE "\n"
/* TODO: dot11RSNAStatsTKIPICVErrors */
"dot11RSNAStatsTKIPLocalMICFailures=%u\n"
"dot11RSNAStatsTKIPRemoveMICFailures=%u\n"
/* TODO: dot11RSNAStatsCCMPReplays */
/* TODO: dot11RSNAStatsCCMPDecryptErrors */
/* TODO: dot11RSNAStatsTKIPReplays */,
MAC2STR(sm->addr),
RSN_SUITE_ARG(pairwise),
sm->dot11RSNAStatsTKIPLocalMICFailures,
sm->dot11RSNAStatsTKIPRemoteMICFailures);
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
/* Private MIB */
ret = snprintf(buf + len, buflen - len,
"hostapdWPAPTKState=%d\n"
"hostapdWPAPTKGroupState=%d\n",
sm->wpa_ptk_state,
sm->wpa_ptk_group_state);
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
return len;
}
void wpa_auth_countermeasures_start(struct wpa_authenticator *wpa_auth)
{
if (wpa_auth)
wpa_auth->dot11RSNATKIPCounterMeasuresInvoked++;
}
int wpa_auth_pairwise_set(struct wpa_state_machine *sm)
{
return sm && sm->pairwise_set;
}
int wpa_auth_sta_key_mgmt(struct wpa_state_machine *sm)
{
if (sm == NULL)
return -1;
return sm->wpa_key_mgmt;
}
int wpa_auth_sta_wpa_version(struct wpa_state_machine *sm)
{
if (sm == NULL)
return 0;
return sm->wpa;
}
int wpa_auth_sta_clear_pmksa(struct wpa_state_machine *sm,
struct rsn_pmksa_cache_entry *entry)
{
if (sm == NULL || sm->pmksa != entry)
return -1;
sm->pmksa = NULL;
return 0;
}
struct rsn_pmksa_cache_entry *
wpa_auth_sta_get_pmksa(struct wpa_state_machine *sm)
{
return sm ? sm->pmksa : NULL;
}
void wpa_auth_sta_local_mic_failure_report(struct wpa_state_machine *sm)
{
if (sm)
sm->dot11RSNAStatsTKIPLocalMICFailures++;
}
const u8 * wpa_auth_get_wpa_ie(struct wpa_authenticator *wpa_auth, size_t *len)
{
if (wpa_auth == NULL)
return NULL;
*len = wpa_auth->wpa_ie_len;
return wpa_auth->wpa_ie;
}
int wpa_auth_pmksa_add(struct wpa_state_machine *sm, const u8 *pmk,
int session_timeout, struct eapol_state_machine *eapol)
{
if (sm == NULL || sm->wpa != WPA_VERSION_WPA2)
return -1;
if (pmksa_cache_add(sm->wpa_auth->pmksa, pmk, WPA_PMK_LEN,
sm->wpa_auth->addr, sm->addr, session_timeout,
eapol))
return 0;
return -1;
}
int wpa_auth_pmksa_add_preauth(struct wpa_authenticator *wpa_auth,
const u8 *pmk, size_t len, const u8 *sta_addr,
int session_timeout,
struct eapol_state_machine *eapol)
{
if (wpa_auth == NULL)
return -1;
if (pmksa_cache_add(wpa_auth->pmksa, pmk, len, wpa_auth->addr,
sta_addr, session_timeout, eapol))
return 0;
return -1;
}
static struct wpa_group *
wpa_auth_add_group(struct wpa_authenticator *wpa_auth, int vlan_id)
{
struct wpa_group *group;
if (wpa_auth == NULL || wpa_auth->group == NULL)
return NULL;
wpa_printf(MSG_DEBUG, "WPA: Add group state machine for VLAN-ID %d",
vlan_id);
group = wpa_group_init(wpa_auth, vlan_id);
if (group == NULL)
return NULL;
group->next = wpa_auth->group->next;
wpa_auth->group->next = group;
return group;
}
int wpa_auth_sta_set_vlan(struct wpa_state_machine *sm, int vlan_id)
{
struct wpa_group *group;
if (sm == NULL || sm->wpa_auth == NULL)
return 0;
group = sm->wpa_auth->group;
while (group) {
if (group->vlan_id == vlan_id)
break;
group = group->next;
}
if (group == NULL) {
group = wpa_auth_add_group(sm->wpa_auth, vlan_id);
if (group == NULL)
return -1;
}
if (sm->group == group)
return 0;
wpa_printf(MSG_DEBUG, "WPA: Moving STA " MACSTR " to use group state "
"machine for VLAN ID %d", MAC2STR(sm->addr), vlan_id);
sm->group = group;
return 0;
}
#endif /* CONFIG_NATIVE_WINDOWS */