ad71fe3c35
certain flags that should have been in inp_flags ended up in inp_vflag, meaning that they were inconsistently locked, and in one case, interpreted. Move the following flags from inp_vflag to gaps in the inp_flags space (and clean up the inp_flags constants to make gaps more obvious to future takers): INP_TIMEWAIT INP_SOCKREF INP_ONESBCAST INP_DROPPED Some aspects of this change have no effect on kernel ABI at all, as these are UDP/TCP/IP-internal uses; however, netstat and sockstat detect INP_TIMEWAIT when listing TCP sockets, so any MFC will need to take this into account. MFC after: 1 week (or after dependencies are MFC'd) Reviewed by: bz
2311 lines
64 KiB
C
2311 lines
64 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_compat.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_mac.h"
|
|
#include "opt_tcpdebug.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#ifdef INET6
|
|
#include <sys/domain.h>
|
|
#endif
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/random.h>
|
|
#include <sys/vimage.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/route.h>
|
|
#include <net/if.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#ifdef INET6
|
|
#include <netinet/ip6.h>
|
|
#endif
|
|
#include <netinet/in_pcb.h>
|
|
#ifdef INET6
|
|
#include <netinet6/in6_pcb.h>
|
|
#endif
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#ifdef INET6
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/scope6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
#endif
|
|
#include <netinet/ip_icmp.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/tcp_syncache.h>
|
|
#include <netinet/tcp_offload.h>
|
|
#ifdef INET6
|
|
#include <netinet6/tcp6_var.h>
|
|
#endif
|
|
#include <netinet/tcpip.h>
|
|
#ifdef TCPDEBUG
|
|
#include <netinet/tcp_debug.h>
|
|
#endif
|
|
#include <netinet/vinet.h>
|
|
#include <netinet6/ip6protosw.h>
|
|
#include <netinet6/vinet6.h>
|
|
|
|
#ifdef IPSEC
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/xform.h>
|
|
#ifdef INET6
|
|
#include <netipsec/ipsec6.h>
|
|
#endif
|
|
#include <netipsec/key.h>
|
|
#include <sys/syslog.h>
|
|
#endif /*IPSEC*/
|
|
|
|
#include <machine/in_cksum.h>
|
|
#include <sys/md5.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#ifdef VIMAGE_GLOBALS
|
|
int tcp_mssdflt;
|
|
#ifdef INET6
|
|
int tcp_v6mssdflt;
|
|
#endif
|
|
int tcp_minmss;
|
|
int tcp_do_rfc1323;
|
|
static int icmp_may_rst;
|
|
static int tcp_isn_reseed_interval;
|
|
static int tcp_inflight_enable;
|
|
static int tcp_inflight_rttthresh;
|
|
static int tcp_inflight_min;
|
|
static int tcp_inflight_max;
|
|
static int tcp_inflight_stab;
|
|
#endif
|
|
|
|
static int
|
|
sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
int error, new;
|
|
|
|
new = V_tcp_mssdflt;
|
|
error = sysctl_handle_int(oidp, &new, 0, req);
|
|
if (error == 0 && req->newptr) {
|
|
if (new < TCP_MINMSS)
|
|
error = EINVAL;
|
|
else
|
|
V_tcp_mssdflt = new;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
|
|
CTLTYPE_INT|CTLFLAG_RW, tcp_mssdflt, 0,
|
|
&sysctl_net_inet_tcp_mss_check, "I",
|
|
"Default TCP Maximum Segment Size");
|
|
|
|
#ifdef INET6
|
|
static int
|
|
sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
int error, new;
|
|
|
|
new = V_tcp_v6mssdflt;
|
|
error = sysctl_handle_int(oidp, &new, 0, req);
|
|
if (error == 0 && req->newptr) {
|
|
if (new < TCP_MINMSS)
|
|
error = EINVAL;
|
|
else
|
|
V_tcp_v6mssdflt = new;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
|
|
CTLTYPE_INT|CTLFLAG_RW, tcp_v6mssdflt, 0,
|
|
&sysctl_net_inet_tcp_mss_v6_check, "I",
|
|
"Default TCP Maximum Segment Size for IPv6");
|
|
#endif
|
|
|
|
/*
|
|
* Minimum MSS we accept and use. This prevents DoS attacks where
|
|
* we are forced to a ridiculous low MSS like 20 and send hundreds
|
|
* of packets instead of one. The effect scales with the available
|
|
* bandwidth and quickly saturates the CPU and network interface
|
|
* with packet generation and sending. Set to zero to disable MINMSS
|
|
* checking. This setting prevents us from sending too small packets.
|
|
*/
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, minmss,
|
|
CTLFLAG_RW, tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
|
|
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323,
|
|
CTLFLAG_RW, tcp_do_rfc1323, 0,
|
|
"Enable rfc1323 (high performance TCP) extensions");
|
|
|
|
static int tcp_log_debug = 0;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
|
|
&tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
|
|
|
|
static int tcp_tcbhashsize = 0;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
|
|
&tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
|
|
|
|
static int do_tcpdrain = 1;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
|
|
"Enable tcp_drain routine for extra help when low on mbufs");
|
|
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, pcbcount,
|
|
CTLFLAG_RD, tcbinfo.ipi_count, 0, "Number of active PCBs");
|
|
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, icmp_may_rst,
|
|
CTLFLAG_RW, icmp_may_rst, 0,
|
|
"Certain ICMP unreachable messages may abort connections in SYN_SENT");
|
|
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, isn_reseed_interval,
|
|
CTLFLAG_RW, tcp_isn_reseed_interval, 0,
|
|
"Seconds between reseeding of ISN secret");
|
|
|
|
/*
|
|
* TCP bandwidth limiting sysctls. Note that the default lower bound of
|
|
* 1024 exists only for debugging. A good production default would be
|
|
* something like 6100.
|
|
*/
|
|
SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
|
|
"TCP inflight data limiting");
|
|
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_inflight, OID_AUTO, enable,
|
|
CTLFLAG_RW, tcp_inflight_enable, 0,
|
|
"Enable automatic TCP inflight data limiting");
|
|
|
|
static int tcp_inflight_debug = 0;
|
|
SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
|
|
&tcp_inflight_debug, 0, "Debug TCP inflight calculations");
|
|
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_tcp_inflight, OID_AUTO, rttthresh,
|
|
CTLTYPE_INT|CTLFLAG_RW, tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks,
|
|
"I", "RTT threshold below which inflight will deactivate itself");
|
|
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_inflight, OID_AUTO, min,
|
|
CTLFLAG_RW, tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
|
|
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_inflight, OID_AUTO, max,
|
|
CTLFLAG_RW, tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
|
|
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_inflight, OID_AUTO, stab,
|
|
CTLFLAG_RW, tcp_inflight_stab, 0,
|
|
"Inflight Algorithm Stabilization 20 = 2 packets");
|
|
|
|
uma_zone_t sack_hole_zone;
|
|
|
|
static struct inpcb *tcp_notify(struct inpcb *, int);
|
|
static void tcp_isn_tick(void *);
|
|
|
|
/*
|
|
* Target size of TCP PCB hash tables. Must be a power of two.
|
|
*
|
|
* Note that this can be overridden by the kernel environment
|
|
* variable net.inet.tcp.tcbhashsize
|
|
*/
|
|
#ifndef TCBHASHSIZE
|
|
#define TCBHASHSIZE 512
|
|
#endif
|
|
|
|
/*
|
|
* XXX
|
|
* Callouts should be moved into struct tcp directly. They are currently
|
|
* separate because the tcpcb structure is exported to userland for sysctl
|
|
* parsing purposes, which do not know about callouts.
|
|
*/
|
|
struct tcpcb_mem {
|
|
struct tcpcb tcb;
|
|
struct tcp_timer tt;
|
|
};
|
|
|
|
static uma_zone_t tcpcb_zone;
|
|
MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
|
|
struct callout isn_callout;
|
|
static struct mtx isn_mtx;
|
|
|
|
#define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
|
|
#define ISN_LOCK() mtx_lock(&isn_mtx)
|
|
#define ISN_UNLOCK() mtx_unlock(&isn_mtx)
|
|
|
|
/*
|
|
* TCP initialization.
|
|
*/
|
|
static void
|
|
tcp_zone_change(void *tag)
|
|
{
|
|
|
|
uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
|
|
uma_zone_set_max(tcpcb_zone, maxsockets);
|
|
tcp_tw_zone_change();
|
|
}
|
|
|
|
static int
|
|
tcp_inpcb_init(void *mem, int size, int flags)
|
|
{
|
|
struct inpcb *inp = mem;
|
|
|
|
INP_LOCK_INIT(inp, "inp", "tcpinp");
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
tcp_init(void)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
int hashsize;
|
|
|
|
V_blackhole = 0;
|
|
V_tcp_delack_enabled = 1;
|
|
V_drop_synfin = 0;
|
|
V_tcp_do_rfc3042 = 1;
|
|
V_tcp_do_rfc3390 = 1;
|
|
V_tcp_do_ecn = 0;
|
|
V_tcp_ecn_maxretries = 1;
|
|
V_tcp_insecure_rst = 0;
|
|
V_tcp_do_autorcvbuf = 1;
|
|
V_tcp_autorcvbuf_inc = 16*1024;
|
|
V_tcp_autorcvbuf_max = 256*1024;
|
|
V_tcp_do_rfc3465 = 1;
|
|
V_tcp_abc_l_var = 2;
|
|
|
|
V_tcp_mssdflt = TCP_MSS;
|
|
#ifdef INET6
|
|
V_tcp_v6mssdflt = TCP6_MSS;
|
|
#endif
|
|
V_tcp_minmss = TCP_MINMSS;
|
|
V_tcp_do_rfc1323 = 1;
|
|
V_icmp_may_rst = 1;
|
|
V_tcp_isn_reseed_interval = 0;
|
|
V_tcp_inflight_enable = 1;
|
|
V_tcp_inflight_min = 6144;
|
|
V_tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
|
|
V_tcp_inflight_stab = 20;
|
|
|
|
V_path_mtu_discovery = 1;
|
|
V_ss_fltsz = 1;
|
|
V_ss_fltsz_local = 4;
|
|
V_tcp_do_newreno = 1;
|
|
V_tcp_do_tso = 1;
|
|
V_tcp_do_autosndbuf = 1;
|
|
V_tcp_autosndbuf_inc = 8*1024;
|
|
V_tcp_autosndbuf_max = 256*1024;
|
|
|
|
V_nolocaltimewait = 0;
|
|
|
|
V_tcp_do_sack = 1;
|
|
V_tcp_sack_maxholes = 128;
|
|
V_tcp_sack_globalmaxholes = 65536;
|
|
V_tcp_sack_globalholes = 0;
|
|
|
|
tcp_delacktime = TCPTV_DELACK;
|
|
tcp_keepinit = TCPTV_KEEP_INIT;
|
|
tcp_keepidle = TCPTV_KEEP_IDLE;
|
|
tcp_keepintvl = TCPTV_KEEPINTVL;
|
|
tcp_maxpersistidle = TCPTV_KEEP_IDLE;
|
|
tcp_msl = TCPTV_MSL;
|
|
tcp_rexmit_min = TCPTV_MIN;
|
|
if (tcp_rexmit_min < 1)
|
|
tcp_rexmit_min = 1;
|
|
tcp_rexmit_slop = TCPTV_CPU_VAR;
|
|
V_tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
|
|
tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
|
|
|
|
TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
|
|
|
|
INP_INFO_LOCK_INIT(&V_tcbinfo, "tcp");
|
|
LIST_INIT(&V_tcb);
|
|
V_tcbinfo.ipi_listhead = &V_tcb;
|
|
hashsize = TCBHASHSIZE;
|
|
TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
|
|
if (!powerof2(hashsize)) {
|
|
printf("WARNING: TCB hash size not a power of 2\n");
|
|
hashsize = 512; /* safe default */
|
|
}
|
|
tcp_tcbhashsize = hashsize;
|
|
V_tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB,
|
|
&V_tcbinfo.ipi_hashmask);
|
|
V_tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB,
|
|
&V_tcbinfo.ipi_porthashmask);
|
|
V_tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
|
|
NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
|
|
uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
|
|
#ifdef INET6
|
|
#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
|
|
#else /* INET6 */
|
|
#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
|
|
#endif /* INET6 */
|
|
if (max_protohdr < TCP_MINPROTOHDR)
|
|
max_protohdr = TCP_MINPROTOHDR;
|
|
if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
|
|
panic("tcp_init");
|
|
#undef TCP_MINPROTOHDR
|
|
/*
|
|
* These have to be type stable for the benefit of the timers.
|
|
*/
|
|
tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
|
|
uma_zone_set_max(tcpcb_zone, maxsockets);
|
|
tcp_tw_init();
|
|
syncache_init();
|
|
tcp_hc_init();
|
|
tcp_reass_init();
|
|
ISN_LOCK_INIT();
|
|
callout_init(&isn_callout, CALLOUT_MPSAFE);
|
|
tcp_isn_tick(NULL);
|
|
EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
|
|
SHUTDOWN_PRI_DEFAULT);
|
|
sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
|
|
EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
|
|
EVENTHANDLER_PRI_ANY);
|
|
}
|
|
|
|
void
|
|
tcp_fini(void *xtp)
|
|
{
|
|
|
|
callout_stop(&isn_callout);
|
|
}
|
|
|
|
/*
|
|
* Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
|
|
* tcp_template used to store this data in mbufs, but we now recopy it out
|
|
* of the tcpcb each time to conserve mbufs.
|
|
*/
|
|
void
|
|
tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
|
|
{
|
|
struct tcphdr *th = (struct tcphdr *)tcp_ptr;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV6) != 0) {
|
|
struct ip6_hdr *ip6;
|
|
|
|
ip6 = (struct ip6_hdr *)ip_ptr;
|
|
ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
|
|
(inp->inp_flow & IPV6_FLOWINFO_MASK);
|
|
ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
|
|
(IPV6_VERSION & IPV6_VERSION_MASK);
|
|
ip6->ip6_nxt = IPPROTO_TCP;
|
|
ip6->ip6_plen = htons(sizeof(struct tcphdr));
|
|
ip6->ip6_src = inp->in6p_laddr;
|
|
ip6->ip6_dst = inp->in6p_faddr;
|
|
} else
|
|
#endif
|
|
{
|
|
struct ip *ip;
|
|
|
|
ip = (struct ip *)ip_ptr;
|
|
ip->ip_v = IPVERSION;
|
|
ip->ip_hl = 5;
|
|
ip->ip_tos = inp->inp_ip_tos;
|
|
ip->ip_len = 0;
|
|
ip->ip_id = 0;
|
|
ip->ip_off = 0;
|
|
ip->ip_ttl = inp->inp_ip_ttl;
|
|
ip->ip_sum = 0;
|
|
ip->ip_p = IPPROTO_TCP;
|
|
ip->ip_src = inp->inp_laddr;
|
|
ip->ip_dst = inp->inp_faddr;
|
|
}
|
|
th->th_sport = inp->inp_lport;
|
|
th->th_dport = inp->inp_fport;
|
|
th->th_seq = 0;
|
|
th->th_ack = 0;
|
|
th->th_x2 = 0;
|
|
th->th_off = 5;
|
|
th->th_flags = 0;
|
|
th->th_win = 0;
|
|
th->th_urp = 0;
|
|
th->th_sum = 0; /* in_pseudo() is called later for ipv4 */
|
|
}
|
|
|
|
/*
|
|
* Create template to be used to send tcp packets on a connection.
|
|
* Allocates an mbuf and fills in a skeletal tcp/ip header. The only
|
|
* use for this function is in keepalives, which use tcp_respond.
|
|
*/
|
|
struct tcptemp *
|
|
tcpip_maketemplate(struct inpcb *inp)
|
|
{
|
|
struct tcptemp *t;
|
|
|
|
t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
|
|
if (t == NULL)
|
|
return (NULL);
|
|
tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* Send a single message to the TCP at address specified by
|
|
* the given TCP/IP header. If m == NULL, then we make a copy
|
|
* of the tcpiphdr at ti and send directly to the addressed host.
|
|
* This is used to force keep alive messages out using the TCP
|
|
* template for a connection. If flags are given then we send
|
|
* a message back to the TCP which originated the * segment ti,
|
|
* and discard the mbuf containing it and any other attached mbufs.
|
|
*
|
|
* In any case the ack and sequence number of the transmitted
|
|
* segment are as specified by the parameters.
|
|
*
|
|
* NOTE: If m != NULL, then ti must point to *inside* the mbuf.
|
|
*/
|
|
void
|
|
tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
|
|
tcp_seq ack, tcp_seq seq, int flags)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
int tlen;
|
|
int win = 0;
|
|
struct ip *ip;
|
|
struct tcphdr *nth;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
int isipv6;
|
|
#endif /* INET6 */
|
|
int ipflags = 0;
|
|
struct inpcb *inp;
|
|
|
|
KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
|
|
|
|
#ifdef INET6
|
|
isipv6 = ((struct ip *)ipgen)->ip_v == 6;
|
|
ip6 = ipgen;
|
|
#endif /* INET6 */
|
|
ip = ipgen;
|
|
|
|
if (tp != NULL) {
|
|
inp = tp->t_inpcb;
|
|
KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
|
|
INP_WLOCK_ASSERT(inp);
|
|
} else
|
|
inp = NULL;
|
|
|
|
if (tp != NULL) {
|
|
if (!(flags & TH_RST)) {
|
|
win = sbspace(&inp->inp_socket->so_rcv);
|
|
if (win > (long)TCP_MAXWIN << tp->rcv_scale)
|
|
win = (long)TCP_MAXWIN << tp->rcv_scale;
|
|
}
|
|
}
|
|
if (m == NULL) {
|
|
m = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return;
|
|
tlen = 0;
|
|
m->m_data += max_linkhdr;
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
bcopy((caddr_t)ip6, mtod(m, caddr_t),
|
|
sizeof(struct ip6_hdr));
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
nth = (struct tcphdr *)(ip6 + 1);
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
|
|
ip = mtod(m, struct ip *);
|
|
nth = (struct tcphdr *)(ip + 1);
|
|
}
|
|
bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
|
|
flags = TH_ACK;
|
|
} else {
|
|
/*
|
|
* reuse the mbuf.
|
|
* XXX MRT We inherrit the FIB, which is lucky.
|
|
*/
|
|
m_freem(m->m_next);
|
|
m->m_next = NULL;
|
|
m->m_data = (caddr_t)ipgen;
|
|
/* m_len is set later */
|
|
tlen = 0;
|
|
#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
|
|
nth = (struct tcphdr *)(ip6 + 1);
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
|
|
nth = (struct tcphdr *)(ip + 1);
|
|
}
|
|
if (th != nth) {
|
|
/*
|
|
* this is usually a case when an extension header
|
|
* exists between the IPv6 header and the
|
|
* TCP header.
|
|
*/
|
|
nth->th_sport = th->th_sport;
|
|
nth->th_dport = th->th_dport;
|
|
}
|
|
xchg(nth->th_dport, nth->th_sport, uint16_t);
|
|
#undef xchg
|
|
}
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
ip6->ip6_flow = 0;
|
|
ip6->ip6_vfc = IPV6_VERSION;
|
|
ip6->ip6_nxt = IPPROTO_TCP;
|
|
ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
|
|
tlen));
|
|
tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
|
|
} else
|
|
#endif
|
|
{
|
|
tlen += sizeof (struct tcpiphdr);
|
|
ip->ip_len = tlen;
|
|
ip->ip_ttl = V_ip_defttl;
|
|
if (V_path_mtu_discovery)
|
|
ip->ip_off |= IP_DF;
|
|
}
|
|
m->m_len = tlen;
|
|
m->m_pkthdr.len = tlen;
|
|
m->m_pkthdr.rcvif = NULL;
|
|
#ifdef MAC
|
|
if (inp != NULL) {
|
|
/*
|
|
* Packet is associated with a socket, so allow the
|
|
* label of the response to reflect the socket label.
|
|
*/
|
|
INP_WLOCK_ASSERT(inp);
|
|
mac_inpcb_create_mbuf(inp, m);
|
|
} else {
|
|
/*
|
|
* Packet is not associated with a socket, so possibly
|
|
* update the label in place.
|
|
*/
|
|
mac_netinet_tcp_reply(m);
|
|
}
|
|
#endif
|
|
nth->th_seq = htonl(seq);
|
|
nth->th_ack = htonl(ack);
|
|
nth->th_x2 = 0;
|
|
nth->th_off = sizeof (struct tcphdr) >> 2;
|
|
nth->th_flags = flags;
|
|
if (tp != NULL)
|
|
nth->th_win = htons((u_short) (win >> tp->rcv_scale));
|
|
else
|
|
nth->th_win = htons((u_short)win);
|
|
nth->th_urp = 0;
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
nth->th_sum = 0;
|
|
nth->th_sum = in6_cksum(m, IPPROTO_TCP,
|
|
sizeof(struct ip6_hdr),
|
|
tlen - sizeof(struct ip6_hdr));
|
|
ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
|
|
NULL, NULL);
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
|
|
htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
|
|
m->m_pkthdr.csum_flags = CSUM_TCP;
|
|
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
|
|
}
|
|
#ifdef TCPDEBUG
|
|
if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
|
|
tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
|
|
#endif
|
|
#ifdef INET6
|
|
if (isipv6)
|
|
(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
|
|
else
|
|
#endif /* INET6 */
|
|
(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
|
|
}
|
|
|
|
/*
|
|
* Create a new TCP control block, making an
|
|
* empty reassembly queue and hooking it to the argument
|
|
* protocol control block. The `inp' parameter must have
|
|
* come from the zone allocator set up in tcp_init().
|
|
*/
|
|
struct tcpcb *
|
|
tcp_newtcpcb(struct inpcb *inp)
|
|
{
|
|
INIT_VNET_INET(inp->inp_vnet);
|
|
struct tcpcb_mem *tm;
|
|
struct tcpcb *tp;
|
|
#ifdef INET6
|
|
int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
|
|
#endif /* INET6 */
|
|
|
|
tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
|
|
if (tm == NULL)
|
|
return (NULL);
|
|
tp = &tm->tcb;
|
|
tp->t_timers = &tm->tt;
|
|
/* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */
|
|
tp->t_maxseg = tp->t_maxopd =
|
|
#ifdef INET6
|
|
isipv6 ? V_tcp_v6mssdflt :
|
|
#endif /* INET6 */
|
|
V_tcp_mssdflt;
|
|
|
|
/* Set up our timeouts. */
|
|
callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
|
|
callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
|
|
callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
|
|
callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
|
|
callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
|
|
|
|
if (V_tcp_do_rfc1323)
|
|
tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
|
|
if (V_tcp_do_sack)
|
|
tp->t_flags |= TF_SACK_PERMIT;
|
|
TAILQ_INIT(&tp->snd_holes);
|
|
tp->t_inpcb = inp; /* XXX */
|
|
/*
|
|
* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
|
|
* rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
|
|
* reasonable initial retransmit time.
|
|
*/
|
|
tp->t_srtt = TCPTV_SRTTBASE;
|
|
tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
|
|
tp->t_rttmin = tcp_rexmit_min;
|
|
tp->t_rxtcur = TCPTV_RTOBASE;
|
|
tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
|
|
tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
|
|
tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
|
|
tp->t_rcvtime = ticks;
|
|
tp->t_bw_rtttime = ticks;
|
|
/*
|
|
* IPv4 TTL initialization is necessary for an IPv6 socket as well,
|
|
* because the socket may be bound to an IPv6 wildcard address,
|
|
* which may match an IPv4-mapped IPv6 address.
|
|
*/
|
|
inp->inp_ip_ttl = V_ip_defttl;
|
|
inp->inp_ppcb = tp;
|
|
return (tp); /* XXX */
|
|
}
|
|
|
|
/*
|
|
* Drop a TCP connection, reporting
|
|
* the specified error. If connection is synchronized,
|
|
* then send a RST to peer.
|
|
*/
|
|
struct tcpcb *
|
|
tcp_drop(struct tcpcb *tp, int errno)
|
|
{
|
|
INIT_VNET_INET(tp->t_inpcb->inp_vnet);
|
|
struct socket *so = tp->t_inpcb->inp_socket;
|
|
|
|
INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
if (TCPS_HAVERCVDSYN(tp->t_state)) {
|
|
tp->t_state = TCPS_CLOSED;
|
|
(void) tcp_output_reset(tp);
|
|
V_tcpstat.tcps_drops++;
|
|
} else
|
|
V_tcpstat.tcps_conndrops++;
|
|
if (errno == ETIMEDOUT && tp->t_softerror)
|
|
errno = tp->t_softerror;
|
|
so->so_error = errno;
|
|
return (tcp_close(tp));
|
|
}
|
|
|
|
void
|
|
tcp_discardcb(struct tcpcb *tp)
|
|
{
|
|
INIT_VNET_INET(tp->t_vnet);
|
|
struct tseg_qent *q;
|
|
struct inpcb *inp = tp->t_inpcb;
|
|
struct socket *so = inp->inp_socket;
|
|
#ifdef INET6
|
|
int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
|
|
#endif /* INET6 */
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
/*
|
|
* Make sure that all of our timers are stopped before we
|
|
* delete the PCB.
|
|
*/
|
|
callout_stop(&tp->t_timers->tt_rexmt);
|
|
callout_stop(&tp->t_timers->tt_persist);
|
|
callout_stop(&tp->t_timers->tt_keep);
|
|
callout_stop(&tp->t_timers->tt_2msl);
|
|
callout_stop(&tp->t_timers->tt_delack);
|
|
|
|
/*
|
|
* If we got enough samples through the srtt filter,
|
|
* save the rtt and rttvar in the routing entry.
|
|
* 'Enough' is arbitrarily defined as 4 rtt samples.
|
|
* 4 samples is enough for the srtt filter to converge
|
|
* to within enough % of the correct value; fewer samples
|
|
* and we could save a bogus rtt. The danger is not high
|
|
* as tcp quickly recovers from everything.
|
|
* XXX: Works very well but needs some more statistics!
|
|
*/
|
|
if (tp->t_rttupdated >= 4) {
|
|
struct hc_metrics_lite metrics;
|
|
u_long ssthresh;
|
|
|
|
bzero(&metrics, sizeof(metrics));
|
|
/*
|
|
* Update the ssthresh always when the conditions below
|
|
* are satisfied. This gives us better new start value
|
|
* for the congestion avoidance for new connections.
|
|
* ssthresh is only set if packet loss occured on a session.
|
|
*
|
|
* XXXRW: 'so' may be NULL here, and/or socket buffer may be
|
|
* being torn down. Ideally this code would not use 'so'.
|
|
*/
|
|
ssthresh = tp->snd_ssthresh;
|
|
if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
|
|
/*
|
|
* convert the limit from user data bytes to
|
|
* packets then to packet data bytes.
|
|
*/
|
|
ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
|
|
if (ssthresh < 2)
|
|
ssthresh = 2;
|
|
ssthresh *= (u_long)(tp->t_maxseg +
|
|
#ifdef INET6
|
|
(isipv6 ? sizeof (struct ip6_hdr) +
|
|
sizeof (struct tcphdr) :
|
|
#endif
|
|
sizeof (struct tcpiphdr)
|
|
#ifdef INET6
|
|
)
|
|
#endif
|
|
);
|
|
} else
|
|
ssthresh = 0;
|
|
metrics.rmx_ssthresh = ssthresh;
|
|
|
|
metrics.rmx_rtt = tp->t_srtt;
|
|
metrics.rmx_rttvar = tp->t_rttvar;
|
|
/* XXX: This wraps if the pipe is more than 4 Gbit per second */
|
|
metrics.rmx_bandwidth = tp->snd_bandwidth;
|
|
metrics.rmx_cwnd = tp->snd_cwnd;
|
|
metrics.rmx_sendpipe = 0;
|
|
metrics.rmx_recvpipe = 0;
|
|
|
|
tcp_hc_update(&inp->inp_inc, &metrics);
|
|
}
|
|
|
|
/* free the reassembly queue, if any */
|
|
while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
|
|
LIST_REMOVE(q, tqe_q);
|
|
m_freem(q->tqe_m);
|
|
uma_zfree(tcp_reass_zone, q);
|
|
tp->t_segqlen--;
|
|
V_tcp_reass_qsize--;
|
|
}
|
|
/* Disconnect offload device, if any. */
|
|
tcp_offload_detach(tp);
|
|
|
|
tcp_free_sackholes(tp);
|
|
inp->inp_ppcb = NULL;
|
|
tp->t_inpcb = NULL;
|
|
uma_zfree(tcpcb_zone, tp);
|
|
}
|
|
|
|
/*
|
|
* Attempt to close a TCP control block, marking it as dropped, and freeing
|
|
* the socket if we hold the only reference.
|
|
*/
|
|
struct tcpcb *
|
|
tcp_close(struct tcpcb *tp)
|
|
{
|
|
INIT_VNET_INET(tp->t_inpcb->inp_vnet);
|
|
struct inpcb *inp = tp->t_inpcb;
|
|
struct socket *so;
|
|
|
|
INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
/* Notify any offload devices of listener close */
|
|
if (tp->t_state == TCPS_LISTEN)
|
|
tcp_offload_listen_close(tp);
|
|
in_pcbdrop(inp);
|
|
V_tcpstat.tcps_closed++;
|
|
KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
|
|
so = inp->inp_socket;
|
|
soisdisconnected(so);
|
|
if (inp->inp_flags & INP_SOCKREF) {
|
|
KASSERT(so->so_state & SS_PROTOREF,
|
|
("tcp_close: !SS_PROTOREF"));
|
|
inp->inp_flags &= ~INP_SOCKREF;
|
|
INP_WUNLOCK(inp);
|
|
ACCEPT_LOCK();
|
|
SOCK_LOCK(so);
|
|
so->so_state &= ~SS_PROTOREF;
|
|
sofree(so);
|
|
return (NULL);
|
|
}
|
|
return (tp);
|
|
}
|
|
|
|
void
|
|
tcp_drain(void)
|
|
{
|
|
VNET_ITERATOR_DECL(vnet_iter);
|
|
|
|
if (!do_tcpdrain)
|
|
return;
|
|
|
|
VNET_LIST_RLOCK();
|
|
VNET_FOREACH(vnet_iter) {
|
|
CURVNET_SET(vnet_iter);
|
|
INIT_VNET_INET(vnet_iter);
|
|
struct inpcb *inpb;
|
|
struct tcpcb *tcpb;
|
|
struct tseg_qent *te;
|
|
|
|
/*
|
|
* Walk the tcpbs, if existing, and flush the reassembly queue,
|
|
* if there is one...
|
|
* XXX: The "Net/3" implementation doesn't imply that the TCP
|
|
* reassembly queue should be flushed, but in a situation
|
|
* where we're really low on mbufs, this is potentially
|
|
* usefull.
|
|
*/
|
|
INP_INFO_RLOCK(&V_tcbinfo);
|
|
LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
|
|
if (inpb->inp_flags & INP_TIMEWAIT)
|
|
continue;
|
|
INP_WLOCK(inpb);
|
|
if ((tcpb = intotcpcb(inpb)) != NULL) {
|
|
while ((te = LIST_FIRST(&tcpb->t_segq))
|
|
!= NULL) {
|
|
LIST_REMOVE(te, tqe_q);
|
|
m_freem(te->tqe_m);
|
|
uma_zfree(tcp_reass_zone, te);
|
|
tcpb->t_segqlen--;
|
|
V_tcp_reass_qsize--;
|
|
}
|
|
tcp_clean_sackreport(tcpb);
|
|
}
|
|
INP_WUNLOCK(inpb);
|
|
}
|
|
INP_INFO_RUNLOCK(&V_tcbinfo);
|
|
CURVNET_RESTORE();
|
|
}
|
|
VNET_LIST_RUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Notify a tcp user of an asynchronous error;
|
|
* store error as soft error, but wake up user
|
|
* (for now, won't do anything until can select for soft error).
|
|
*
|
|
* Do not wake up user since there currently is no mechanism for
|
|
* reporting soft errors (yet - a kqueue filter may be added).
|
|
*/
|
|
static struct inpcb *
|
|
tcp_notify(struct inpcb *inp, int error)
|
|
{
|
|
struct tcpcb *tp;
|
|
#ifdef INVARIANTS
|
|
INIT_VNET_INET(inp->inp_vnet); /* V_tcbinfo WLOCK ASSERT */
|
|
#endif
|
|
|
|
INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
if ((inp->inp_flags & INP_TIMEWAIT) ||
|
|
(inp->inp_flags & INP_DROPPED))
|
|
return (inp);
|
|
|
|
tp = intotcpcb(inp);
|
|
KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
|
|
|
|
/*
|
|
* Ignore some errors if we are hooked up.
|
|
* If connection hasn't completed, has retransmitted several times,
|
|
* and receives a second error, give up now. This is better
|
|
* than waiting a long time to establish a connection that
|
|
* can never complete.
|
|
*/
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
|
(error == EHOSTUNREACH || error == ENETUNREACH ||
|
|
error == EHOSTDOWN)) {
|
|
return (inp);
|
|
} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
|
|
tp->t_softerror) {
|
|
tp = tcp_drop(tp, error);
|
|
if (tp != NULL)
|
|
return (inp);
|
|
else
|
|
return (NULL);
|
|
} else {
|
|
tp->t_softerror = error;
|
|
return (inp);
|
|
}
|
|
#if 0
|
|
wakeup( &so->so_timeo);
|
|
sorwakeup(so);
|
|
sowwakeup(so);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
tcp_pcblist(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
int error, i, m, n, pcb_count;
|
|
struct inpcb *inp, **inp_list;
|
|
inp_gen_t gencnt;
|
|
struct xinpgen xig;
|
|
|
|
/*
|
|
* The process of preparing the TCB list is too time-consuming and
|
|
* resource-intensive to repeat twice on every request.
|
|
*/
|
|
if (req->oldptr == NULL) {
|
|
m = syncache_pcbcount();
|
|
n = V_tcbinfo.ipi_count;
|
|
req->oldidx = 2 * (sizeof xig)
|
|
+ ((m + n) + n/8) * sizeof(struct xtcpcb);
|
|
return (0);
|
|
}
|
|
|
|
if (req->newptr != NULL)
|
|
return (EPERM);
|
|
|
|
/*
|
|
* OK, now we're committed to doing something.
|
|
*/
|
|
INP_INFO_RLOCK(&V_tcbinfo);
|
|
gencnt = V_tcbinfo.ipi_gencnt;
|
|
n = V_tcbinfo.ipi_count;
|
|
INP_INFO_RUNLOCK(&V_tcbinfo);
|
|
|
|
m = syncache_pcbcount();
|
|
|
|
error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
|
|
+ (n + m) * sizeof(struct xtcpcb));
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
xig.xig_len = sizeof xig;
|
|
xig.xig_count = n + m;
|
|
xig.xig_gen = gencnt;
|
|
xig.xig_sogen = so_gencnt;
|
|
error = SYSCTL_OUT(req, &xig, sizeof xig);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = syncache_pcblist(req, m, &pcb_count);
|
|
if (error)
|
|
return (error);
|
|
|
|
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
|
|
if (inp_list == NULL)
|
|
return (ENOMEM);
|
|
|
|
INP_INFO_RLOCK(&V_tcbinfo);
|
|
for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
|
|
inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
|
|
INP_RLOCK(inp);
|
|
if (inp->inp_gencnt <= gencnt) {
|
|
/*
|
|
* XXX: This use of cr_cansee(), introduced with
|
|
* TCP state changes, is not quite right, but for
|
|
* now, better than nothing.
|
|
*/
|
|
if (inp->inp_flags & INP_TIMEWAIT) {
|
|
if (intotw(inp) != NULL)
|
|
error = cr_cansee(req->td->td_ucred,
|
|
intotw(inp)->tw_cred);
|
|
else
|
|
error = EINVAL; /* Skip this inp. */
|
|
} else
|
|
error = cr_canseeinpcb(req->td->td_ucred, inp);
|
|
if (error == 0)
|
|
inp_list[i++] = inp;
|
|
}
|
|
INP_RUNLOCK(inp);
|
|
}
|
|
INP_INFO_RUNLOCK(&V_tcbinfo);
|
|
n = i;
|
|
|
|
error = 0;
|
|
for (i = 0; i < n; i++) {
|
|
inp = inp_list[i];
|
|
INP_RLOCK(inp);
|
|
if (inp->inp_gencnt <= gencnt) {
|
|
struct xtcpcb xt;
|
|
void *inp_ppcb;
|
|
|
|
bzero(&xt, sizeof(xt));
|
|
xt.xt_len = sizeof xt;
|
|
/* XXX should avoid extra copy */
|
|
bcopy(inp, &xt.xt_inp, sizeof *inp);
|
|
inp_ppcb = inp->inp_ppcb;
|
|
if (inp_ppcb == NULL)
|
|
bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
|
|
else if (inp->inp_flags & INP_TIMEWAIT) {
|
|
bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
|
|
xt.xt_tp.t_state = TCPS_TIME_WAIT;
|
|
} else
|
|
bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
|
|
if (inp->inp_socket != NULL)
|
|
sotoxsocket(inp->inp_socket, &xt.xt_socket);
|
|
else {
|
|
bzero(&xt.xt_socket, sizeof xt.xt_socket);
|
|
xt.xt_socket.xso_protocol = IPPROTO_TCP;
|
|
}
|
|
xt.xt_inp.inp_gencnt = inp->inp_gencnt;
|
|
INP_RUNLOCK(inp);
|
|
error = SYSCTL_OUT(req, &xt, sizeof xt);
|
|
} else
|
|
INP_RUNLOCK(inp);
|
|
|
|
}
|
|
if (!error) {
|
|
/*
|
|
* Give the user an updated idea of our state.
|
|
* If the generation differs from what we told
|
|
* her before, she knows that something happened
|
|
* while we were processing this request, and it
|
|
* might be necessary to retry.
|
|
*/
|
|
INP_INFO_RLOCK(&V_tcbinfo);
|
|
xig.xig_gen = V_tcbinfo.ipi_gencnt;
|
|
xig.xig_sogen = so_gencnt;
|
|
xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
|
|
INP_INFO_RUNLOCK(&V_tcbinfo);
|
|
error = SYSCTL_OUT(req, &xig, sizeof xig);
|
|
}
|
|
free(inp_list, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
|
|
tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
|
|
|
|
static int
|
|
tcp_getcred(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
struct xucred xuc;
|
|
struct sockaddr_in addrs[2];
|
|
struct inpcb *inp;
|
|
int error;
|
|
|
|
error = priv_check(req->td, PRIV_NETINET_GETCRED);
|
|
if (error)
|
|
return (error);
|
|
error = SYSCTL_IN(req, addrs, sizeof(addrs));
|
|
if (error)
|
|
return (error);
|
|
INP_INFO_RLOCK(&V_tcbinfo);
|
|
inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr,
|
|
addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
|
|
if (inp != NULL) {
|
|
INP_RLOCK(inp);
|
|
INP_INFO_RUNLOCK(&V_tcbinfo);
|
|
if (inp->inp_socket == NULL)
|
|
error = ENOENT;
|
|
if (error == 0)
|
|
error = cr_canseeinpcb(req->td->td_ucred, inp);
|
|
if (error == 0)
|
|
cru2x(inp->inp_cred, &xuc);
|
|
INP_RUNLOCK(inp);
|
|
} else {
|
|
INP_INFO_RUNLOCK(&V_tcbinfo);
|
|
error = ENOENT;
|
|
}
|
|
if (error == 0)
|
|
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
|
|
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
|
|
tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
|
|
|
|
#ifdef INET6
|
|
static int
|
|
tcp6_getcred(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
INIT_VNET_INET6(curvnet);
|
|
struct xucred xuc;
|
|
struct sockaddr_in6 addrs[2];
|
|
struct inpcb *inp;
|
|
int error, mapped = 0;
|
|
|
|
error = priv_check(req->td, PRIV_NETINET_GETCRED);
|
|
if (error)
|
|
return (error);
|
|
error = SYSCTL_IN(req, addrs, sizeof(addrs));
|
|
if (error)
|
|
return (error);
|
|
if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
|
|
(error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
|
|
return (error);
|
|
}
|
|
if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
|
|
if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
|
|
mapped = 1;
|
|
else
|
|
return (EINVAL);
|
|
}
|
|
|
|
INP_INFO_RLOCK(&V_tcbinfo);
|
|
if (mapped == 1)
|
|
inp = in_pcblookup_hash(&V_tcbinfo,
|
|
*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
|
|
addrs[1].sin6_port,
|
|
*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
|
|
addrs[0].sin6_port,
|
|
0, NULL);
|
|
else
|
|
inp = in6_pcblookup_hash(&V_tcbinfo,
|
|
&addrs[1].sin6_addr, addrs[1].sin6_port,
|
|
&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
|
|
if (inp != NULL) {
|
|
INP_RLOCK(inp);
|
|
INP_INFO_RUNLOCK(&V_tcbinfo);
|
|
if (inp->inp_socket == NULL)
|
|
error = ENOENT;
|
|
if (error == 0)
|
|
error = cr_canseeinpcb(req->td->td_ucred, inp);
|
|
if (error == 0)
|
|
cru2x(inp->inp_cred, &xuc);
|
|
INP_RUNLOCK(inp);
|
|
} else {
|
|
INP_INFO_RUNLOCK(&V_tcbinfo);
|
|
error = ENOENT;
|
|
}
|
|
if (error == 0)
|
|
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
|
|
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
|
|
tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
|
|
#endif
|
|
|
|
|
|
void
|
|
tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
struct ip *ip = vip;
|
|
struct tcphdr *th;
|
|
struct in_addr faddr;
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
|
|
struct icmp *icp;
|
|
struct in_conninfo inc;
|
|
tcp_seq icmp_tcp_seq;
|
|
int mtu;
|
|
|
|
faddr = ((struct sockaddr_in *)sa)->sin_addr;
|
|
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
|
|
return;
|
|
|
|
if (cmd == PRC_MSGSIZE)
|
|
notify = tcp_mtudisc;
|
|
else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
|
|
cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
|
|
notify = tcp_drop_syn_sent;
|
|
/*
|
|
* Redirects don't need to be handled up here.
|
|
*/
|
|
else if (PRC_IS_REDIRECT(cmd))
|
|
return;
|
|
/*
|
|
* Source quench is depreciated.
|
|
*/
|
|
else if (cmd == PRC_QUENCH)
|
|
return;
|
|
/*
|
|
* Hostdead is ugly because it goes linearly through all PCBs.
|
|
* XXX: We never get this from ICMP, otherwise it makes an
|
|
* excellent DoS attack on machines with many connections.
|
|
*/
|
|
else if (cmd == PRC_HOSTDEAD)
|
|
ip = NULL;
|
|
else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
|
|
return;
|
|
if (ip != NULL) {
|
|
icp = (struct icmp *)((caddr_t)ip
|
|
- offsetof(struct icmp, icmp_ip));
|
|
th = (struct tcphdr *)((caddr_t)ip
|
|
+ (ip->ip_hl << 2));
|
|
INP_INFO_WLOCK(&V_tcbinfo);
|
|
inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport,
|
|
ip->ip_src, th->th_sport, 0, NULL);
|
|
if (inp != NULL) {
|
|
INP_WLOCK(inp);
|
|
if (!(inp->inp_flags & INP_TIMEWAIT) &&
|
|
!(inp->inp_flags & INP_DROPPED) &&
|
|
!(inp->inp_socket == NULL)) {
|
|
icmp_tcp_seq = htonl(th->th_seq);
|
|
tp = intotcpcb(inp);
|
|
if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
|
|
SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
|
|
if (cmd == PRC_MSGSIZE) {
|
|
/*
|
|
* MTU discovery:
|
|
* If we got a needfrag set the MTU
|
|
* in the route to the suggested new
|
|
* value (if given) and then notify.
|
|
*/
|
|
bzero(&inc, sizeof(inc));
|
|
inc.inc_faddr = faddr;
|
|
inc.inc_fibnum =
|
|
inp->inp_inc.inc_fibnum;
|
|
|
|
mtu = ntohs(icp->icmp_nextmtu);
|
|
/*
|
|
* If no alternative MTU was
|
|
* proposed, try the next smaller
|
|
* one. ip->ip_len has already
|
|
* been swapped in icmp_input().
|
|
*/
|
|
if (!mtu)
|
|
mtu = ip_next_mtu(ip->ip_len,
|
|
1);
|
|
if (mtu < max(296, V_tcp_minmss
|
|
+ sizeof(struct tcpiphdr)))
|
|
mtu = 0;
|
|
if (!mtu)
|
|
mtu = V_tcp_mssdflt
|
|
+ sizeof(struct tcpiphdr);
|
|
/*
|
|
* Only cache the the MTU if it
|
|
* is smaller than the interface
|
|
* or route MTU. tcp_mtudisc()
|
|
* will do right thing by itself.
|
|
*/
|
|
if (mtu <= tcp_maxmtu(&inc, NULL))
|
|
tcp_hc_updatemtu(&inc, mtu);
|
|
}
|
|
|
|
inp = (*notify)(inp, inetctlerrmap[cmd]);
|
|
}
|
|
}
|
|
if (inp != NULL)
|
|
INP_WUNLOCK(inp);
|
|
} else {
|
|
bzero(&inc, sizeof(inc));
|
|
inc.inc_fport = th->th_dport;
|
|
inc.inc_lport = th->th_sport;
|
|
inc.inc_faddr = faddr;
|
|
inc.inc_laddr = ip->ip_src;
|
|
syncache_unreach(&inc, th);
|
|
}
|
|
INP_INFO_WUNLOCK(&V_tcbinfo);
|
|
} else
|
|
in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
|
|
}
|
|
|
|
#ifdef INET6
|
|
void
|
|
tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
struct tcphdr th;
|
|
struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
|
|
struct ip6_hdr *ip6;
|
|
struct mbuf *m;
|
|
struct ip6ctlparam *ip6cp = NULL;
|
|
const struct sockaddr_in6 *sa6_src = NULL;
|
|
int off;
|
|
struct tcp_portonly {
|
|
u_int16_t th_sport;
|
|
u_int16_t th_dport;
|
|
} *thp;
|
|
|
|
if (sa->sa_family != AF_INET6 ||
|
|
sa->sa_len != sizeof(struct sockaddr_in6))
|
|
return;
|
|
|
|
if (cmd == PRC_MSGSIZE)
|
|
notify = tcp_mtudisc;
|
|
else if (!PRC_IS_REDIRECT(cmd) &&
|
|
((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
|
|
return;
|
|
/* Source quench is depreciated. */
|
|
else if (cmd == PRC_QUENCH)
|
|
return;
|
|
|
|
/* if the parameter is from icmp6, decode it. */
|
|
if (d != NULL) {
|
|
ip6cp = (struct ip6ctlparam *)d;
|
|
m = ip6cp->ip6c_m;
|
|
ip6 = ip6cp->ip6c_ip6;
|
|
off = ip6cp->ip6c_off;
|
|
sa6_src = ip6cp->ip6c_src;
|
|
} else {
|
|
m = NULL;
|
|
ip6 = NULL;
|
|
off = 0; /* fool gcc */
|
|
sa6_src = &sa6_any;
|
|
}
|
|
|
|
if (ip6 != NULL) {
|
|
struct in_conninfo inc;
|
|
/*
|
|
* XXX: We assume that when IPV6 is non NULL,
|
|
* M and OFF are valid.
|
|
*/
|
|
|
|
/* check if we can safely examine src and dst ports */
|
|
if (m->m_pkthdr.len < off + sizeof(*thp))
|
|
return;
|
|
|
|
bzero(&th, sizeof(th));
|
|
m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
|
|
|
|
in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
|
|
(struct sockaddr *)ip6cp->ip6c_src,
|
|
th.th_sport, cmd, NULL, notify);
|
|
|
|
bzero(&inc, sizeof(inc));
|
|
inc.inc_fport = th.th_dport;
|
|
inc.inc_lport = th.th_sport;
|
|
inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
|
|
inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
|
|
inc.inc_flags |= INC_ISIPV6;
|
|
INP_INFO_WLOCK(&V_tcbinfo);
|
|
syncache_unreach(&inc, &th);
|
|
INP_INFO_WUNLOCK(&V_tcbinfo);
|
|
} else
|
|
in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
|
|
0, cmd, NULL, notify);
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
|
|
/*
|
|
* Following is where TCP initial sequence number generation occurs.
|
|
*
|
|
* There are two places where we must use initial sequence numbers:
|
|
* 1. In SYN-ACK packets.
|
|
* 2. In SYN packets.
|
|
*
|
|
* All ISNs for SYN-ACK packets are generated by the syncache. See
|
|
* tcp_syncache.c for details.
|
|
*
|
|
* The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
|
|
* depends on this property. In addition, these ISNs should be
|
|
* unguessable so as to prevent connection hijacking. To satisfy
|
|
* the requirements of this situation, the algorithm outlined in
|
|
* RFC 1948 is used, with only small modifications.
|
|
*
|
|
* Implementation details:
|
|
*
|
|
* Time is based off the system timer, and is corrected so that it
|
|
* increases by one megabyte per second. This allows for proper
|
|
* recycling on high speed LANs while still leaving over an hour
|
|
* before rollover.
|
|
*
|
|
* As reading the *exact* system time is too expensive to be done
|
|
* whenever setting up a TCP connection, we increment the time
|
|
* offset in two ways. First, a small random positive increment
|
|
* is added to isn_offset for each connection that is set up.
|
|
* Second, the function tcp_isn_tick fires once per clock tick
|
|
* and increments isn_offset as necessary so that sequence numbers
|
|
* are incremented at approximately ISN_BYTES_PER_SECOND. The
|
|
* random positive increments serve only to ensure that the same
|
|
* exact sequence number is never sent out twice (as could otherwise
|
|
* happen when a port is recycled in less than the system tick
|
|
* interval.)
|
|
*
|
|
* net.inet.tcp.isn_reseed_interval controls the number of seconds
|
|
* between seeding of isn_secret. This is normally set to zero,
|
|
* as reseeding should not be necessary.
|
|
*
|
|
* Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
|
|
* isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In
|
|
* general, this means holding an exclusive (write) lock.
|
|
*/
|
|
|
|
#define ISN_BYTES_PER_SECOND 1048576
|
|
#define ISN_STATIC_INCREMENT 4096
|
|
#define ISN_RANDOM_INCREMENT (4096 - 1)
|
|
|
|
#ifdef VIMAGE_GLOBALS
|
|
static u_char isn_secret[32];
|
|
static int isn_last_reseed;
|
|
static u_int32_t isn_offset, isn_offset_old;
|
|
#endif
|
|
|
|
tcp_seq
|
|
tcp_new_isn(struct tcpcb *tp)
|
|
{
|
|
INIT_VNET_INET(tp->t_vnet);
|
|
MD5_CTX isn_ctx;
|
|
u_int32_t md5_buffer[4];
|
|
tcp_seq new_isn;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
ISN_LOCK();
|
|
/* Seed if this is the first use, reseed if requested. */
|
|
if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
|
|
(((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
|
|
< (u_int)ticks))) {
|
|
read_random(&V_isn_secret, sizeof(V_isn_secret));
|
|
V_isn_last_reseed = ticks;
|
|
}
|
|
|
|
/* Compute the md5 hash and return the ISN. */
|
|
MD5Init(&isn_ctx);
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
|
|
#ifdef INET6
|
|
if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
|
|
sizeof(struct in6_addr));
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
|
|
sizeof(struct in6_addr));
|
|
} else
|
|
#endif
|
|
{
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
|
|
sizeof(struct in_addr));
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
|
|
sizeof(struct in_addr));
|
|
}
|
|
MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
|
|
MD5Final((u_char *) &md5_buffer, &isn_ctx);
|
|
new_isn = (tcp_seq) md5_buffer[0];
|
|
V_isn_offset += ISN_STATIC_INCREMENT +
|
|
(arc4random() & ISN_RANDOM_INCREMENT);
|
|
new_isn += V_isn_offset;
|
|
ISN_UNLOCK();
|
|
return (new_isn);
|
|
}
|
|
|
|
/*
|
|
* Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
|
|
* to keep time flowing at a relatively constant rate. If the random
|
|
* increments have already pushed us past the projected offset, do nothing.
|
|
*/
|
|
static void
|
|
tcp_isn_tick(void *xtp)
|
|
{
|
|
VNET_ITERATOR_DECL(vnet_iter);
|
|
u_int32_t projected_offset;
|
|
|
|
ISN_LOCK();
|
|
VNET_LIST_RLOCK();
|
|
VNET_FOREACH(vnet_iter) {
|
|
CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */
|
|
INIT_VNET_INET(curvnet);
|
|
projected_offset =
|
|
V_isn_offset_old + ISN_BYTES_PER_SECOND / 100;
|
|
|
|
if (SEQ_GT(projected_offset, V_isn_offset))
|
|
V_isn_offset = projected_offset;
|
|
|
|
V_isn_offset_old = V_isn_offset;
|
|
CURVNET_RESTORE();
|
|
}
|
|
VNET_LIST_RUNLOCK();
|
|
callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
|
|
ISN_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* When a specific ICMP unreachable message is received and the
|
|
* connection state is SYN-SENT, drop the connection. This behavior
|
|
* is controlled by the icmp_may_rst sysctl.
|
|
*/
|
|
struct inpcb *
|
|
tcp_drop_syn_sent(struct inpcb *inp, int errno)
|
|
{
|
|
#ifdef INVARIANTS
|
|
INIT_VNET_INET(inp->inp_vnet);
|
|
#endif
|
|
struct tcpcb *tp;
|
|
|
|
INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
if ((inp->inp_flags & INP_TIMEWAIT) ||
|
|
(inp->inp_flags & INP_DROPPED))
|
|
return (inp);
|
|
|
|
tp = intotcpcb(inp);
|
|
if (tp->t_state != TCPS_SYN_SENT)
|
|
return (inp);
|
|
|
|
tp = tcp_drop(tp, errno);
|
|
if (tp != NULL)
|
|
return (inp);
|
|
else
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* When `need fragmentation' ICMP is received, update our idea of the MSS
|
|
* based on the new value in the route. Also nudge TCP to send something,
|
|
* since we know the packet we just sent was dropped.
|
|
* This duplicates some code in the tcp_mss() function in tcp_input.c.
|
|
*/
|
|
struct inpcb *
|
|
tcp_mtudisc(struct inpcb *inp, int errno)
|
|
{
|
|
INIT_VNET_INET(inp->inp_vnet);
|
|
struct tcpcb *tp;
|
|
struct socket *so;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
if ((inp->inp_flags & INP_TIMEWAIT) ||
|
|
(inp->inp_flags & INP_DROPPED))
|
|
return (inp);
|
|
|
|
tp = intotcpcb(inp);
|
|
KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
|
|
|
|
tcp_mss_update(tp, -1, NULL, NULL);
|
|
|
|
so = inp->inp_socket;
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
/* If the mss is larger than the socket buffer, decrease the mss. */
|
|
if (so->so_snd.sb_hiwat < tp->t_maxseg)
|
|
tp->t_maxseg = so->so_snd.sb_hiwat;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
|
|
V_tcpstat.tcps_mturesent++;
|
|
tp->t_rtttime = 0;
|
|
tp->snd_nxt = tp->snd_una;
|
|
tcp_free_sackholes(tp);
|
|
tp->snd_recover = tp->snd_max;
|
|
if (tp->t_flags & TF_SACK_PERMIT)
|
|
EXIT_FASTRECOVERY(tp);
|
|
tcp_output_send(tp);
|
|
return (inp);
|
|
}
|
|
|
|
/*
|
|
* Look-up the routing entry to the peer of this inpcb. If no route
|
|
* is found and it cannot be allocated, then return 0. This routine
|
|
* is called by TCP routines that access the rmx structure and by
|
|
* tcp_mss_update to get the peer/interface MTU.
|
|
*/
|
|
u_long
|
|
tcp_maxmtu(struct in_conninfo *inc, int *flags)
|
|
{
|
|
struct route sro;
|
|
struct sockaddr_in *dst;
|
|
struct ifnet *ifp;
|
|
u_long maxmtu = 0;
|
|
|
|
KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
|
|
|
|
bzero(&sro, sizeof(sro));
|
|
if (inc->inc_faddr.s_addr != INADDR_ANY) {
|
|
dst = (struct sockaddr_in *)&sro.ro_dst;
|
|
dst->sin_family = AF_INET;
|
|
dst->sin_len = sizeof(*dst);
|
|
dst->sin_addr = inc->inc_faddr;
|
|
in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
|
|
}
|
|
if (sro.ro_rt != NULL) {
|
|
ifp = sro.ro_rt->rt_ifp;
|
|
if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
|
|
maxmtu = ifp->if_mtu;
|
|
else
|
|
maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
|
|
|
|
/* Report additional interface capabilities. */
|
|
if (flags != NULL) {
|
|
if (ifp->if_capenable & IFCAP_TSO4 &&
|
|
ifp->if_hwassist & CSUM_TSO)
|
|
*flags |= CSUM_TSO;
|
|
}
|
|
RTFREE(sro.ro_rt);
|
|
}
|
|
return (maxmtu);
|
|
}
|
|
|
|
#ifdef INET6
|
|
u_long
|
|
tcp_maxmtu6(struct in_conninfo *inc, int *flags)
|
|
{
|
|
struct route_in6 sro6;
|
|
struct ifnet *ifp;
|
|
u_long maxmtu = 0;
|
|
|
|
KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
|
|
|
|
bzero(&sro6, sizeof(sro6));
|
|
if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
|
|
sro6.ro_dst.sin6_family = AF_INET6;
|
|
sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
|
|
sro6.ro_dst.sin6_addr = inc->inc6_faddr;
|
|
rtalloc_ign((struct route *)&sro6, 0);
|
|
}
|
|
if (sro6.ro_rt != NULL) {
|
|
ifp = sro6.ro_rt->rt_ifp;
|
|
if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
|
|
maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
|
|
else
|
|
maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
|
|
IN6_LINKMTU(sro6.ro_rt->rt_ifp));
|
|
|
|
/* Report additional interface capabilities. */
|
|
if (flags != NULL) {
|
|
if (ifp->if_capenable & IFCAP_TSO6 &&
|
|
ifp->if_hwassist & CSUM_TSO)
|
|
*flags |= CSUM_TSO;
|
|
}
|
|
RTFREE(sro6.ro_rt);
|
|
}
|
|
|
|
return (maxmtu);
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
#ifdef IPSEC
|
|
/* compute ESP/AH header size for TCP, including outer IP header. */
|
|
size_t
|
|
ipsec_hdrsiz_tcp(struct tcpcb *tp)
|
|
{
|
|
struct inpcb *inp;
|
|
struct mbuf *m;
|
|
size_t hdrsiz;
|
|
struct ip *ip;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
#endif
|
|
struct tcphdr *th;
|
|
|
|
if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
|
|
return (0);
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (!m)
|
|
return (0);
|
|
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV6) != 0) {
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
th = (struct tcphdr *)(ip6 + 1);
|
|
m->m_pkthdr.len = m->m_len =
|
|
sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
|
|
tcpip_fillheaders(inp, ip6, th);
|
|
hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
ip = mtod(m, struct ip *);
|
|
th = (struct tcphdr *)(ip + 1);
|
|
m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
|
|
tcpip_fillheaders(inp, ip, th);
|
|
hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
|
|
}
|
|
|
|
m_free(m);
|
|
return (hdrsiz);
|
|
}
|
|
#endif /* IPSEC */
|
|
|
|
/*
|
|
* TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
|
|
*
|
|
* This code attempts to calculate the bandwidth-delay product as a
|
|
* means of determining the optimal window size to maximize bandwidth,
|
|
* minimize RTT, and avoid the over-allocation of buffers on interfaces and
|
|
* routers. This code also does a fairly good job keeping RTTs in check
|
|
* across slow links like modems. We implement an algorithm which is very
|
|
* similar (but not meant to be) TCP/Vegas. The code operates on the
|
|
* transmitter side of a TCP connection and so only effects the transmit
|
|
* side of the connection.
|
|
*
|
|
* BACKGROUND: TCP makes no provision for the management of buffer space
|
|
* at the end points or at the intermediate routers and switches. A TCP
|
|
* stream, whether using NewReno or not, will eventually buffer as
|
|
* many packets as it is able and the only reason this typically works is
|
|
* due to the fairly small default buffers made available for a connection
|
|
* (typicaly 16K or 32K). As machines use larger windows and/or window
|
|
* scaling it is now fairly easy for even a single TCP connection to blow-out
|
|
* all available buffer space not only on the local interface, but on
|
|
* intermediate routers and switches as well. NewReno makes a misguided
|
|
* attempt to 'solve' this problem by waiting for an actual failure to occur,
|
|
* then backing off, then steadily increasing the window again until another
|
|
* failure occurs, ad-infinitum. This results in terrible oscillation that
|
|
* is only made worse as network loads increase and the idea of intentionally
|
|
* blowing out network buffers is, frankly, a terrible way to manage network
|
|
* resources.
|
|
*
|
|
* It is far better to limit the transmit window prior to the failure
|
|
* condition being achieved. There are two general ways to do this: First
|
|
* you can 'scan' through different transmit window sizes and locate the
|
|
* point where the RTT stops increasing, indicating that you have filled the
|
|
* pipe, then scan backwards until you note that RTT stops decreasing, then
|
|
* repeat ad-infinitum. This method works in principle but has severe
|
|
* implementation issues due to RTT variances, timer granularity, and
|
|
* instability in the algorithm which can lead to many false positives and
|
|
* create oscillations as well as interact badly with other TCP streams
|
|
* implementing the same algorithm.
|
|
*
|
|
* The second method is to limit the window to the bandwidth delay product
|
|
* of the link. This is the method we implement. RTT variances and our
|
|
* own manipulation of the congestion window, bwnd, can potentially
|
|
* destabilize the algorithm. For this reason we have to stabilize the
|
|
* elements used to calculate the window. We do this by using the minimum
|
|
* observed RTT, the long term average of the observed bandwidth, and
|
|
* by adding two segments worth of slop. It isn't perfect but it is able
|
|
* to react to changing conditions and gives us a very stable basis on
|
|
* which to extend the algorithm.
|
|
*/
|
|
void
|
|
tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
|
|
{
|
|
INIT_VNET_INET(tp->t_vnet);
|
|
u_long bw;
|
|
u_long bwnd;
|
|
int save_ticks;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
/*
|
|
* If inflight_enable is disabled in the middle of a tcp connection,
|
|
* make sure snd_bwnd is effectively disabled.
|
|
*/
|
|
if (V_tcp_inflight_enable == 0 ||
|
|
tp->t_rttlow < V_tcp_inflight_rttthresh) {
|
|
tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
|
|
tp->snd_bandwidth = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Figure out the bandwidth. Due to the tick granularity this
|
|
* is a very rough number and it MUST be averaged over a fairly
|
|
* long period of time. XXX we need to take into account a link
|
|
* that is not using all available bandwidth, but for now our
|
|
* slop will ramp us up if this case occurs and the bandwidth later
|
|
* increases.
|
|
*
|
|
* Note: if ticks rollover 'bw' may wind up negative. We must
|
|
* effectively reset t_bw_rtttime for this case.
|
|
*/
|
|
save_ticks = ticks;
|
|
if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
|
|
return;
|
|
|
|
bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
|
|
(save_ticks - tp->t_bw_rtttime);
|
|
tp->t_bw_rtttime = save_ticks;
|
|
tp->t_bw_rtseq = ack_seq;
|
|
if (tp->t_bw_rtttime == 0 || (int)bw < 0)
|
|
return;
|
|
bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
|
|
|
|
tp->snd_bandwidth = bw;
|
|
|
|
/*
|
|
* Calculate the semi-static bandwidth delay product, plus two maximal
|
|
* segments. The additional slop puts us squarely in the sweet
|
|
* spot and also handles the bandwidth run-up case and stabilization.
|
|
* Without the slop we could be locking ourselves into a lower
|
|
* bandwidth.
|
|
*
|
|
* Situations Handled:
|
|
* (1) Prevents over-queueing of packets on LANs, especially on
|
|
* high speed LANs, allowing larger TCP buffers to be
|
|
* specified, and also does a good job preventing
|
|
* over-queueing of packets over choke points like modems
|
|
* (at least for the transmit side).
|
|
*
|
|
* (2) Is able to handle changing network loads (bandwidth
|
|
* drops so bwnd drops, bandwidth increases so bwnd
|
|
* increases).
|
|
*
|
|
* (3) Theoretically should stabilize in the face of multiple
|
|
* connections implementing the same algorithm (this may need
|
|
* a little work).
|
|
*
|
|
* (4) Stability value (defaults to 20 = 2 maximal packets) can
|
|
* be adjusted with a sysctl but typically only needs to be
|
|
* on very slow connections. A value no smaller then 5
|
|
* should be used, but only reduce this default if you have
|
|
* no other choice.
|
|
*/
|
|
#define USERTT ((tp->t_srtt + tp->t_rttbest) / 2)
|
|
bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + V_tcp_inflight_stab * tp->t_maxseg / 10;
|
|
#undef USERTT
|
|
|
|
if (tcp_inflight_debug > 0) {
|
|
static int ltime;
|
|
if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
|
|
ltime = ticks;
|
|
printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
|
|
tp,
|
|
bw,
|
|
tp->t_rttbest,
|
|
tp->t_srtt,
|
|
bwnd
|
|
);
|
|
}
|
|
}
|
|
if ((long)bwnd < V_tcp_inflight_min)
|
|
bwnd = V_tcp_inflight_min;
|
|
if (bwnd > V_tcp_inflight_max)
|
|
bwnd = V_tcp_inflight_max;
|
|
if ((long)bwnd < tp->t_maxseg * 2)
|
|
bwnd = tp->t_maxseg * 2;
|
|
tp->snd_bwnd = bwnd;
|
|
}
|
|
|
|
#ifdef TCP_SIGNATURE
|
|
/*
|
|
* Callback function invoked by m_apply() to digest TCP segment data
|
|
* contained within an mbuf chain.
|
|
*/
|
|
static int
|
|
tcp_signature_apply(void *fstate, void *data, u_int len)
|
|
{
|
|
|
|
MD5Update(fstate, (u_char *)data, len);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Compute TCP-MD5 hash of a TCP segment. (RFC2385)
|
|
*
|
|
* Parameters:
|
|
* m pointer to head of mbuf chain
|
|
* _unused
|
|
* len length of TCP segment data, excluding options
|
|
* optlen length of TCP segment options
|
|
* buf pointer to storage for computed MD5 digest
|
|
* direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
|
|
*
|
|
* We do this over ip, tcphdr, segment data, and the key in the SADB.
|
|
* When called from tcp_input(), we can be sure that th_sum has been
|
|
* zeroed out and verified already.
|
|
*
|
|
* Return 0 if successful, otherwise return -1.
|
|
*
|
|
* XXX The key is retrieved from the system's PF_KEY SADB, by keying a
|
|
* search with the destination IP address, and a 'magic SPI' to be
|
|
* determined by the application. This is hardcoded elsewhere to 1179
|
|
* right now. Another branch of this code exists which uses the SPD to
|
|
* specify per-application flows but it is unstable.
|
|
*/
|
|
int
|
|
tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
|
|
u_char *buf, u_int direction)
|
|
{
|
|
INIT_VNET_IPSEC(curvnet);
|
|
union sockaddr_union dst;
|
|
struct ippseudo ippseudo;
|
|
MD5_CTX ctx;
|
|
int doff;
|
|
struct ip *ip;
|
|
struct ipovly *ipovly;
|
|
struct secasvar *sav;
|
|
struct tcphdr *th;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
struct in6_addr in6;
|
|
char ip6buf[INET6_ADDRSTRLEN];
|
|
uint32_t plen;
|
|
uint16_t nhdr;
|
|
#endif
|
|
u_short savecsum;
|
|
|
|
KASSERT(m != NULL, ("NULL mbuf chain"));
|
|
KASSERT(buf != NULL, ("NULL signature pointer"));
|
|
|
|
/* Extract the destination from the IP header in the mbuf. */
|
|
bzero(&dst, sizeof(union sockaddr_union));
|
|
ip = mtod(m, struct ip *);
|
|
#ifdef INET6
|
|
ip6 = NULL; /* Make the compiler happy. */
|
|
#endif
|
|
switch (ip->ip_v) {
|
|
case IPVERSION:
|
|
dst.sa.sa_len = sizeof(struct sockaddr_in);
|
|
dst.sa.sa_family = AF_INET;
|
|
dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
|
|
ip->ip_src : ip->ip_dst;
|
|
break;
|
|
#ifdef INET6
|
|
case (IPV6_VERSION >> 4):
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
dst.sa.sa_len = sizeof(struct sockaddr_in6);
|
|
dst.sa.sa_family = AF_INET6;
|
|
dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
|
|
ip6->ip6_src : ip6->ip6_dst;
|
|
break;
|
|
#endif
|
|
default:
|
|
return (EINVAL);
|
|
/* NOTREACHED */
|
|
break;
|
|
}
|
|
|
|
/* Look up an SADB entry which matches the address of the peer. */
|
|
sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
|
|
if (sav == NULL) {
|
|
ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
|
|
(ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
|
|
#ifdef INET6
|
|
(ip->ip_v == (IPV6_VERSION >> 4)) ?
|
|
ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
|
|
#endif
|
|
"(unsupported)"));
|
|
return (EINVAL);
|
|
}
|
|
|
|
MD5Init(&ctx);
|
|
/*
|
|
* Step 1: Update MD5 hash with IP(v6) pseudo-header.
|
|
*
|
|
* XXX The ippseudo header MUST be digested in network byte order,
|
|
* or else we'll fail the regression test. Assume all fields we've
|
|
* been doing arithmetic on have been in host byte order.
|
|
* XXX One cannot depend on ipovly->ih_len here. When called from
|
|
* tcp_output(), the underlying ip_len member has not yet been set.
|
|
*/
|
|
switch (ip->ip_v) {
|
|
case IPVERSION:
|
|
ipovly = (struct ipovly *)ip;
|
|
ippseudo.ippseudo_src = ipovly->ih_src;
|
|
ippseudo.ippseudo_dst = ipovly->ih_dst;
|
|
ippseudo.ippseudo_pad = 0;
|
|
ippseudo.ippseudo_p = IPPROTO_TCP;
|
|
ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
|
|
optlen);
|
|
MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
|
|
|
|
th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
|
|
doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
|
|
break;
|
|
#ifdef INET6
|
|
/*
|
|
* RFC 2385, 2.0 Proposal
|
|
* For IPv6, the pseudo-header is as described in RFC 2460, namely the
|
|
* 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
|
|
* extended next header value (to form 32 bits), and 32-bit segment
|
|
* length.
|
|
* Note: Upper-Layer Packet Length comes before Next Header.
|
|
*/
|
|
case (IPV6_VERSION >> 4):
|
|
in6 = ip6->ip6_src;
|
|
in6_clearscope(&in6);
|
|
MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
|
|
in6 = ip6->ip6_dst;
|
|
in6_clearscope(&in6);
|
|
MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
|
|
plen = htonl(len + sizeof(struct tcphdr) + optlen);
|
|
MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
|
|
nhdr = 0;
|
|
MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
|
|
MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
|
|
MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
|
|
nhdr = IPPROTO_TCP;
|
|
MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
|
|
|
|
th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
|
|
doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
|
|
break;
|
|
#endif
|
|
default:
|
|
return (EINVAL);
|
|
/* NOTREACHED */
|
|
break;
|
|
}
|
|
|
|
|
|
/*
|
|
* Step 2: Update MD5 hash with TCP header, excluding options.
|
|
* The TCP checksum must be set to zero.
|
|
*/
|
|
savecsum = th->th_sum;
|
|
th->th_sum = 0;
|
|
MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
|
|
th->th_sum = savecsum;
|
|
|
|
/*
|
|
* Step 3: Update MD5 hash with TCP segment data.
|
|
* Use m_apply() to avoid an early m_pullup().
|
|
*/
|
|
if (len > 0)
|
|
m_apply(m, doff, len, tcp_signature_apply, &ctx);
|
|
|
|
/*
|
|
* Step 4: Update MD5 hash with shared secret.
|
|
*/
|
|
MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
|
|
MD5Final(buf, &ctx);
|
|
|
|
key_sa_recordxfer(sav, m);
|
|
KEY_FREESAV(&sav);
|
|
return (0);
|
|
}
|
|
#endif /* TCP_SIGNATURE */
|
|
|
|
static int
|
|
sysctl_drop(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
#ifdef INET6
|
|
INIT_VNET_INET6(curvnet);
|
|
#endif
|
|
/* addrs[0] is a foreign socket, addrs[1] is a local one. */
|
|
struct sockaddr_storage addrs[2];
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
struct tcptw *tw;
|
|
struct sockaddr_in *fin, *lin;
|
|
#ifdef INET6
|
|
struct sockaddr_in6 *fin6, *lin6;
|
|
struct in6_addr f6, l6;
|
|
#endif
|
|
int error;
|
|
|
|
inp = NULL;
|
|
fin = lin = NULL;
|
|
#ifdef INET6
|
|
fin6 = lin6 = NULL;
|
|
#endif
|
|
error = 0;
|
|
|
|
if (req->oldptr != NULL || req->oldlen != 0)
|
|
return (EINVAL);
|
|
if (req->newptr == NULL)
|
|
return (EPERM);
|
|
if (req->newlen < sizeof(addrs))
|
|
return (ENOMEM);
|
|
error = SYSCTL_IN(req, &addrs, sizeof(addrs));
|
|
if (error)
|
|
return (error);
|
|
|
|
switch (addrs[0].ss_family) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
fin6 = (struct sockaddr_in6 *)&addrs[0];
|
|
lin6 = (struct sockaddr_in6 *)&addrs[1];
|
|
if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
|
|
lin6->sin6_len != sizeof(struct sockaddr_in6))
|
|
return (EINVAL);
|
|
if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
|
|
if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
|
|
return (EINVAL);
|
|
in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
|
|
in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
|
|
fin = (struct sockaddr_in *)&addrs[0];
|
|
lin = (struct sockaddr_in *)&addrs[1];
|
|
break;
|
|
}
|
|
error = sa6_embedscope(fin6, V_ip6_use_defzone);
|
|
if (error)
|
|
return (error);
|
|
error = sa6_embedscope(lin6, V_ip6_use_defzone);
|
|
if (error)
|
|
return (error);
|
|
break;
|
|
#endif
|
|
case AF_INET:
|
|
fin = (struct sockaddr_in *)&addrs[0];
|
|
lin = (struct sockaddr_in *)&addrs[1];
|
|
if (fin->sin_len != sizeof(struct sockaddr_in) ||
|
|
lin->sin_len != sizeof(struct sockaddr_in))
|
|
return (EINVAL);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
INP_INFO_WLOCK(&V_tcbinfo);
|
|
switch (addrs[0].ss_family) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
inp = in6_pcblookup_hash(&V_tcbinfo, &f6, fin6->sin6_port,
|
|
&l6, lin6->sin6_port, 0, NULL);
|
|
break;
|
|
#endif
|
|
case AF_INET:
|
|
inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr,
|
|
fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL);
|
|
break;
|
|
}
|
|
if (inp != NULL) {
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_flags & INP_TIMEWAIT) {
|
|
/*
|
|
* XXXRW: There currently exists a state where an
|
|
* inpcb is present, but its timewait state has been
|
|
* discarded. For now, don't allow dropping of this
|
|
* type of inpcb.
|
|
*/
|
|
tw = intotw(inp);
|
|
if (tw != NULL)
|
|
tcp_twclose(tw, 0);
|
|
else
|
|
INP_WUNLOCK(inp);
|
|
} else if (!(inp->inp_flags & INP_DROPPED) &&
|
|
!(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
|
|
tp = intotcpcb(inp);
|
|
tp = tcp_drop(tp, ECONNABORTED);
|
|
if (tp != NULL)
|
|
INP_WUNLOCK(inp);
|
|
} else
|
|
INP_WUNLOCK(inp);
|
|
} else
|
|
error = ESRCH;
|
|
INP_INFO_WUNLOCK(&V_tcbinfo);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
|
|
CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
|
|
0, sysctl_drop, "", "Drop TCP connection");
|
|
|
|
/*
|
|
* Generate a standardized TCP log line for use throughout the
|
|
* tcp subsystem. Memory allocation is done with M_NOWAIT to
|
|
* allow use in the interrupt context.
|
|
*
|
|
* NB: The caller MUST free(s, M_TCPLOG) the returned string.
|
|
* NB: The function may return NULL if memory allocation failed.
|
|
*
|
|
* Due to header inclusion and ordering limitations the struct ip
|
|
* and ip6_hdr pointers have to be passed as void pointers.
|
|
*/
|
|
char *
|
|
tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
|
|
const void *ip6hdr)
|
|
{
|
|
char *s, *sp;
|
|
size_t size;
|
|
struct ip *ip;
|
|
#ifdef INET6
|
|
const struct ip6_hdr *ip6;
|
|
|
|
ip6 = (const struct ip6_hdr *)ip6hdr;
|
|
#endif /* INET6 */
|
|
ip = (struct ip *)ip4hdr;
|
|
|
|
/*
|
|
* The log line looks like this:
|
|
* "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
|
|
*/
|
|
size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
|
|
sizeof(PRINT_TH_FLAGS) + 1 +
|
|
#ifdef INET6
|
|
2 * INET6_ADDRSTRLEN;
|
|
#else
|
|
2 * INET_ADDRSTRLEN;
|
|
#endif /* INET6 */
|
|
|
|
/* Is logging enabled? */
|
|
if (tcp_log_debug == 0 && tcp_log_in_vain == 0)
|
|
return (NULL);
|
|
|
|
s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
|
|
if (s == NULL)
|
|
return (NULL);
|
|
|
|
strcat(s, "TCP: [");
|
|
sp = s + strlen(s);
|
|
|
|
if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
|
|
inet_ntoa_r(inc->inc_faddr, sp);
|
|
sp = s + strlen(s);
|
|
sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
|
|
sp = s + strlen(s);
|
|
inet_ntoa_r(inc->inc_laddr, sp);
|
|
sp = s + strlen(s);
|
|
sprintf(sp, "]:%i", ntohs(inc->inc_lport));
|
|
#ifdef INET6
|
|
} else if (inc) {
|
|
ip6_sprintf(sp, &inc->inc6_faddr);
|
|
sp = s + strlen(s);
|
|
sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
|
|
sp = s + strlen(s);
|
|
ip6_sprintf(sp, &inc->inc6_laddr);
|
|
sp = s + strlen(s);
|
|
sprintf(sp, "]:%i", ntohs(inc->inc_lport));
|
|
} else if (ip6 && th) {
|
|
ip6_sprintf(sp, &ip6->ip6_src);
|
|
sp = s + strlen(s);
|
|
sprintf(sp, "]:%i to [", ntohs(th->th_sport));
|
|
sp = s + strlen(s);
|
|
ip6_sprintf(sp, &ip6->ip6_dst);
|
|
sp = s + strlen(s);
|
|
sprintf(sp, "]:%i", ntohs(th->th_dport));
|
|
#endif /* INET6 */
|
|
} else if (ip && th) {
|
|
inet_ntoa_r(ip->ip_src, sp);
|
|
sp = s + strlen(s);
|
|
sprintf(sp, "]:%i to [", ntohs(th->th_sport));
|
|
sp = s + strlen(s);
|
|
inet_ntoa_r(ip->ip_dst, sp);
|
|
sp = s + strlen(s);
|
|
sprintf(sp, "]:%i", ntohs(th->th_dport));
|
|
} else {
|
|
free(s, M_TCPLOG);
|
|
return (NULL);
|
|
}
|
|
sp = s + strlen(s);
|
|
if (th)
|
|
sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
|
|
if (*(s + size - 1) != '\0')
|
|
panic("%s: string too long", __func__);
|
|
return (s);
|
|
}
|