emaste ce98938f82 readelf: display NT_GNU_PROPERTY_TYPE_0 note name
NT_GNU_PROPERTY_TYPE_0 in a .note.gnu.property section "contains a
program property note which describes special handling requirements
for linker and run-time loader." (from the System V Application Binary
Interface - Linux Extensions")

Intel CET uses two processor-specific program properties in
NT_GNU_PROPERTY_TYPE_0: GNU_PROPERTY_X86_FEATURE_1_IBT to indicate that
all executable sections are compatible with Indirect Branch Tracking,
and GNU_PROPERTY_X86_FEATURE_1_SHSTK to indicate that sections are
compatible with shadow stack.

A later change should add decoding of the individual properties.

MFC after:	1 week
Sponsored by:	The FreeBSD Foundation
2018-08-10 10:37:25 +00:00

7412 lines
185 KiB
C

/*-
* Copyright (c) 2009-2015 Kai Wang
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/queue.h>
#include <ar.h>
#include <assert.h>
#include <ctype.h>
#include <dwarf.h>
#include <err.h>
#include <fcntl.h>
#include <gelf.h>
#include <getopt.h>
#include <libdwarf.h>
#include <libelftc.h>
#include <libgen.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include "_elftc.h"
ELFTC_VCSID("$Id: readelf.c 3580 2017-09-15 23:29:59Z emaste $");
/* Backwards compatability for older FreeBSD releases. */
#ifndef STB_GNU_UNIQUE
#define STB_GNU_UNIQUE 10
#endif
#ifndef STT_SPARC_REGISTER
#define STT_SPARC_REGISTER 13
#endif
/*
* readelf(1) options.
*/
#define RE_AA 0x00000001
#define RE_C 0x00000002
#define RE_DD 0x00000004
#define RE_D 0x00000008
#define RE_G 0x00000010
#define RE_H 0x00000020
#define RE_II 0x00000040
#define RE_I 0x00000080
#define RE_L 0x00000100
#define RE_NN 0x00000200
#define RE_N 0x00000400
#define RE_P 0x00000800
#define RE_R 0x00001000
#define RE_SS 0x00002000
#define RE_S 0x00004000
#define RE_T 0x00008000
#define RE_U 0x00010000
#define RE_VV 0x00020000
#define RE_WW 0x00040000
#define RE_W 0x00080000
#define RE_X 0x00100000
/*
* dwarf dump options.
*/
#define DW_A 0x00000001
#define DW_FF 0x00000002
#define DW_F 0x00000004
#define DW_I 0x00000008
#define DW_LL 0x00000010
#define DW_L 0x00000020
#define DW_M 0x00000040
#define DW_O 0x00000080
#define DW_P 0x00000100
#define DW_RR 0x00000200
#define DW_R 0x00000400
#define DW_S 0x00000800
#define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \
DW_R | DW_RR | DW_S)
/*
* readelf(1) run control flags.
*/
#define DISPLAY_FILENAME 0x0001
/*
* Internal data structure for sections.
*/
struct section {
const char *name; /* section name */
Elf_Scn *scn; /* section scn */
uint64_t off; /* section offset */
uint64_t sz; /* section size */
uint64_t entsize; /* section entsize */
uint64_t align; /* section alignment */
uint64_t type; /* section type */
uint64_t flags; /* section flags */
uint64_t addr; /* section virtual addr */
uint32_t link; /* section link ndx */
uint32_t info; /* section info ndx */
};
struct dumpop {
union {
size_t si; /* section index */
const char *sn; /* section name */
} u;
enum {
DUMP_BY_INDEX = 0,
DUMP_BY_NAME
} type; /* dump type */
#define HEX_DUMP 0x0001
#define STR_DUMP 0x0002
int op; /* dump operation */
STAILQ_ENTRY(dumpop) dumpop_list;
};
struct symver {
const char *name;
int type;
};
/*
* Structure encapsulates the global data for readelf(1).
*/
struct readelf {
const char *filename; /* current processing file. */
int options; /* command line options. */
int flags; /* run control flags. */
int dop; /* dwarf dump options. */
Elf *elf; /* underlying ELF descriptor. */
Elf *ar; /* archive ELF descriptor. */
Dwarf_Debug dbg; /* DWARF handle. */
Dwarf_Half cu_psize; /* DWARF CU pointer size. */
Dwarf_Half cu_osize; /* DWARF CU offset size. */
Dwarf_Half cu_ver; /* DWARF CU version. */
GElf_Ehdr ehdr; /* ELF header. */
int ec; /* ELF class. */
size_t shnum; /* #sections. */
struct section *vd_s; /* Verdef section. */
struct section *vn_s; /* Verneed section. */
struct section *vs_s; /* Versym section. */
uint16_t *vs; /* Versym array. */
int vs_sz; /* Versym array size. */
struct symver *ver; /* Version array. */
int ver_sz; /* Size of version array. */
struct section *sl; /* list of sections. */
STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */
uint64_t (*dw_read)(Elf_Data *, uint64_t *, int);
uint64_t (*dw_decode)(uint8_t **, int);
};
enum options
{
OPTION_DEBUG_DUMP
};
static struct option longopts[] = {
{"all", no_argument, NULL, 'a'},
{"arch-specific", no_argument, NULL, 'A'},
{"archive-index", no_argument, NULL, 'c'},
{"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP},
{"dynamic", no_argument, NULL, 'd'},
{"file-header", no_argument, NULL, 'h'},
{"full-section-name", no_argument, NULL, 'N'},
{"headers", no_argument, NULL, 'e'},
{"help", no_argument, 0, 'H'},
{"hex-dump", required_argument, NULL, 'x'},
{"histogram", no_argument, NULL, 'I'},
{"notes", no_argument, NULL, 'n'},
{"program-headers", no_argument, NULL, 'l'},
{"relocs", no_argument, NULL, 'r'},
{"sections", no_argument, NULL, 'S'},
{"section-headers", no_argument, NULL, 'S'},
{"section-groups", no_argument, NULL, 'g'},
{"section-details", no_argument, NULL, 't'},
{"segments", no_argument, NULL, 'l'},
{"string-dump", required_argument, NULL, 'p'},
{"symbols", no_argument, NULL, 's'},
{"syms", no_argument, NULL, 's'},
{"unwind", no_argument, NULL, 'u'},
{"use-dynamic", no_argument, NULL, 'D'},
{"version-info", no_argument, 0, 'V'},
{"version", no_argument, 0, 'v'},
{"wide", no_argument, 0, 'W'},
{NULL, 0, NULL, 0}
};
struct eflags_desc {
uint64_t flag;
const char *desc;
};
struct mips_option {
uint64_t flag;
const char *desc;
};
static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op,
int t);
static const char *aeabi_adv_simd_arch(uint64_t simd);
static const char *aeabi_align_needed(uint64_t an);
static const char *aeabi_align_preserved(uint64_t ap);
static const char *aeabi_arm_isa(uint64_t ai);
static const char *aeabi_cpu_arch(uint64_t arch);
static const char *aeabi_cpu_arch_profile(uint64_t pf);
static const char *aeabi_div(uint64_t du);
static const char *aeabi_enum_size(uint64_t es);
static const char *aeabi_fp_16bit_format(uint64_t fp16);
static const char *aeabi_fp_arch(uint64_t fp);
static const char *aeabi_fp_denormal(uint64_t fd);
static const char *aeabi_fp_exceptions(uint64_t fe);
static const char *aeabi_fp_hpext(uint64_t fh);
static const char *aeabi_fp_number_model(uint64_t fn);
static const char *aeabi_fp_optm_goal(uint64_t fog);
static const char *aeabi_fp_rounding(uint64_t fr);
static const char *aeabi_hardfp(uint64_t hfp);
static const char *aeabi_mpext(uint64_t mp);
static const char *aeabi_optm_goal(uint64_t og);
static const char *aeabi_pcs_config(uint64_t pcs);
static const char *aeabi_pcs_got(uint64_t got);
static const char *aeabi_pcs_r9(uint64_t r9);
static const char *aeabi_pcs_ro(uint64_t ro);
static const char *aeabi_pcs_rw(uint64_t rw);
static const char *aeabi_pcs_wchar_t(uint64_t wt);
static const char *aeabi_t2ee(uint64_t t2ee);
static const char *aeabi_thumb_isa(uint64_t ti);
static const char *aeabi_fp_user_exceptions(uint64_t fu);
static const char *aeabi_unaligned_access(uint64_t ua);
static const char *aeabi_vfp_args(uint64_t va);
static const char *aeabi_virtual(uint64_t vt);
static const char *aeabi_wmmx_arch(uint64_t wmmx);
static const char *aeabi_wmmx_args(uint64_t wa);
static const char *elf_class(unsigned int class);
static const char *elf_endian(unsigned int endian);
static const char *elf_machine(unsigned int mach);
static const char *elf_osabi(unsigned int abi);
static const char *elf_type(unsigned int type);
static const char *elf_ver(unsigned int ver);
static const char *dt_type(unsigned int mach, unsigned int dtype);
static void dump_ar(struct readelf *re, int);
static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
static void dump_attributes(struct readelf *re);
static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe);
static void dump_dwarf(struct readelf *re);
static void dump_dwarf_abbrev(struct readelf *re);
static void dump_dwarf_aranges(struct readelf *re);
static void dump_dwarf_block(struct readelf *re, uint8_t *b,
Dwarf_Unsigned len);
static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level);
static void dump_dwarf_frame(struct readelf *re, int alt);
static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie,
uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf,
Dwarf_Addr pc, Dwarf_Debug dbg);
static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde,
Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra);
static void dump_dwarf_frame_section(struct readelf *re, struct section *s,
int alt);
static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info);
static void dump_dwarf_macinfo(struct readelf *re);
static void dump_dwarf_line(struct readelf *re);
static void dump_dwarf_line_decoded(struct readelf *re);
static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr);
static void dump_dwarf_loclist(struct readelf *re);
static void dump_dwarf_pubnames(struct readelf *re);
static void dump_dwarf_ranges(struct readelf *re);
static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die,
Dwarf_Addr base);
static void dump_dwarf_str(struct readelf *re);
static void dump_eflags(struct readelf *re, uint64_t e_flags);
static void dump_elf(struct readelf *re);
static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab);
static void dump_dynamic(struct readelf *re);
static void dump_liblist(struct readelf *re);
static void dump_mips_abiflags(struct readelf *re, struct section *s);
static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz);
static void dump_mips_options(struct readelf *re, struct section *s);
static void dump_mips_option_flags(const char *name, struct mips_option *opt,
uint64_t info);
static void dump_mips_reginfo(struct readelf *re, struct section *s);
static void dump_mips_specific_info(struct readelf *re);
static void dump_notes(struct readelf *re);
static void dump_notes_content(struct readelf *re, const char *buf, size_t sz,
off_t off);
static void dump_svr4_hash(struct section *s);
static void dump_svr4_hash64(struct readelf *re, struct section *s);
static void dump_gnu_hash(struct readelf *re, struct section *s);
static void dump_hash(struct readelf *re);
static void dump_phdr(struct readelf *re);
static void dump_ppc_attributes(uint8_t *p, uint8_t *pe);
static void dump_section_groups(struct readelf *re);
static void dump_symtab(struct readelf *re, int i);
static void dump_symtabs(struct readelf *re);
static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe);
static void dump_ver(struct readelf *re);
static void dump_verdef(struct readelf *re, int dump);
static void dump_verneed(struct readelf *re, int dump);
static void dump_versym(struct readelf *re);
static const char *dwarf_reg(unsigned int mach, unsigned int reg);
static const char *dwarf_regname(struct readelf *re, unsigned int num);
static struct dumpop *find_dumpop(struct readelf *re, size_t si,
const char *sn, int op, int t);
static int get_ent_count(struct section *s, int *ent_count);
static int get_mips_register_size(uint8_t flag);
static char *get_regoff_str(struct readelf *re, Dwarf_Half reg,
Dwarf_Addr off);
static const char *get_string(struct readelf *re, int strtab, size_t off);
static const char *get_symbol_name(struct readelf *re, int symtab, int i);
static uint64_t get_symbol_value(struct readelf *re, int symtab, int i);
static void load_sections(struct readelf *re);
static const char *mips_abi_fp(uint64_t fp);
static const char *note_type(const char *note_name, unsigned int et,
unsigned int nt);
static const char *note_type_freebsd(unsigned int nt);
static const char *note_type_freebsd_core(unsigned int nt);
static const char *note_type_linux_core(unsigned int nt);
static const char *note_type_gnu(unsigned int nt);
static const char *note_type_netbsd(unsigned int nt);
static const char *note_type_openbsd(unsigned int nt);
static const char *note_type_unknown(unsigned int nt);
static const char *note_type_xen(unsigned int nt);
static const char *option_kind(uint8_t kind);
static const char *phdr_type(unsigned int mach, unsigned int ptype);
static const char *ppc_abi_fp(uint64_t fp);
static const char *ppc_abi_vector(uint64_t vec);
static void readelf_usage(int status);
static void readelf_version(void);
static void search_loclist_at(struct readelf *re, Dwarf_Die die,
Dwarf_Unsigned lowpc);
static void search_ver(struct readelf *re);
static const char *section_type(unsigned int mach, unsigned int stype);
static void set_cu_context(struct readelf *re, Dwarf_Half psize,
Dwarf_Half osize, Dwarf_Half ver);
static const char *st_bind(unsigned int sbind);
static const char *st_shndx(unsigned int shndx);
static const char *st_type(unsigned int mach, unsigned int os,
unsigned int stype);
static const char *st_vis(unsigned int svis);
static const char *top_tag(unsigned int tag);
static void unload_sections(struct readelf *re);
static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp,
int bytes_to_read);
static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp,
int bytes_to_read);
static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read);
static uint64_t _decode_msb(uint8_t **data, int bytes_to_read);
static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe);
static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe);
static struct eflags_desc arm_eflags_desc[] = {
{EF_ARM_RELEXEC, "relocatable executable"},
{EF_ARM_HASENTRY, "has entry point"},
{EF_ARM_SYMSARESORTED, "sorted symbol tables"},
{EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"},
{EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"},
{EF_ARM_BE8, "BE8"},
{EF_ARM_LE8, "LE8"},
{EF_ARM_INTERWORK, "interworking enabled"},
{EF_ARM_APCS_26, "uses APCS/26"},
{EF_ARM_APCS_FLOAT, "uses APCS/float"},
{EF_ARM_PIC, "position independent"},
{EF_ARM_ALIGN8, "8 bit structure alignment"},
{EF_ARM_NEW_ABI, "uses new ABI"},
{EF_ARM_OLD_ABI, "uses old ABI"},
{EF_ARM_SOFT_FLOAT, "software FP"},
{EF_ARM_VFP_FLOAT, "VFP"},
{EF_ARM_MAVERICK_FLOAT, "Maverick FP"},
{0, NULL}
};
static struct eflags_desc mips_eflags_desc[] = {
{EF_MIPS_NOREORDER, "noreorder"},
{EF_MIPS_PIC, "pic"},
{EF_MIPS_CPIC, "cpic"},
{EF_MIPS_UCODE, "ugen_reserved"},
{EF_MIPS_ABI2, "abi2"},
{EF_MIPS_OPTIONS_FIRST, "odk first"},
{EF_MIPS_ARCH_ASE_MDMX, "mdmx"},
{EF_MIPS_ARCH_ASE_M16, "mips16"},
{0, NULL}
};
static struct eflags_desc powerpc_eflags_desc[] = {
{EF_PPC_EMB, "emb"},
{EF_PPC_RELOCATABLE, "relocatable"},
{EF_PPC_RELOCATABLE_LIB, "relocatable-lib"},
{0, NULL}
};
static struct eflags_desc sparc_eflags_desc[] = {
{EF_SPARC_32PLUS, "v8+"},
{EF_SPARC_SUN_US1, "ultrasparcI"},
{EF_SPARC_HAL_R1, "halr1"},
{EF_SPARC_SUN_US3, "ultrasparcIII"},
{0, NULL}
};
static const char *
elf_osabi(unsigned int abi)
{
static char s_abi[32];
switch(abi) {
case ELFOSABI_NONE: return "NONE";
case ELFOSABI_HPUX: return "HPUX";
case ELFOSABI_NETBSD: return "NetBSD";
case ELFOSABI_GNU: return "GNU";
case ELFOSABI_HURD: return "HURD";
case ELFOSABI_86OPEN: return "86OPEN";
case ELFOSABI_SOLARIS: return "Solaris";
case ELFOSABI_AIX: return "AIX";
case ELFOSABI_IRIX: return "IRIX";
case ELFOSABI_FREEBSD: return "FreeBSD";
case ELFOSABI_TRU64: return "TRU64";
case ELFOSABI_MODESTO: return "MODESTO";
case ELFOSABI_OPENBSD: return "OpenBSD";
case ELFOSABI_OPENVMS: return "OpenVMS";
case ELFOSABI_NSK: return "NSK";
case ELFOSABI_CLOUDABI: return "CloudABI";
case ELFOSABI_ARM_AEABI: return "ARM EABI";
case ELFOSABI_ARM: return "ARM";
case ELFOSABI_STANDALONE: return "StandAlone";
default:
snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi);
return (s_abi);
}
};
static const char *
elf_machine(unsigned int mach)
{
static char s_mach[32];
switch (mach) {
case EM_NONE: return "Unknown machine";
case EM_M32: return "AT&T WE32100";
case EM_SPARC: return "Sun SPARC";
case EM_386: return "Intel i386";
case EM_68K: return "Motorola 68000";
case EM_IAMCU: return "Intel MCU";
case EM_88K: return "Motorola 88000";
case EM_860: return "Intel i860";
case EM_MIPS: return "MIPS R3000 Big-Endian only";
case EM_S370: return "IBM System/370";
case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian";
case EM_PARISC: return "HP PA-RISC";
case EM_VPP500: return "Fujitsu VPP500";
case EM_SPARC32PLUS: return "SPARC v8plus";
case EM_960: return "Intel 80960";
case EM_PPC: return "PowerPC 32-bit";
case EM_PPC64: return "PowerPC 64-bit";
case EM_S390: return "IBM System/390";
case EM_V800: return "NEC V800";
case EM_FR20: return "Fujitsu FR20";
case EM_RH32: return "TRW RH-32";
case EM_RCE: return "Motorola RCE";
case EM_ARM: return "ARM";
case EM_SH: return "Hitachi SH";
case EM_SPARCV9: return "SPARC v9 64-bit";
case EM_TRICORE: return "Siemens TriCore embedded processor";
case EM_ARC: return "Argonaut RISC Core";
case EM_H8_300: return "Hitachi H8/300";
case EM_H8_300H: return "Hitachi H8/300H";
case EM_H8S: return "Hitachi H8S";
case EM_H8_500: return "Hitachi H8/500";
case EM_IA_64: return "Intel IA-64 Processor";
case EM_MIPS_X: return "Stanford MIPS-X";
case EM_COLDFIRE: return "Motorola ColdFire";
case EM_68HC12: return "Motorola M68HC12";
case EM_MMA: return "Fujitsu MMA";
case EM_PCP: return "Siemens PCP";
case EM_NCPU: return "Sony nCPU";
case EM_NDR1: return "Denso NDR1 microprocessor";
case EM_STARCORE: return "Motorola Star*Core processor";
case EM_ME16: return "Toyota ME16 processor";
case EM_ST100: return "STMicroelectronics ST100 processor";
case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor";
case EM_X86_64: return "Advanced Micro Devices x86-64";
case EM_PDSP: return "Sony DSP Processor";
case EM_FX66: return "Siemens FX66 microcontroller";
case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller";
case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller";
case EM_68HC16: return "Motorola MC68HC16 microcontroller";
case EM_68HC11: return "Motorola MC68HC11 microcontroller";
case EM_68HC08: return "Motorola MC68HC08 microcontroller";
case EM_68HC05: return "Motorola MC68HC05 microcontroller";
case EM_SVX: return "Silicon Graphics SVx";
case EM_ST19: return "STMicroelectronics ST19 8-bit mc";
case EM_VAX: return "Digital VAX";
case EM_CRIS: return "Axis Communications 32-bit embedded processor";
case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor";
case EM_FIREPATH: return "Element 14 64-bit DSP Processor";
case EM_ZSP: return "LSI Logic 16-bit DSP Processor";
case EM_MMIX: return "Donald Knuth's educational 64-bit proc";
case EM_HUANY: return "Harvard University MI object files";
case EM_PRISM: return "SiTera Prism";
case EM_AVR: return "Atmel AVR 8-bit microcontroller";
case EM_FR30: return "Fujitsu FR30";
case EM_D10V: return "Mitsubishi D10V";
case EM_D30V: return "Mitsubishi D30V";
case EM_V850: return "NEC v850";
case EM_M32R: return "Mitsubishi M32R";
case EM_MN10300: return "Matsushita MN10300";
case EM_MN10200: return "Matsushita MN10200";
case EM_PJ: return "picoJava";
case EM_OPENRISC: return "OpenRISC 32-bit embedded processor";
case EM_ARC_A5: return "ARC Cores Tangent-A5";
case EM_XTENSA: return "Tensilica Xtensa Architecture";
case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
case EM_NS32K: return "National Semiconductor 32000 series";
case EM_TPC: return "Tenor Network TPC processor";
case EM_SNP1K: return "Trebia SNP 1000 processor";
case EM_ST200: return "STMicroelectronics ST200 microcontroller";
case EM_IP2K: return "Ubicom IP2xxx microcontroller family";
case EM_MAX: return "MAX Processor";
case EM_CR: return "National Semiconductor CompactRISC microprocessor";
case EM_F2MC16: return "Fujitsu F2MC16";
case EM_MSP430: return "TI embedded microcontroller msp430";
case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor";
case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
case EM_SEP: return "Sharp embedded microprocessor";
case EM_ARCA: return "Arca RISC Microprocessor";
case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd";
case EM_AARCH64: return "AArch64";
case EM_RISCV: return "RISC-V";
default:
snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach);
return (s_mach);
}
}
static const char *
elf_class(unsigned int class)
{
static char s_class[32];
switch (class) {
case ELFCLASSNONE: return "none";
case ELFCLASS32: return "ELF32";
case ELFCLASS64: return "ELF64";
default:
snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class);
return (s_class);
}
}
static const char *
elf_endian(unsigned int endian)
{
static char s_endian[32];
switch (endian) {
case ELFDATANONE: return "none";
case ELFDATA2LSB: return "2's complement, little endian";
case ELFDATA2MSB: return "2's complement, big endian";
default:
snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian);
return (s_endian);
}
}
static const char *
elf_type(unsigned int type)
{
static char s_type[32];
switch (type) {
case ET_NONE: return "NONE (None)";
case ET_REL: return "REL (Relocatable file)";
case ET_EXEC: return "EXEC (Executable file)";
case ET_DYN: return "DYN (Shared object file)";
case ET_CORE: return "CORE (Core file)";
default:
if (type >= ET_LOPROC)
snprintf(s_type, sizeof(s_type), "<proc: %#x>", type);
else if (type >= ET_LOOS && type <= ET_HIOS)
snprintf(s_type, sizeof(s_type), "<os: %#x>", type);
else
snprintf(s_type, sizeof(s_type), "<unknown: %#x>",
type);
return (s_type);
}
}
static const char *
elf_ver(unsigned int ver)
{
static char s_ver[32];
switch (ver) {
case EV_CURRENT: return "(current)";
case EV_NONE: return "(none)";
default:
snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>",
ver);
return (s_ver);
}
}
static const char *
phdr_type(unsigned int mach, unsigned int ptype)
{
static char s_ptype[32];
if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) {
switch (mach) {
case EM_ARM:
switch (ptype) {
case PT_ARM_ARCHEXT: return "ARM_ARCHEXT";
case PT_ARM_EXIDX: return "ARM_EXIDX";
}
break;
}
snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x",
ptype - PT_LOPROC);
return (s_ptype);
}
switch (ptype) {
case PT_NULL: return "NULL";
case PT_LOAD: return "LOAD";
case PT_DYNAMIC: return "DYNAMIC";
case PT_INTERP: return "INTERP";
case PT_NOTE: return "NOTE";
case PT_SHLIB: return "SHLIB";
case PT_PHDR: return "PHDR";
case PT_TLS: return "TLS";
case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
case PT_GNU_STACK: return "GNU_STACK";
case PT_GNU_RELRO: return "GNU_RELRO";
default:
if (ptype >= PT_LOOS && ptype <= PT_HIOS)
snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x",
ptype - PT_LOOS);
else
snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>",
ptype);
return (s_ptype);
}
}
static const char *
section_type(unsigned int mach, unsigned int stype)
{
static char s_stype[32];
if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) {
switch (mach) {
case EM_ARM:
switch (stype) {
case SHT_ARM_EXIDX: return "ARM_EXIDX";
case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
}
break;
case EM_X86_64:
switch (stype) {
case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
default:
break;
}
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
switch (stype) {
case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
case SHT_MIPS_MSYM: return "MIPS_MSYM";
case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
case SHT_MIPS_UCODE: return "MIPS_UCODE";
case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
case SHT_MIPS_RELD: return "MIPS_RELD";
case SHT_MIPS_IFACE: return "MIPS_IFACE";
case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
case SHT_MIPS_DWARF: return "MIPS_DWARF";
case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
case SHT_MIPS_XLATE: return "MIPS_XLATE";
case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
default:
break;
}
break;
default:
break;
}
snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x",
stype - SHT_LOPROC);
return (s_stype);
}
switch (stype) {
case SHT_NULL: return "NULL";
case SHT_PROGBITS: return "PROGBITS";
case SHT_SYMTAB: return "SYMTAB";
case SHT_STRTAB: return "STRTAB";
case SHT_RELA: return "RELA";
case SHT_HASH: return "HASH";
case SHT_DYNAMIC: return "DYNAMIC";
case SHT_NOTE: return "NOTE";
case SHT_NOBITS: return "NOBITS";
case SHT_REL: return "REL";
case SHT_SHLIB: return "SHLIB";
case SHT_DYNSYM: return "DYNSYM";
case SHT_INIT_ARRAY: return "INIT_ARRAY";
case SHT_FINI_ARRAY: return "FINI_ARRAY";
case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
case SHT_GROUP: return "GROUP";
case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
case SHT_SUNW_dof: return "SUNW_dof";
case SHT_SUNW_cap: return "SUNW_cap";
case SHT_GNU_HASH: return "GNU_HASH";
case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE";
case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR";
case SHT_SUNW_DEBUG: return "SUNW_DEBUG";
case SHT_SUNW_move: return "SUNW_move";
case SHT_SUNW_COMDAT: return "SUNW_COMDAT";
case SHT_SUNW_syminfo: return "SUNW_syminfo";
case SHT_SUNW_verdef: return "SUNW_verdef";
case SHT_SUNW_verneed: return "SUNW_verneed";
case SHT_SUNW_versym: return "SUNW_versym";
default:
if (stype >= SHT_LOOS && stype <= SHT_HIOS)
snprintf(s_stype, sizeof(s_stype), "LOOS+%#x",
stype - SHT_LOOS);
else if (stype >= SHT_LOUSER)
snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x",
stype - SHT_LOUSER);
else
snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
stype);
return (s_stype);
}
}
static const char *
dt_type(unsigned int mach, unsigned int dtype)
{
static char s_dtype[32];
switch (dtype) {
case DT_NULL: return "NULL";
case DT_NEEDED: return "NEEDED";
case DT_PLTRELSZ: return "PLTRELSZ";
case DT_PLTGOT: return "PLTGOT";
case DT_HASH: return "HASH";
case DT_STRTAB: return "STRTAB";
case DT_SYMTAB: return "SYMTAB";
case DT_RELA: return "RELA";
case DT_RELASZ: return "RELASZ";
case DT_RELAENT: return "RELAENT";
case DT_STRSZ: return "STRSZ";
case DT_SYMENT: return "SYMENT";
case DT_INIT: return "INIT";
case DT_FINI: return "FINI";
case DT_SONAME: return "SONAME";
case DT_RPATH: return "RPATH";
case DT_SYMBOLIC: return "SYMBOLIC";
case DT_REL: return "REL";
case DT_RELSZ: return "RELSZ";
case DT_RELENT: return "RELENT";
case DT_PLTREL: return "PLTREL";
case DT_DEBUG: return "DEBUG";
case DT_TEXTREL: return "TEXTREL";
case DT_JMPREL: return "JMPREL";
case DT_BIND_NOW: return "BIND_NOW";
case DT_INIT_ARRAY: return "INIT_ARRAY";
case DT_FINI_ARRAY: return "FINI_ARRAY";
case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
case DT_RUNPATH: return "RUNPATH";
case DT_FLAGS: return "FLAGS";
case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
case DT_MAXPOSTAGS: return "MAXPOSTAGS";
case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY";
case DT_SUNW_RTLDINF: return "SUNW_RTLDINF";
case DT_SUNW_FILTER: return "SUNW_FILTER";
case DT_SUNW_CAP: return "SUNW_CAP";
case DT_SUNW_ASLR: return "SUNW_ASLR";
case DT_CHECKSUM: return "CHECKSUM";
case DT_PLTPADSZ: return "PLTPADSZ";
case DT_MOVEENT: return "MOVEENT";
case DT_MOVESZ: return "MOVESZ";
case DT_FEATURE: return "FEATURE";
case DT_POSFLAG_1: return "POSFLAG_1";
case DT_SYMINSZ: return "SYMINSZ";
case DT_SYMINENT: return "SYMINENT";
case DT_GNU_HASH: return "GNU_HASH";
case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT";
case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT";
case DT_GNU_CONFLICT: return "GNU_CONFLICT";
case DT_GNU_LIBLIST: return "GNU_LIBLIST";
case DT_CONFIG: return "CONFIG";
case DT_DEPAUDIT: return "DEPAUDIT";
case DT_AUDIT: return "AUDIT";
case DT_PLTPAD: return "PLTPAD";
case DT_MOVETAB: return "MOVETAB";
case DT_SYMINFO: return "SYMINFO";
case DT_VERSYM: return "VERSYM";
case DT_RELACOUNT: return "RELACOUNT";
case DT_RELCOUNT: return "RELCOUNT";
case DT_FLAGS_1: return "FLAGS_1";
case DT_VERDEF: return "VERDEF";
case DT_VERDEFNUM: return "VERDEFNUM";
case DT_VERNEED: return "VERNEED";
case DT_VERNEEDNUM: return "VERNEEDNUM";
case DT_AUXILIARY: return "AUXILIARY";
case DT_USED: return "USED";
case DT_FILTER: return "FILTER";
case DT_GNU_PRELINKED: return "GNU_PRELINKED";
case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
}
if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) {
switch (mach) {
case EM_ARM:
switch (dtype) {
case DT_ARM_SYMTABSZ:
return "ARM_SYMTABSZ";
default:
break;
}
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
switch (dtype) {
case DT_MIPS_RLD_VERSION:
return "MIPS_RLD_VERSION";
case DT_MIPS_TIME_STAMP:
return "MIPS_TIME_STAMP";
case DT_MIPS_ICHECKSUM:
return "MIPS_ICHECKSUM";
case DT_MIPS_IVERSION:
return "MIPS_IVERSION";
case DT_MIPS_FLAGS:
return "MIPS_FLAGS";
case DT_MIPS_BASE_ADDRESS:
return "MIPS_BASE_ADDRESS";
case DT_MIPS_CONFLICT:
return "MIPS_CONFLICT";
case DT_MIPS_LIBLIST:
return "MIPS_LIBLIST";
case DT_MIPS_LOCAL_GOTNO:
return "MIPS_LOCAL_GOTNO";
case DT_MIPS_CONFLICTNO:
return "MIPS_CONFLICTNO";
case DT_MIPS_LIBLISTNO:
return "MIPS_LIBLISTNO";
case DT_MIPS_SYMTABNO:
return "MIPS_SYMTABNO";
case DT_MIPS_UNREFEXTNO:
return "MIPS_UNREFEXTNO";
case DT_MIPS_GOTSYM:
return "MIPS_GOTSYM";
case DT_MIPS_HIPAGENO:
return "MIPS_HIPAGENO";
case DT_MIPS_RLD_MAP:
return "MIPS_RLD_MAP";
case DT_MIPS_DELTA_CLASS:
return "MIPS_DELTA_CLASS";
case DT_MIPS_DELTA_CLASS_NO:
return "MIPS_DELTA_CLASS_NO";
case DT_MIPS_DELTA_INSTANCE:
return "MIPS_DELTA_INSTANCE";
case DT_MIPS_DELTA_INSTANCE_NO:
return "MIPS_DELTA_INSTANCE_NO";
case DT_MIPS_DELTA_RELOC:
return "MIPS_DELTA_RELOC";
case DT_MIPS_DELTA_RELOC_NO:
return "MIPS_DELTA_RELOC_NO";
case DT_MIPS_DELTA_SYM:
return "MIPS_DELTA_SYM";
case DT_MIPS_DELTA_SYM_NO:
return "MIPS_DELTA_SYM_NO";
case DT_MIPS_DELTA_CLASSSYM:
return "MIPS_DELTA_CLASSSYM";
case DT_MIPS_DELTA_CLASSSYM_NO:
return "MIPS_DELTA_CLASSSYM_NO";
case DT_MIPS_CXX_FLAGS:
return "MIPS_CXX_FLAGS";
case DT_MIPS_PIXIE_INIT:
return "MIPS_PIXIE_INIT";
case DT_MIPS_SYMBOL_LIB:
return "MIPS_SYMBOL_LIB";
case DT_MIPS_LOCALPAGE_GOTIDX:
return "MIPS_LOCALPAGE_GOTIDX";
case DT_MIPS_LOCAL_GOTIDX:
return "MIPS_LOCAL_GOTIDX";
case DT_MIPS_HIDDEN_GOTIDX:
return "MIPS_HIDDEN_GOTIDX";
case DT_MIPS_PROTECTED_GOTIDX:
return "MIPS_PROTECTED_GOTIDX";
case DT_MIPS_OPTIONS:
return "MIPS_OPTIONS";
case DT_MIPS_INTERFACE:
return "MIPS_INTERFACE";
case DT_MIPS_DYNSTR_ALIGN:
return "MIPS_DYNSTR_ALIGN";
case DT_MIPS_INTERFACE_SIZE:
return "MIPS_INTERFACE_SIZE";
case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
return "MIPS_RLD_TEXT_RESOLVE_ADDR";
case DT_MIPS_PERF_SUFFIX:
return "MIPS_PERF_SUFFIX";
case DT_MIPS_COMPACT_SIZE:
return "MIPS_COMPACT_SIZE";
case DT_MIPS_GP_VALUE:
return "MIPS_GP_VALUE";
case DT_MIPS_AUX_DYNAMIC:
return "MIPS_AUX_DYNAMIC";
case DT_MIPS_PLTGOT:
return "MIPS_PLTGOT";
case DT_MIPS_RLD_OBJ_UPDATE:
return "MIPS_RLD_OBJ_UPDATE";
case DT_MIPS_RWPLT:
return "MIPS_RWPLT";
default:
break;
}
break;
case EM_SPARC:
case EM_SPARC32PLUS:
case EM_SPARCV9:
switch (dtype) {
case DT_SPARC_REGISTER:
return "DT_SPARC_REGISTER";
default:
break;
}
break;
default:
break;
}
}
snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype);
return (s_dtype);
}
static const char *
st_bind(unsigned int sbind)
{
static char s_sbind[32];
switch (sbind) {
case STB_LOCAL: return "LOCAL";
case STB_GLOBAL: return "GLOBAL";
case STB_WEAK: return "WEAK";
case STB_GNU_UNIQUE: return "UNIQUE";
default:
if (sbind >= STB_LOOS && sbind <= STB_HIOS)
return "OS";
else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC)
return "PROC";
else
snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>",
sbind);
return (s_sbind);
}
}
static const char *
st_type(unsigned int mach, unsigned int os, unsigned int stype)
{
static char s_stype[32];
switch (stype) {
case STT_NOTYPE: return "NOTYPE";
case STT_OBJECT: return "OBJECT";
case STT_FUNC: return "FUNC";
case STT_SECTION: return "SECTION";
case STT_FILE: return "FILE";
case STT_COMMON: return "COMMON";
case STT_TLS: return "TLS";
default:
if (stype >= STT_LOOS && stype <= STT_HIOS) {
if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) &&
stype == STT_GNU_IFUNC)
return "IFUNC";
snprintf(s_stype, sizeof(s_stype), "OS+%#x",
stype - STT_LOOS);
} else if (stype >= STT_LOPROC && stype <= STT_HIPROC) {
if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER)
return "REGISTER";
snprintf(s_stype, sizeof(s_stype), "PROC+%#x",
stype - STT_LOPROC);
} else
snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
stype);
return (s_stype);
}
}
static const char *
st_vis(unsigned int svis)
{
static char s_svis[32];
switch(svis) {
case STV_DEFAULT: return "DEFAULT";
case STV_INTERNAL: return "INTERNAL";
case STV_HIDDEN: return "HIDDEN";
case STV_PROTECTED: return "PROTECTED";
default:
snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis);
return (s_svis);
}
}
static const char *
st_shndx(unsigned int shndx)
{
static char s_shndx[32];
switch (shndx) {
case SHN_UNDEF: return "UND";
case SHN_ABS: return "ABS";
case SHN_COMMON: return "COM";
default:
if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC)
return "PRC";
else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS)
return "OS";
else
snprintf(s_shndx, sizeof(s_shndx), "%u", shndx);
return (s_shndx);
}
}
static struct {
const char *ln;
char sn;
int value;
} section_flag[] = {
{"WRITE", 'W', SHF_WRITE},
{"ALLOC", 'A', SHF_ALLOC},
{"EXEC", 'X', SHF_EXECINSTR},
{"MERGE", 'M', SHF_MERGE},
{"STRINGS", 'S', SHF_STRINGS},
{"INFO LINK", 'I', SHF_INFO_LINK},
{"OS NONCONF", 'O', SHF_OS_NONCONFORMING},
{"GROUP", 'G', SHF_GROUP},
{"TLS", 'T', SHF_TLS},
{"COMPRESSED", 'C', SHF_COMPRESSED},
{NULL, 0, 0}
};
static const char *
note_type(const char *name, unsigned int et, unsigned int nt)
{
if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) &&
et == ET_CORE)
return note_type_linux_core(nt);
else if (strcmp(name, "FreeBSD") == 0)
if (et == ET_CORE)
return note_type_freebsd_core(nt);
else
return note_type_freebsd(nt);
else if (strcmp(name, "GNU") == 0 && et != ET_CORE)
return note_type_gnu(nt);
else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE)
return note_type_netbsd(nt);
else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE)
return note_type_openbsd(nt);
else if (strcmp(name, "Xen") == 0 && et != ET_CORE)
return note_type_xen(nt);
return note_type_unknown(nt);
}
static const char *
note_type_freebsd(unsigned int nt)
{
switch (nt) {
case 1: return "NT_FREEBSD_ABI_TAG";
case 2: return "NT_FREEBSD_NOINIT_TAG";
case 3: return "NT_FREEBSD_ARCH_TAG";
default: return (note_type_unknown(nt));
}
}
static const char *
note_type_freebsd_core(unsigned int nt)
{
switch (nt) {
case 1: return "NT_PRSTATUS";
case 2: return "NT_FPREGSET";
case 3: return "NT_PRPSINFO";
case 7: return "NT_THRMISC";
case 8: return "NT_PROCSTAT_PROC";
case 9: return "NT_PROCSTAT_FILES";
case 10: return "NT_PROCSTAT_VMMAP";
case 11: return "NT_PROCSTAT_GROUPS";
case 12: return "NT_PROCSTAT_UMASK";
case 13: return "NT_PROCSTAT_RLIMIT";
case 14: return "NT_PROCSTAT_OSREL";
case 15: return "NT_PROCSTAT_PSSTRINGS";
case 16: return "NT_PROCSTAT_AUXV";
case 17: return "NT_PTLWPINFO";
case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
case 0x400: return "NT_ARM_VFP (arm VFP registers)";
default: return (note_type_unknown(nt));
}
}
static const char *
note_type_linux_core(unsigned int nt)
{
switch (nt) {
case 1: return "NT_PRSTATUS (Process status)";
case 2: return "NT_FPREGSET (Floating point information)";
case 3: return "NT_PRPSINFO (Process information)";
case 4: return "NT_TASKSTRUCT (Task structure)";
case 6: return "NT_AUXV (Auxiliary vector)";
case 10: return "NT_PSTATUS (Linux process status)";
case 12: return "NT_FPREGS (Linux floating point regset)";
case 13: return "NT_PSINFO (Linux process information)";
case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)";
case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)";
case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)";
case 0x100: return "NT_PPC_VMX (ppc Altivec registers)";
case 0x102: return "NT_PPC_VSX (ppc VSX registers)";
case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)";
case 0x301: return "NT_S390_TIMER (s390 timer register)";
case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)";
case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)";
case 0x304: return "NT_S390_CTRS (s390 control registers)";
case 0x305: return "NT_S390_PREFIX (s390 prefix register)";
case 0x400: return "NT_ARM_VFP (arm VFP registers)";
case 0x46494c45UL: return "NT_FILE (mapped files)";
case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)";
case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)";
default: return (note_type_unknown(nt));
}
}
static const char *
note_type_gnu(unsigned int nt)
{
switch (nt) {
case 1: return "NT_GNU_ABI_TAG";
case 2: return "NT_GNU_HWCAP (Hardware capabilities)";
case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))";
case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)";
case 5: return "NT_GNU_PROPERTY_TYPE_0";
default: return (note_type_unknown(nt));
}
}
static const char *
note_type_netbsd(unsigned int nt)
{
switch (nt) {
case 1: return "NT_NETBSD_IDENT";
default: return (note_type_unknown(nt));
}
}
static const char *
note_type_openbsd(unsigned int nt)
{
switch (nt) {
case 1: return "NT_OPENBSD_IDENT";
default: return (note_type_unknown(nt));
}
}
static const char *
note_type_unknown(unsigned int nt)
{
static char s_nt[32];
snprintf(s_nt, sizeof(s_nt),
nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt);
return (s_nt);
}
static const char *
note_type_xen(unsigned int nt)
{
switch (nt) {
case 0: return "XEN_ELFNOTE_INFO";
case 1: return "XEN_ELFNOTE_ENTRY";
case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE";
case 3: return "XEN_ELFNOTE_VIRT_BASE";
case 4: return "XEN_ELFNOTE_PADDR_OFFSET";
case 5: return "XEN_ELFNOTE_XEN_VERSION";
case 6: return "XEN_ELFNOTE_GUEST_OS";
case 7: return "XEN_ELFNOTE_GUEST_VERSION";
case 8: return "XEN_ELFNOTE_LOADER";
case 9: return "XEN_ELFNOTE_PAE_MODE";
case 10: return "XEN_ELFNOTE_FEATURES";
case 11: return "XEN_ELFNOTE_BSD_SYMTAB";
case 12: return "XEN_ELFNOTE_HV_START_LOW";
case 13: return "XEN_ELFNOTE_L1_MFN_VALID";
case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL";
case 15: return "XEN_ELFNOTE_INIT_P2M";
case 16: return "XEN_ELFNOTE_MOD_START_PFN";
case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES";
default: return (note_type_unknown(nt));
}
}
static struct {
const char *name;
int value;
} l_flag[] = {
{"EXACT_MATCH", LL_EXACT_MATCH},
{"IGNORE_INT_VER", LL_IGNORE_INT_VER},
{"REQUIRE_MINOR", LL_REQUIRE_MINOR},
{"EXPORTS", LL_EXPORTS},
{"DELAY_LOAD", LL_DELAY_LOAD},
{"DELTA", LL_DELTA},
{NULL, 0}
};
static struct mips_option mips_exceptions_option[] = {
{OEX_PAGE0, "PAGE0"},
{OEX_SMM, "SMM"},
{OEX_PRECISEFP, "PRECISEFP"},
{OEX_DISMISS, "DISMISS"},
{0, NULL}
};
static struct mips_option mips_pad_option[] = {
{OPAD_PREFIX, "PREFIX"},
{OPAD_POSTFIX, "POSTFIX"},
{OPAD_SYMBOL, "SYMBOL"},
{0, NULL}
};
static struct mips_option mips_hwpatch_option[] = {
{OHW_R4KEOP, "R4KEOP"},
{OHW_R8KPFETCH, "R8KPFETCH"},
{OHW_R5KEOP, "R5KEOP"},
{OHW_R5KCVTL, "R5KCVTL"},
{0, NULL}
};
static struct mips_option mips_hwa_option[] = {
{OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"},
{OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"},
{0, NULL}
};
static struct mips_option mips_hwo_option[] = {
{OHWO0_FIXADE, "FIXADE"},
{0, NULL}
};
static const char *
option_kind(uint8_t kind)
{
static char s_kind[32];
switch (kind) {
case ODK_NULL: return "NULL";
case ODK_REGINFO: return "REGINFO";
case ODK_EXCEPTIONS: return "EXCEPTIONS";
case ODK_PAD: return "PAD";
case ODK_HWPATCH: return "HWPATCH";
case ODK_FILL: return "FILL";
case ODK_TAGS: return "TAGS";
case ODK_HWAND: return "HWAND";
case ODK_HWOR: return "HWOR";
case ODK_GP_GROUP: return "GP_GROUP";
case ODK_IDENT: return "IDENT";
default:
snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind);
return (s_kind);
}
}
static const char *
top_tag(unsigned int tag)
{
static char s_top_tag[32];
switch (tag) {
case 1: return "File Attributes";
case 2: return "Section Attributes";
case 3: return "Symbol Attributes";
default:
snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag);
return (s_top_tag);
}
}
static const char *
aeabi_cpu_arch(uint64_t arch)
{
static char s_cpu_arch[32];
switch (arch) {
case 0: return "Pre-V4";
case 1: return "ARM v4";
case 2: return "ARM v4T";
case 3: return "ARM v5T";
case 4: return "ARM v5TE";
case 5: return "ARM v5TEJ";
case 6: return "ARM v6";
case 7: return "ARM v6KZ";
case 8: return "ARM v6T2";
case 9: return "ARM v6K";
case 10: return "ARM v7";
case 11: return "ARM v6-M";
case 12: return "ARM v6S-M";
case 13: return "ARM v7E-M";
default:
snprintf(s_cpu_arch, sizeof(s_cpu_arch),
"Unknown (%ju)", (uintmax_t) arch);
return (s_cpu_arch);
}
}
static const char *
aeabi_cpu_arch_profile(uint64_t pf)
{
static char s_arch_profile[32];
switch (pf) {
case 0:
return "Not applicable";
case 0x41: /* 'A' */
return "Application Profile";
case 0x52: /* 'R' */
return "Real-Time Profile";
case 0x4D: /* 'M' */
return "Microcontroller Profile";
case 0x53: /* 'S' */
return "Application or Real-Time Profile";
default:
snprintf(s_arch_profile, sizeof(s_arch_profile),
"Unknown (%ju)\n", (uintmax_t) pf);
return (s_arch_profile);
}
}
static const char *
aeabi_arm_isa(uint64_t ai)
{
static char s_ai[32];
switch (ai) {
case 0: return "No";
case 1: return "Yes";
default:
snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n",
(uintmax_t) ai);
return (s_ai);
}
}
static const char *
aeabi_thumb_isa(uint64_t ti)
{
static char s_ti[32];
switch (ti) {
case 0: return "No";
case 1: return "16-bit Thumb";
case 2: return "32-bit Thumb";
default:
snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n",
(uintmax_t) ti);
return (s_ti);
}
}
static const char *
aeabi_fp_arch(uint64_t fp)
{
static char s_fp_arch[32];
switch (fp) {
case 0: return "No";
case 1: return "VFPv1";
case 2: return "VFPv2";
case 3: return "VFPv3";
case 4: return "VFPv3-D16";
case 5: return "VFPv4";
case 6: return "VFPv4-D16";
default:
snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)",
(uintmax_t) fp);
return (s_fp_arch);
}
}
static const char *
aeabi_wmmx_arch(uint64_t wmmx)
{
static char s_wmmx[32];
switch (wmmx) {
case 0: return "No";
case 1: return "WMMXv1";
case 2: return "WMMXv2";
default:
snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)",
(uintmax_t) wmmx);
return (s_wmmx);
}
}
static const char *
aeabi_adv_simd_arch(uint64_t simd)
{
static char s_simd[32];
switch (simd) {
case 0: return "No";
case 1: return "NEONv1";
case 2: return "NEONv2";
default:
snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)",
(uintmax_t) simd);
return (s_simd);
}
}
static const char *
aeabi_pcs_config(uint64_t pcs)
{
static char s_pcs[32];
switch (pcs) {
case 0: return "None";
case 1: return "Bare platform";
case 2: return "Linux";
case 3: return "Linux DSO";
case 4: return "Palm OS 2004";
case 5: return "Palm OS (future)";
case 6: return "Symbian OS 2004";
case 7: return "Symbian OS (future)";
default:
snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)",
(uintmax_t) pcs);
return (s_pcs);
}
}
static const char *
aeabi_pcs_r9(uint64_t r9)
{
static char s_r9[32];
switch (r9) {
case 0: return "V6";
case 1: return "SB";
case 2: return "TLS pointer";
case 3: return "Unused";
default:
snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9);
return (s_r9);
}
}
static const char *
aeabi_pcs_rw(uint64_t rw)
{
static char s_rw[32];
switch (rw) {
case 0: return "Absolute";
case 1: return "PC-relative";
case 2: return "SB-relative";
case 3: return "None";
default:
snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw);
return (s_rw);
}
}
static const char *
aeabi_pcs_ro(uint64_t ro)
{
static char s_ro[32];
switch (ro) {
case 0: return "Absolute";
case 1: return "PC-relative";
case 2: return "None";
default:
snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro);
return (s_ro);
}
}
static const char *
aeabi_pcs_got(uint64_t got)
{
static char s_got[32];
switch (got) {
case 0: return "None";
case 1: return "direct";
case 2: return "indirect via GOT";
default:
snprintf(s_got, sizeof(s_got), "Unknown (%ju)",
(uintmax_t) got);
return (s_got);
}
}
static const char *
aeabi_pcs_wchar_t(uint64_t wt)
{
static char s_wt[32];
switch (wt) {
case 0: return "None";
case 2: return "wchar_t size 2";
case 4: return "wchar_t size 4";
default:
snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt);
return (s_wt);
}
}
static const char *
aeabi_enum_size(uint64_t es)
{
static char s_es[32];
switch (es) {
case 0: return "None";
case 1: return "smallest";
case 2: return "32-bit";
case 3: return "visible 32-bit";
default:
snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es);
return (s_es);
}
}
static const char *
aeabi_align_needed(uint64_t an)
{
static char s_align_n[64];
switch (an) {
case 0: return "No";
case 1: return "8-byte align";
case 2: return "4-byte align";
case 3: return "Reserved";
default:
if (an >= 4 && an <= 12)
snprintf(s_align_n, sizeof(s_align_n), "8-byte align"
" and up to 2^%ju-byte extended align",
(uintmax_t) an);
else
snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)",
(uintmax_t) an);
return (s_align_n);
}
}
static const char *
aeabi_align_preserved(uint64_t ap)
{
static char s_align_p[128];
switch (ap) {
case 0: return "No";
case 1: return "8-byte align";
case 2: return "8-byte align and SP % 8 == 0";
case 3: return "Reserved";
default:
if (ap >= 4 && ap <= 12)
snprintf(s_align_p, sizeof(s_align_p), "8-byte align"
" and SP %% 8 == 0 and up to 2^%ju-byte extended"
" align", (uintmax_t) ap);
else
snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)",
(uintmax_t) ap);
return (s_align_p);
}
}
static const char *
aeabi_fp_rounding(uint64_t fr)
{
static char s_fp_r[32];
switch (fr) {
case 0: return "Unused";
case 1: return "Needed";
default:
snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)",
(uintmax_t) fr);
return (s_fp_r);
}
}
static const char *
aeabi_fp_denormal(uint64_t fd)
{
static char s_fp_d[32];
switch (fd) {
case 0: return "Unused";
case 1: return "Needed";
case 2: return "Sign Only";
default:
snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)",
(uintmax_t) fd);
return (s_fp_d);
}
}
static const char *
aeabi_fp_exceptions(uint64_t fe)
{
static char s_fp_e[32];
switch (fe) {
case 0: return "Unused";
case 1: return "Needed";
default:
snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)",
(uintmax_t) fe);
return (s_fp_e);
}
}
static const char *
aeabi_fp_user_exceptions(uint64_t fu)
{
static char s_fp_u[32];
switch (fu) {
case 0: return "Unused";
case 1: return "Needed";
default:
snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)",
(uintmax_t) fu);
return (s_fp_u);
}
}
static const char *
aeabi_fp_number_model(uint64_t fn)
{
static char s_fp_n[32];
switch (fn) {
case 0: return "Unused";
case 1: return "IEEE 754 normal";
case 2: return "RTABI";
case 3: return "IEEE 754";
default:
snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)",
(uintmax_t) fn);
return (s_fp_n);
}
}
static const char *
aeabi_fp_16bit_format(uint64_t fp16)
{
static char s_fp_16[64];
switch (fp16) {
case 0: return "None";
case 1: return "IEEE 754";
case 2: return "VFPv3/Advanced SIMD (alternative format)";
default:
snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)",
(uintmax_t) fp16);
return (s_fp_16);
}
}
static const char *
aeabi_mpext(uint64_t mp)
{
static char s_mp[32];
switch (mp) {
case 0: return "Not allowed";
case 1: return "Allowed";
default:
snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)",
(uintmax_t) mp);
return (s_mp);
}
}
static const char *
aeabi_div(uint64_t du)
{
static char s_du[32];
switch (du) {
case 0: return "Yes (V7-R/V7-M)";
case 1: return "No";
case 2: return "Yes (V7-A)";
default:
snprintf(s_du, sizeof(s_du), "Unknown (%ju)",
(uintmax_t) du);
return (s_du);
}
}
static const char *
aeabi_t2ee(uint64_t t2ee)
{
static char s_t2ee[32];
switch (t2ee) {
case 0: return "Not allowed";
case 1: return "Allowed";
default:
snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)",
(uintmax_t) t2ee);
return (s_t2ee);
}
}
static const char *
aeabi_hardfp(uint64_t hfp)
{
static char s_hfp[32];
switch (hfp) {
case 0: return "Tag_FP_arch";
case 1: return "only SP";
case 2: return "only DP";
case 3: return "both SP and DP";
default:
snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)",
(uintmax_t) hfp);
return (s_hfp);
}
}
static const char *
aeabi_vfp_args(uint64_t va)
{
static char s_va[32];
switch (va) {
case 0: return "AAPCS (base variant)";
case 1: return "AAPCS (VFP variant)";
case 2: return "toolchain-specific";
default:
snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va);
return (s_va);
}
}
static const char *
aeabi_wmmx_args(uint64_t wa)
{
static char s_wa[32];
switch (wa) {
case 0: return "AAPCS (base variant)";
case 1: return "Intel WMMX";
case 2: return "toolchain-specific";
default:
snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa);
return (s_wa);
}
}
static const char *
aeabi_unaligned_access(uint64_t ua)
{
static char s_ua[32];
switch (ua) {
case 0: return "Not allowed";
case 1: return "Allowed";
default:
snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua);
return (s_ua);
}
}
static const char *
aeabi_fp_hpext(uint64_t fh)
{
static char s_fh[32];
switch (fh) {
case 0: return "Not allowed";
case 1: return "Allowed";
default:
snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh);
return (s_fh);
}
}
static const char *
aeabi_optm_goal(uint64_t og)
{
static char s_og[32];
switch (og) {
case 0: return "None";
case 1: return "Speed";
case 2: return "Speed aggressive";
case 3: return "Space";
case 4: return "Space aggressive";
case 5: return "Debugging";
case 6: return "Best Debugging";
default:
snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og);
return (s_og);
}
}
static const char *
aeabi_fp_optm_goal(uint64_t fog)
{
static char s_fog[32];
switch (fog) {
case 0: return "None";
case 1: return "Speed";
case 2: return "Speed aggressive";
case 3: return "Space";
case 4: return "Space aggressive";
case 5: return "Accurary";
case 6: return "Best Accurary";
default:
snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)",
(uintmax_t) fog);
return (s_fog);
}
}
static const char *
aeabi_virtual(uint64_t vt)
{
static char s_virtual[64];
switch (vt) {
case 0: return "No";
case 1: return "TrustZone";
case 2: return "Virtualization extension";
case 3: return "TrustZone and virtualization extension";
default:
snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)",
(uintmax_t) vt);
return (s_virtual);
}
}
static struct {
uint64_t tag;
const char *s_tag;
const char *(*get_desc)(uint64_t val);
} aeabi_tags[] = {
{4, "Tag_CPU_raw_name", NULL},
{5, "Tag_CPU_name", NULL},
{6, "Tag_CPU_arch", aeabi_cpu_arch},
{7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile},
{8, "Tag_ARM_ISA_use", aeabi_arm_isa},
{9, "Tag_THUMB_ISA_use", aeabi_thumb_isa},
{10, "Tag_FP_arch", aeabi_fp_arch},
{11, "Tag_WMMX_arch", aeabi_wmmx_arch},
{12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch},
{13, "Tag_PCS_config", aeabi_pcs_config},
{14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9},
{15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw},
{16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro},
{17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got},
{18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t},
{19, "Tag_ABI_FP_rounding", aeabi_fp_rounding},
{20, "Tag_ABI_FP_denormal", aeabi_fp_denormal},
{21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions},
{22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions},
{23, "Tag_ABI_FP_number_model", aeabi_fp_number_model},
{24, "Tag_ABI_align_needed", aeabi_align_needed},
{25, "Tag_ABI_align_preserved", aeabi_align_preserved},
{26, "Tag_ABI_enum_size", aeabi_enum_size},
{27, "Tag_ABI_HardFP_use", aeabi_hardfp},
{28, "Tag_ABI_VFP_args", aeabi_vfp_args},
{29, "Tag_ABI_WMMX_args", aeabi_wmmx_args},
{30, "Tag_ABI_optimization_goals", aeabi_optm_goal},
{31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal},
{32, "Tag_compatibility", NULL},
{34, "Tag_CPU_unaligned_access", aeabi_unaligned_access},
{36, "Tag_FP_HP_extension", aeabi_fp_hpext},
{38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format},
{42, "Tag_MPextension_use", aeabi_mpext},
{44, "Tag_DIV_use", aeabi_div},
{64, "Tag_nodefaults", NULL},
{65, "Tag_also_compatible_with", NULL},
{66, "Tag_T2EE_use", aeabi_t2ee},
{67, "Tag_conformance", NULL},
{68, "Tag_Virtualization_use", aeabi_virtual},
{70, "Tag_MPextension_use", aeabi_mpext},
};
static const char *
mips_abi_fp(uint64_t fp)
{
static char s_mips_abi_fp[64];
switch (fp) {
case 0: return "N/A";
case 1: return "Hard float (double precision)";
case 2: return "Hard float (single precision)";
case 3: return "Soft float";
case 4: return "64-bit float (-mips32r2 -mfp64)";
default:
snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)",
(uintmax_t) fp);
return (s_mips_abi_fp);
}
}
static const char *
ppc_abi_fp(uint64_t fp)
{
static char s_ppc_abi_fp[64];
switch (fp) {
case 0: return "N/A";
case 1: return "Hard float (double precision)";
case 2: return "Soft float";
case 3: return "Hard float (single precision)";
default:
snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)",
(uintmax_t) fp);
return (s_ppc_abi_fp);
}
}
static const char *
ppc_abi_vector(uint64_t vec)
{
static char s_vec[64];
switch (vec) {
case 0: return "N/A";
case 1: return "Generic purpose registers";
case 2: return "AltiVec registers";
case 3: return "SPE registers";
default:
snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec);
return (s_vec);
}
}
static const char *
dwarf_reg(unsigned int mach, unsigned int reg)
{
switch (mach) {
case EM_386:
case EM_IAMCU:
switch (reg) {
case 0: return "eax";
case 1: return "ecx";
case 2: return "edx";
case 3: return "ebx";
case 4: return "esp";
case 5: return "ebp";
case 6: return "esi";
case 7: return "edi";
case 8: return "eip";
case 9: return "eflags";
case 11: return "st0";
case 12: return "st1";
case 13: return "st2";
case 14: return "st3";
case 15: return "st4";
case 16: return "st5";
case 17: return "st6";
case 18: return "st7";
case 21: return "xmm0";
case 22: return "xmm1";
case 23: return "xmm2";
case 24: return "xmm3";
case 25: return "xmm4";
case 26: return "xmm5";
case 27: return "xmm6";
case 28: return "xmm7";
case 29: return "mm0";
case 30: return "mm1";
case 31: return "mm2";
case 32: return "mm3";
case 33: return "mm4";
case 34: return "mm5";
case 35: return "mm6";
case 36: return "mm7";
case 37: return "fcw";
case 38: return "fsw";
case 39: return "mxcsr";
case 40: return "es";
case 41: return "cs";
case 42: return "ss";
case 43: return "ds";
case 44: return "fs";
case 45: return "gs";
case 48: return "tr";
case 49: return "ldtr";
default: return (NULL);
}
case EM_X86_64:
switch (reg) {
case 0: return "rax";
case 1: return "rdx";
case 2: return "rcx";
case 3: return "rbx";
case 4: return "rsi";
case 5: return "rdi";
case 6: return "rbp";
case 7: return "rsp";
case 16: return "rip";
case 17: return "xmm0";
case 18: return "xmm1";
case 19: return "xmm2";
case 20: return "xmm3";
case 21: return "xmm4";
case 22: return "xmm5";
case 23: return "xmm6";
case 24: return "xmm7";
case 25: return "xmm8";
case 26: return "xmm9";
case 27: return "xmm10";
case 28: return "xmm11";
case 29: return "xmm12";
case 30: return "xmm13";
case 31: return "xmm14";
case 32: return "xmm15";
case 33: return "st0";
case 34: return "st1";
case 35: return "st2";
case 36: return "st3";
case 37: return "st4";
case 38: return "st5";
case 39: return "st6";
case 40: return "st7";
case 41: return "mm0";
case 42: return "mm1";
case 43: return "mm2";
case 44: return "mm3";
case 45: return "mm4";
case 46: return "mm5";
case 47: return "mm6";
case 48: return "mm7";
case 49: return "rflags";
case 50: return "es";
case 51: return "cs";
case 52: return "ss";
case 53: return "ds";
case 54: return "fs";
case 55: return "gs";
case 58: return "fs.base";
case 59: return "gs.base";
case 62: return "tr";
case 63: return "ldtr";
case 64: return "mxcsr";
case 65: return "fcw";
case 66: return "fsw";
default: return (NULL);
}
default:
return (NULL);
}
}
static void
dump_ehdr(struct readelf *re)
{
size_t phnum, shnum, shstrndx;
int i;
printf("ELF Header:\n");
/* e_ident[]. */
printf(" Magic: ");
for (i = 0; i < EI_NIDENT; i++)
printf("%.2x ", re->ehdr.e_ident[i]);
putchar('\n');
/* EI_CLASS. */
printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS]));
/* EI_DATA. */
printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA]));
/* EI_VERSION. */
printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION],
elf_ver(re->ehdr.e_ident[EI_VERSION]));
/* EI_OSABI. */
printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI]));
/* EI_ABIVERSION. */
printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]);
/* e_type. */
printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type));
/* e_machine. */
printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine));
/* e_version. */
printf("%-37s%#x\n", " Version:", re->ehdr.e_version);
/* e_entry. */
printf("%-37s%#jx\n", " Entry point address:",
(uintmax_t)re->ehdr.e_entry);
/* e_phoff. */
printf("%-37s%ju (bytes into file)\n", " Start of program headers:",
(uintmax_t)re->ehdr.e_phoff);
/* e_shoff. */
printf("%-37s%ju (bytes into file)\n", " Start of section headers:",
(uintmax_t)re->ehdr.e_shoff);
/* e_flags. */
printf("%-37s%#x", " Flags:", re->ehdr.e_flags);
dump_eflags(re, re->ehdr.e_flags);
putchar('\n');
/* e_ehsize. */
printf("%-37s%u (bytes)\n", " Size of this header:",
re->ehdr.e_ehsize);
/* e_phentsize. */
printf("%-37s%u (bytes)\n", " Size of program headers:",
re->ehdr.e_phentsize);
/* e_phnum. */
printf("%-37s%u", " Number of program headers:", re->ehdr.e_phnum);
if (re->ehdr.e_phnum == PN_XNUM) {
/* Extended program header numbering is in use. */
if (elf_getphnum(re->elf, &phnum))
printf(" (%zu)", phnum);
}
putchar('\n');
/* e_shentsize. */
printf("%-37s%u (bytes)\n", " Size of section headers:",
re->ehdr.e_shentsize);
/* e_shnum. */
printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum);
if (re->ehdr.e_shnum == SHN_UNDEF) {
/* Extended section numbering is in use. */
if (elf_getshnum(re->elf, &shnum))
printf(" (%ju)", (uintmax_t)shnum);
}
putchar('\n');
/* e_shstrndx. */
printf("%-37s%u", " Section header string table index:",
re->ehdr.e_shstrndx);
if (re->ehdr.e_shstrndx == SHN_XINDEX) {
/* Extended section numbering is in use. */
if (elf_getshstrndx(re->elf, &shstrndx))
printf(" (%ju)", (uintmax_t)shstrndx);
}
putchar('\n');
}
static void
dump_eflags(struct readelf *re, uint64_t e_flags)
{
struct eflags_desc *edesc;
int arm_eabi;
edesc = NULL;
switch (re->ehdr.e_machine) {
case EM_ARM:
arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24;
if (arm_eabi == 0)
printf(", GNU EABI");
else if (arm_eabi <= 5)
printf(", Version%d EABI", arm_eabi);
edesc = arm_eflags_desc;
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
switch ((e_flags & EF_MIPS_ARCH) >> 28) {
case 0: printf(", mips1"); break;
case 1: printf(", mips2"); break;
case 2: printf(", mips3"); break;
case 3: printf(", mips4"); break;
case 4: printf(", mips5"); break;
case 5: printf(", mips32"); break;
case 6: printf(", mips64"); break;
case 7: printf(", mips32r2"); break;
case 8: printf(", mips64r2"); break;
default: break;
}
switch ((e_flags & 0x00FF0000) >> 16) {
case 0x81: printf(", 3900"); break;
case 0x82: printf(", 4010"); break;
case 0x83: printf(", 4100"); break;
case 0x85: printf(", 4650"); break;
case 0x87: printf(", 4120"); break;
case 0x88: printf(", 4111"); break;
case 0x8a: printf(", sb1"); break;
case 0x8b: printf(", octeon"); break;
case 0x8c: printf(", xlr"); break;
case 0x91: printf(", 5400"); break;
case 0x98: printf(", 5500"); break;
case 0x99: printf(", 9000"); break;
case 0xa0: printf(", loongson-2e"); break;
case 0xa1: printf(", loongson-2f"); break;
default: break;
}
switch ((e_flags & 0x0000F000) >> 12) {
case 1: printf(", o32"); break;
case 2: printf(", o64"); break;
case 3: printf(", eabi32"); break;
case 4: printf(", eabi64"); break;
default: break;
}
edesc = mips_eflags_desc;
break;
case EM_PPC:
case EM_PPC64:
edesc = powerpc_eflags_desc;
break;
case EM_SPARC:
case EM_SPARC32PLUS:
case EM_SPARCV9:
switch ((e_flags & EF_SPARCV9_MM)) {
case EF_SPARCV9_TSO: printf(", tso"); break;
case EF_SPARCV9_PSO: printf(", pso"); break;
case EF_SPARCV9_MM: printf(", rmo"); break;
default: break;
}
edesc = sparc_eflags_desc;
break;
default:
break;
}
if (edesc != NULL) {
while (edesc->desc != NULL) {
if (e_flags & edesc->flag)
printf(", %s", edesc->desc);
edesc++;
}
}
}
static void
dump_phdr(struct readelf *re)
{
const char *rawfile;
GElf_Phdr phdr;
size_t phnum, size;
int i, j;
#define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \
"MemSiz", "Flg", "Align"
#define PH_CT phdr_type(re->ehdr.e_machine, phdr.p_type), \
(uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr, \
(uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz, \
(uintmax_t)phdr.p_memsz, \
phdr.p_flags & PF_R ? 'R' : ' ', \
phdr.p_flags & PF_W ? 'W' : ' ', \
phdr.p_flags & PF_X ? 'E' : ' ', \
(uintmax_t)phdr.p_align
if (elf_getphnum(re->elf, &phnum) == 0) {
warnx("elf_getphnum failed: %s", elf_errmsg(-1));
return;
}
if (phnum == 0) {
printf("\nThere are no program headers in this file.\n");
return;
}
printf("\nElf file type is %s", elf_type(re->ehdr.e_type));
printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry);
printf("There are %ju program headers, starting at offset %ju\n",
(uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff);
/* Dump program headers. */
printf("\nProgram Headers:\n");
if (re->ec == ELFCLASS32)
printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR);
else if (re->options & RE_WW)
printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR);
else
printf(" %-15s%-19s%-19s%s\n %-19s%-20s"
"%-7s%s\n", PH_HDR);
for (i = 0; (size_t) i < phnum; i++) {
if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
continue;
}
/* TODO: Add arch-specific segment type dump. */
if (re->ec == ELFCLASS32)
printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx "
"0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT);
else if (re->options & RE_WW)
printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx "
"0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT);
else
printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n"
" 0x%16.16jx 0x%16.16jx %c%c%c"
" %#jx\n", PH_CT);
if (phdr.p_type == PT_INTERP) {
if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) {
warnx("elf_rawfile failed: %s", elf_errmsg(-1));
continue;
}
if (phdr.p_offset >= size) {
warnx("invalid program header offset");
continue;
}
printf(" [Requesting program interpreter: %s]\n",
rawfile + phdr.p_offset);
}
}
/* Dump section to segment mapping. */
if (re->shnum == 0)
return;
printf("\n Section to Segment mapping:\n");
printf(" Segment Sections...\n");
for (i = 0; (size_t)i < phnum; i++) {
if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
continue;
}
printf(" %2.2d ", i);
/* skip NULL section. */
for (j = 1; (size_t)j < re->shnum; j++) {
if (re->sl[j].off < phdr.p_offset)
continue;
if (re->sl[j].off + re->sl[j].sz >
phdr.p_offset + phdr.p_filesz &&
re->sl[j].type != SHT_NOBITS)
continue;
if (re->sl[j].addr < phdr.p_vaddr ||
re->sl[j].addr + re->sl[j].sz >
phdr.p_vaddr + phdr.p_memsz)
continue;
if (phdr.p_type == PT_TLS &&
(re->sl[j].flags & SHF_TLS) == 0)
continue;
printf("%s ", re->sl[j].name);
}
printf("\n");
}
#undef PH_HDR
#undef PH_CT
}
static char *
section_flags(struct readelf *re, struct section *s)
{
#define BUF_SZ 256
static char buf[BUF_SZ];
int i, p, nb;
p = 0;
nb = re->ec == ELFCLASS32 ? 8 : 16;
if (re->options & RE_T) {
snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb,
(uintmax_t)s->flags);
p += nb + 4;
}
for (i = 0; section_flag[i].ln != NULL; i++) {
if ((s->flags & section_flag[i].value) == 0)
continue;
if (re->options & RE_T) {
snprintf(&buf[p], BUF_SZ - p, "%s, ",
section_flag[i].ln);
p += strlen(section_flag[i].ln) + 2;
} else
buf[p++] = section_flag[i].sn;
}
if (re->options & RE_T && p > nb + 4)
p -= 2;
buf[p] = '\0';
return (buf);
}
static void
dump_shdr(struct readelf *re)
{
struct section *s;
int i;
#define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \
"Flg", "Lk", "Inf", "Al"
#define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \
"EntSize", "Flags", "Link", "Info", "Align"
#define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \
"Lk", "Inf", "Al", "Flags"
#define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \
"Size", "EntSize", "Info", "Align", "Flags"
#define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \
(uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
(uintmax_t)s->entsize, section_flags(re, s), \
s->link, s->info, (uintmax_t)s->align
#define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \
(uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
(uintmax_t)s->entsize, s->link, s->info, \
(uintmax_t)s->align, section_flags(re, s)
#define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \
(uintmax_t)s->addr, (uintmax_t)s->off, s->link, \
(uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \
(uintmax_t)s->align, section_flags(re, s)
if (re->shnum == 0) {
printf("\nThere are no sections in this file.\n");
return;
}
printf("There are %ju section headers, starting at offset 0x%jx:\n",
(uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff);
printf("\nSection Headers:\n");
if (re->ec == ELFCLASS32) {
if (re->options & RE_T)
printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n"
"%12s\n", ST_HDR);
else
printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
S_HDR);
} else if (re->options & RE_WW) {
if (re->options & RE_T)
printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n"
"%12s\n", ST_HDR);
else
printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
S_HDR);
} else {
if (re->options & RE_T)
printf(" %s\n %-18s%-17s%-18s%s\n %-18s"
"%-17s%-18s%s\n%12s\n", ST_HDRL);
else
printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%"
"-6s%-6s%s\n", S_HDRL);
}
for (i = 0; (size_t)i < re->shnum; i++) {
s = &re->sl[i];
if (re->ec == ELFCLASS32) {
if (re->options & RE_T)
printf(" [%2d] %s\n %-15.15s %8.8jx"
" %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n"
" %s\n", ST_CT);
else
printf(" [%2d] %-17.17s %-15.15s %8.8jx"
" %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n",
S_CT);
} else if (re->options & RE_WW) {
if (re->options & RE_T)
printf(" [%2d] %s\n %-15.15s %16.16jx"
" %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n"
" %s\n", ST_CT);
else
printf(" [%2d] %-17.17s %-15.15s %16.16jx"
" %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n",
S_CT);
} else {
if (re->options & RE_T)
printf(" [%2d] %s\n %-15.15s %16.16jx"
" %16.16jx %u\n %16.16jx %16.16jx"
" %-16u %ju\n %s\n", ST_CTL);
else
printf(" [%2d] %-17.17s %-15.15s %16.16jx"
" %8.8jx\n %16.16jx %16.16jx "
"%3s %2u %3u %ju\n", S_CT);
}
}
if ((re->options & RE_T) == 0)
printf("Key to Flags:\n W (write), A (alloc),"
" X (execute), M (merge), S (strings)\n"
" I (info), L (link order), G (group), x (unknown)\n"
" O (extra OS processing required)"
" o (OS specific), p (processor specific)\n");
#undef S_HDR
#undef S_HDRL
#undef ST_HDR
#undef ST_HDRL
#undef S_CT
#undef ST_CT
#undef ST_CTL
}
/*
* Return number of entries in the given section. We'd prefer ent_count be a
* size_t *, but libelf APIs already use int for section indices.
*/
static int
get_ent_count(struct section *s, int *ent_count)
{
if (s->entsize == 0) {
warnx("section %s has entry size 0", s->name);
return (0);
} else if (s->sz / s->entsize > INT_MAX) {
warnx("section %s has invalid section count", s->name);
return (0);
}
*ent_count = (int)(s->sz / s->entsize);
return (1);
}
static void
dump_dynamic(struct readelf *re)
{
GElf_Dyn dyn;
Elf_Data *d;
struct section *s;
int elferr, i, is_dynamic, j, jmax, nentries;
is_dynamic = 0;
for (i = 0; (size_t)i < re->shnum; i++) {
s = &re->sl[i];
if (s->type != SHT_DYNAMIC)
continue;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(-1));
continue;
}
if (d->d_size <= 0)
continue;
is_dynamic = 1;
/* Determine the actual number of table entries. */
nentries = 0;
if (!get_ent_count(s, &jmax))
continue;
for (j = 0; j < jmax; j++) {
if (gelf_getdyn(d, j, &dyn) != &dyn) {
warnx("gelf_getdyn failed: %s",
elf_errmsg(-1));
continue;
}
nentries ++;
if (dyn.d_tag == DT_NULL)
break;
}
printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off);
printf(" contains %u entries:\n", nentries);
if (re->ec == ELFCLASS32)
printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value");
else
printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value");
for (j = 0; j < nentries; j++) {
if (gelf_getdyn(d, j, &dyn) != &dyn)
continue;
/* Dump dynamic entry type. */
if (re->ec == ELFCLASS32)
printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag);
else
printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag);
printf(" %-20s", dt_type(re->ehdr.e_machine,
dyn.d_tag));
/* Dump dynamic entry value. */
dump_dyn_val(re, &dyn, s->link);
}
}
if (!is_dynamic)
printf("\nThere is no dynamic section in this file.\n");
}
static char *
timestamp(time_t ti)
{
static char ts[32];
struct tm *t;
t = gmtime(&ti);
snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d",
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour,
t->tm_min, t->tm_sec);
return (ts);
}
static const char *
dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val)
{
const char *name;
if (stab == SHN_UNDEF)
name = "ERROR";
else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) {
(void) elf_errno(); /* clear error */
name = "ERROR";
}
return (name);
}
static void
dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn)
{
switch (re->ehdr.e_machine) {
case EM_MIPS:
case EM_MIPS_RS3_LE:
switch (dyn->d_tag) {
case DT_MIPS_RLD_VERSION:
case DT_MIPS_LOCAL_GOTNO:
case DT_MIPS_CONFLICTNO:
case DT_MIPS_LIBLISTNO:
case DT_MIPS_SYMTABNO:
case DT_MIPS_UNREFEXTNO:
case DT_MIPS_GOTSYM:
case DT_MIPS_HIPAGENO:
case DT_MIPS_DELTA_CLASS_NO:
case DT_MIPS_DELTA_INSTANCE_NO:
case DT_MIPS_DELTA_RELOC_NO:
case DT_MIPS_DELTA_SYM_NO:
case DT_MIPS_DELTA_CLASSSYM_NO:
case DT_MIPS_LOCALPAGE_GOTIDX:
case DT_MIPS_LOCAL_GOTIDX:
case DT_MIPS_HIDDEN_GOTIDX:
case DT_MIPS_PROTECTED_GOTIDX:
printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
break;
case DT_MIPS_ICHECKSUM:
case DT_MIPS_FLAGS:
case DT_MIPS_BASE_ADDRESS:
case DT_MIPS_CONFLICT:
case DT_MIPS_LIBLIST:
case DT_MIPS_RLD_MAP:
case DT_MIPS_DELTA_CLASS:
case DT_MIPS_DELTA_INSTANCE:
case DT_MIPS_DELTA_RELOC:
case DT_MIPS_DELTA_SYM:
case DT_MIPS_DELTA_CLASSSYM:
case DT_MIPS_CXX_FLAGS:
case DT_MIPS_PIXIE_INIT:
case DT_MIPS_SYMBOL_LIB:
case DT_MIPS_OPTIONS:
case DT_MIPS_INTERFACE:
case DT_MIPS_DYNSTR_ALIGN:
case DT_MIPS_INTERFACE_SIZE:
case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
case DT_MIPS_COMPACT_SIZE:
case DT_MIPS_GP_VALUE:
case DT_MIPS_AUX_DYNAMIC:
case DT_MIPS_PLTGOT:
case DT_MIPS_RLD_OBJ_UPDATE:
case DT_MIPS_RWPLT:
printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
break;
case DT_MIPS_IVERSION:
case DT_MIPS_PERF_SUFFIX:
case DT_MIPS_TIME_STAMP:
printf(" %s\n", timestamp(dyn->d_un.d_val));
break;
default:
printf("\n");
break;
}
break;
default:
printf("\n");
break;
}
}
static void
dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab)
{
const char *name;
if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC &&
dyn->d_tag != DT_AUXILIARY && dyn->d_tag != DT_FILTER) {
dump_arch_dyn_val(re, dyn);
return;
}
/* These entry values are index into the string table. */
name = NULL;
if (dyn->d_tag == DT_AUXILIARY || dyn->d_tag == DT_FILTER ||
dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME ||
dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH)
name = dyn_str(re, stab, dyn->d_un.d_val);
switch(dyn->d_tag) {
case DT_NULL:
case DT_PLTGOT:
case DT_HASH:
case DT_STRTAB:
case DT_SYMTAB:
case DT_RELA:
case DT_INIT:
case DT_SYMBOLIC:
case DT_REL:
case DT_DEBUG:
case DT_TEXTREL:
case DT_JMPREL:
case DT_FINI:
case DT_VERDEF:
case DT_VERNEED:
case DT_VERSYM:
case DT_GNU_HASH:
case DT_GNU_LIBLIST:
case DT_GNU_CONFLICT:
printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
break;
case DT_PLTRELSZ:
case DT_RELASZ:
case DT_RELAENT:
case DT_STRSZ:
case DT_SYMENT:
case DT_RELSZ:
case DT_RELENT:
case DT_PREINIT_ARRAYSZ:
case DT_INIT_ARRAYSZ:
case DT_FINI_ARRAYSZ:
case DT_GNU_CONFLICTSZ:
case DT_GNU_LIBLISTSZ:
printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val);
break;
case DT_RELACOUNT:
case DT_RELCOUNT:
case DT_VERDEFNUM:
case DT_VERNEEDNUM:
printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
break;
case DT_AUXILIARY:
printf(" Auxiliary library: [%s]\n", name);
break;
case DT_FILTER:
printf(" Filter library: [%s]\n", name);
break;
case DT_NEEDED:
printf(" Shared library: [%s]\n", name);
break;
case DT_SONAME:
printf(" Library soname: [%s]\n", name);
break;
case DT_RPATH:
printf(" Library rpath: [%s]\n", name);
break;
case DT_RUNPATH:
printf(" Library runpath: [%s]\n", name);
break;
case DT_PLTREL:
printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val));
break;
case DT_GNU_PRELINKED:
printf(" %s\n", timestamp(dyn->d_un.d_val));
break;
default:
printf("\n");
}
}
static void
dump_rel(struct readelf *re, struct section *s, Elf_Data *d)
{
GElf_Rel r;
const char *symname;
uint64_t symval;
int i, len;
uint32_t type;
uint8_t type2, type3;
if (s->link >= re->shnum)
return;
#define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name"
#define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \
elftc_reloc_type_str(re->ehdr.e_machine, \
ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname
#define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \
elftc_reloc_type_str(re->ehdr.e_machine, type), \
(uintmax_t)symval, symname
printf("\nRelocation section (%s):\n", s->name);
if (re->ec == ELFCLASS32)
printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR);
else {
if (re->options & RE_WW)
printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR);
else
printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR);
}
assert(d->d_size == s->sz);
if (!get_ent_count(s, &len))
return;
for (i = 0; i < len; i++) {
if (gelf_getrel(d, i, &r) != &r) {
warnx("gelf_getrel failed: %s", elf_errmsg(-1));
continue;
}
symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
if (re->ec == ELFCLASS32) {
r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
ELF64_R_TYPE(r.r_info));
printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32);
} else {
type = ELF64_R_TYPE(r.r_info);
if (re->ehdr.e_machine == EM_MIPS) {
type2 = (type >> 8) & 0xFF;
type3 = (type >> 16) & 0xFF;
type = type & 0xFF;
} else {
type2 = type3 = 0;
}
if (re->options & RE_WW)
printf("%16.16jx %16.16jx %-24.24s"
" %16.16jx %s\n", REL_CT64);
else
printf("%12.12jx %12.12jx %-19.19s"
" %16.16jx %s\n", REL_CT64);
if (re->ehdr.e_machine == EM_MIPS) {
if (re->options & RE_WW) {
printf("%32s: %s\n", "Type2",
elftc_reloc_type_str(EM_MIPS,
type2));
printf("%32s: %s\n", "Type3",
elftc_reloc_type_str(EM_MIPS,
type3));
} else {
printf("%24s: %s\n", "Type2",
elftc_reloc_type_str(EM_MIPS,
type2));
printf("%24s: %s\n", "Type3",
elftc_reloc_type_str(EM_MIPS,
type3));
}
}
}
}
#undef REL_HDR
#undef REL_CT
}
static void
dump_rela(struct readelf *re, struct section *s, Elf_Data *d)
{
GElf_Rela r;
const char *symname;
uint64_t symval;
int i, len;
uint32_t type;
uint8_t type2, type3;
if (s->link >= re->shnum)
return;
#define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \
"st_name + r_addend"
#define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \
elftc_reloc_type_str(re->ehdr.e_machine, \
ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname
#define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \
elftc_reloc_type_str(re->ehdr.e_machine, type), \
(uintmax_t)symval, symname
printf("\nRelocation section with addend (%s):\n", s->name);
if (re->ec == ELFCLASS32)
printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR);
else {
if (re->options & RE_WW)
printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR);
else
printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR);
}
assert(d->d_size == s->sz);
if (!get_ent_count(s, &len))
return;
for (i = 0; i < len; i++) {
if (gelf_getrela(d, i, &r) != &r) {
warnx("gelf_getrel failed: %s", elf_errmsg(-1));
continue;
}
symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
if (re->ec == ELFCLASS32) {
r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
ELF64_R_TYPE(r.r_info));
printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32);
printf(" + %x\n", (uint32_t) r.r_addend);
} else {
type = ELF64_R_TYPE(r.r_info);
if (re->ehdr.e_machine == EM_MIPS) {
type2 = (type >> 8) & 0xFF;
type3 = (type >> 16) & 0xFF;
type = type & 0xFF;
} else {
type2 = type3 = 0;
}
if (re->options & RE_WW)
printf("%16.16jx %16.16jx %-24.24s"
" %16.16jx %s", RELA_CT64);
else
printf("%12.12jx %12.12jx %-19.19s"
" %16.16jx %s", RELA_CT64);
printf(" + %jx\n", (uintmax_t) r.r_addend);
if (re->ehdr.e_machine == EM_MIPS) {
if (re->options & RE_WW) {
printf("%32s: %s\n", "Type2",
elftc_reloc_type_str(EM_MIPS,
type2));
printf("%32s: %s\n", "Type3",
elftc_reloc_type_str(EM_MIPS,
type3));
} else {
printf("%24s: %s\n", "Type2",
elftc_reloc_type_str(EM_MIPS,
type2));
printf("%24s: %s\n", "Type3",
elftc_reloc_type_str(EM_MIPS,
type3));
}
}
}
}
#undef RELA_HDR
#undef RELA_CT
}
static void
dump_reloc(struct readelf *re)
{
struct section *s;
Elf_Data *d;
int i, elferr;
for (i = 0; (size_t)i < re->shnum; i++) {
s = &re->sl[i];
if (s->type == SHT_REL || s->type == SHT_RELA) {
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
continue;
}
if (s->type == SHT_REL)
dump_rel(re, s, d);
else
dump_rela(re, s, d);
}
}
}
static void
dump_symtab(struct readelf *re, int i)
{
struct section *s;
Elf_Data *d;
GElf_Sym sym;
const char *name;
uint32_t stab;
int elferr, j, len;
uint16_t vs;
s = &re->sl[i];
if (s->link >= re->shnum)
return;
stab = s->link;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return;
}
if (d->d_size <= 0)
return;
if (!get_ent_count(s, &len))
return;
printf("Symbol table (%s)", s->name);
printf(" contains %d entries:\n", len);
printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type",
"Bind", "Vis", "Ndx", "Name");
for (j = 0; j < len; j++) {
if (gelf_getsym(d, j, &sym) != &sym) {
warnx("gelf_getsym failed: %s", elf_errmsg(-1));
continue;
}
printf("%6d:", j);
printf(" %16.16jx", (uintmax_t) sym.st_value);
printf(" %5ju", (uintmax_t) sym.st_size);
printf(" %-7s", st_type(re->ehdr.e_machine,
re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info)));
printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info)));
printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other)));
printf(" %3s", st_shndx(sym.st_shndx));
if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL)
printf(" %s", name);
/* Append symbol version string for SHT_DYNSYM symbol table. */
if (s->type == SHT_DYNSYM && re->ver != NULL &&
re->vs != NULL && re->vs[j] > 1) {
vs = re->vs[j] & VERSYM_VERSION;
if (vs >= re->ver_sz || re->ver[vs].name == NULL) {
warnx("invalid versym version index %u", vs);
break;
}
if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0)
printf("@%s (%d)", re->ver[vs].name, vs);
else
printf("@@%s (%d)", re->ver[vs].name, vs);
}
putchar('\n');
}
}
static void
dump_symtabs(struct readelf *re)
{
GElf_Dyn dyn;
Elf_Data *d;
struct section *s;
uint64_t dyn_off;
int elferr, i, len;
/*
* If -D is specified, only dump the symbol table specified by
* the DT_SYMTAB entry in the .dynamic section.
*/
dyn_off = 0;
if (re->options & RE_DD) {
s = NULL;
for (i = 0; (size_t)i < re->shnum; i++)
if (re->sl[i].type == SHT_DYNAMIC) {
s = &re->sl[i];
break;
}
if (s == NULL)
return;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(-1));
return;
}
if (d->d_size <= 0)
return;
if (!get_ent_count(s, &len))
return;
for (i = 0; i < len; i++) {
if (gelf_getdyn(d, i, &dyn) != &dyn) {
warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
continue;
}
if (dyn.d_tag == DT_SYMTAB) {
dyn_off = dyn.d_un.d_val;
break;
}
}
}
/* Find and dump symbol tables. */
for (i = 0; (size_t)i < re->shnum; i++) {
s = &re->sl[i];
if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) {
if (re->options & RE_DD) {
if (dyn_off == s->addr) {
dump_symtab(re, i);
break;
}
} else
dump_symtab(re, i);
}
}
}
static void
dump_svr4_hash(struct section *s)
{
Elf_Data *d;
uint32_t *buf;
uint32_t nbucket, nchain;
uint32_t *bucket, *chain;
uint32_t *bl, *c, maxl, total;
int elferr, i, j;
/* Read and parse the content of .hash section. */
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return;
}
if (d->d_size < 2 * sizeof(uint32_t)) {
warnx(".hash section too small");
return;
}
buf = d->d_buf;
nbucket = buf[0];
nchain = buf[1];
if (nbucket <= 0 || nchain <= 0) {
warnx("Malformed .hash section");
return;
}
if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
warnx("Malformed .hash section");
return;
}
bucket = &buf[2];
chain = &buf[2 + nbucket];
maxl = 0;
if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
errx(EXIT_FAILURE, "calloc failed");
for (i = 0; (uint32_t)i < nbucket; i++)
for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
if (++bl[i] > maxl)
maxl = bl[i];
if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
errx(EXIT_FAILURE, "calloc failed");
for (i = 0; (uint32_t)i < nbucket; i++)
c[bl[i]]++;
printf("\nHistogram for bucket list length (total of %u buckets):\n",
nbucket);
printf(" Length\tNumber\t\t%% of total\tCoverage\n");
total = 0;
for (i = 0; (uint32_t)i <= maxl; i++) {
total += c[i] * i;
printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
}
free(c);
free(bl);
}
static void
dump_svr4_hash64(struct readelf *re, struct section *s)
{
Elf_Data *d, dst;
uint64_t *buf;
uint64_t nbucket, nchain;
uint64_t *bucket, *chain;
uint64_t *bl, *c, maxl, total;
int elferr, i, j;
/*
* ALPHA uses 64-bit hash entries. Since libelf assumes that
* .hash section contains only 32-bit entry, an explicit
* gelf_xlatetom is needed here.
*/
(void) elf_errno();
if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_rawdata failed: %s",
elf_errmsg(elferr));
return;
}
d->d_type = ELF_T_XWORD;
memcpy(&dst, d, sizeof(Elf_Data));
if (gelf_xlatetom(re->elf, &dst, d,
re->ehdr.e_ident[EI_DATA]) != &dst) {
warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
return;
}
if (dst.d_size < 2 * sizeof(uint64_t)) {
warnx(".hash section too small");
return;
}
buf = dst.d_buf;
nbucket = buf[0];
nchain = buf[1];
if (nbucket <= 0 || nchain <= 0) {
warnx("Malformed .hash section");
return;
}
if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
warnx("Malformed .hash section");
return;
}
bucket = &buf[2];
chain = &buf[2 + nbucket];
maxl = 0;
if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
errx(EXIT_FAILURE, "calloc failed");
for (i = 0; (uint32_t)i < nbucket; i++)
for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
if (++bl[i] > maxl)
maxl = bl[i];
if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
errx(EXIT_FAILURE, "calloc failed");
for (i = 0; (uint64_t)i < nbucket; i++)
c[bl[i]]++;
printf("Histogram for bucket list length (total of %ju buckets):\n",
(uintmax_t)nbucket);
printf(" Length\tNumber\t\t%% of total\tCoverage\n");
total = 0;
for (i = 0; (uint64_t)i <= maxl; i++) {
total += c[i] * i;
printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i],
c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
}
free(c);
free(bl);
}
static void
dump_gnu_hash(struct readelf *re, struct section *s)
{
struct section *ds;
Elf_Data *d;
uint32_t *buf;
uint32_t *bucket, *chain;
uint32_t nbucket, nchain, symndx, maskwords;
uint32_t *bl, *c, maxl, total;
int elferr, dynsymcount, i, j;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
return;
}
if (d->d_size < 4 * sizeof(uint32_t)) {
warnx(".gnu.hash section too small");
return;
}
buf = d->d_buf;
nbucket = buf[0];
symndx = buf[1];
maskwords = buf[2];
buf += 4;
if (s->link >= re->shnum)
return;
ds = &re->sl[s->link];
if (!get_ent_count(ds, &dynsymcount))
return;
if (symndx >= (uint32_t)dynsymcount) {
warnx("Malformed .gnu.hash section (symndx out of range)");
return;
}
nchain = dynsymcount - symndx;
if (d->d_size != 4 * sizeof(uint32_t) + maskwords *
(re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
(nbucket + nchain) * sizeof(uint32_t)) {
warnx("Malformed .gnu.hash section");
return;
}
bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2);
chain = bucket + nbucket;
maxl = 0;
if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
errx(EXIT_FAILURE, "calloc failed");
for (i = 0; (uint32_t)i < nbucket; i++)
for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain;
j++) {
if (++bl[i] > maxl)
maxl = bl[i];
if (chain[j - symndx] & 1)
break;
}
if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
errx(EXIT_FAILURE, "calloc failed");
for (i = 0; (uint32_t)i < nbucket; i++)
c[bl[i]]++;
printf("Histogram for bucket list length (total of %u buckets):\n",
nbucket);
printf(" Length\tNumber\t\t%% of total\tCoverage\n");
total = 0;
for (i = 0; (uint32_t)i <= maxl; i++) {
total += c[i] * i;
printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
}
free(c);
free(bl);
}
static void
dump_hash(struct readelf *re)
{
struct section *s;
int i;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) {
if (s->type == SHT_GNU_HASH)
dump_gnu_hash(re, s);
else if (re->ehdr.e_machine == EM_ALPHA &&
s->entsize == 8)
dump_svr4_hash64(re, s);
else
dump_svr4_hash(s);
}
}
}
static void
dump_notes(struct readelf *re)
{
struct section *s;
const char *rawfile;
GElf_Phdr phdr;
Elf_Data *d;
size_t filesize, phnum;
int i, elferr;
if (re->ehdr.e_type == ET_CORE) {
/*
* Search program headers in the core file for
* PT_NOTE entry.
*/
if (elf_getphnum(re->elf, &phnum) == 0) {
warnx("elf_getphnum failed: %s", elf_errmsg(-1));
return;
}
if (phnum == 0)
return;
if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) {
warnx("elf_rawfile failed: %s", elf_errmsg(-1));
return;
}
for (i = 0; (size_t) i < phnum; i++) {
if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
warnx("gelf_getphdr failed: %s",
elf_errmsg(-1));
continue;
}
if (phdr.p_type == PT_NOTE) {
if (phdr.p_offset >= filesize ||
phdr.p_filesz > filesize - phdr.p_offset) {
warnx("invalid PHDR offset");
continue;
}
dump_notes_content(re, rawfile + phdr.p_offset,
phdr.p_filesz, phdr.p_offset);
}
}
} else {
/*
* For objects other than core files, Search for
* SHT_NOTE sections.
*/
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->type == SHT_NOTE) {
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
continue;
}
dump_notes_content(re, d->d_buf, d->d_size,
s->off);
}
}
}
}
static void
dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off)
{
Elf_Note *note;
const char *end, *name;
printf("\nNotes at offset %#010jx with length %#010jx:\n",
(uintmax_t) off, (uintmax_t) sz);
printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description");
end = buf + sz;
while (buf < end) {
if (buf + sizeof(*note) > end) {
warnx("invalid note header");
return;
}
note = (Elf_Note *)(uintptr_t) buf;
name = (char *)(uintptr_t)(note + 1);
/*
* The name field is required to be nul-terminated, and
* n_namesz includes the terminating nul in observed
* implementations (contrary to the ELF-64 spec). A special
* case is needed for cores generated by some older Linux
* versions, which write a note named "CORE" without a nul
* terminator and n_namesz = 4.
*/
if (note->n_namesz == 0)
name = "";
else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0)
name = "CORE";
else if (strnlen(name, note->n_namesz) >= note->n_namesz)
name = "<invalid>";
printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz);
printf(" %s\n", note_type(name, re->ehdr.e_type,
note->n_type));
buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) +
roundup2(note->n_descsz, 4);
}
}
/*
* Symbol versioning sections are the same for 32bit and 64bit
* ELF objects.
*/
#define Elf_Verdef Elf32_Verdef
#define Elf_Verdaux Elf32_Verdaux
#define Elf_Verneed Elf32_Verneed
#define Elf_Vernaux Elf32_Vernaux
#define SAVE_VERSION_NAME(x, n, t) \
do { \
while (x >= re->ver_sz) { \
nv = realloc(re->ver, \
sizeof(*re->ver) * re->ver_sz * 2); \
if (nv == NULL) { \
warn("realloc failed"); \
free(re->ver); \
return; \
} \
re->ver = nv; \
for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \
re->ver[i].name = NULL; \
re->ver[i].type = 0; \
} \
re->ver_sz *= 2; \
} \
if (x > 1) { \
re->ver[x].name = n; \
re->ver[x].type = t; \
} \
} while (0)
static void
dump_verdef(struct readelf *re, int dump)
{
struct section *s;
struct symver *nv;
Elf_Data *d;
Elf_Verdef *vd;
Elf_Verdaux *vda;
uint8_t *buf, *end, *buf2;
const char *name;
int elferr, i, j;
if ((s = re->vd_s) == NULL)
return;
if (s->link >= re->shnum)
return;
if (re->ver == NULL) {
re->ver_sz = 16;
if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
NULL) {
warn("calloc failed");
return;
}
re->ver[0].name = "*local*";
re->ver[1].name = "*global*";
}
if (dump)
printf("\nVersion definition section (%s):\n", s->name);
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return;
}
if (d->d_size == 0)
return;
buf = d->d_buf;
end = buf + d->d_size;
while (buf + sizeof(Elf_Verdef) <= end) {
vd = (Elf_Verdef *) (uintptr_t) buf;
if (dump) {
printf(" 0x%4.4lx", (unsigned long)
(buf - (uint8_t *)d->d_buf));
printf(" vd_version: %u vd_flags: %d"
" vd_ndx: %u vd_cnt: %u", vd->vd_version,
vd->vd_flags, vd->vd_ndx, vd->vd_cnt);
}
buf2 = buf + vd->vd_aux;
j = 0;
while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) {
vda = (Elf_Verdaux *) (uintptr_t) buf2;
name = get_string(re, s->link, vda->vda_name);
if (j == 0) {
if (dump)
printf(" vda_name: %s\n", name);
SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1);
} else if (dump)
printf(" 0x%4.4lx parent: %s\n",
(unsigned long) (buf2 -
(uint8_t *)d->d_buf), name);
if (vda->vda_next == 0)
break;
buf2 += vda->vda_next;
j++;
}
if (vd->vd_next == 0)
break;
buf += vd->vd_next;
}
}
static void
dump_verneed(struct readelf *re, int dump)
{
struct section *s;
struct symver *nv;
Elf_Data *d;
Elf_Verneed *vn;
Elf_Vernaux *vna;
uint8_t *buf, *end, *buf2;
const char *name;
int elferr, i, j;
if ((s = re->vn_s) == NULL)
return;
if (s->link >= re->shnum)
return;
if (re->ver == NULL) {
re->ver_sz = 16;
if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
NULL) {
warn("calloc failed");
return;
}
re->ver[0].name = "*local*";
re->ver[1].name = "*global*";
}
if (dump)
printf("\nVersion needed section (%s):\n", s->name);
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return;
}
if (d->d_size == 0)
return;
buf = d->d_buf;
end = buf + d->d_size;
while (buf + sizeof(Elf_Verneed) <= end) {
vn = (Elf_Verneed *) (uintptr_t) buf;
if (dump) {
printf(" 0x%4.4lx", (unsigned long)
(buf - (uint8_t *)d->d_buf));
printf(" vn_version: %u vn_file: %s vn_cnt: %u\n",
vn->vn_version,
get_string(re, s->link, vn->vn_file),
vn->vn_cnt);
}
buf2 = buf + vn->vn_aux;
j = 0;
while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) {
vna = (Elf32_Vernaux *) (uintptr_t) buf2;
if (dump)
printf(" 0x%4.4lx", (unsigned long)
(buf2 - (uint8_t *)d->d_buf));
name = get_string(re, s->link, vna->vna_name);
if (dump)
printf(" vna_name: %s vna_flags: %u"
" vna_other: %u\n", name,
vna->vna_flags, vna->vna_other);
SAVE_VERSION_NAME((int)vna->vna_other, name, 0);
if (vna->vna_next == 0)
break;
buf2 += vna->vna_next;
j++;
}
if (vn->vn_next == 0)
break;
buf += vn->vn_next;
}
}
static void
dump_versym(struct readelf *re)
{
int i;
uint16_t vs;
if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL)
return;
printf("\nVersion symbol section (%s):\n", re->vs_s->name);
for (i = 0; i < re->vs_sz; i++) {
if ((i & 3) == 0) {
if (i > 0)
putchar('\n');
printf(" %03x:", i);
}
vs = re->vs[i] & VERSYM_VERSION;
if (vs >= re->ver_sz || re->ver[vs].name == NULL) {
warnx("invalid versym version index %u", re->vs[i]);
break;
}
if (re->vs[i] & VERSYM_HIDDEN)
printf(" %3xh %-12s ", vs,
re->ver[re->vs[i] & VERSYM_VERSION].name);
else
printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name);
}
putchar('\n');
}
static void
dump_ver(struct readelf *re)
{
if (re->vs_s && re->ver && re->vs)
dump_versym(re);
if (re->vd_s)
dump_verdef(re, 1);
if (re->vn_s)
dump_verneed(re, 1);
}
static void
search_ver(struct readelf *re)
{
struct section *s;
Elf_Data *d;
int elferr, i;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->type == SHT_SUNW_versym)
re->vs_s = s;
if (s->type == SHT_SUNW_verneed)
re->vn_s = s;
if (s->type == SHT_SUNW_verdef)
re->vd_s = s;
}
if (re->vd_s)
dump_verdef(re, 0);
if (re->vn_s)
dump_verneed(re, 0);
if (re->vs_s && re->ver != NULL) {
(void) elf_errno();
if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
return;
}
if (d->d_size == 0)
return;
re->vs = d->d_buf;
re->vs_sz = d->d_size / sizeof(Elf32_Half);
}
}
#undef Elf_Verdef
#undef Elf_Verdaux
#undef Elf_Verneed
#undef Elf_Vernaux
#undef SAVE_VERSION_NAME
/*
* Elf32_Lib and Elf64_Lib are identical.
*/
#define Elf_Lib Elf32_Lib
static void
dump_liblist(struct readelf *re)
{
struct section *s;
struct tm *t;
time_t ti;
char tbuf[20];
Elf_Data *d;
Elf_Lib *lib;
int i, j, k, elferr, first, len;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->type != SHT_GNU_LIBLIST)
continue;
if (s->link >= re->shnum)
continue;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
continue;
}
if (d->d_size <= 0)
continue;
lib = d->d_buf;
if (!get_ent_count(s, &len))
continue;
printf("\nLibrary list section '%s' ", s->name);
printf("contains %d entries:\n", len);
printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp",
"Checksum", "Version", "Flags");
for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) {
printf("%3d: ", j);
printf("%-20.20s ",
get_string(re, s->link, lib->l_name));
ti = lib->l_time_stamp;
t = gmtime(&ti);
snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d"
":%2d", t->tm_year + 1900, t->tm_mon + 1,
t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
printf("%-19.19s ", tbuf);
printf("0x%08x ", lib->l_checksum);
printf("%-7d %#x", lib->l_version, lib->l_flags);
if (lib->l_flags != 0) {
first = 1;
putchar('(');
for (k = 0; l_flag[k].name != NULL; k++) {
if ((l_flag[k].value & lib->l_flags) ==
0)
continue;
if (!first)
putchar(',');
else
first = 0;
printf("%s", l_flag[k].name);
}
putchar(')');
}
putchar('\n');
lib++;
}
}
}
#undef Elf_Lib
static void
dump_section_groups(struct readelf *re)
{
struct section *s;
const char *symname;
Elf_Data *d;
uint32_t *w;
int i, j, elferr;
size_t n;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->type != SHT_GROUP)
continue;
if (s->link >= re->shnum)
continue;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
continue;
}
if (d->d_size <= 0)
continue;
w = d->d_buf;
/* We only support COMDAT section. */
#ifndef GRP_COMDAT
#define GRP_COMDAT 0x1
#endif
if ((*w++ & GRP_COMDAT) == 0)
return;
if (s->entsize == 0)
s->entsize = 4;
symname = get_symbol_name(re, s->link, s->info);
n = s->sz / s->entsize;
if (n-- < 1)
return;
printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju"
" sections:\n", i, s->name, symname, (uintmax_t)n);
printf(" %-10.10s %s\n", "[Index]", "Name");
for (j = 0; (size_t) j < n; j++, w++) {
if (*w >= re->shnum) {
warnx("invalid section index: %u", *w);
continue;
}
printf(" [%5u] %s\n", *w, re->sl[*w].name);
}
}
}
static uint8_t *
dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe)
{
uint64_t val;
/*
* According to ARM EABI: For tags > 32, even numbered tags have
* a ULEB128 param and odd numbered ones have NUL-terminated
* string param. This rule probably also applies for tags <= 32
* if the object arch is not ARM.
*/
printf(" Tag_unknown_%ju: ", (uintmax_t) tag);
if (tag & 1) {
printf("%s\n", (char *) p);
p += strlen((char *) p) + 1;
} else {
val = _decode_uleb128(&p, pe);
printf("%ju\n", (uintmax_t) val);
}
return (p);
}
static uint8_t *
dump_compatibility_tag(uint8_t *p, uint8_t *pe)
{
uint64_t val;
val = _decode_uleb128(&p, pe);
printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p);
p += strlen((char *) p) + 1;
return (p);
}
static void
dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
{
uint64_t tag, val;
size_t i;
int found, desc;
(void) re;
while (p < pe) {
tag = _decode_uleb128(&p, pe);
found = desc = 0;
for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]);
i++) {
if (tag == aeabi_tags[i].tag) {
found = 1;
printf(" %s: ", aeabi_tags[i].s_tag);
if (aeabi_tags[i].get_desc) {
desc = 1;
val = _decode_uleb128(&p, pe);
printf("%s\n",
aeabi_tags[i].get_desc(val));
}
break;
}
if (tag < aeabi_tags[i].tag)
break;
}
if (!found) {
p = dump_unknown_tag(tag, p, pe);
continue;
}
if (desc)
continue;
switch (tag) {
case 4: /* Tag_CPU_raw_name */
case 5: /* Tag_CPU_name */
case 67: /* Tag_conformance */
printf("%s\n", (char *) p);
p += strlen((char *) p) + 1;
break;
case 32: /* Tag_compatibility */
p = dump_compatibility_tag(p, pe);
break;
case 64: /* Tag_nodefaults */
/* ignored, written as 0. */
(void) _decode_uleb128(&p, pe);
printf("True\n");
break;
case 65: /* Tag_also_compatible_with */
val = _decode_uleb128(&p, pe);
/* Must be Tag_CPU_arch */
if (val != 6) {
printf("unknown\n");
break;
}
val = _decode_uleb128(&p, pe);
printf("%s\n", aeabi_cpu_arch(val));
/* Skip NUL terminator. */
p++;
break;
default:
putchar('\n');
break;
}
}
}
#ifndef Tag_GNU_MIPS_ABI_FP
#define Tag_GNU_MIPS_ABI_FP 4
#endif
static void
dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
{
uint64_t tag, val;
(void) re;
while (p < pe) {
tag = _decode_uleb128(&p, pe);
switch (tag) {
case Tag_GNU_MIPS_ABI_FP:
val = _decode_uleb128(&p, pe);
printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val));
break;
case 32: /* Tag_compatibility */
p = dump_compatibility_tag(p, pe);
break;
default:
p = dump_unknown_tag(tag, p, pe);
break;
}
}
}
#ifndef Tag_GNU_Power_ABI_FP
#define Tag_GNU_Power_ABI_FP 4
#endif
#ifndef Tag_GNU_Power_ABI_Vector
#define Tag_GNU_Power_ABI_Vector 8
#endif
static void
dump_ppc_attributes(uint8_t *p, uint8_t *pe)
{
uint64_t tag, val;
while (p < pe) {
tag = _decode_uleb128(&p, pe);
switch (tag) {
case Tag_GNU_Power_ABI_FP:
val = _decode_uleb128(&p, pe);
printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val));
break;
case Tag_GNU_Power_ABI_Vector:
val = _decode_uleb128(&p, pe);
printf(" Tag_GNU_Power_ABI_Vector: %s\n",
ppc_abi_vector(val));
break;
case 32: /* Tag_compatibility */
p = dump_compatibility_tag(p, pe);
break;
default:
p = dump_unknown_tag(tag, p, pe);
break;
}
}
}
static void
dump_attributes(struct readelf *re)
{
struct section *s;
Elf_Data *d;
uint8_t *p, *pe, *sp;
size_t len, seclen, nlen, sublen;
uint64_t val;
int tag, i, elferr;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->type != SHT_GNU_ATTRIBUTES &&
(re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3))
continue;
(void) elf_errno();
if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_rawdata failed: %s",
elf_errmsg(elferr));
continue;
}
if (d->d_size <= 0)
continue;
p = d->d_buf;
pe = p + d->d_size;
if (*p != 'A') {
printf("Unknown Attribute Section Format: %c\n",
(char) *p);
continue;
}
len = d->d_size - 1;
p++;
while (len > 0) {
if (len < 4) {
warnx("truncated attribute section length");
return;
}
seclen = re->dw_decode(&p, 4);
if (seclen > len) {
warnx("invalid attribute section length");
return;
}
len -= seclen;
nlen = strlen((char *) p) + 1;
if (nlen + 4 > seclen) {
warnx("invalid attribute section name");
return;
}
printf("Attribute Section: %s\n", (char *) p);
p += nlen;
seclen -= nlen + 4;
while (seclen > 0) {
sp = p;
tag = *p++;
sublen = re->dw_decode(&p, 4);
if (sublen > seclen) {
warnx("invalid attribute sub-section"
" length");
return;
}
seclen -= sublen;
printf("%s", top_tag(tag));
if (tag == 2 || tag == 3) {
putchar(':');
for (;;) {
val = _decode_uleb128(&p, pe);
if (val == 0)
break;
printf(" %ju", (uintmax_t) val);
}
}
putchar('\n');
if (re->ehdr.e_machine == EM_ARM &&
s->type == SHT_LOPROC + 3)
dump_arm_attributes(re, p, sp + sublen);
else if (re->ehdr.e_machine == EM_MIPS ||
re->ehdr.e_machine == EM_MIPS_RS3_LE)
dump_mips_attributes(re, p,
sp + sublen);
else if (re->ehdr.e_machine == EM_PPC)
dump_ppc_attributes(p, sp + sublen);
p = sp + sublen;
}
}
}
}
static void
dump_mips_specific_info(struct readelf *re)
{
struct section *s;
int i;
s = NULL;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") ||
(s->type == SHT_MIPS_OPTIONS))) {
dump_mips_options(re, s);
}
}
if (s->name != NULL && (!strcmp(s->name, ".MIPS.abiflags") ||
(s->type == SHT_MIPS_ABIFLAGS)))
dump_mips_abiflags(re, s);
/*
* Dump .reginfo if present (although it will be ignored by an OS if a
* .MIPS.options section is present, according to SGI mips64 spec).
*/
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->name != NULL && (!strcmp(s->name, ".reginfo") ||
(s->type == SHT_MIPS_REGINFO)))
dump_mips_reginfo(re, s);
}
}
static void
dump_mips_abiflags(struct readelf *re, struct section *s)
{
Elf_Data *d;
uint8_t *p;
int elferr;
uint32_t isa_ext, ases, flags1, flags2;
uint16_t version;
uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size, fp_abi;
if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_rawdata failed: %s",
elf_errmsg(elferr));
return;
}
if (d->d_size != 24) {
warnx("invalid MIPS abiflags section size");
return;
}
p = d->d_buf;
version = re->dw_decode(&p, 2);
printf("MIPS ABI Flags Version: %u", version);
if (version != 0) {
printf(" (unknown)\n\n");
return;
}
printf("\n\n");
isa_level = re->dw_decode(&p, 1);
isa_rev = re->dw_decode(&p, 1);
gpr_size = re->dw_decode(&p, 1);
cpr1_size = re->dw_decode(&p, 1);
cpr2_size = re->dw_decode(&p, 1);
fp_abi = re->dw_decode(&p, 1);
isa_ext = re->dw_decode(&p, 4);
ases = re->dw_decode(&p, 4);
flags1 = re->dw_decode(&p, 4);
flags2 = re->dw_decode(&p, 4);
printf("ISA: ");
if (isa_rev <= 1)
printf("MIPS%u\n", isa_level);
else
printf("MIPS%ur%u\n", isa_level, isa_rev);
printf("GPR size: %d\n", get_mips_register_size(gpr_size));
printf("CPR1 size: %d\n", get_mips_register_size(cpr1_size));
printf("CPR2 size: %d\n", get_mips_register_size(cpr2_size));
printf("FP ABI: ");
switch (fp_abi) {
case 3:
printf("Soft float");
break;
default:
printf("%u", fp_abi);
break;
}
printf("\nISA Extension: %u\n", isa_ext);
printf("ASEs: %u\n", ases);
printf("FLAGS 1: %08x\n", flags1);
printf("FLAGS 2: %08x\n", flags2);
}
static int
get_mips_register_size(uint8_t flag)
{
switch (flag) {
case 0: return 0;
case 1: return 32;
case 2: return 64;
case 3: return 128;
default: return -1;
}
}
static void
dump_mips_reginfo(struct readelf *re, struct section *s)
{
Elf_Data *d;
int elferr, len;
(void) elf_errno();
if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_rawdata failed: %s",
elf_errmsg(elferr));
return;
}
if (d->d_size <= 0)
return;
if (!get_ent_count(s, &len))
return;
printf("\nSection '%s' contains %d entries:\n", s->name, len);
dump_mips_odk_reginfo(re, d->d_buf, d->d_size);
}
static void
dump_mips_options(struct readelf *re, struct section *s)
{
Elf_Data *d;
uint32_t info;
uint16_t sndx;
uint8_t *p, *pe;
uint8_t kind, size;
int elferr;
(void) elf_errno();
if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_rawdata failed: %s",
elf_errmsg(elferr));
return;
}
if (d->d_size == 0)
return;
printf("\nSection %s contains:\n", s->name);
p = d->d_buf;
pe = p + d->d_size;
while (p < pe) {
if (pe - p < 8) {
warnx("Truncated MIPS option header");
return;
}
kind = re->dw_decode(&p, 1);
size = re->dw_decode(&p, 1);
sndx = re->dw_decode(&p, 2);
info = re->dw_decode(&p, 4);
if (size < 8 || size - 8 > pe - p) {
warnx("Malformed MIPS option header");
return;
}
size -= 8;
switch (kind) {
case ODK_REGINFO:
dump_mips_odk_reginfo(re, p, size);
break;
case ODK_EXCEPTIONS:
printf(" EXCEPTIONS FPU_MIN: %#x\n",
info & OEX_FPU_MIN);
printf("%11.11s FPU_MAX: %#x\n", "",
info & OEX_FPU_MAX);
dump_mips_option_flags("", mips_exceptions_option,
info);
break;
case ODK_PAD:
printf(" %-10.10s section: %ju\n", "OPAD",
(uintmax_t) sndx);
dump_mips_option_flags("", mips_pad_option, info);
break;
case ODK_HWPATCH:
dump_mips_option_flags("HWPATCH", mips_hwpatch_option,
info);
break;
case ODK_HWAND:
dump_mips_option_flags("HWAND", mips_hwa_option, info);
break;
case ODK_HWOR:
dump_mips_option_flags("HWOR", mips_hwo_option, info);
break;
case ODK_FILL:
printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info);
break;
case ODK_TAGS:
printf(" %-10.10s\n", "TAGS");
break;
case ODK_GP_GROUP:
printf(" %-10.10s GP group number: %#x\n", "GP_GROUP",
info & 0xFFFF);
if (info & 0x10000)
printf(" %-10.10s GP group is "
"self-contained\n", "");
break;
case ODK_IDENT:
printf(" %-10.10s default GP group number: %#x\n",
"IDENT", info & 0xFFFF);
if (info & 0x10000)
printf(" %-10.10s default GP group is "
"self-contained\n", "");
break;
case ODK_PAGESIZE:
printf(" %-10.10s\n", "PAGESIZE");
break;
default:
break;
}
p += size;
}
}
static void
dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info)
{
int first;
first = 1;
for (; opt->desc != NULL; opt++) {
if (info & opt->flag) {
printf(" %-10.10s %s\n", first ? name : "",
opt->desc);
first = 0;
}
}
}
static void
dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz)
{
uint32_t ri_gprmask;
uint32_t ri_cprmask[4];
uint64_t ri_gp_value;
uint8_t *pe;
int i;
pe = p + sz;
while (p < pe) {
ri_gprmask = re->dw_decode(&p, 4);
/* Skip ri_pad padding field for mips64. */
if (re->ec == ELFCLASS64)
re->dw_decode(&p, 4);
for (i = 0; i < 4; i++)
ri_cprmask[i] = re->dw_decode(&p, 4);
if (re->ec == ELFCLASS32)
ri_gp_value = re->dw_decode(&p, 4);
else
ri_gp_value = re->dw_decode(&p, 8);
printf(" %s ", option_kind(ODK_REGINFO));
printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask);
for (i = 0; i < 4; i++)
printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i,
(uintmax_t) ri_cprmask[i]);
printf("%12.12s", "");
printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value);
}
}
static void
dump_arch_specific_info(struct readelf *re)
{
dump_liblist(re);
dump_attributes(re);
switch (re->ehdr.e_machine) {
case EM_MIPS:
case EM_MIPS_RS3_LE:
dump_mips_specific_info(re);
default:
break;
}
}
static const char *
dwarf_regname(struct readelf *re, unsigned int num)
{
static char rx[32];
const char *rn;
if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL)
return (rn);
snprintf(rx, sizeof(rx), "r%u", num);
return (rx);
}
static void
dump_dwarf_line(struct readelf *re)
{
struct section *s;
Dwarf_Die die;
Dwarf_Error de;
Dwarf_Half tag, version, pointer_size;
Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize;
Dwarf_Small minlen, defstmt, lrange, opbase, oplen;
Elf_Data *d;
char *pn;
uint64_t address, file, line, column, isa, opsize, udelta;
int64_t sdelta;
uint8_t *p, *pe;
int8_t lbase;
int i, is_stmt, dwarf_size, elferr, ret;
printf("\nDump of debug contents of section .debug_line:\n");
s = NULL;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->name != NULL && !strcmp(s->name, ".debug_line"))
break;
}
if ((size_t) i >= re->shnum)
return;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(-1));
return;
}
if (d->d_size <= 0)
return;
while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
NULL, &de)) == DW_DLV_OK) {
die = NULL;
while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) {
if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
warnx("dwarf_tag failed: %s",
dwarf_errmsg(de));
return;
}
/* XXX: What about DW_TAG_partial_unit? */
if (tag == DW_TAG_compile_unit)
break;
}
if (die == NULL) {
warnx("could not find DW_TAG_compile_unit die");
return;
}
if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset,
&de) != DW_DLV_OK)
continue;
length = re->dw_read(d, &offset, 4);
if (length == 0xffffffff) {
dwarf_size = 8;
length = re->dw_read(d, &offset, 8);
} else
dwarf_size = 4;
if (length > d->d_size - offset) {
warnx("invalid .dwarf_line section");
continue;
}
endoff = offset + length;
pe = (uint8_t *) d->d_buf + endoff;
version = re->dw_read(d, &offset, 2);
hdrlen = re->dw_read(d, &offset, dwarf_size);
minlen = re->dw_read(d, &offset, 1);
defstmt = re->dw_read(d, &offset, 1);
lbase = re->dw_read(d, &offset, 1);
lrange = re->dw_read(d, &offset, 1);
opbase = re->dw_read(d, &offset, 1);
printf("\n");
printf(" Length:\t\t\t%ju\n", (uintmax_t) length);
printf(" DWARF version:\t\t%u\n", version);
printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen);
printf(" Minimum Instruction Length:\t%u\n", minlen);
printf(" Initial value of 'is_stmt':\t%u\n", defstmt);
printf(" Line Base:\t\t\t%d\n", lbase);
printf(" Line Range:\t\t\t%u\n", lrange);
printf(" Opcode Base:\t\t\t%u\n", opbase);
(void) dwarf_get_address_size(re->dbg, &pointer_size, &de);
printf(" (Pointer size:\t\t%u)\n", pointer_size);
printf("\n");
printf(" Opcodes:\n");
for (i = 1; i < opbase; i++) {
oplen = re->dw_read(d, &offset, 1);
printf(" Opcode %d has %u args\n", i, oplen);
}
printf("\n");
printf(" The Directory Table:\n");
p = (uint8_t *) d->d_buf + offset;
while (*p != '\0') {
printf(" %s\n", (char *) p);
p += strlen((char *) p) + 1;
}
p++;
printf("\n");
printf(" The File Name Table:\n");
printf(" Entry\tDir\tTime\tSize\tName\n");
i = 0;
while (*p != '\0') {
i++;
pn = (char *) p;
p += strlen(pn) + 1;
dirndx = _decode_uleb128(&p, pe);
mtime = _decode_uleb128(&p, pe);
fsize = _decode_uleb128(&p, pe);
printf(" %d\t%ju\t%ju\t%ju\t%s\n", i,
(uintmax_t) dirndx, (uintmax_t) mtime,
(uintmax_t) fsize, pn);
}
#define RESET_REGISTERS \
do { \
address = 0; \
file = 1; \
line = 1; \
column = 0; \
is_stmt = defstmt; \
} while(0)
#define LINE(x) (lbase + (((x) - opbase) % lrange))
#define ADDRESS(x) ((((x) - opbase) / lrange) * minlen)
p++;
printf("\n");
printf(" Line Number Statements:\n");
RESET_REGISTERS;
while (p < pe) {
if (*p == 0) {
/*
* Extended Opcodes.
*/
p++;
opsize = _decode_uleb128(&p, pe);
printf(" Extended opcode %u: ", *p);
switch (*p) {
case DW_LNE_end_sequence:
p++;
RESET_REGISTERS;
printf("End of Sequence\n");
break;
case DW_LNE_set_address:
p++;
address = re->dw_decode(&p,
pointer_size);
printf("set Address to %#jx\n",
(uintmax_t) address);
break;
case DW_LNE_define_file:
p++;
pn = (char *) p;
p += strlen(pn) + 1;
dirndx = _decode_uleb128(&p, pe);
mtime = _decode_uleb128(&p, pe);
fsize = _decode_uleb128(&p, pe);
printf("define new file: %s\n", pn);
break;
default:
/* Unrecognized extened opcodes. */
p += opsize;
printf("unknown opcode\n");
}
} else if (*p > 0 && *p < opbase) {
/*
* Standard Opcodes.
*/
switch(*p++) {
case DW_LNS_copy:
printf(" Copy\n");
break;
case DW_LNS_advance_pc:
udelta = _decode_uleb128(&p, pe) *
minlen;
address += udelta;
printf(" Advance PC by %ju to %#jx\n",
(uintmax_t) udelta,
(uintmax_t) address);
break;
case DW_LNS_advance_line:
sdelta = _decode_sleb128(&p, pe);
line += sdelta;
printf(" Advance Line by %jd to %ju\n",
(intmax_t) sdelta,
(uintmax_t) line);
break;
case DW_LNS_set_file:
file = _decode_uleb128(&p, pe);
printf(" Set File to %ju\n",
(uintmax_t) file);
break;
case DW_LNS_set_column:
column = _decode_uleb128(&p, pe);
printf(" Set Column to %ju\n",
(uintmax_t) column);
break;
case DW_LNS_negate_stmt:
is_stmt = !is_stmt;
printf(" Set is_stmt to %d\n", is_stmt);
break;
case DW_LNS_set_basic_block:
printf(" Set basic block flag\n");
break;
case DW_LNS_const_add_pc:
address += ADDRESS(255);
printf(" Advance PC by constant %ju"
" to %#jx\n",
(uintmax_t) ADDRESS(255),
(uintmax_t) address);
break;
case DW_LNS_fixed_advance_pc:
udelta = re->dw_decode(&p, 2);
address += udelta;
printf(" Advance PC by fixed value "
"%ju to %#jx\n",
(uintmax_t) udelta,
(uintmax_t) address);
break;
case DW_LNS_set_prologue_end:
printf(" Set prologue end flag\n");
break;
case DW_LNS_set_epilogue_begin:
printf(" Set epilogue begin flag\n");
break;
case DW_LNS_set_isa:
isa = _decode_uleb128(&p, pe);
printf(" Set isa to %ju\n",
(uintmax_t) isa);
break;
default:
/* Unrecognized extended opcodes. */
printf(" Unknown extended opcode %u\n",
*(p - 1));
break;
}
} else {
/*
* Special Opcodes.
*/
line += LINE(*p);
address += ADDRESS(*p);
printf(" Special opcode %u: advance Address "
"by %ju to %#jx and Line by %jd to %ju\n",
*p - opbase, (uintmax_t) ADDRESS(*p),
(uintmax_t) address, (intmax_t) LINE(*p),
(uintmax_t) line);
p++;
}
}
}
if (ret == DW_DLV_ERROR)
warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
#undef RESET_REGISTERS
#undef LINE
#undef ADDRESS
}
static void
dump_dwarf_line_decoded(struct readelf *re)
{
Dwarf_Die die;
Dwarf_Line *linebuf, ln;
Dwarf_Addr lineaddr;
Dwarf_Signed linecount, srccount;
Dwarf_Unsigned lineno, fn;
Dwarf_Error de;
const char *dir, *file;
char **srcfiles;
int i, ret;
printf("Decoded dump of debug contents of section .debug_line:\n\n");
while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
NULL, &de)) == DW_DLV_OK) {
if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK)
continue;
if (dwarf_attrval_string(die, DW_AT_name, &file, &de) !=
DW_DLV_OK)
file = NULL;
if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) !=
DW_DLV_OK)
dir = NULL;
printf("CU: ");
if (dir && file)
printf("%s/", dir);
if (file)
printf("%s", file);
putchar('\n');
printf("%-37s %11s %s\n", "Filename", "Line Number",
"Starting Address");
if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK)
continue;
if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK)
continue;
for (i = 0; i < linecount; i++) {
ln = linebuf[i];
if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK)
continue;
if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK)
continue;
if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK)
continue;
printf("%-37s %11ju %#18jx\n",
basename(srcfiles[fn - 1]), (uintmax_t) lineno,
(uintmax_t) lineaddr);
}
putchar('\n');
}
}
static void
dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level)
{
Dwarf_Attribute *attr_list;
Dwarf_Die ret_die;
Dwarf_Off dieoff, cuoff, culen, attroff;
Dwarf_Unsigned ate, lang, v_udata, v_sig;
Dwarf_Signed attr_count, v_sdata;
Dwarf_Off v_off;
Dwarf_Addr v_addr;
Dwarf_Half tag, attr, form;
Dwarf_Block *v_block;
Dwarf_Bool v_bool, is_info;
Dwarf_Sig8 v_sig8;
Dwarf_Error de;
Dwarf_Ptr v_expr;
const char *tag_str, *attr_str, *ate_str, *lang_str;
char unk_tag[32], unk_attr[32];
char *v_str;
uint8_t *b, *p;
int i, j, abc, ret;
if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) {
warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de));
goto cont_search;
}
printf(" <%d><%jx>: ", level, (uintmax_t) dieoff);
if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) {
warnx("dwarf_die_CU_offset_range failed: %s",
dwarf_errmsg(de));
cuoff = 0;
}
abc = dwarf_die_abbrev_code(die);
if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
goto cont_search;
}
if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag);
tag_str = unk_tag;
}
printf("Abbrev Number: %d (%s)\n", abc, tag_str);
if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
DW_DLV_OK) {
if (ret == DW_DLV_ERROR)
warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
goto cont_search;
}
for (i = 0; i < attr_count; i++) {
if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
continue;
}
if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
continue;
}
if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) {
snprintf(unk_attr, sizeof(unk_attr),
"[Unknown AT: %#x]", attr);
attr_str = unk_attr;
}
if (dwarf_attroffset(attr_list[i], &attroff, &de) !=
DW_DLV_OK) {
warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de));
attroff = 0;
}
printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str);
switch (form) {
case DW_FORM_ref_addr:
case DW_FORM_sec_offset:
if (dwarf_global_formref(attr_list[i], &v_off, &de) !=
DW_DLV_OK) {
warnx("dwarf_global_formref failed: %s",
dwarf_errmsg(de));
continue;
}
if (form == DW_FORM_ref_addr)
printf("<0x%jx>", (uintmax_t) v_off);
else
printf("0x%jx", (uintmax_t) v_off);
break;
case DW_FORM_ref1:
case DW_FORM_ref2:
case DW_FORM_ref4:
case DW_FORM_ref8:
case DW_FORM_ref_udata:
if (dwarf_formref(attr_list[i], &v_off, &de) !=
DW_DLV_OK) {
warnx("dwarf_formref failed: %s",
dwarf_errmsg(de));
continue;
}
v_off += cuoff;
printf("<0x%jx>", (uintmax_t) v_off);
break;
case DW_FORM_addr:
if (dwarf_formaddr(attr_list[i], &v_addr, &de) !=
DW_DLV_OK) {
warnx("dwarf_formaddr failed: %s",
dwarf_errmsg(de));
continue;
}
printf("%#jx", (uintmax_t) v_addr);
break;
case DW_FORM_data1:
case DW_FORM_data2:
case DW_FORM_data4:
case DW_FORM_data8:
case DW_FORM_udata:
if (dwarf_formudata(attr_list[i], &v_udata, &de) !=
DW_DLV_OK) {
warnx("dwarf_formudata failed: %s",
dwarf_errmsg(de));
continue;
}
if (attr == DW_AT_high_pc)
printf("0x%jx", (uintmax_t) v_udata);
else
printf("%ju", (uintmax_t) v_udata);
break;
case DW_FORM_sdata:
if (dwarf_formsdata(attr_list[i], &v_sdata, &de) !=
DW_DLV_OK) {
warnx("dwarf_formudata failed: %s",
dwarf_errmsg(de));
continue;
}
printf("%jd", (intmax_t) v_sdata);
break;
case DW_FORM_flag:
if (dwarf_formflag(attr_list[i], &v_bool, &de) !=
DW_DLV_OK) {
warnx("dwarf_formflag failed: %s",
dwarf_errmsg(de));
continue;
}
printf("%jd", (intmax_t) v_bool);
break;
case DW_FORM_flag_present:
putchar('1');
break;
case DW_FORM_string:
case DW_FORM_strp:
if (dwarf_formstring(attr_list[i], &v_str, &de) !=
DW_DLV_OK) {
warnx("dwarf_formstring failed: %s",
dwarf_errmsg(de));
continue;
}
if (form == DW_FORM_string)
printf("%s", v_str);
else
printf("(indirect string) %s", v_str);
break;
case DW_FORM_block:
case DW_FORM_block1:
case DW_FORM_block2:
case DW_FORM_block4:
if (dwarf_formblock(attr_list[i], &v_block, &de) !=
DW_DLV_OK) {
warnx("dwarf_formblock failed: %s",
dwarf_errmsg(de));
continue;
}
printf("%ju byte block:", (uintmax_t) v_block->bl_len);
b = v_block->bl_data;
for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++)
printf(" %x", b[j]);
printf("\t(");
dump_dwarf_block(re, v_block->bl_data, v_block->bl_len);
putchar(')');
break;
case DW_FORM_exprloc:
if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr,
&de) != DW_DLV_OK) {
warnx("dwarf_formexprloc failed: %s",
dwarf_errmsg(de));
continue;
}
printf("%ju byte block:", (uintmax_t) v_udata);
b = v_expr;
for (j = 0; (Dwarf_Unsigned) j < v_udata; j++)
printf(" %x", b[j]);
printf("\t(");
dump_dwarf_block(re, v_expr, v_udata);
putchar(')');
break;
case DW_FORM_ref_sig8:
if (dwarf_formsig8(attr_list[i], &v_sig8, &de) !=
DW_DLV_OK) {
warnx("dwarf_formsig8 failed: %s",
dwarf_errmsg(de));
continue;
}
p = (uint8_t *)(uintptr_t) &v_sig8.signature[0];
v_sig = re->dw_decode(&p, 8);
printf("signature: 0x%jx", (uintmax_t) v_sig);
}
switch (attr) {
case DW_AT_encoding:
if (dwarf_attrval_unsigned(die, attr, &ate, &de) !=
DW_DLV_OK)
break;
if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK)
ate_str = "DW_ATE_UNKNOWN";
printf("\t(%s)", &ate_str[strlen("DW_ATE_")]);
break;
case DW_AT_language:
if (dwarf_attrval_unsigned(die, attr, &lang, &de) !=
DW_DLV_OK)
break;
if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK)
break;
printf("\t(%s)", &lang_str[strlen("DW_LANG_")]);
break;
case DW_AT_location:
case DW_AT_string_length:
case DW_AT_return_addr:
case DW_AT_data_member_location:
case DW_AT_frame_base:
case DW_AT_segment:
case DW_AT_static_link:
case DW_AT_use_location:
case DW_AT_vtable_elem_location:
switch (form) {
case DW_FORM_data4:
case DW_FORM_data8:
case DW_FORM_sec_offset:
printf("\t(location list)");
break;
default:
break;
}
default:
break;
}
putchar('\n');
}
cont_search:
/* Search children. */
ret = dwarf_child(die, &ret_die, &de);
if (ret == DW_DLV_ERROR)
warnx("dwarf_child: %s", dwarf_errmsg(de));
else if (ret == DW_DLV_OK)
dump_dwarf_die(re, ret_die, level + 1);
/* Search sibling. */
is_info = dwarf_get_die_infotypes_flag(die);
ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
if (ret == DW_DLV_ERROR)
warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
else if (ret == DW_DLV_OK)
dump_dwarf_die(re, ret_die, level);
dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
}
static void
set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize,
Dwarf_Half ver)
{
re->cu_psize = psize;
re->cu_osize = osize;
re->cu_ver = ver;
}
static void
dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info)
{
struct section *s;
Dwarf_Die die;
Dwarf_Error de;
Dwarf_Half tag, version, pointer_size, off_size;
Dwarf_Off cu_offset, cu_length;
Dwarf_Off aboff;
Dwarf_Unsigned typeoff;
Dwarf_Sig8 sig8;
Dwarf_Unsigned sig;
uint8_t *p;
const char *sn;
int i, ret;
sn = is_info ? ".debug_info" : ".debug_types";
s = NULL;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->name != NULL && !strcmp(s->name, sn))
break;
}
if ((size_t) i >= re->shnum)
return;
do {
printf("\nDump of debug contents of section %s:\n", sn);
while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL,
&version, &aboff, &pointer_size, &off_size, NULL, &sig8,
&typeoff, NULL, &de)) == DW_DLV_OK) {
set_cu_context(re, pointer_size, off_size, version);
die = NULL;
while (dwarf_siblingof_b(re->dbg, die, &die, is_info,
&de) == DW_DLV_OK) {
if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
warnx("dwarf_tag failed: %s",
dwarf_errmsg(de));
continue;
}
/* XXX: What about DW_TAG_partial_unit? */
if ((is_info && tag == DW_TAG_compile_unit) ||
(!is_info && tag == DW_TAG_type_unit))
break;
}
if (die == NULL && is_info) {
warnx("could not find DW_TAG_compile_unit "
"die");
continue;
} else if (die == NULL && !is_info) {
warnx("could not find DW_TAG_type_unit die");
continue;
}
if (dwarf_die_CU_offset_range(die, &cu_offset,
&cu_length, &de) != DW_DLV_OK) {
warnx("dwarf_die_CU_offset failed: %s",
dwarf_errmsg(de));
continue;
}
cu_length -= off_size == 4 ? 4 : 12;
sig = 0;
if (!is_info) {
p = (uint8_t *)(uintptr_t) &sig8.signature[0];
sig = re->dw_decode(&p, 8);
}
printf("\n Type Unit @ offset 0x%jx:\n",
(uintmax_t) cu_offset);
printf(" Length:\t\t%#jx (%d-bit)\n",
(uintmax_t) cu_length, off_size == 4 ? 32 : 64);
printf(" Version:\t\t%u\n", version);
printf(" Abbrev Offset:\t0x%jx\n",
(uintmax_t) aboff);
printf(" Pointer Size:\t%u\n", pointer_size);
if (!is_info) {
printf(" Signature:\t\t0x%016jx\n",
(uintmax_t) sig);
printf(" Type Offset:\t0x%jx\n",
(uintmax_t) typeoff);
}
dump_dwarf_die(re, die, 0);
}
if (ret == DW_DLV_ERROR)
warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
if (is_info)
break;
} while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
}
static void
dump_dwarf_abbrev(struct readelf *re)
{
Dwarf_Abbrev ab;
Dwarf_Off aboff, atoff;
Dwarf_Unsigned length, attr_count;
Dwarf_Signed flag, form;
Dwarf_Half tag, attr;
Dwarf_Error de;
const char *tag_str, *attr_str, *form_str;
char unk_tag[32], unk_attr[32], unk_form[32];
int i, j, ret;
printf("\nContents of section .debug_abbrev:\n\n");
while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff,
NULL, NULL, &de)) == DW_DLV_OK) {
printf(" Number TAG\n");
i = 0;
while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length,
&attr_count, &de)) == DW_DLV_OK) {
if (length == 1) {
dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
break;
}
aboff += length;
printf("%4d", ++i);
if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) {
warnx("dwarf_get_abbrev_tag failed: %s",
dwarf_errmsg(de));
goto next_abbrev;
}
if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
snprintf(unk_tag, sizeof(unk_tag),
"[Unknown Tag: %#x]", tag);
tag_str = unk_tag;
}
if (dwarf_get_abbrev_children_flag(ab, &flag, &de) !=
DW_DLV_OK) {
warnx("dwarf_get_abbrev_children_flag failed:"
" %s", dwarf_errmsg(de));
goto next_abbrev;
}
printf(" %s %s\n", tag_str,
flag ? "[has children]" : "[no children]");
for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) {
if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j,
&attr, &form, &atoff, &de) != DW_DLV_OK) {
warnx("dwarf_get_abbrev_entry failed:"
" %s", dwarf_errmsg(de));
continue;
}
if (dwarf_get_AT_name(attr, &attr_str) !=
DW_DLV_OK) {
snprintf(unk_attr, sizeof(unk_attr),
"[Unknown AT: %#x]", attr);
attr_str = unk_attr;
}
if (dwarf_get_FORM_name(form, &form_str) !=
DW_DLV_OK) {
snprintf(unk_form, sizeof(unk_form),
"[Unknown Form: %#x]",
(Dwarf_Half) form);
form_str = unk_form;
}
printf(" %-18s %s\n", attr_str, form_str);
}
next_abbrev:
dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
}
if (ret != DW_DLV_OK)
warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de));
}
if (ret == DW_DLV_ERROR)
warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
}
static void
dump_dwarf_pubnames(struct readelf *re)
{
struct section *s;
Dwarf_Off die_off;
Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length;
Dwarf_Signed cnt;
Dwarf_Global *globs;
Dwarf_Half nt_version;
Dwarf_Error de;
Elf_Data *d;
char *glob_name;
int i, dwarf_size, elferr;
printf("\nContents of the .debug_pubnames section:\n");
s = NULL;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->name != NULL && !strcmp(s->name, ".debug_pubnames"))
break;
}
if ((size_t) i >= re->shnum)
return;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(-1));
return;
}
if (d->d_size <= 0)
return;
/* Read in .debug_pubnames section table header. */
offset = 0;
length = re->dw_read(d, &offset, 4);
if (length == 0xffffffff) {
dwarf_size = 8;
length = re->dw_read(d, &offset, 8);
} else
dwarf_size = 4;
if (length > d->d_size - offset) {
warnx("invalid .dwarf_pubnames section");
return;
}
nt_version = re->dw_read(d, &offset, 2);
nt_cu_offset = re->dw_read(d, &offset, dwarf_size);
nt_cu_length = re->dw_read(d, &offset, dwarf_size);
printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length);
printf(" Version:\t\t\t\t%u\n", nt_version);
printf(" Offset into .debug_info section:\t%ju\n",
(uintmax_t) nt_cu_offset);
printf(" Size of area in .debug_info section:\t%ju\n",
(uintmax_t) nt_cu_length);
if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) {
warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de));
return;
}
printf("\n Offset Name\n");
for (i = 0; i < cnt; i++) {
if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) {
warnx("dwarf_globname failed: %s", dwarf_errmsg(de));
continue;
}
if (dwarf_global_die_offset(globs[i], &die_off, &de) !=
DW_DLV_OK) {
warnx("dwarf_global_die_offset failed: %s",
dwarf_errmsg(de));
continue;
}
printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name);
}
}
static void
dump_dwarf_aranges(struct readelf *re)
{
struct section *s;
Dwarf_Arange *aranges;
Dwarf_Addr start;
Dwarf_Unsigned offset, length, as_cu_offset;
Dwarf_Off die_off;
Dwarf_Signed cnt;
Dwarf_Half as_version, as_addrsz, as_segsz;
Dwarf_Error de;
Elf_Data *d;
int i, dwarf_size, elferr;
printf("\nContents of section .debug_aranges:\n");
s = NULL;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->name != NULL && !strcmp(s->name, ".debug_aranges"))
break;
}
if ((size_t) i >= re->shnum)
return;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(-1));
return;
}
if (d->d_size <= 0)
return;
/* Read in the .debug_aranges section table header. */
offset = 0;
length = re->dw_read(d, &offset, 4);
if (length == 0xffffffff) {
dwarf_size = 8;
length = re->dw_read(d, &offset, 8);
} else
dwarf_size = 4;
if (length > d->d_size - offset) {
warnx("invalid .dwarf_aranges section");
return;
}
as_version = re->dw_read(d, &offset, 2);
as_cu_offset = re->dw_read(d, &offset, dwarf_size);
as_addrsz = re->dw_read(d, &offset, 1);
as_segsz = re->dw_read(d, &offset, 1);
printf(" Length:\t\t\t%ju\n", (uintmax_t) length);
printf(" Version:\t\t\t%u\n", as_version);
printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset);
printf(" Pointer Size:\t\t\t%u\n", as_addrsz);
printf(" Segment Size:\t\t\t%u\n", as_segsz);
if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) {
warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de));
return;
}
printf("\n Address Length\n");
for (i = 0; i < cnt; i++) {
if (dwarf_get_arange_info(aranges[i], &start, &length,
&die_off, &de) != DW_DLV_OK) {
warnx("dwarf_get_arange_info failed: %s",
dwarf_errmsg(de));
continue;
}
printf(" %08jx %ju\n", (uintmax_t) start,
(uintmax_t) length);
}
}
static void
dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base)
{
Dwarf_Attribute *attr_list;
Dwarf_Ranges *ranges;
Dwarf_Die ret_die;
Dwarf_Error de;
Dwarf_Addr base0;
Dwarf_Half attr;
Dwarf_Signed attr_count, cnt;
Dwarf_Unsigned off, bytecnt;
int i, j, ret;
if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
DW_DLV_OK) {
if (ret == DW_DLV_ERROR)
warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
goto cont_search;
}
for (i = 0; i < attr_count; i++) {
if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
continue;
}
if (attr != DW_AT_ranges)
continue;
if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) {
warnx("dwarf_formudata failed: %s", dwarf_errmsg(de));
continue;
}
if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt,
&bytecnt, &de) != DW_DLV_OK)
continue;
base0 = base;
for (j = 0; j < cnt; j++) {
printf(" %08jx ", (uintmax_t) off);
if (ranges[j].dwr_type == DW_RANGES_END) {
printf("%s\n", "<End of list>");
continue;
} else if (ranges[j].dwr_type ==
DW_RANGES_ADDRESS_SELECTION) {
base0 = ranges[j].dwr_addr2;
continue;
}
if (re->ec == ELFCLASS32)
printf("%08jx %08jx\n",
(uintmax_t) (ranges[j].dwr_addr1 + base0),
(uintmax_t) (ranges[j].dwr_addr2 + base0));
else
printf("%016jx %016jx\n",
(uintmax_t) (ranges[j].dwr_addr1 + base0),
(uintmax_t) (ranges[j].dwr_addr2 + base0));
}
}
cont_search:
/* Search children. */
ret = dwarf_child(die, &ret_die, &de);
if (ret == DW_DLV_ERROR)
warnx("dwarf_child: %s", dwarf_errmsg(de));
else if (ret == DW_DLV_OK)
dump_dwarf_ranges_foreach(re, ret_die, base);
/* Search sibling. */
ret = dwarf_siblingof(re->dbg, die, &ret_die, &de);
if (ret == DW_DLV_ERROR)
warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
else if (ret == DW_DLV_OK)
dump_dwarf_ranges_foreach(re, ret_die, base);
}
static void
dump_dwarf_ranges(struct readelf *re)
{
Dwarf_Ranges *ranges;
Dwarf_Die die;
Dwarf_Signed cnt;
Dwarf_Unsigned bytecnt;
Dwarf_Half tag;
Dwarf_Error de;
Dwarf_Unsigned lowpc;
int ret;
if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) !=
DW_DLV_OK)
return;
printf("Contents of the .debug_ranges section:\n\n");
if (re->ec == ELFCLASS32)
printf(" %-8s %-8s %s\n", "Offset", "Begin", "End");
else
printf(" %-8s %-16s %s\n", "Offset", "Begin", "End");
while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
NULL, &de)) == DW_DLV_OK) {
die = NULL;
if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
continue;
if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
continue;
}
/* XXX: What about DW_TAG_partial_unit? */
lowpc = 0;
if (tag == DW_TAG_compile_unit) {
if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc,
&de) != DW_DLV_OK)
lowpc = 0;
}
dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc);
}
putchar('\n');
}
static void
dump_dwarf_macinfo(struct readelf *re)
{
Dwarf_Unsigned offset;
Dwarf_Signed cnt;
Dwarf_Macro_Details *md;
Dwarf_Error de;
const char *mi_str;
char unk_mi[32];
int i;
#define _MAX_MACINFO_ENTRY 65535
printf("\nContents of section .debug_macinfo:\n\n");
offset = 0;
while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY,
&cnt, &md, &de) == DW_DLV_OK) {
for (i = 0; i < cnt; i++) {
offset = md[i].dmd_offset + 1;
if (md[i].dmd_type == 0)
break;
if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) !=
DW_DLV_OK) {
snprintf(unk_mi, sizeof(unk_mi),
"[Unknown MACINFO: %#x]", md[i].dmd_type);
mi_str = unk_mi;
}
printf(" %s", mi_str);
switch (md[i].dmd_type) {
case DW_MACINFO_define:
case DW_MACINFO_undef:
printf(" - lineno : %jd macro : %s\n",
(intmax_t) md[i].dmd_lineno,
md[i].dmd_macro);
break;
case DW_MACINFO_start_file:
printf(" - lineno : %jd filenum : %jd\n",
(intmax_t) md[i].dmd_lineno,
(intmax_t) md[i].dmd_fileindex);
break;
default:
putchar('\n');
break;
}
}
}
#undef _MAX_MACINFO_ENTRY
}
static void
dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts,
Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc,
Dwarf_Debug dbg)
{
Dwarf_Frame_Op *oplist;
Dwarf_Signed opcnt, delta;
Dwarf_Small op;
Dwarf_Error de;
const char *op_str;
char unk_op[32];
int i;
if (dwarf_expand_frame_instructions(cie, insts, len, &oplist,
&opcnt, &de) != DW_DLV_OK) {
warnx("dwarf_expand_frame_instructions failed: %s",
dwarf_errmsg(de));
return;
}
for (i = 0; i < opcnt; i++) {
if (oplist[i].fp_base_op != 0)
op = oplist[i].fp_base_op << 6;
else
op = oplist[i].fp_extended_op;
if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) {
snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]",
op);
op_str = unk_op;
}
printf(" %s", op_str);
switch (op) {
case DW_CFA_advance_loc:
delta = oplist[i].fp_offset * caf;
pc += delta;
printf(": %ju to %08jx", (uintmax_t) delta,
(uintmax_t) pc);
break;
case DW_CFA_offset:
case DW_CFA_offset_extended:
case DW_CFA_offset_extended_sf:
delta = oplist[i].fp_offset * daf;
printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register,
dwarf_regname(re, oplist[i].fp_register),
(intmax_t) delta);
break;
case DW_CFA_restore:
printf(": r%u (%s)", oplist[i].fp_register,
dwarf_regname(re, oplist[i].fp_register));
break;
case DW_CFA_set_loc:
pc = oplist[i].fp_offset;
printf(": to %08jx", (uintmax_t) pc);
break;
case DW_CFA_advance_loc1:
case DW_CFA_advance_loc2:
case DW_CFA_advance_loc4:
pc += oplist[i].fp_offset;
printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset,
(uintmax_t) pc);
break;
case DW_CFA_def_cfa:
printf(": r%u (%s) ofs %ju", oplist[i].fp_register,
dwarf_regname(re, oplist[i].fp_register),
(uintmax_t) oplist[i].fp_offset);
break;
case DW_CFA_def_cfa_sf:
printf(": r%u (%s) ofs %jd", oplist[i].fp_register,
dwarf_regname(re, oplist[i].fp_register),
(intmax_t) (oplist[i].fp_offset * daf));
break;
case DW_CFA_def_cfa_register:
printf(": r%u (%s)", oplist[i].fp_register,
dwarf_regname(re, oplist[i].fp_register));
break;
case DW_CFA_def_cfa_offset:
printf(": %ju", (uintmax_t) oplist[i].fp_offset);
break;
case DW_CFA_def_cfa_offset_sf:
printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf));
break;
default:
break;
}
putchar('\n');
}
dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK);
}
static char *
get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off)
{
static char rs[16];
if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE)
snprintf(rs, sizeof(rs), "%c", 'u');
else if (reg == DW_FRAME_CFA_COL)
snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off);
else
snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg),
(intmax_t) off);
return (rs);
}
static int
dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc,
Dwarf_Unsigned func_len, Dwarf_Half cie_ra)
{
Dwarf_Regtable rt;
Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc;
Dwarf_Error de;
char *vec;
int i;
#define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7))
#define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7)))
#define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7)))
#define RT(x) rt.rules[(x)]
vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1);
if (vec == NULL)
err(EXIT_FAILURE, "calloc failed");
pre_pc = ~((Dwarf_Addr) 0);
cur_pc = pc;
end_pc = pc + func_len;
for (; cur_pc < end_pc; cur_pc++) {
if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
&de) != DW_DLV_OK) {
warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
dwarf_errmsg(de));
return (-1);
}
if (row_pc == pre_pc)
continue;
pre_pc = row_pc;
for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE)
BIT_SET(vec, i);
}
}
printf(" LOC CFA ");
for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
if (BIT_ISSET(vec, i)) {
if ((Dwarf_Half) i == cie_ra)
printf("ra ");
else
printf("%-5s",
dwarf_regname(re, (unsigned int) i));
}
}
putchar('\n');
pre_pc = ~((Dwarf_Addr) 0);
cur_pc = pc;
end_pc = pc + func_len;
for (; cur_pc < end_pc; cur_pc++) {
if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
&de) != DW_DLV_OK) {
warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
dwarf_errmsg(de));
return (-1);
}
if (row_pc == pre_pc)
continue;
pre_pc = row_pc;
printf("%08jx ", (uintmax_t) row_pc);
printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum,
RT(0).dw_offset));
for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
if (BIT_ISSET(vec, i)) {
printf("%-5s", get_regoff_str(re,
RT(i).dw_regnum, RT(i).dw_offset));
}
}
putchar('\n');
}
free(vec);
return (0);
#undef BIT_SET
#undef BIT_CLR
#undef BIT_ISSET
#undef RT
}
static void
dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt)
{
Dwarf_Cie *cie_list, cie, pre_cie;
Dwarf_Fde *fde_list, fde;
Dwarf_Off cie_offset, fde_offset;
Dwarf_Unsigned cie_length, fde_instlen;
Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length;
Dwarf_Signed cie_count, fde_count, cie_index;
Dwarf_Addr low_pc;
Dwarf_Half cie_ra;
Dwarf_Small cie_version;
Dwarf_Ptr fde_addr, fde_inst, cie_inst;
char *cie_aug, c;
int i, eh_frame;
Dwarf_Error de;
printf("\nThe section %s contains:\n\n", s->name);
if (!strcmp(s->name, ".debug_frame")) {
eh_frame = 0;
if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count,
&fde_list, &fde_count, &de) != DW_DLV_OK) {
warnx("dwarf_get_fde_list failed: %s",
dwarf_errmsg(de));
return;
}
} else if (!strcmp(s->name, ".eh_frame")) {
eh_frame = 1;
if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count,
&fde_list, &fde_count, &de) != DW_DLV_OK) {
warnx("dwarf_get_fde_list_eh failed: %s",
dwarf_errmsg(de));
return;
}
} else
return;
pre_cie = NULL;
for (i = 0; i < fde_count; i++) {
if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) {
warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
continue;
}
if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) {
warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
continue;
}
if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr,
&fde_length, &cie_offset, &cie_index, &fde_offset,
&de) != DW_DLV_OK) {
warnx("dwarf_get_fde_range failed: %s",
dwarf_errmsg(de));
continue;
}
if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen,
&de) != DW_DLV_OK) {
warnx("dwarf_get_fde_instr_bytes failed: %s",
dwarf_errmsg(de));
continue;
}
if (pre_cie == NULL || cie != pre_cie) {
pre_cie = cie;
if (dwarf_get_cie_info(cie, &cie_length, &cie_version,
&cie_aug, &cie_caf, &cie_daf, &cie_ra,
&cie_inst, &cie_instlen, &de) != DW_DLV_OK) {
warnx("dwarf_get_cie_info failed: %s",
dwarf_errmsg(de));
continue;
}
printf("%08jx %08jx %8.8jx CIE",
(uintmax_t) cie_offset,
(uintmax_t) cie_length,
(uintmax_t) (eh_frame ? 0 : ~0U));
if (!alt) {
putchar('\n');
printf(" Version:\t\t\t%u\n", cie_version);
printf(" Augmentation:\t\t\t\"");
while ((c = *cie_aug++) != '\0')
putchar(c);
printf("\"\n");
printf(" Code alignment factor:\t%ju\n",
(uintmax_t) cie_caf);
printf(" Data alignment factor:\t%jd\n",
(intmax_t) cie_daf);
printf(" Return address column:\t%ju\n",
(uintmax_t) cie_ra);
putchar('\n');
dump_dwarf_frame_inst(re, cie, cie_inst,
cie_instlen, cie_caf, cie_daf, 0,
re->dbg);
putchar('\n');
} else {
printf(" \"");
while ((c = *cie_aug++) != '\0')
putchar(c);
putchar('"');
printf(" cf=%ju df=%jd ra=%ju\n",
(uintmax_t) cie_caf,
(uintmax_t) cie_daf,
(uintmax_t) cie_ra);
dump_dwarf_frame_regtable(re, fde, low_pc, 1,
cie_ra);
putchar('\n');
}
}
printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n",
(uintmax_t) fde_offset, (uintmax_t) fde_length,
(uintmax_t) cie_offset,
(uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset :
cie_offset),
(uintmax_t) low_pc, (uintmax_t) (low_pc + func_len));
if (!alt)
dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen,
cie_caf, cie_daf, low_pc, re->dbg);
else
dump_dwarf_frame_regtable(re, fde, low_pc, func_len,
cie_ra);
putchar('\n');
}
}
static void
dump_dwarf_frame(struct readelf *re, int alt)
{
struct section *s;
int i;
(void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL);
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->name != NULL && (!strcmp(s->name, ".debug_frame") ||
!strcmp(s->name, ".eh_frame")))
dump_dwarf_frame_section(re, s, alt);
}
}
static void
dump_dwarf_str(struct readelf *re)
{
struct section *s;
Elf_Data *d;
unsigned char *p;
int elferr, end, i, j;
printf("\nContents of section .debug_str:\n");
s = NULL;
for (i = 0; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (s->name != NULL && !strcmp(s->name, ".debug_str"))
break;
}
if ((size_t) i >= re->shnum)
return;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(-1));
return;
}
if (d->d_size <= 0)
return;
for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) {
printf(" 0x%08x", (unsigned int) i);
if ((size_t) i + 16 > d->d_size)
end = d->d_size;
else
end = i + 16;
for (j = i; j < i + 16; j++) {
if ((j - i) % 4 == 0)
putchar(' ');
if (j >= end) {
printf(" ");
continue;
}
printf("%02x", (uint8_t) p[j]);
}
putchar(' ');
for (j = i; j < end; j++) {
if (isprint(p[j]))
putchar(p[j]);
else if (p[j] == 0)
putchar('.');
else
putchar(' ');
}
putchar('\n');
}
}
struct loc_at {
Dwarf_Attribute la_at;
Dwarf_Unsigned la_off;
Dwarf_Unsigned la_lowpc;
Dwarf_Half la_cu_psize;
Dwarf_Half la_cu_osize;
Dwarf_Half la_cu_ver;
TAILQ_ENTRY(loc_at) la_next;
};
static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist);
static void
search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc)
{
Dwarf_Attribute *attr_list;
Dwarf_Die ret_die;
Dwarf_Unsigned off;
Dwarf_Off ref;
Dwarf_Signed attr_count;
Dwarf_Half attr, form;
Dwarf_Bool is_info;
Dwarf_Error de;
struct loc_at *la, *nla;
int i, ret;
is_info = dwarf_get_die_infotypes_flag(die);
if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
DW_DLV_OK) {
if (ret == DW_DLV_ERROR)
warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
goto cont_search;
}
for (i = 0; i < attr_count; i++) {
if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
continue;
}
if (attr != DW_AT_location &&
attr != DW_AT_string_length &&
attr != DW_AT_return_addr &&
attr != DW_AT_data_member_location &&
attr != DW_AT_frame_base &&
attr != DW_AT_segment &&
attr != DW_AT_static_link &&
attr != DW_AT_use_location &&
attr != DW_AT_vtable_elem_location)
continue;
if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
continue;
}
if (form == DW_FORM_data4 || form == DW_FORM_data8) {
if (dwarf_formudata(attr_list[i], &off, &de) !=
DW_DLV_OK) {
warnx("dwarf_formudata failed: %s",
dwarf_errmsg(de));
continue;
}
} else if (form == DW_FORM_sec_offset) {
if (dwarf_global_formref(attr_list[i], &ref, &de) !=
DW_DLV_OK) {
warnx("dwarf_global_formref failed: %s",
dwarf_errmsg(de));
continue;
}
off = ref;
} else
continue;
TAILQ_FOREACH(la, &lalist, la_next) {
if (off == la->la_off)
break;
if (off < la->la_off) {
if ((nla = malloc(sizeof(*nla))) == NULL)
err(EXIT_FAILURE, "malloc failed");
nla->la_at = attr_list[i];
nla->la_off = off;
nla->la_lowpc = lowpc;
nla->la_cu_psize = re->cu_psize;
nla->la_cu_osize = re->cu_osize;
nla->la_cu_ver = re->cu_ver;
TAILQ_INSERT_BEFORE(la, nla, la_next);
break;
}
}
if (la == NULL) {
if ((nla = malloc(sizeof(*nla))) == NULL)
err(EXIT_FAILURE, "malloc failed");
nla->la_at = attr_list[i];
nla->la_off = off;
nla->la_lowpc = lowpc;
nla->la_cu_psize = re->cu_psize;
nla->la_cu_osize = re->cu_osize;
nla->la_cu_ver = re->cu_ver;
TAILQ_INSERT_TAIL(&lalist, nla, la_next);
}
}
cont_search:
/* Search children. */
ret = dwarf_child(die, &ret_die, &de);
if (ret == DW_DLV_ERROR)
warnx("dwarf_child: %s", dwarf_errmsg(de));
else if (ret == DW_DLV_OK)
search_loclist_at(re, ret_die, lowpc);
/* Search sibling. */
ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
if (ret == DW_DLV_ERROR)
warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
else if (ret == DW_DLV_OK)
search_loclist_at(re, ret_die, lowpc);
}
static void
dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr)
{
const char *op_str;
char unk_op[32];
uint8_t *b, n;
int i;
if (dwarf_get_OP_name(lr->lr_atom, &op_str) !=
DW_DLV_OK) {
snprintf(unk_op, sizeof(unk_op),
"[Unknown OP: %#x]", lr->lr_atom);
op_str = unk_op;
}
printf("%s", op_str);
switch (lr->lr_atom) {
case DW_OP_reg0:
case DW_OP_reg1:
case DW_OP_reg2:
case DW_OP_reg3:
case DW_OP_reg4:
case DW_OP_reg5:
case DW_OP_reg6:
case DW_OP_reg7:
case DW_OP_reg8:
case DW_OP_reg9:
case DW_OP_reg10:
case DW_OP_reg11:
case DW_OP_reg12:
case DW_OP_reg13:
case DW_OP_reg14:
case DW_OP_reg15:
case DW_OP_reg16:
case DW_OP_reg17:
case DW_OP_reg18:
case DW_OP_reg19:
case DW_OP_reg20:
case DW_OP_reg21:
case DW_OP_reg22:
case DW_OP_reg23:
case DW_OP_reg24:
case DW_OP_reg25:
case DW_OP_reg26:
case DW_OP_reg27:
case DW_OP_reg28:
case DW_OP_reg29:
case DW_OP_reg30:
case DW_OP_reg31:
printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0));
break;
case DW_OP_deref:
case DW_OP_lit0:
case DW_OP_lit1:
case DW_OP_lit2:
case DW_OP_lit3:
case DW_OP_lit4:
case DW_OP_lit5:
case DW_OP_lit6:
case DW_OP_lit7:
case DW_OP_lit8:
case DW_OP_lit9:
case DW_OP_lit10:
case DW_OP_lit11:
case DW_OP_lit12:
case DW_OP_lit13:
case DW_OP_lit14:
case DW_OP_lit15:
case DW_OP_lit16:
case DW_OP_lit17:
case DW_OP_lit18:
case DW_OP_lit19:
case DW_OP_lit20:
case DW_OP_lit21:
case DW_OP_lit22:
case DW_OP_lit23:
case DW_OP_lit24:
case DW_OP_lit25:
case DW_OP_lit26:
case DW_OP_lit27:
case DW_OP_lit28:
case DW_OP_lit29:
case DW_OP_lit30:
case DW_OP_lit31:
case DW_OP_dup:
case DW_OP_drop:
case DW_OP_over:
case DW_OP_swap:
case DW_OP_rot:
case DW_OP_xderef:
case DW_OP_abs:
case DW_OP_and:
case DW_OP_div:
case DW_OP_minus:
case DW_OP_mod:
case DW_OP_mul:
case DW_OP_neg:
case DW_OP_not:
case DW_OP_or:
case DW_OP_plus:
case DW_OP_shl:
case DW_OP_shr:
case DW_OP_shra:
case DW_OP_xor:
case DW_OP_eq:
case DW_OP_ge:
case DW_OP_gt:
case DW_OP_le:
case DW_OP_lt:
case DW_OP_ne:
case DW_OP_nop:
case DW_OP_push_object_address:
case DW_OP_form_tls_address:
case DW_OP_call_frame_cfa:
case DW_OP_stack_value:
case DW_OP_GNU_push_tls_address:
case DW_OP_GNU_uninit:
break;
case DW_OP_const1u:
case DW_OP_pick:
case DW_OP_deref_size:
case DW_OP_xderef_size:
case DW_OP_const2u:
case DW_OP_bra:
case DW_OP_skip:
case DW_OP_const4u:
case DW_OP_const8u:
case DW_OP_constu:
case DW_OP_plus_uconst:
case DW_OP_regx:
case DW_OP_piece:
printf(": %ju", (uintmax_t)
lr->lr_number);
break;
case DW_OP_const1s:
case DW_OP_const2s:
case DW_OP_const4s:
case DW_OP_const8s:
case DW_OP_consts:
printf(": %jd", (intmax_t)
lr->lr_number);
break;
case DW_OP_breg0:
case DW_OP_breg1:
case DW_OP_breg2:
case DW_OP_breg3:
case DW_OP_breg4:
case DW_OP_breg5:
case DW_OP_breg6:
case DW_OP_breg7:
case DW_OP_breg8:
case DW_OP_breg9:
case DW_OP_breg10:
case DW_OP_breg11:
case DW_OP_breg12:
case DW_OP_breg13:
case DW_OP_breg14:
case DW_OP_breg15:
case DW_OP_breg16:
case DW_OP_breg17:
case DW_OP_breg18:
case DW_OP_breg19:
case DW_OP_breg20:
case DW_OP_breg21:
case DW_OP_breg22:
case DW_OP_breg23:
case DW_OP_breg24:
case DW_OP_breg25:
case DW_OP_breg26:
case DW_OP_breg27:
case DW_OP_breg28:
case DW_OP_breg29:
case DW_OP_breg30:
case DW_OP_breg31:
printf(" (%s): %jd",
dwarf_regname(re, lr->lr_atom - DW_OP_breg0),
(intmax_t) lr->lr_number);
break;
case DW_OP_fbreg:
printf(": %jd", (intmax_t)
lr->lr_number);
break;
case DW_OP_bregx:
printf(": %ju (%s) %jd",
(uintmax_t) lr->lr_number,
dwarf_regname(re, (unsigned int) lr->lr_number),
(intmax_t) lr->lr_number2);
break;
case DW_OP_addr:
case DW_OP_GNU_encoded_addr:
printf(": %#jx", (uintmax_t)
lr->lr_number);
break;
case DW_OP_GNU_implicit_pointer:
printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number,
(intmax_t) lr->lr_number2);
break;
case DW_OP_implicit_value:
printf(": %ju byte block:", (uintmax_t) lr->lr_number);
b = (uint8_t *)(uintptr_t) lr->lr_number2;
for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++)
printf(" %x", b[i]);
break;
case DW_OP_GNU_entry_value:
printf(": (");
dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2,
lr->lr_number);
putchar(')');
break;
case DW_OP_GNU_const_type:
printf(": <0x%jx> ", (uintmax_t) lr->lr_number);
b = (uint8_t *)(uintptr_t) lr->lr_number2;
n = *b;
for (i = 1; (uint8_t) i < n; i++)
printf(" %x", b[i]);
break;
case DW_OP_GNU_regval_type:
printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number,
dwarf_regname(re, (unsigned int) lr->lr_number),
(uintmax_t) lr->lr_number2);
break;
case DW_OP_GNU_convert:
case DW_OP_GNU_deref_type:
case DW_OP_GNU_parameter_ref:
case DW_OP_GNU_reinterpret:
printf(": <0x%jx>", (uintmax_t) lr->lr_number);
break;
default:
break;
}
}
static void
dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len)
{
Dwarf_Locdesc *llbuf;
Dwarf_Signed lcnt;
Dwarf_Error de;
int i;
if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize,
re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) {
warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de));
return;
}
for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) {
dump_dwarf_loc(re, &llbuf->ld_s[i]);
if (i < llbuf->ld_cents - 1)
printf("; ");
}
dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);
dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC);
}
static void
dump_dwarf_loclist(struct readelf *re)
{
Dwarf_Die die;
Dwarf_Locdesc **llbuf;
Dwarf_Unsigned lowpc;
Dwarf_Signed lcnt;
Dwarf_Half tag, version, pointer_size, off_size;
Dwarf_Error de;
struct loc_at *la;
int i, j, ret, has_content;
/* Search .debug_info section. */
while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL,
&pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) {
set_cu_context(re, pointer_size, off_size, version);
die = NULL;
if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
continue;
if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
continue;
}
/* XXX: What about DW_TAG_partial_unit? */
lowpc = 0;
if (tag == DW_TAG_compile_unit) {
if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
&lowpc, &de) != DW_DLV_OK)
lowpc = 0;
}
/* Search attributes for reference to .debug_loc section. */
search_loclist_at(re, die, lowpc);
}
if (ret == DW_DLV_ERROR)
warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
/* Search .debug_types section. */
do {
while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL,
&version, NULL, &pointer_size, &off_size, NULL, NULL,
NULL, NULL, &de)) == DW_DLV_OK) {
set_cu_context(re, pointer_size, off_size, version);
die = NULL;
if (dwarf_siblingof(re->dbg, die, &die, &de) !=
DW_DLV_OK)
continue;
if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
warnx("dwarf_tag failed: %s",
dwarf_errmsg(de));
continue;
}
lowpc = 0;
if (tag == DW_TAG_type_unit) {
if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
&lowpc, &de) != DW_DLV_OK)
lowpc = 0;
}
/*
* Search attributes for reference to .debug_loc
* section.
*/
search_loclist_at(re, die, lowpc);
}
if (ret == DW_DLV_ERROR)
warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
} while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
if (TAILQ_EMPTY(&lalist))
return;
has_content = 0;
TAILQ_FOREACH(la, &lalist, la_next) {
if ((ret = dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de)) !=
DW_DLV_OK) {
if (ret != DW_DLV_NO_ENTRY)
warnx("dwarf_loclist_n failed: %s",
dwarf_errmsg(de));
continue;
}
if (!has_content) {
has_content = 1;
printf("\nContents of section .debug_loc:\n");
printf(" Offset Begin End Expression\n");
}
set_cu_context(re, la->la_cu_psize, la->la_cu_osize,
la->la_cu_ver);
for (i = 0; i < lcnt; i++) {
printf(" %8.8jx ", (uintmax_t) la->la_off);
if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) {
printf("<End of list>\n");
continue;
}
/* TODO: handle base selection entry. */
printf("%8.8jx %8.8jx ",
(uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc),
(uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc));
putchar('(');
for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) {
dump_dwarf_loc(re, &llbuf[i]->ld_s[j]);
if (j < llbuf[i]->ld_cents - 1)
printf("; ");
}
putchar(')');
if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc)
printf(" (start == end)");
putchar('\n');
}
for (i = 0; i < lcnt; i++) {
dwarf_dealloc(re->dbg, llbuf[i]->ld_s,
DW_DLA_LOC_BLOCK);
dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC);
}
dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST);
}
if (!has_content)
printf("\nSection '.debug_loc' has no debugging data.\n");
}
/*
* Retrieve a string using string table section index and the string offset.
*/
static const char*
get_string(struct readelf *re, int strtab, size_t off)
{
const char *name;
if ((name = elf_strptr(re->elf, strtab, off)) == NULL)
return ("");
return (name);
}
/*
* Retrieve the name of a symbol using the section index of the symbol
* table and the index of the symbol within that table.
*/
static const char *
get_symbol_name(struct readelf *re, int symtab, int i)
{
struct section *s;
const char *name;
GElf_Sym sym;
Elf_Data *data;
int elferr;
s = &re->sl[symtab];
if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
return ("");
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return ("");
}
if (gelf_getsym(data, i, &sym) != &sym)
return ("");
/* Return section name for STT_SECTION symbol. */
if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) {
if (sym.st_shndx < re->shnum &&
re->sl[sym.st_shndx].name != NULL)
return (re->sl[sym.st_shndx].name);
return ("");
}
if (s->link >= re->shnum ||
(name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL)
return ("");
return (name);
}
static uint64_t
get_symbol_value(struct readelf *re, int symtab, int i)
{
struct section *s;
GElf_Sym sym;
Elf_Data *data;
int elferr;
s = &re->sl[symtab];
if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
return (0);
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return (0);
}
if (gelf_getsym(data, i, &sym) != &sym)
return (0);
return (sym.st_value);
}
static void
hex_dump(struct readelf *re)
{
struct section *s;
Elf_Data *d;
uint8_t *buf;
size_t sz, nbytes;
uint64_t addr;
int elferr, i, j;
for (i = 1; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL)
continue;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL &&
(d = elf_rawdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
continue;
}
(void) elf_errno();
if (d->d_size <= 0 || d->d_buf == NULL) {
printf("\nSection '%s' has no data to dump.\n",
s->name);
continue;
}
buf = d->d_buf;
sz = d->d_size;
addr = s->addr;
printf("\nHex dump of section '%s':\n", s->name);
while (sz > 0) {
printf(" 0x%8.8jx ", (uintmax_t)addr);
nbytes = sz > 16? 16 : sz;
for (j = 0; j < 16; j++) {
if ((size_t)j < nbytes)
printf("%2.2x", buf[j]);
else
printf(" ");
if ((j & 3) == 3)
printf(" ");
}
for (j = 0; (size_t)j < nbytes; j++) {
if (isprint(buf[j]))
printf("%c", buf[j]);
else
printf(".");
}
printf("\n");
buf += nbytes;
addr += nbytes;
sz -= nbytes;
}
}
}
static void
str_dump(struct readelf *re)
{
struct section *s;
Elf_Data *d;
unsigned char *start, *end, *buf_end;
unsigned int len;
int i, j, elferr, found;
for (i = 1; (size_t) i < re->shnum; i++) {
s = &re->sl[i];
if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL)
continue;
(void) elf_errno();
if ((d = elf_getdata(s->scn, NULL)) == NULL &&
(d = elf_rawdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
continue;
}
(void) elf_errno();
if (d->d_size <= 0 || d->d_buf == NULL) {
printf("\nSection '%s' has no data to dump.\n",
s->name);
continue;
}
buf_end = (unsigned char *) d->d_buf + d->d_size;
start = (unsigned char *) d->d_buf;
found = 0;
printf("\nString dump of section '%s':\n", s->name);
for (;;) {
while (start < buf_end && !isprint(*start))
start++;
if (start >= buf_end)
break;
end = start + 1;
while (end < buf_end && isprint(*end))
end++;
printf(" [%6lx] ",
(long) (start - (unsigned char *) d->d_buf));
len = end - start;
for (j = 0; (unsigned int) j < len; j++)
putchar(start[j]);
putchar('\n');
found = 1;
if (end >= buf_end)
break;
start = end + 1;
}
if (!found)
printf(" No strings found in this section.");
putchar('\n');
}
}
static void
load_sections(struct readelf *re)
{
struct section *s;
const char *name;
Elf_Scn *scn;
GElf_Shdr sh;
size_t shstrndx, ndx;
int elferr;
/* Allocate storage for internal section list. */
if (!elf_getshnum(re->elf, &re->shnum)) {
warnx("elf_getshnum failed: %s", elf_errmsg(-1));
return;
}
if (re->sl != NULL)
free(re->sl);
if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL)
err(EXIT_FAILURE, "calloc failed");
/* Get the index of .shstrtab section. */
if (!elf_getshstrndx(re->elf, &shstrndx)) {
warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
return;
}
if ((scn = elf_getscn(re->elf, 0)) == NULL)
return;
(void) elf_errno();
do {
if (gelf_getshdr(scn, &sh) == NULL) {
warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
(void) elf_errno();
continue;
}
if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) {
(void) elf_errno();
name = "<no-name>";
}
if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) {
if ((elferr = elf_errno()) != 0) {
warnx("elf_ndxscn failed: %s",
elf_errmsg(elferr));
continue;
}
}
if (ndx >= re->shnum) {
warnx("section index of '%s' out of range", name);
continue;
}
if (sh.sh_link >= re->shnum)
warnx("section link %llu of '%s' out of range",
(unsigned long long)sh.sh_link, name);
s = &re->sl[ndx];
s->name = name;
s->scn = scn;
s->off = sh.sh_offset;
s->sz = sh.sh_size;
s->entsize = sh.sh_entsize;
s->align = sh.sh_addralign;
s->type = sh.sh_type;
s->flags = sh.sh_flags;
s->addr = sh.sh_addr;
s->link = sh.sh_link;
s->info = sh.sh_info;
} while ((scn = elf_nextscn(re->elf, scn)) != NULL);
elferr = elf_errno();
if (elferr != 0)
warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
}
static void
unload_sections(struct readelf *re)
{
if (re->sl != NULL) {
free(re->sl);
re->sl = NULL;
}
re->shnum = 0;
re->vd_s = NULL;
re->vn_s = NULL;
re->vs_s = NULL;
re->vs = NULL;
re->vs_sz = 0;
if (re->ver != NULL) {
free(re->ver);
re->ver = NULL;
re->ver_sz = 0;
}
}
static void
dump_elf(struct readelf *re)
{
/* Fetch ELF header. No need to continue if it fails. */
if (gelf_getehdr(re->elf, &re->ehdr) == NULL) {
warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
return;
}
if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) {
warnx("gelf_getclass failed: %s", elf_errmsg(-1));
return;
}
if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
re->dw_read = _read_msb;
re->dw_decode = _decode_msb;
} else {
re->dw_read = _read_lsb;
re->dw_decode = _decode_lsb;
}
if (re->options & ~RE_H)
load_sections(re);
if ((re->options & RE_VV) || (re->options & RE_S))
search_ver(re);
if (re->options & RE_H)
dump_ehdr(re);
if (re->options & RE_L)
dump_phdr(re);
if (re->options & RE_SS)
dump_shdr(re);
if (re->options & RE_G)
dump_section_groups(re);
if (re->options & RE_D)
dump_dynamic(re);
if (re->options & RE_R)
dump_reloc(re);
if (re->options & RE_S)
dump_symtabs(re);
if (re->options & RE_N)
dump_notes(re);
if (re->options & RE_II)
dump_hash(re);
if (re->options & RE_X)
hex_dump(re);
if (re->options & RE_P)
str_dump(re);
if (re->options & RE_VV)
dump_ver(re);
if (re->options & RE_AA)
dump_arch_specific_info(re);
if (re->options & RE_W)
dump_dwarf(re);
if (re->options & ~RE_H)
unload_sections(re);
}
static void
dump_dwarf(struct readelf *re)
{
struct loc_at *la, *_la;
Dwarf_Error de;
int error;
if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) {
if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL)
errx(EXIT_FAILURE, "dwarf_elf_init failed: %s",
dwarf_errmsg(de));
return;
}
if (re->dop & DW_A)
dump_dwarf_abbrev(re);
if (re->dop & DW_L)
dump_dwarf_line(re);
if (re->dop & DW_LL)
dump_dwarf_line_decoded(re);
if (re->dop & DW_I) {
dump_dwarf_info(re, 0);
dump_dwarf_info(re, 1);
}
if (re->dop & DW_P)
dump_dwarf_pubnames(re);
if (re->dop & DW_R)
dump_dwarf_aranges(re);
if (re->dop & DW_RR)
dump_dwarf_ranges(re);
if (re->dop & DW_M)
dump_dwarf_macinfo(re);
if (re->dop & DW_F)
dump_dwarf_frame(re, 0);
else if (re->dop & DW_FF)
dump_dwarf_frame(re, 1);
if (re->dop & DW_S)
dump_dwarf_str(re);
if (re->dop & DW_O)
dump_dwarf_loclist(re);
TAILQ_FOREACH_SAFE(la, &lalist, la_next, _la) {
TAILQ_REMOVE(&lalist, la, la_next);
free(la);
}
dwarf_finish(re->dbg, &de);
}
static void
dump_ar(struct readelf *re, int fd)
{
Elf_Arsym *arsym;
Elf_Arhdr *arhdr;
Elf_Cmd cmd;
Elf *e;
size_t sz;
off_t off;
int i;
re->ar = re->elf;
if (re->options & RE_C) {
if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) {
warnx("elf_getarsym() failed: %s", elf_errmsg(-1));
goto process_members;
}
printf("Index of archive %s: (%ju entries)\n", re->filename,
(uintmax_t) sz - 1);
off = 0;
for (i = 0; (size_t) i < sz; i++) {
if (arsym[i].as_name == NULL)
break;
if (arsym[i].as_off != off) {
off = arsym[i].as_off;
if (elf_rand(re->ar, off) != off) {
warnx("elf_rand() failed: %s",
elf_errmsg(-1));
continue;
}
if ((e = elf_begin(fd, ELF_C_READ, re->ar)) ==
NULL) {
warnx("elf_begin() failed: %s",
elf_errmsg(-1));
continue;
}
if ((arhdr = elf_getarhdr(e)) == NULL) {
warnx("elf_getarhdr() failed: %s",
elf_errmsg(-1));
elf_end(e);
continue;
}
printf("Binary %s(%s) contains:\n",
re->filename, arhdr->ar_name);
}
printf("\t%s\n", arsym[i].as_name);
}
if (elf_rand(re->ar, SARMAG) != SARMAG) {
warnx("elf_rand() failed: %s", elf_errmsg(-1));
return;
}
}
process_members:
if ((re->options & ~RE_C) == 0)
return;
cmd = ELF_C_READ;
while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) {
if ((arhdr = elf_getarhdr(re->elf)) == NULL) {
warnx("elf_getarhdr() failed: %s", elf_errmsg(-1));
goto next_member;
}
if (strcmp(arhdr->ar_name, "/") == 0 ||
strcmp(arhdr->ar_name, "//") == 0 ||
strcmp(arhdr->ar_name, "__.SYMDEF") == 0)
goto next_member;
printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name);
dump_elf(re);
next_member:
cmd = elf_next(re->elf);
elf_end(re->elf);
}
re->elf = re->ar;
}
static void
dump_object(struct readelf *re)
{
int fd;
if ((fd = open(re->filename, O_RDONLY)) == -1) {
warn("open %s failed", re->filename);
return;
}
if ((re->flags & DISPLAY_FILENAME) != 0)
printf("\nFile: %s\n", re->filename);
if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
warnx("elf_begin() failed: %s", elf_errmsg(-1));
return;
}
switch (elf_kind(re->elf)) {
case ELF_K_NONE:
warnx("Not an ELF file.");
return;
case ELF_K_ELF:
dump_elf(re);
break;
case ELF_K_AR:
dump_ar(re, fd);
break;
default:
warnx("Internal: libelf returned unknown elf kind.");
return;
}
elf_end(re->elf);
}
static void
add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
{
struct dumpop *d;
if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) {
if ((d = calloc(1, sizeof(*d))) == NULL)
err(EXIT_FAILURE, "calloc failed");
if (t == DUMP_BY_INDEX)
d->u.si = si;
else
d->u.sn = sn;
d->type = t;
d->op = op;
STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list);
} else
d->op |= op;
}
static struct dumpop *
find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
{
struct dumpop *d;
STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) {
if ((op == -1 || op & d->op) &&
(t == -1 || (unsigned) t == d->type)) {
if ((d->type == DUMP_BY_INDEX && d->u.si == si) ||
(d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn)))
return (d);
}
}
return (NULL);
}
static struct {
const char *ln;
char sn;
int value;
} dwarf_op[] = {
{"rawline", 'l', DW_L},
{"decodedline", 'L', DW_LL},
{"info", 'i', DW_I},
{"abbrev", 'a', DW_A},
{"pubnames", 'p', DW_P},
{"aranges", 'r', DW_R},
{"ranges", 'r', DW_R},
{"Ranges", 'R', DW_RR},
{"macro", 'm', DW_M},
{"frames", 'f', DW_F},
{"frames-interp", 'F', DW_FF},
{"str", 's', DW_S},
{"loc", 'o', DW_O},
{NULL, 0, 0}
};
static void
parse_dwarf_op_short(struct readelf *re, const char *op)
{
int i;
if (op == NULL) {
re->dop |= DW_DEFAULT_OPTIONS;
return;
}
for (; *op != '\0'; op++) {
for (i = 0; dwarf_op[i].ln != NULL; i++) {
if (dwarf_op[i].sn == *op) {
re->dop |= dwarf_op[i].value;
break;
}
}
}
}
static void
parse_dwarf_op_long(struct readelf *re, const char *op)
{
char *p, *token, *bp;
int i;
if (op == NULL) {
re->dop |= DW_DEFAULT_OPTIONS;
return;
}
if ((p = strdup(op)) == NULL)
err(EXIT_FAILURE, "strdup failed");
bp = p;
while ((token = strsep(&p, ",")) != NULL) {
for (i = 0; dwarf_op[i].ln != NULL; i++) {
if (!strcmp(token, dwarf_op[i].ln)) {
re->dop |= dwarf_op[i].value;
break;
}
}
}
free(bp);
}
static uint64_t
_read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
{
uint64_t ret;
uint8_t *src;
src = (uint8_t *) d->d_buf + *offsetp;
ret = 0;
switch (bytes_to_read) {
case 8:
ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
/* FALLTHROUGH */
case 4:
ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
/* FALLTHROUGH */
case 2:
ret |= ((uint64_t) src[1]) << 8;
/* FALLTHROUGH */
case 1:
ret |= src[0];
break;
default:
return (0);
}
*offsetp += bytes_to_read;
return (ret);
}
static uint64_t
_read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
{
uint64_t ret;
uint8_t *src;
src = (uint8_t *) d->d_buf + *offsetp;
switch (bytes_to_read) {
case 1:
ret = src[0];
break;
case 2:
ret = src[1] | ((uint64_t) src[0]) << 8;
break;
case 4:
ret = src[3] | ((uint64_t) src[2]) << 8;
ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
break;
case 8:
ret = src[7] | ((uint64_t) src[6]) << 8;
ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
break;
default:
return (0);
}
*offsetp += bytes_to_read;
return (ret);
}
static uint64_t
_decode_lsb(uint8_t **data, int bytes_to_read)
{
uint64_t ret;
uint8_t *src;
src = *data;
ret = 0;
switch (bytes_to_read) {
case 8:
ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
/* FALLTHROUGH */
case 4:
ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
/* FALLTHROUGH */
case 2:
ret |= ((uint64_t) src[1]) << 8;
/* FALLTHROUGH */
case 1:
ret |= src[0];
break;
default:
return (0);
}
*data += bytes_to_read;
return (ret);
}
static uint64_t
_decode_msb(uint8_t **data, int bytes_to_read)
{
uint64_t ret;
uint8_t *src;
src = *data;
ret = 0;
switch (bytes_to_read) {
case 1:
ret = src[0];
break;
case 2:
ret = src[1] | ((uint64_t) src[0]) << 8;
break;
case 4:
ret = src[3] | ((uint64_t) src[2]) << 8;
ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
break;
case 8:
ret = src[7] | ((uint64_t) src[6]) << 8;
ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
break;
default:
return (0);
break;
}
*data += bytes_to_read;
return (ret);
}
static int64_t
_decode_sleb128(uint8_t **dp, uint8_t *dpe)
{
int64_t ret = 0;
uint8_t b = 0;
int shift = 0;
uint8_t *src = *dp;
do {
if (src >= dpe)
break;
b = *src++;
ret |= ((b & 0x7f) << shift);
shift += 7;
} while ((b & 0x80) != 0);
if (shift < 32 && (b & 0x40) != 0)
ret |= (-1 << shift);
*dp = src;
return (ret);
}
static uint64_t
_decode_uleb128(uint8_t **dp, uint8_t *dpe)
{
uint64_t ret = 0;
uint8_t b;
int shift = 0;
uint8_t *src = *dp;
do {
if (src >= dpe)
break;
b = *src++;
ret |= ((b & 0x7f) << shift);
shift += 7;
} while ((b & 0x80) != 0);
*dp = src;
return (ret);
}
static void
readelf_version(void)
{
(void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
elftc_version());
exit(EXIT_SUCCESS);
}
#define USAGE_MESSAGE "\
Usage: %s [options] file...\n\
Display information about ELF objects and ar(1) archives.\n\n\
Options:\n\
-a | --all Equivalent to specifying options '-dhIlrsASV'.\n\
-c | --archive-index Print the archive symbol table for archives.\n\
-d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\
-e | --headers Print all headers in the object.\n\
-g | --section-groups Print the contents of the section groups.\n\
-h | --file-header Print the file header for the object.\n\
-l | --program-headers Print the PHDR table for the object.\n\
-n | --notes Print the contents of SHT_NOTE sections.\n\
-p INDEX | --string-dump=INDEX\n\
Print the contents of section at index INDEX.\n\
-r | --relocs Print relocation information.\n\
-s | --syms | --symbols Print symbol tables.\n\
-t | --section-details Print additional information about sections.\n\
-v | --version Print a version identifier and exit.\n\
-w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\
frames-interp,info,loc,macro,pubnames,\n\
ranges,Ranges,rawline,str}\n\
Display DWARF information.\n\
-x INDEX | --hex-dump=INDEX\n\
Display contents of a section as hexadecimal.\n\
-A | --arch-specific (accepted, but ignored)\n\
-D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\
entry in the \".dynamic\" section.\n\
-H | --help Print a help message.\n\
-I | --histogram Print information on bucket list lengths for \n\
hash sections.\n\
-N | --full-section-name (accepted, but ignored)\n\
-S | --sections | --section-headers\n\
Print information about section headers.\n\
-V | --version-info Print symbol versoning information.\n\
-W | --wide Print information without wrapping long lines.\n"
static void
readelf_usage(int status)
{
fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
exit(status);
}
int
main(int argc, char **argv)
{
struct readelf *re, re_storage;
unsigned long si;
int opt, i;
char *ep;
re = &re_storage;
memset(re, 0, sizeof(*re));
STAILQ_INIT(&re->v_dumpop);
while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:",
longopts, NULL)) != -1) {
switch(opt) {
case '?':
readelf_usage(EXIT_SUCCESS);
break;
case 'A':
re->options |= RE_AA;
break;
case 'a':
re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II |
RE_L | RE_R | RE_SS | RE_S | RE_VV;
break;
case 'c':
re->options |= RE_C;
break;
case 'D':
re->options |= RE_DD;
break;
case 'd':
re->options |= RE_D;
break;
case 'e':
re->options |= RE_H | RE_L | RE_SS;
break;
case 'g':
re->options |= RE_G;
break;
case 'H':
readelf_usage(EXIT_SUCCESS);
break;
case 'h':
re->options |= RE_H;
break;
case 'I':
re->options |= RE_II;
break;
case 'i':
/* Not implemented yet. */
break;
case 'l':
re->options |= RE_L;
break;
case 'N':
re->options |= RE_NN;
break;
case 'n':
re->options |= RE_N;
break;
case 'p':
re->options |= RE_P;
si = strtoul(optarg, &ep, 10);
if (*ep == '\0')
add_dumpop(re, (size_t) si, NULL, STR_DUMP,
DUMP_BY_INDEX);
else
add_dumpop(re, 0, optarg, STR_DUMP,
DUMP_BY_NAME);
break;
case 'r':
re->options |= RE_R;
break;
case 'S':
re->options |= RE_SS;
break;
case 's':
re->options |= RE_S;
break;
case 't':
re->options |= RE_T;
break;
case 'u':
re->options |= RE_U;
break;
case 'V':
re->options |= RE_VV;
break;
case 'v':
readelf_version();
break;
case 'W':
re->options |= RE_WW;
break;
case 'w':
re->options |= RE_W;
parse_dwarf_op_short(re, optarg);
break;
case 'x':
re->options |= RE_X;
si = strtoul(optarg, &ep, 10);
if (*ep == '\0')
add_dumpop(re, (size_t) si, NULL, HEX_DUMP,
DUMP_BY_INDEX);
else
add_dumpop(re, 0, optarg, HEX_DUMP,
DUMP_BY_NAME);
break;
case OPTION_DEBUG_DUMP:
re->options |= RE_W;
parse_dwarf_op_long(re, optarg);
}
}
argv += optind;
argc -= optind;
if (argc == 0 || re->options == 0)
readelf_usage(EXIT_FAILURE);
if (argc > 1)
re->flags |= DISPLAY_FILENAME;
if (elf_version(EV_CURRENT) == EV_NONE)
errx(EXIT_FAILURE, "ELF library initialization failed: %s",
elf_errmsg(-1));
for (i = 0; i < argc; i++) {
re->filename = argv[i];
dump_object(re);
}
exit(EXIT_SUCCESS);
}