freebsd-skq/sys/powerpc/booke/pmap_32.c
Justin Hibbits 45b69dd63e powerpc/mmu: Convert PowerPC pmap drivers to ifunc from kobj
With IFUNC support in the kernel, we can finally get rid of our poor-man's
ifunc for pmap, utilizing kobj.  Since moea64 uses a second tier kobj as
well, for its own private methods, this adds a second pmap install function
(pmap_mmu_init()) to perform pmap 'post-install pre-bootstrap'
initialization, before the IFUNCs get initialized.

Reviewed by:	bdragon
2020-05-27 01:24:12 +00:00

999 lines
25 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2020 Justin Hibbits
* Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
* Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Some hw specific parts of this pmap were derived or influenced
* by NetBSD's ibm4xx pmap module. More generic code is shared with
* a few other pmap modules from the FreeBSD tree.
*/
/*
* VM layout notes:
*
* Kernel and user threads run within one common virtual address space
* defined by AS=0.
*
* 32-bit pmap:
* Virtual address space layout:
* -----------------------------
* 0x0000_0000 - 0x7fff_ffff : user process
* 0x8000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.)
* 0xc000_0000 - 0xffff_efff : KVA
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/malloc.h>
#include <sys/ktr.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kerneldump.h>
#include <sys/linker.h>
#include <sys/msgbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_kern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_param.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/vm_phys.h>
#include <vm/vm_pagequeue.h>
#include <vm/uma.h>
#include <machine/_inttypes.h>
#include <machine/cpu.h>
#include <machine/pcb.h>
#include <machine/platform.h>
#include <machine/tlb.h>
#include <machine/spr.h>
#include <machine/md_var.h>
#include <machine/mmuvar.h>
#include <machine/pmap.h>
#include <machine/pte.h>
#include <ddb/ddb.h>
#define PRI0ptrX "08x"
/* Reserved KVA space and mutex for mmu_booke_zero_page. */
static vm_offset_t zero_page_va;
static struct mtx zero_page_mutex;
/* Reserved KVA space and mutex for mmu_booke_copy_page. */
static vm_offset_t copy_page_src_va;
static vm_offset_t copy_page_dst_va;
static struct mtx copy_page_mutex;
static vm_offset_t kernel_ptbl_root;
static unsigned int kernel_ptbls; /* Number of KVA ptbls. */
/**************************************************************************/
/* PMAP */
/**************************************************************************/
#define VM_MAPDEV_BASE ((vm_offset_t)VM_MAXUSER_ADDRESS + PAGE_SIZE)
static void tid_flush(tlbtid_t tid);
static unsigned long ilog2(unsigned long);
/**************************************************************************/
/* Page table management */
/**************************************************************************/
#define PMAP_ROOT_SIZE (sizeof(pte_t**) * PDIR_NENTRIES)
static void ptbl_init(void);
static struct ptbl_buf *ptbl_buf_alloc(void);
static void ptbl_buf_free(struct ptbl_buf *);
static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
static pte_t *ptbl_alloc(pmap_t, unsigned int, boolean_t);
static void ptbl_free(pmap_t, unsigned int);
static void ptbl_hold(pmap_t, unsigned int);
static int ptbl_unhold(pmap_t, unsigned int);
static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t);
static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
static int pte_remove(pmap_t, vm_offset_t, uint8_t);
static pte_t *pte_find(pmap_t, vm_offset_t);
struct ptbl_buf {
TAILQ_ENTRY(ptbl_buf) link; /* list link */
vm_offset_t kva; /* va of mapping */
};
/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
#define PTBL_BUFS (128 * 16)
/* ptbl free list and a lock used for access synchronization. */
static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
static struct mtx ptbl_buf_freelist_lock;
/* Base address of kva space allocated fot ptbl bufs. */
static vm_offset_t ptbl_buf_pool_vabase;
/* Pointer to ptbl_buf structures. */
static struct ptbl_buf *ptbl_bufs;
/**************************************************************************/
/* Page table related */
/**************************************************************************/
/* Initialize pool of kva ptbl buffers. */
static void
ptbl_init(void)
{
int i;
CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
(uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
__func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
TAILQ_INIT(&ptbl_buf_freelist);
for (i = 0; i < PTBL_BUFS; i++) {
ptbl_bufs[i].kva =
ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
}
}
/* Get a ptbl_buf from the freelist. */
static struct ptbl_buf *
ptbl_buf_alloc(void)
{
struct ptbl_buf *buf;
mtx_lock(&ptbl_buf_freelist_lock);
buf = TAILQ_FIRST(&ptbl_buf_freelist);
if (buf != NULL)
TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
mtx_unlock(&ptbl_buf_freelist_lock);
CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
return (buf);
}
/* Return ptbl buff to free pool. */
static void
ptbl_buf_free(struct ptbl_buf *buf)
{
CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
mtx_lock(&ptbl_buf_freelist_lock);
TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
mtx_unlock(&ptbl_buf_freelist_lock);
}
/*
* Search the list of allocated ptbl bufs and find on list of allocated ptbls
*/
static void
ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
{
struct ptbl_buf *pbuf;
CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
if (pbuf->kva == (vm_offset_t)ptbl) {
/* Remove from pmap ptbl buf list. */
TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
/* Free corresponding ptbl buf. */
ptbl_buf_free(pbuf);
break;
}
}
/* Allocate page table. */
static pte_t *
ptbl_alloc(pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
{
vm_page_t mtbl[PTBL_PAGES];
vm_page_t m;
struct ptbl_buf *pbuf;
unsigned int pidx;
pte_t *ptbl;
int i, j;
CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
(pmap == kernel_pmap), pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_alloc: invalid pdir_idx"));
KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
("pte_alloc: valid ptbl entry exists!"));
pbuf = ptbl_buf_alloc();
if (pbuf == NULL)
panic("pte_alloc: couldn't alloc kernel virtual memory");
ptbl = (pte_t *)pbuf->kva;
CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
for (i = 0; i < PTBL_PAGES; i++) {
pidx = (PTBL_PAGES * pdir_idx) + i;
while ((m = vm_page_alloc(NULL, pidx,
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
if (nosleep) {
ptbl_free_pmap_ptbl(pmap, ptbl);
for (j = 0; j < i; j++)
vm_page_free(mtbl[j]);
vm_wire_sub(i);
return (NULL);
}
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
vm_wait(NULL);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
}
mtbl[i] = m;
}
/* Map allocated pages into kernel_pmap. */
mmu_booke_qenter((vm_offset_t)ptbl, mtbl, PTBL_PAGES);
/* Zero whole ptbl. */
bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
/* Add pbuf to the pmap ptbl bufs list. */
TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
return (ptbl);
}
/* Free ptbl pages and invalidate pdir entry. */
static void
ptbl_free(pmap_t pmap, unsigned int pdir_idx)
{
pte_t *ptbl;
vm_paddr_t pa;
vm_offset_t va;
vm_page_t m;
int i;
CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
(pmap == kernel_pmap), pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_free: invalid pdir_idx"));
ptbl = pmap->pm_pdir[pdir_idx];
CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
/*
* Invalidate the pdir entry as soon as possible, so that other CPUs
* don't attempt to look up the page tables we are releasing.
*/
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
pmap->pm_pdir[pdir_idx] = NULL;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
for (i = 0; i < PTBL_PAGES; i++) {
va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
pa = pte_vatopa(kernel_pmap, va);
m = PHYS_TO_VM_PAGE(pa);
vm_page_free_zero(m);
vm_wire_sub(1);
mmu_booke_kremove(va);
}
ptbl_free_pmap_ptbl(pmap, ptbl);
}
/*
* Decrement ptbl pages hold count and attempt to free ptbl pages.
* Called when removing pte entry from ptbl.
*
* Return 1 if ptbl pages were freed.
*/
static int
ptbl_unhold(pmap_t pmap, unsigned int pdir_idx)
{
pte_t *ptbl;
vm_paddr_t pa;
vm_page_t m;
int i;
CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
(pmap == kernel_pmap), pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_unhold: invalid pdir_idx"));
KASSERT((pmap != kernel_pmap),
("ptbl_unhold: unholding kernel ptbl!"));
ptbl = pmap->pm_pdir[pdir_idx];
//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
("ptbl_unhold: non kva ptbl"));
/* decrement hold count */
for (i = 0; i < PTBL_PAGES; i++) {
pa = pte_vatopa(kernel_pmap,
(vm_offset_t)ptbl + (i * PAGE_SIZE));
m = PHYS_TO_VM_PAGE(pa);
m->ref_count--;
}
/*
* Free ptbl pages if there are no pte etries in this ptbl.
* ref_count has the same value for all ptbl pages, so check the last
* page.
*/
if (m->ref_count == 0) {
ptbl_free(pmap, pdir_idx);
//debugf("ptbl_unhold: e (freed ptbl)\n");
return (1);
}
return (0);
}
/*
* Increment hold count for ptbl pages. This routine is used when a new pte
* entry is being inserted into the ptbl.
*/
static void
ptbl_hold(pmap_t pmap, unsigned int pdir_idx)
{
vm_paddr_t pa;
pte_t *ptbl;
vm_page_t m;
int i;
CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_hold: invalid pdir_idx"));
KASSERT((pmap != kernel_pmap),
("ptbl_hold: holding kernel ptbl!"));
ptbl = pmap->pm_pdir[pdir_idx];
KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
for (i = 0; i < PTBL_PAGES; i++) {
pa = pte_vatopa(kernel_pmap,
(vm_offset_t)ptbl + (i * PAGE_SIZE));
m = PHYS_TO_VM_PAGE(pa);
m->ref_count++;
}
}
/*
* Clean pte entry, try to free page table page if requested.
*
* Return 1 if ptbl pages were freed, otherwise return 0.
*/
static int
pte_remove(pmap_t pmap, vm_offset_t va, uint8_t flags)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
vm_page_t m;
pte_t *ptbl;
pte_t *pte;
//int su = (pmap == kernel_pmap);
//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
// su, (u_int32_t)pmap, va, flags);
ptbl = pmap->pm_pdir[pdir_idx];
KASSERT(ptbl, ("pte_remove: null ptbl"));
pte = &ptbl[ptbl_idx];
if (pte == NULL || !PTE_ISVALID(pte))
return (0);
if (PTE_ISWIRED(pte))
pmap->pm_stats.wired_count--;
/* Get vm_page_t for mapped pte. */
m = PHYS_TO_VM_PAGE(PTE_PA(pte));
/* Handle managed entry. */
if (PTE_ISMANAGED(pte)) {
if (PTE_ISMODIFIED(pte))
vm_page_dirty(m);
if (PTE_ISREFERENCED(pte))
vm_page_aflag_set(m, PGA_REFERENCED);
pv_remove(pmap, va, m);
} else if (pmap == kernel_pmap && m && m->md.pv_tracked) {
/*
* Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is
* used. This is needed by the NCSW support code for fast
* VA<->PA translation.
*/
pv_remove(pmap, va, m);
if (TAILQ_EMPTY(&m->md.pv_list))
m->md.pv_tracked = false;
}
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(va);
*pte = 0;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
pmap->pm_stats.resident_count--;
if (flags & PTBL_UNHOLD) {
//debugf("pte_remove: e (unhold)\n");
return (ptbl_unhold(pmap, pdir_idx));
}
//debugf("pte_remove: e\n");
return (0);
}
/*
* Insert PTE for a given page and virtual address.
*/
static int
pte_enter(pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
boolean_t nosleep)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
pte_t *ptbl, *pte, pte_tmp;
CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
pmap == kernel_pmap, pmap, va);
/* Get the page table pointer. */
ptbl = pmap->pm_pdir[pdir_idx];
if (ptbl == NULL) {
/* Allocate page table pages. */
ptbl = ptbl_alloc(pmap, pdir_idx, nosleep);
if (ptbl == NULL) {
KASSERT(nosleep, ("nosleep and NULL ptbl"));
return (ENOMEM);
}
pmap->pm_pdir[pdir_idx] = ptbl;
pte = &ptbl[ptbl_idx];
} else {
/*
* Check if there is valid mapping for requested
* va, if there is, remove it.
*/
pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
if (PTE_ISVALID(pte)) {
pte_remove(pmap, va, PTBL_HOLD);
} else {
/*
* pte is not used, increment hold count
* for ptbl pages.
*/
if (pmap != kernel_pmap)
ptbl_hold(pmap, pdir_idx);
}
}
/*
* Insert pv_entry into pv_list for mapped page if part of managed
* memory.
*/
if ((m->oflags & VPO_UNMANAGED) == 0) {
flags |= PTE_MANAGED;
/* Create and insert pv entry. */
pv_insert(pmap, va, m);
}
pmap->pm_stats.resident_count++;
pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
pte_tmp |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(va);
*pte = pte_tmp;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
return (0);
}
/* Return the pa for the given pmap/va. */
static vm_paddr_t
pte_vatopa(pmap_t pmap, vm_offset_t va)
{
vm_paddr_t pa = 0;
pte_t *pte;
pte = pte_find(pmap, va);
if ((pte != NULL) && PTE_ISVALID(pte))
pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
return (pa);
}
/* Get a pointer to a PTE in a page table. */
static pte_t *
pte_find(pmap_t pmap, vm_offset_t va)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
if (pmap->pm_pdir[pdir_idx])
return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
return (NULL);
}
/* Get a pointer to a PTE in a page table, or the next closest (greater) one. */
static __inline pte_t *
pte_find_next(pmap_t pmap, vm_offset_t *pva)
{
vm_offset_t va;
pte_t **pdir;
pte_t *pte;
unsigned long i, j;
KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
va = *pva;
i = PDIR_IDX(va);
j = PTBL_IDX(va);
pdir = pmap->pm_pdir;
for (; i < PDIR_NENTRIES; i++, j = 0) {
if (pdir[i] == NULL)
continue;
for (; j < PTBL_NENTRIES; j++) {
pte = &pdir[i][j];
if (!PTE_ISVALID(pte))
continue;
*pva = PDIR_SIZE * i + PAGE_SIZE * j;
return (pte);
}
}
return (NULL);
}
/* Set up kernel page tables. */
static void
kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr)
{
pte_t *pte;
vm_offset_t va;
vm_offset_t pdir_start;
int i;
kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
kernel_pmap->pm_pdir = (pte_t **)kernel_ptbl_root;
pdir_start = kernel_ptbl_root + PDIR_NENTRIES * sizeof(pte_t);
/* Initialize kernel pdir */
for (i = 0; i < kernel_ptbls; i++) {
kernel_pmap->pm_pdir[kptbl_min + i] =
(pte_t *)(pdir_start + (i * PAGE_SIZE * PTBL_PAGES));
}
/*
* Fill in PTEs covering kernel code and data. They are not required
* for address translation, as this area is covered by static TLB1
* entries, but for pte_vatopa() to work correctly with kernel area
* addresses.
*/
for (va = addr; va < data_end; va += PAGE_SIZE) {
pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
powerpc_sync();
*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
PTE_VALID | PTE_PS_4KB;
}
}
static vm_offset_t
mmu_booke_alloc_kernel_pgtables(vm_offset_t data_end)
{
/* Allocate space for ptbl_bufs. */
ptbl_bufs = (struct ptbl_buf *)data_end;
data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
debugf(" ptbl_bufs at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
(uintptr_t)ptbl_bufs, data_end);
data_end = round_page(data_end);
kernel_ptbl_root = data_end;
data_end += PDIR_NENTRIES * sizeof(pte_t*);
/* Allocate PTE tables for kernel KVA. */
kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
PDIR_SIZE);
data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
debugf(" kernel ptbls: %d\n", kernel_ptbls);
debugf(" kernel pdir at %#jx end = %#jx\n",
(uintmax_t)kernel_ptbl_root, (uintmax_t)data_end);
return (data_end);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
static int
mmu_booke_pinit(pmap_t pmap)
{
int i;
CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
curthread->td_proc->p_pid, curthread->td_proc->p_comm);
KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
for (i = 0; i < MAXCPU; i++)
pmap->pm_tid[i] = TID_NONE;
CPU_ZERO(&kernel_pmap->pm_active);
bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
pmap->pm_pdir = uma_zalloc(ptbl_root_zone, M_WAITOK);
bzero(pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
TAILQ_INIT(&pmap->pm_ptbl_list);
return (1);
}
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by mmu_booke_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
static void
mmu_booke_release(pmap_t pmap)
{
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
uma_zfree(ptbl_root_zone, pmap->pm_pdir);
}
static void
mmu_booke_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
{
pte_t *pte;
vm_paddr_t pa = 0;
int sync_sz, valid;
pmap_t pmap;
vm_page_t m;
vm_offset_t addr;
int active;
rw_wlock(&pvh_global_lock);
pmap = PCPU_GET(curpmap);
active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
while (sz > 0) {
PMAP_LOCK(pm);
pte = pte_find(pm, va);
valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
if (valid)
pa = PTE_PA(pte);
PMAP_UNLOCK(pm);
sync_sz = PAGE_SIZE - (va & PAGE_MASK);
sync_sz = min(sync_sz, sz);
if (valid) {
if (!active) {
/* Create a mapping in the active pmap. */
addr = 0;
m = PHYS_TO_VM_PAGE(pa);
PMAP_LOCK(pmap);
pte_enter(pmap, m, addr,
PTE_SR | PTE_VALID, FALSE);
addr += (va & PAGE_MASK);
__syncicache((void *)addr, sync_sz);
pte_remove(pmap, addr, PTBL_UNHOLD);
PMAP_UNLOCK(pmap);
} else
__syncicache((void *)va, sync_sz);
}
va += sync_sz;
sz -= sync_sz;
}
rw_wunlock(&pvh_global_lock);
}
/*
* mmu_booke_zero_page_area zeros the specified hardware page by
* mapping it into virtual memory and using bzero to clear
* its contents.
*
* off and size must reside within a single page.
*/
static void
mmu_booke_zero_page_area(vm_page_t m, int off, int size)
{
vm_offset_t va;
/* XXX KASSERT off and size are within a single page? */
mtx_lock(&zero_page_mutex);
va = zero_page_va;
mmu_booke_kenter(va, VM_PAGE_TO_PHYS(m));
bzero((caddr_t)va + off, size);
mmu_booke_kremove(va);
mtx_unlock(&zero_page_mutex);
}
/*
* mmu_booke_zero_page zeros the specified hardware page.
*/
static void
mmu_booke_zero_page(vm_page_t m)
{
vm_offset_t off, va;
va = zero_page_va;
mtx_lock(&zero_page_mutex);
mmu_booke_kenter(va, VM_PAGE_TO_PHYS(m));
for (off = 0; off < PAGE_SIZE; off += cacheline_size)
__asm __volatile("dcbz 0,%0" :: "r"(va + off));
mmu_booke_kremove(va);
mtx_unlock(&zero_page_mutex);
}
/*
* mmu_booke_copy_page copies the specified (machine independent) page by
* mapping the page into virtual memory and using memcopy to copy the page,
* one machine dependent page at a time.
*/
static void
mmu_booke_copy_page(vm_page_t sm, vm_page_t dm)
{
vm_offset_t sva, dva;
sva = copy_page_src_va;
dva = copy_page_dst_va;
mtx_lock(&copy_page_mutex);
mmu_booke_kenter(sva, VM_PAGE_TO_PHYS(sm));
mmu_booke_kenter(dva, VM_PAGE_TO_PHYS(dm));
memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
mmu_booke_kremove(dva);
mmu_booke_kremove(sva);
mtx_unlock(&copy_page_mutex);
}
static inline void
mmu_booke_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
{
void *a_cp, *b_cp;
vm_offset_t a_pg_offset, b_pg_offset;
int cnt;
mtx_lock(&copy_page_mutex);
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
mmu_booke_kenter(copy_page_src_va,
VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
a_cp = (char *)copy_page_src_va + a_pg_offset;
b_pg_offset = b_offset & PAGE_MASK;
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
mmu_booke_kenter(copy_page_dst_va,
VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
b_cp = (char *)copy_page_dst_va + b_pg_offset;
bcopy(a_cp, b_cp, cnt);
mmu_booke_kremove(copy_page_dst_va);
mmu_booke_kremove(copy_page_src_va);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
mtx_unlock(&copy_page_mutex);
}
static vm_offset_t
mmu_booke_quick_enter_page(vm_page_t m)
{
vm_paddr_t paddr;
vm_offset_t qaddr;
uint32_t flags;
pte_t *pte;
paddr = VM_PAGE_TO_PHYS(m);
flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT;
flags |= PTE_PS_4KB;
critical_enter();
qaddr = PCPU_GET(qmap_addr);
pte = pte_find(kernel_pmap, qaddr);
KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy"));
/*
* XXX: tlbivax is broadcast to other cores, but qaddr should
* not be present in other TLBs. Is there a better instruction
* sequence to use? Or just forget it & use mmu_booke_kenter()...
*/
__asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK));
__asm __volatile("isync; msync");
*pte = PTE_RPN_FROM_PA(paddr) | flags;
/* Flush the real memory from the instruction cache. */
if ((flags & (PTE_I | PTE_G)) == 0)
__syncicache((void *)qaddr, PAGE_SIZE);
return (qaddr);
}
static void
mmu_booke_quick_remove_page(vm_offset_t addr)
{
pte_t *pte;
pte = pte_find(kernel_pmap, addr);
KASSERT(PCPU_GET(qmap_addr) == addr,
("mmu_booke_quick_remove_page: invalid address"));
KASSERT(*pte != 0,
("mmu_booke_quick_remove_page: PTE not in use"));
*pte = 0;
critical_exit();
}
/**************************************************************************/
/* TID handling */
/**************************************************************************/
/*
* Return the largest uint value log such that 2^log <= num.
*/
static unsigned long
ilog2(unsigned long num)
{
long lz;
__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
return (31 - lz);
}
/*
* Invalidate all TLB0 entries which match the given TID. Note this is
* dedicated for cases when invalidations should NOT be propagated to other
* CPUs.
*/
static void
tid_flush(tlbtid_t tid)
{
register_t msr;
uint32_t mas0, mas1, mas2;
int entry, way;
/* Don't evict kernel translations */
if (tid == TID_KERNEL)
return;
msr = mfmsr();
__asm __volatile("wrteei 0");
/*
* Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use
* it for PID invalidation.
*/
switch ((mfpvr() >> 16) & 0xffff) {
case FSL_E500mc:
case FSL_E5500:
case FSL_E6500:
mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT);
/* tlbilxpid */
__asm __volatile("isync; .long 0x7c200024; isync; msync");
__asm __volatile("wrtee %0" :: "r"(msr));
return;
}
for (way = 0; way < TLB0_WAYS; way++)
for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) {
mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
mtspr(SPR_MAS0, mas0);
mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT;
mtspr(SPR_MAS2, mas2);
__asm __volatile("isync; tlbre");
mas1 = mfspr(SPR_MAS1);
if (!(mas1 & MAS1_VALID))
continue;
if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid)
continue;
mas1 &= ~MAS1_VALID;
mtspr(SPR_MAS1, mas1);
__asm __volatile("isync; tlbwe; isync; msync");
}
__asm __volatile("wrtee %0" :: "r"(msr));
}