freebsd-skq/sys/x86/iommu/intel_drv.c

1339 lines
34 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013-2015 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#if defined(__amd64__)
#define DEV_APIC
#else
#include "opt_apic.h"
#endif
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memdesc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/rwlock.h>
#include <sys/smp.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/vmem.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_map.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/pci_cfgreg.h>
#include <x86/include/busdma_impl.h>
#include <dev/iommu/busdma_iommu.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/intel_dmar.h>
#ifdef DEV_APIC
#include "pcib_if.h"
#include <machine/intr_machdep.h>
#include <x86/apicreg.h>
#include <x86/apicvar.h>
#endif
#define DMAR_FAULT_IRQ_RID 0
#define DMAR_QI_IRQ_RID 1
#define DMAR_REG_RID 2
static devclass_t dmar_devclass;
static device_t *dmar_devs;
static int dmar_devcnt;
typedef int (*dmar_iter_t)(ACPI_DMAR_HEADER *, void *);
static void
dmar_iterate_tbl(dmar_iter_t iter, void *arg)
{
ACPI_TABLE_DMAR *dmartbl;
ACPI_DMAR_HEADER *dmarh;
char *ptr, *ptrend;
ACPI_STATUS status;
status = AcpiGetTable(ACPI_SIG_DMAR, 1, (ACPI_TABLE_HEADER **)&dmartbl);
if (ACPI_FAILURE(status))
return;
ptr = (char *)dmartbl + sizeof(*dmartbl);
ptrend = (char *)dmartbl + dmartbl->Header.Length;
for (;;) {
if (ptr >= ptrend)
break;
dmarh = (ACPI_DMAR_HEADER *)ptr;
if (dmarh->Length <= 0) {
printf("dmar_identify: corrupted DMAR table, l %d\n",
dmarh->Length);
break;
}
ptr += dmarh->Length;
if (!iter(dmarh, arg))
break;
}
AcpiPutTable((ACPI_TABLE_HEADER *)dmartbl);
}
struct find_iter_args {
int i;
ACPI_DMAR_HARDWARE_UNIT *res;
};
static int
dmar_find_iter(ACPI_DMAR_HEADER *dmarh, void *arg)
{
struct find_iter_args *fia;
if (dmarh->Type != ACPI_DMAR_TYPE_HARDWARE_UNIT)
return (1);
fia = arg;
if (fia->i == 0) {
fia->res = (ACPI_DMAR_HARDWARE_UNIT *)dmarh;
return (0);
}
fia->i--;
return (1);
}
static ACPI_DMAR_HARDWARE_UNIT *
dmar_find_by_index(int idx)
{
struct find_iter_args fia;
fia.i = idx;
fia.res = NULL;
dmar_iterate_tbl(dmar_find_iter, &fia);
return (fia.res);
}
static int
dmar_count_iter(ACPI_DMAR_HEADER *dmarh, void *arg)
{
if (dmarh->Type == ACPI_DMAR_TYPE_HARDWARE_UNIT)
dmar_devcnt++;
return (1);
}
static int dmar_enable = 0;
static void
dmar_identify(driver_t *driver, device_t parent)
{
ACPI_TABLE_DMAR *dmartbl;
ACPI_DMAR_HARDWARE_UNIT *dmarh;
ACPI_STATUS status;
int i, error;
if (acpi_disabled("dmar"))
return;
TUNABLE_INT_FETCH("hw.dmar.enable", &dmar_enable);
if (!dmar_enable)
return;
status = AcpiGetTable(ACPI_SIG_DMAR, 1, (ACPI_TABLE_HEADER **)&dmartbl);
if (ACPI_FAILURE(status))
return;
haw = dmartbl->Width + 1;
if ((1ULL << (haw + 1)) > BUS_SPACE_MAXADDR)
dmar_high = BUS_SPACE_MAXADDR;
else
dmar_high = 1ULL << (haw + 1);
if (bootverbose) {
printf("DMAR HAW=%d flags=<%b>\n", dmartbl->Width,
(unsigned)dmartbl->Flags,
"\020\001INTR_REMAP\002X2APIC_OPT_OUT");
}
AcpiPutTable((ACPI_TABLE_HEADER *)dmartbl);
dmar_iterate_tbl(dmar_count_iter, NULL);
if (dmar_devcnt == 0)
return;
dmar_devs = malloc(sizeof(device_t) * dmar_devcnt, M_DEVBUF,
M_WAITOK | M_ZERO);
for (i = 0; i < dmar_devcnt; i++) {
dmarh = dmar_find_by_index(i);
if (dmarh == NULL) {
printf("dmar_identify: cannot find HWUNIT %d\n", i);
continue;
}
dmar_devs[i] = BUS_ADD_CHILD(parent, 1, "dmar", i);
if (dmar_devs[i] == NULL) {
printf("dmar_identify: cannot create instance %d\n", i);
continue;
}
error = bus_set_resource(dmar_devs[i], SYS_RES_MEMORY,
DMAR_REG_RID, dmarh->Address, PAGE_SIZE);
if (error != 0) {
printf(
"dmar%d: unable to alloc register window at 0x%08jx: error %d\n",
i, (uintmax_t)dmarh->Address, error);
device_delete_child(parent, dmar_devs[i]);
dmar_devs[i] = NULL;
}
}
}
static int
dmar_probe(device_t dev)
{
if (acpi_get_handle(dev) != NULL)
return (ENXIO);
device_set_desc(dev, "DMA remap");
return (BUS_PROBE_NOWILDCARD);
}
static void
dmar_release_intr(device_t dev, struct dmar_unit *unit, int idx)
{
struct dmar_msi_data *dmd;
dmd = &unit->intrs[idx];
if (dmd->irq == -1)
return;
bus_teardown_intr(dev, dmd->irq_res, dmd->intr_handle);
bus_release_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq_res);
bus_delete_resource(dev, SYS_RES_IRQ, dmd->irq_rid);
PCIB_RELEASE_MSIX(device_get_parent(device_get_parent(dev)),
dev, dmd->irq);
dmd->irq = -1;
}
static void
dmar_release_resources(device_t dev, struct dmar_unit *unit)
{
int i;
iommu_fini_busdma(&unit->iommu);
dmar_fini_irt(unit);
dmar_fini_qi(unit);
dmar_fini_fault_log(unit);
for (i = 0; i < DMAR_INTR_TOTAL; i++)
dmar_release_intr(dev, unit, i);
if (unit->regs != NULL) {
bus_deactivate_resource(dev, SYS_RES_MEMORY, unit->reg_rid,
unit->regs);
bus_release_resource(dev, SYS_RES_MEMORY, unit->reg_rid,
unit->regs);
unit->regs = NULL;
}
if (unit->domids != NULL) {
delete_unrhdr(unit->domids);
unit->domids = NULL;
}
if (unit->ctx_obj != NULL) {
vm_object_deallocate(unit->ctx_obj);
unit->ctx_obj = NULL;
}
}
static int
dmar_alloc_irq(device_t dev, struct dmar_unit *unit, int idx)
{
device_t pcib;
struct dmar_msi_data *dmd;
uint64_t msi_addr;
uint32_t msi_data;
int error;
dmd = &unit->intrs[idx];
pcib = device_get_parent(device_get_parent(dev)); /* Really not pcib */
error = PCIB_ALLOC_MSIX(pcib, dev, &dmd->irq);
if (error != 0) {
device_printf(dev, "cannot allocate %s interrupt, %d\n",
dmd->name, error);
goto err1;
}
error = bus_set_resource(dev, SYS_RES_IRQ, dmd->irq_rid,
dmd->irq, 1);
if (error != 0) {
device_printf(dev, "cannot set %s interrupt resource, %d\n",
dmd->name, error);
goto err2;
}
dmd->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&dmd->irq_rid, RF_ACTIVE);
if (dmd->irq_res == NULL) {
device_printf(dev,
"cannot allocate resource for %s interrupt\n", dmd->name);
error = ENXIO;
goto err3;
}
error = bus_setup_intr(dev, dmd->irq_res, INTR_TYPE_MISC,
dmd->handler, NULL, unit, &dmd->intr_handle);
if (error != 0) {
device_printf(dev, "cannot setup %s interrupt, %d\n",
dmd->name, error);
goto err4;
}
bus_describe_intr(dev, dmd->irq_res, dmd->intr_handle, "%s", dmd->name);
error = PCIB_MAP_MSI(pcib, dev, dmd->irq, &msi_addr, &msi_data);
if (error != 0) {
device_printf(dev, "cannot map %s interrupt, %d\n",
dmd->name, error);
goto err5;
}
dmar_write4(unit, dmd->msi_data_reg, msi_data);
dmar_write4(unit, dmd->msi_addr_reg, msi_addr);
/* Only for xAPIC mode */
dmar_write4(unit, dmd->msi_uaddr_reg, msi_addr >> 32);
return (0);
err5:
bus_teardown_intr(dev, dmd->irq_res, dmd->intr_handle);
err4:
bus_release_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq_res);
err3:
bus_delete_resource(dev, SYS_RES_IRQ, dmd->irq_rid);
err2:
PCIB_RELEASE_MSIX(pcib, dev, dmd->irq);
dmd->irq = -1;
err1:
return (error);
}
#ifdef DEV_APIC
static int
dmar_remap_intr(device_t dev, device_t child, u_int irq)
{
struct dmar_unit *unit;
struct dmar_msi_data *dmd;
uint64_t msi_addr;
uint32_t msi_data;
int i, error;
unit = device_get_softc(dev);
for (i = 0; i < DMAR_INTR_TOTAL; i++) {
dmd = &unit->intrs[i];
if (irq == dmd->irq) {
error = PCIB_MAP_MSI(device_get_parent(
device_get_parent(dev)),
dev, irq, &msi_addr, &msi_data);
if (error != 0)
return (error);
DMAR_LOCK(unit);
(dmd->disable_intr)(unit);
dmar_write4(unit, dmd->msi_data_reg, msi_data);
dmar_write4(unit, dmd->msi_addr_reg, msi_addr);
dmar_write4(unit, dmd->msi_uaddr_reg, msi_addr >> 32);
(dmd->enable_intr)(unit);
DMAR_UNLOCK(unit);
return (0);
}
}
return (ENOENT);
}
#endif
static void
dmar_print_caps(device_t dev, struct dmar_unit *unit,
ACPI_DMAR_HARDWARE_UNIT *dmaru)
{
uint32_t caphi, ecaphi;
device_printf(dev, "regs@0x%08jx, ver=%d.%d, seg=%d, flags=<%b>\n",
(uintmax_t)dmaru->Address, DMAR_MAJOR_VER(unit->hw_ver),
DMAR_MINOR_VER(unit->hw_ver), dmaru->Segment,
dmaru->Flags, "\020\001INCLUDE_ALL_PCI");
caphi = unit->hw_cap >> 32;
device_printf(dev, "cap=%b,", (u_int)unit->hw_cap,
"\020\004AFL\005WBF\006PLMR\007PHMR\010CM\027ZLR\030ISOCH");
printf("%b, ", caphi, "\020\010PSI\027DWD\030DRD\031FL1GP\034PSI");
printf("ndoms=%d, sagaw=%d, mgaw=%d, fro=%d, nfr=%d, superp=%d",
DMAR_CAP_ND(unit->hw_cap), DMAR_CAP_SAGAW(unit->hw_cap),
DMAR_CAP_MGAW(unit->hw_cap), DMAR_CAP_FRO(unit->hw_cap),
DMAR_CAP_NFR(unit->hw_cap), DMAR_CAP_SPS(unit->hw_cap));
if ((unit->hw_cap & DMAR_CAP_PSI) != 0)
printf(", mamv=%d", DMAR_CAP_MAMV(unit->hw_cap));
printf("\n");
ecaphi = unit->hw_ecap >> 32;
device_printf(dev, "ecap=%b,", (u_int)unit->hw_ecap,
"\020\001C\002QI\003DI\004IR\005EIM\007PT\010SC\031ECS\032MTS"
"\033NEST\034DIS\035PASID\036PRS\037ERS\040SRS");
printf("%b, ", ecaphi, "\020\002NWFS\003EAFS");
printf("mhmw=%d, iro=%d\n", DMAR_ECAP_MHMV(unit->hw_ecap),
DMAR_ECAP_IRO(unit->hw_ecap));
}
static int
dmar_attach(device_t dev)
{
struct dmar_unit *unit;
ACPI_DMAR_HARDWARE_UNIT *dmaru;
uint64_t timeout;
int i, error;
unit = device_get_softc(dev);
unit->dev = dev;
unit->iommu.unit = device_get_unit(dev);
dmaru = dmar_find_by_index(unit->iommu.unit);
if (dmaru == NULL)
return (EINVAL);
unit->segment = dmaru->Segment;
unit->base = dmaru->Address;
unit->reg_rid = DMAR_REG_RID;
unit->regs = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&unit->reg_rid, RF_ACTIVE);
if (unit->regs == NULL) {
device_printf(dev, "cannot allocate register window\n");
return (ENOMEM);
}
unit->hw_ver = dmar_read4(unit, DMAR_VER_REG);
unit->hw_cap = dmar_read8(unit, DMAR_CAP_REG);
unit->hw_ecap = dmar_read8(unit, DMAR_ECAP_REG);
if (bootverbose)
dmar_print_caps(dev, unit, dmaru);
dmar_quirks_post_ident(unit);
timeout = dmar_get_timeout();
TUNABLE_UINT64_FETCH("hw.dmar.timeout", &timeout);
dmar_update_timeout(timeout);
for (i = 0; i < DMAR_INTR_TOTAL; i++)
unit->intrs[i].irq = -1;
unit->intrs[DMAR_INTR_FAULT].name = "fault";
unit->intrs[DMAR_INTR_FAULT].irq_rid = DMAR_FAULT_IRQ_RID;
unit->intrs[DMAR_INTR_FAULT].handler = dmar_fault_intr;
unit->intrs[DMAR_INTR_FAULT].msi_data_reg = DMAR_FEDATA_REG;
unit->intrs[DMAR_INTR_FAULT].msi_addr_reg = DMAR_FEADDR_REG;
unit->intrs[DMAR_INTR_FAULT].msi_uaddr_reg = DMAR_FEUADDR_REG;
unit->intrs[DMAR_INTR_FAULT].enable_intr = dmar_enable_fault_intr;
unit->intrs[DMAR_INTR_FAULT].disable_intr = dmar_disable_fault_intr;
error = dmar_alloc_irq(dev, unit, DMAR_INTR_FAULT);
if (error != 0) {
dmar_release_resources(dev, unit);
return (error);
}
if (DMAR_HAS_QI(unit)) {
unit->intrs[DMAR_INTR_QI].name = "qi";
unit->intrs[DMAR_INTR_QI].irq_rid = DMAR_QI_IRQ_RID;
unit->intrs[DMAR_INTR_QI].handler = dmar_qi_intr;
unit->intrs[DMAR_INTR_QI].msi_data_reg = DMAR_IEDATA_REG;
unit->intrs[DMAR_INTR_QI].msi_addr_reg = DMAR_IEADDR_REG;
unit->intrs[DMAR_INTR_QI].msi_uaddr_reg = DMAR_IEUADDR_REG;
unit->intrs[DMAR_INTR_QI].enable_intr = dmar_enable_qi_intr;
unit->intrs[DMAR_INTR_QI].disable_intr = dmar_disable_qi_intr;
error = dmar_alloc_irq(dev, unit, DMAR_INTR_QI);
if (error != 0) {
dmar_release_resources(dev, unit);
return (error);
}
}
mtx_init(&unit->iommu.lock, "dmarhw", NULL, MTX_DEF);
unit->domids = new_unrhdr(0, dmar_nd2mask(DMAR_CAP_ND(unit->hw_cap)),
&unit->iommu.lock);
LIST_INIT(&unit->domains);
/*
* 9.2 "Context Entry":
* When Caching Mode (CM) field is reported as Set, the
* domain-id value of zero is architecturally reserved.
* Software must not use domain-id value of zero
* when CM is Set.
*/
if ((unit->hw_cap & DMAR_CAP_CM) != 0)
alloc_unr_specific(unit->domids, 0);
unit->ctx_obj = vm_pager_allocate(OBJT_PHYS, NULL, IDX_TO_OFF(1 +
DMAR_CTX_CNT), 0, 0, NULL);
/*
* Allocate and load the root entry table pointer. Enable the
* address translation after the required invalidations are
* done.
*/
dmar_pgalloc(unit->ctx_obj, 0, IOMMU_PGF_WAITOK | IOMMU_PGF_ZERO);
DMAR_LOCK(unit);
error = dmar_load_root_entry_ptr(unit);
if (error != 0) {
DMAR_UNLOCK(unit);
dmar_release_resources(dev, unit);
return (error);
}
error = dmar_inv_ctx_glob(unit);
if (error != 0) {
DMAR_UNLOCK(unit);
dmar_release_resources(dev, unit);
return (error);
}
if ((unit->hw_ecap & DMAR_ECAP_DI) != 0) {
error = dmar_inv_iotlb_glob(unit);
if (error != 0) {
DMAR_UNLOCK(unit);
dmar_release_resources(dev, unit);
return (error);
}
}
DMAR_UNLOCK(unit);
error = dmar_init_fault_log(unit);
if (error != 0) {
dmar_release_resources(dev, unit);
return (error);
}
error = dmar_init_qi(unit);
if (error != 0) {
dmar_release_resources(dev, unit);
return (error);
}
error = dmar_init_irt(unit);
if (error != 0) {
dmar_release_resources(dev, unit);
return (error);
}
error = iommu_init_busdma(&unit->iommu);
if (error != 0) {
dmar_release_resources(dev, unit);
return (error);
}
#ifdef NOTYET
DMAR_LOCK(unit);
error = dmar_enable_translation(unit);
if (error != 0) {
DMAR_UNLOCK(unit);
dmar_release_resources(dev, unit);
return (error);
}
DMAR_UNLOCK(unit);
#endif
return (0);
}
static int
dmar_detach(device_t dev)
{
return (EBUSY);
}
static int
dmar_suspend(device_t dev)
{
return (0);
}
static int
dmar_resume(device_t dev)
{
/* XXXKIB */
return (0);
}
static device_method_t dmar_methods[] = {
DEVMETHOD(device_identify, dmar_identify),
DEVMETHOD(device_probe, dmar_probe),
DEVMETHOD(device_attach, dmar_attach),
DEVMETHOD(device_detach, dmar_detach),
DEVMETHOD(device_suspend, dmar_suspend),
DEVMETHOD(device_resume, dmar_resume),
#ifdef DEV_APIC
DEVMETHOD(bus_remap_intr, dmar_remap_intr),
#endif
DEVMETHOD_END
};
static driver_t dmar_driver = {
"dmar",
dmar_methods,
sizeof(struct dmar_unit),
};
DRIVER_MODULE(dmar, acpi, dmar_driver, dmar_devclass, 0, 0);
MODULE_DEPEND(dmar, acpi, 1, 1, 1);
static void
dmar_print_path(int busno, int depth, const ACPI_DMAR_PCI_PATH *path)
{
int i;
printf("[%d, ", busno);
for (i = 0; i < depth; i++) {
if (i != 0)
printf(", ");
printf("(%d, %d)", path[i].Device, path[i].Function);
}
printf("]");
}
int
dmar_dev_depth(device_t child)
{
devclass_t pci_class;
device_t bus, pcib;
int depth;
pci_class = devclass_find("pci");
for (depth = 1; ; depth++) {
bus = device_get_parent(child);
pcib = device_get_parent(bus);
if (device_get_devclass(device_get_parent(pcib)) !=
pci_class)
return (depth);
child = pcib;
}
}
void
dmar_dev_path(device_t child, int *busno, void *path1, int depth)
{
devclass_t pci_class;
device_t bus, pcib;
ACPI_DMAR_PCI_PATH *path;
pci_class = devclass_find("pci");
path = path1;
for (depth--; depth != -1; depth--) {
path[depth].Device = pci_get_slot(child);
path[depth].Function = pci_get_function(child);
bus = device_get_parent(child);
pcib = device_get_parent(bus);
if (device_get_devclass(device_get_parent(pcib)) !=
pci_class) {
/* reached a host bridge */
*busno = pcib_get_bus(bus);
return;
}
child = pcib;
}
panic("wrong depth");
}
static int
dmar_match_pathes(int busno1, const ACPI_DMAR_PCI_PATH *path1, int depth1,
int busno2, const ACPI_DMAR_PCI_PATH *path2, int depth2,
enum AcpiDmarScopeType scope_type)
{
int i, depth;
if (busno1 != busno2)
return (0);
if (scope_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && depth1 != depth2)
return (0);
depth = depth1;
if (depth2 < depth)
depth = depth2;
for (i = 0; i < depth; i++) {
if (path1[i].Device != path2[i].Device ||
path1[i].Function != path2[i].Function)
return (0);
}
return (1);
}
static int
dmar_match_devscope(ACPI_DMAR_DEVICE_SCOPE *devscope, int dev_busno,
const ACPI_DMAR_PCI_PATH *dev_path, int dev_path_len)
{
ACPI_DMAR_PCI_PATH *path;
int path_len;
if (devscope->Length < sizeof(*devscope)) {
printf("dmar_match_devscope: corrupted DMAR table, dl %d\n",
devscope->Length);
return (-1);
}
if (devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
return (0);
path_len = devscope->Length - sizeof(*devscope);
if (path_len % 2 != 0) {
printf("dmar_match_devscope: corrupted DMAR table, dl %d\n",
devscope->Length);
return (-1);
}
path_len /= 2;
path = (ACPI_DMAR_PCI_PATH *)(devscope + 1);
if (path_len == 0) {
printf("dmar_match_devscope: corrupted DMAR table, dl %d\n",
devscope->Length);
return (-1);
}
return (dmar_match_pathes(devscope->Bus, path, path_len, dev_busno,
dev_path, dev_path_len, devscope->EntryType));
}
static bool
dmar_match_by_path(struct dmar_unit *unit, int dev_domain, int dev_busno,
const ACPI_DMAR_PCI_PATH *dev_path, int dev_path_len, const char **banner)
{
ACPI_DMAR_HARDWARE_UNIT *dmarh;
ACPI_DMAR_DEVICE_SCOPE *devscope;
char *ptr, *ptrend;
int match;
dmarh = dmar_find_by_index(unit->iommu.unit);
if (dmarh == NULL)
return (false);
if (dmarh->Segment != dev_domain)
return (false);
if ((dmarh->Flags & ACPI_DMAR_INCLUDE_ALL) != 0) {
if (banner != NULL)
*banner = "INCLUDE_ALL";
return (true);
}
ptr = (char *)dmarh + sizeof(*dmarh);
ptrend = (char *)dmarh + dmarh->Header.Length;
while (ptr < ptrend) {
devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr;
ptr += devscope->Length;
match = dmar_match_devscope(devscope, dev_busno, dev_path,
dev_path_len);
if (match == -1)
return (false);
if (match == 1) {
if (banner != NULL)
*banner = "specific match";
return (true);
}
}
return (false);
}
static struct dmar_unit *
dmar_find_by_scope(int dev_domain, int dev_busno,
const ACPI_DMAR_PCI_PATH *dev_path, int dev_path_len)
{
struct dmar_unit *unit;
int i;
for (i = 0; i < dmar_devcnt; i++) {
if (dmar_devs[i] == NULL)
continue;
unit = device_get_softc(dmar_devs[i]);
if (dmar_match_by_path(unit, dev_domain, dev_busno, dev_path,
dev_path_len, NULL))
return (unit);
}
return (NULL);
}
struct dmar_unit *
dmar_find(device_t dev, bool verbose)
{
device_t dmar_dev;
struct dmar_unit *unit;
const char *banner;
int i, dev_domain, dev_busno, dev_path_len;
/*
* This function can only handle PCI(e) devices.
*/
if (device_get_devclass(device_get_parent(dev)) !=
devclass_find("pci"))
return (NULL);
dmar_dev = NULL;
dev_domain = pci_get_domain(dev);
dev_path_len = dmar_dev_depth(dev);
ACPI_DMAR_PCI_PATH dev_path[dev_path_len];
dmar_dev_path(dev, &dev_busno, dev_path, dev_path_len);
banner = "";
for (i = 0; i < dmar_devcnt; i++) {
if (dmar_devs[i] == NULL)
continue;
unit = device_get_softc(dmar_devs[i]);
if (dmar_match_by_path(unit, dev_domain, dev_busno,
dev_path, dev_path_len, &banner))
break;
}
if (i == dmar_devcnt)
return (NULL);
if (verbose) {
device_printf(dev, "pci%d:%d:%d:%d matched dmar%d by %s",
dev_domain, pci_get_bus(dev), pci_get_slot(dev),
pci_get_function(dev), unit->iommu.unit, banner);
printf(" scope path ");
dmar_print_path(dev_busno, dev_path_len, dev_path);
printf("\n");
}
return (unit);
}
static struct dmar_unit *
dmar_find_nonpci(u_int id, u_int entry_type, uint16_t *rid)
{
device_t dmar_dev;
struct dmar_unit *unit;
ACPI_DMAR_HARDWARE_UNIT *dmarh;
ACPI_DMAR_DEVICE_SCOPE *devscope;
ACPI_DMAR_PCI_PATH *path;
char *ptr, *ptrend;
#ifdef DEV_APIC
int error;
#endif
int i;
for (i = 0; i < dmar_devcnt; i++) {
dmar_dev = dmar_devs[i];
if (dmar_dev == NULL)
continue;
unit = (struct dmar_unit *)device_get_softc(dmar_dev);
dmarh = dmar_find_by_index(i);
if (dmarh == NULL)
continue;
ptr = (char *)dmarh + sizeof(*dmarh);
ptrend = (char *)dmarh + dmarh->Header.Length;
for (;;) {
if (ptr >= ptrend)
break;
devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr;
ptr += devscope->Length;
if (devscope->EntryType != entry_type)
continue;
if (devscope->EnumerationId != id)
continue;
#ifdef DEV_APIC
if (entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
error = ioapic_get_rid(id, rid);
/*
* If our IOAPIC has PCI bindings then
* use the PCI device rid.
*/
if (error == 0)
return (unit);
}
#endif
if (devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE)
== 2) {
if (rid != NULL) {
path = (ACPI_DMAR_PCI_PATH *)
(devscope + 1);
*rid = PCI_RID(devscope->Bus,
path->Device, path->Function);
}
return (unit);
}
printf(
"dmar_find_nonpci: id %d type %d path length != 2\n",
id, entry_type);
break;
}
}
return (NULL);
}
struct dmar_unit *
dmar_find_hpet(device_t dev, uint16_t *rid)
{
return (dmar_find_nonpci(hpet_get_uid(dev), ACPI_DMAR_SCOPE_TYPE_HPET,
rid));
}
struct dmar_unit *
dmar_find_ioapic(u_int apic_id, uint16_t *rid)
{
return (dmar_find_nonpci(apic_id, ACPI_DMAR_SCOPE_TYPE_IOAPIC, rid));
}
struct rmrr_iter_args {
struct dmar_domain *domain;
int dev_domain;
int dev_busno;
const ACPI_DMAR_PCI_PATH *dev_path;
int dev_path_len;
struct iommu_map_entries_tailq *rmrr_entries;
};
static int
dmar_rmrr_iter(ACPI_DMAR_HEADER *dmarh, void *arg)
{
struct rmrr_iter_args *ria;
ACPI_DMAR_RESERVED_MEMORY *resmem;
ACPI_DMAR_DEVICE_SCOPE *devscope;
struct iommu_map_entry *entry;
char *ptr, *ptrend;
int match;
if (dmarh->Type != ACPI_DMAR_TYPE_RESERVED_MEMORY)
return (1);
ria = arg;
resmem = (ACPI_DMAR_RESERVED_MEMORY *)dmarh;
if (resmem->Segment != ria->dev_domain)
return (1);
ptr = (char *)resmem + sizeof(*resmem);
ptrend = (char *)resmem + resmem->Header.Length;
for (;;) {
if (ptr >= ptrend)
break;
devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr;
ptr += devscope->Length;
match = dmar_match_devscope(devscope, ria->dev_busno,
ria->dev_path, ria->dev_path_len);
if (match == 1) {
entry = iommu_gas_alloc_entry(DOM2IODOM(ria->domain),
IOMMU_PGF_WAITOK);
entry->start = resmem->BaseAddress;
/* The RMRR entry end address is inclusive. */
entry->end = resmem->EndAddress;
TAILQ_INSERT_TAIL(ria->rmrr_entries, entry,
unroll_link);
}
}
return (1);
}
void
dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain, int dev_busno,
const void *dev_path, int dev_path_len,
struct iommu_map_entries_tailq *rmrr_entries)
{
struct rmrr_iter_args ria;
ria.domain = domain;
ria.dev_domain = dev_domain;
ria.dev_busno = dev_busno;
ria.dev_path = (const ACPI_DMAR_PCI_PATH *)dev_path;
ria.dev_path_len = dev_path_len;
ria.rmrr_entries = rmrr_entries;
dmar_iterate_tbl(dmar_rmrr_iter, &ria);
}
struct inst_rmrr_iter_args {
struct dmar_unit *dmar;
};
static device_t
dmar_path_dev(int segment, int path_len, int busno,
const ACPI_DMAR_PCI_PATH *path, uint16_t *rid)
{
device_t dev;
int i;
dev = NULL;
for (i = 0; i < path_len; i++) {
dev = pci_find_dbsf(segment, busno, path->Device,
path->Function);
if (i != path_len - 1) {
busno = pci_cfgregread(busno, path->Device,
path->Function, PCIR_SECBUS_1, 1);
path++;
}
}
*rid = PCI_RID(busno, path->Device, path->Function);
return (dev);
}
static int
dmar_inst_rmrr_iter(ACPI_DMAR_HEADER *dmarh, void *arg)
{
const ACPI_DMAR_RESERVED_MEMORY *resmem;
const ACPI_DMAR_DEVICE_SCOPE *devscope;
struct inst_rmrr_iter_args *iria;
const char *ptr, *ptrend;
device_t dev;
struct dmar_unit *unit;
int dev_path_len;
uint16_t rid;
iria = arg;
if (dmarh->Type != ACPI_DMAR_TYPE_RESERVED_MEMORY)
return (1);
resmem = (ACPI_DMAR_RESERVED_MEMORY *)dmarh;
if (resmem->Segment != iria->dmar->segment)
return (1);
ptr = (const char *)resmem + sizeof(*resmem);
ptrend = (const char *)resmem + resmem->Header.Length;
for (;;) {
if (ptr >= ptrend)
break;
devscope = (const ACPI_DMAR_DEVICE_SCOPE *)ptr;
ptr += devscope->Length;
/* XXXKIB bridge */
if (devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_ENDPOINT)
continue;
rid = 0;
dev_path_len = (devscope->Length -
sizeof(ACPI_DMAR_DEVICE_SCOPE)) / 2;
dev = dmar_path_dev(resmem->Segment, dev_path_len,
devscope->Bus,
(const ACPI_DMAR_PCI_PATH *)(devscope + 1), &rid);
if (dev == NULL) {
if (bootverbose) {
printf("dmar%d no dev found for RMRR "
"[%#jx, %#jx] rid %#x scope path ",
iria->dmar->iommu.unit,
(uintmax_t)resmem->BaseAddress,
(uintmax_t)resmem->EndAddress,
rid);
dmar_print_path(devscope->Bus, dev_path_len,
(const ACPI_DMAR_PCI_PATH *)(devscope + 1));
printf("\n");
}
unit = dmar_find_by_scope(resmem->Segment,
devscope->Bus,
(const ACPI_DMAR_PCI_PATH *)(devscope + 1),
dev_path_len);
if (iria->dmar != unit)
continue;
dmar_get_ctx_for_devpath(iria->dmar, rid,
resmem->Segment, devscope->Bus,
(const ACPI_DMAR_PCI_PATH *)(devscope + 1),
dev_path_len, false, true);
} else {
unit = dmar_find(dev, false);
if (iria->dmar != unit)
continue;
iommu_instantiate_ctx(&(iria)->dmar->iommu,
dev, true);
}
}
return (1);
}
/*
* Pre-create all contexts for the DMAR which have RMRR entries.
*/
int
dmar_instantiate_rmrr_ctxs(struct iommu_unit *unit)
{
struct dmar_unit *dmar;
struct inst_rmrr_iter_args iria;
int error;
dmar = IOMMU2DMAR(unit);
if (!dmar_barrier_enter(dmar, DMAR_BARRIER_RMRR))
return (0);
error = 0;
iria.dmar = dmar;
dmar_iterate_tbl(dmar_inst_rmrr_iter, &iria);
DMAR_LOCK(dmar);
if (!LIST_EMPTY(&dmar->domains)) {
KASSERT((dmar->hw_gcmd & DMAR_GCMD_TE) == 0,
("dmar%d: RMRR not handled but translation is already enabled",
dmar->iommu.unit));
error = dmar_enable_translation(dmar);
if (bootverbose) {
if (error == 0) {
printf("dmar%d: enabled translation\n",
dmar->iommu.unit);
} else {
printf("dmar%d: enabling translation failed, "
"error %d\n", dmar->iommu.unit, error);
}
}
}
dmar_barrier_exit(dmar, DMAR_BARRIER_RMRR);
return (error);
}
#ifdef DDB
#include <ddb/ddb.h>
#include <ddb/db_lex.h>
static void
dmar_print_domain_entry(const struct iommu_map_entry *entry)
{
struct iommu_map_entry *l, *r;
db_printf(
" start %jx end %jx first %jx last %jx free_down %jx flags %x ",
entry->start, entry->end, entry->first, entry->last,
entry->free_down, entry->flags);
db_printf("left ");
l = RB_LEFT(entry, rb_entry);
if (l == NULL)
db_printf("NULL ");
else
db_printf("%jx ", l->start);
db_printf("right ");
r = RB_RIGHT(entry, rb_entry);
if (r == NULL)
db_printf("NULL");
else
db_printf("%jx", r->start);
db_printf("\n");
}
static void
dmar_print_ctx(struct dmar_ctx *ctx)
{
db_printf(
" @%p pci%d:%d:%d refs %d flags %x loads %lu unloads %lu\n",
ctx, pci_get_bus(ctx->context.tag->owner),
pci_get_slot(ctx->context.tag->owner),
pci_get_function(ctx->context.tag->owner), ctx->refs,
ctx->context.flags, ctx->context.loads, ctx->context.unloads);
}
static void
dmar_print_domain(struct dmar_domain *domain, bool show_mappings)
{
struct iommu_domain *iodom;
struct iommu_map_entry *entry;
struct dmar_ctx *ctx;
iodom = DOM2IODOM(domain);
db_printf(
" @%p dom %d mgaw %d agaw %d pglvl %d end %jx refs %d\n"
" ctx_cnt %d flags %x pgobj %p map_ents %u\n",
domain, domain->domain, domain->mgaw, domain->agaw, domain->pglvl,
(uintmax_t)domain->iodom.end, domain->refs, domain->ctx_cnt,
domain->iodom.flags, domain->pgtbl_obj, domain->iodom.entries_cnt);
if (!LIST_EMPTY(&domain->contexts)) {
db_printf(" Contexts:\n");
LIST_FOREACH(ctx, &domain->contexts, link)
dmar_print_ctx(ctx);
}
if (!show_mappings)
return;
db_printf(" mapped:\n");
RB_FOREACH(entry, iommu_gas_entries_tree, &iodom->rb_root) {
dmar_print_domain_entry(entry);
if (db_pager_quit)
break;
}
if (db_pager_quit)
return;
db_printf(" unloading:\n");
TAILQ_FOREACH(entry, &domain->iodom.unload_entries, dmamap_link) {
dmar_print_domain_entry(entry);
if (db_pager_quit)
break;
}
}
DB_FUNC(dmar_domain, db_dmar_print_domain, db_show_table, CS_OWN, NULL)
{
struct dmar_unit *unit;
struct dmar_domain *domain;
struct dmar_ctx *ctx;
bool show_mappings, valid;
int pci_domain, bus, device, function, i, t;
db_expr_t radix;
valid = false;
radix = db_radix;
db_radix = 10;
t = db_read_token();
if (t == tSLASH) {
t = db_read_token();
if (t != tIDENT) {
db_printf("Bad modifier\n");
db_radix = radix;
db_skip_to_eol();
return;
}
show_mappings = strchr(db_tok_string, 'm') != NULL;
t = db_read_token();
} else {
show_mappings = false;
}
if (t == tNUMBER) {
pci_domain = db_tok_number;
t = db_read_token();
if (t == tNUMBER) {
bus = db_tok_number;
t = db_read_token();
if (t == tNUMBER) {
device = db_tok_number;
t = db_read_token();
if (t == tNUMBER) {
function = db_tok_number;
valid = true;
}
}
}
}
db_radix = radix;
db_skip_to_eol();
if (!valid) {
db_printf("usage: show dmar_domain [/m] "
"<domain> <bus> <device> <func>\n");
return;
}
for (i = 0; i < dmar_devcnt; i++) {
unit = device_get_softc(dmar_devs[i]);
LIST_FOREACH(domain, &unit->domains, link) {
LIST_FOREACH(ctx, &domain->contexts, link) {
if (pci_domain == unit->segment &&
bus == pci_get_bus(ctx->context.tag->owner) &&
device ==
pci_get_slot(ctx->context.tag->owner) &&
function ==
pci_get_function(ctx->context.tag->owner)) {
dmar_print_domain(domain,
show_mappings);
goto out;
}
}
}
}
out:;
}
static void
dmar_print_one(int idx, bool show_domains, bool show_mappings)
{
struct dmar_unit *unit;
struct dmar_domain *domain;
int i, frir;
unit = device_get_softc(dmar_devs[idx]);
db_printf("dmar%d at %p, root at 0x%jx, ver 0x%x\n", unit->iommu.unit,
unit, dmar_read8(unit, DMAR_RTADDR_REG),
dmar_read4(unit, DMAR_VER_REG));
db_printf("cap 0x%jx ecap 0x%jx gsts 0x%x fsts 0x%x fectl 0x%x\n",
(uintmax_t)dmar_read8(unit, DMAR_CAP_REG),
(uintmax_t)dmar_read8(unit, DMAR_ECAP_REG),
dmar_read4(unit, DMAR_GSTS_REG),
dmar_read4(unit, DMAR_FSTS_REG),
dmar_read4(unit, DMAR_FECTL_REG));
if (unit->ir_enabled) {
db_printf("ir is enabled; IRT @%p phys 0x%jx maxcnt %d\n",
unit->irt, (uintmax_t)unit->irt_phys, unit->irte_cnt);
}
db_printf("fed 0x%x fea 0x%x feua 0x%x\n",
dmar_read4(unit, DMAR_FEDATA_REG),
dmar_read4(unit, DMAR_FEADDR_REG),
dmar_read4(unit, DMAR_FEUADDR_REG));
db_printf("primary fault log:\n");
for (i = 0; i < DMAR_CAP_NFR(unit->hw_cap); i++) {
frir = (DMAR_CAP_FRO(unit->hw_cap) + i) * 16;
db_printf(" %d at 0x%x: %jx %jx\n", i, frir,
(uintmax_t)dmar_read8(unit, frir),
(uintmax_t)dmar_read8(unit, frir + 8));
}
if (DMAR_HAS_QI(unit)) {
db_printf("ied 0x%x iea 0x%x ieua 0x%x\n",
dmar_read4(unit, DMAR_IEDATA_REG),
dmar_read4(unit, DMAR_IEADDR_REG),
dmar_read4(unit, DMAR_IEUADDR_REG));
if (unit->qi_enabled) {
db_printf("qi is enabled: queue @0x%jx (IQA 0x%jx) "
"size 0x%jx\n"
" head 0x%x tail 0x%x avail 0x%x status 0x%x ctrl 0x%x\n"
" hw compl 0x%x@%p/phys@%jx next seq 0x%x gen 0x%x\n",
(uintmax_t)unit->inv_queue,
(uintmax_t)dmar_read8(unit, DMAR_IQA_REG),
(uintmax_t)unit->inv_queue_size,
dmar_read4(unit, DMAR_IQH_REG),
dmar_read4(unit, DMAR_IQT_REG),
unit->inv_queue_avail,
dmar_read4(unit, DMAR_ICS_REG),
dmar_read4(unit, DMAR_IECTL_REG),
unit->inv_waitd_seq_hw,
&unit->inv_waitd_seq_hw,
(uintmax_t)unit->inv_waitd_seq_hw_phys,
unit->inv_waitd_seq,
unit->inv_waitd_gen);
} else {
db_printf("qi is disabled\n");
}
}
if (show_domains) {
db_printf("domains:\n");
LIST_FOREACH(domain, &unit->domains, link) {
dmar_print_domain(domain, show_mappings);
if (db_pager_quit)
break;
}
}
}
DB_SHOW_COMMAND(dmar, db_dmar_print)
{
bool show_domains, show_mappings;
show_domains = strchr(modif, 'd') != NULL;
show_mappings = strchr(modif, 'm') != NULL;
if (!have_addr) {
db_printf("usage: show dmar [/d] [/m] index\n");
return;
}
dmar_print_one((int)addr, show_domains, show_mappings);
}
DB_SHOW_ALL_COMMAND(dmars, db_show_all_dmars)
{
int i;
bool show_domains, show_mappings;
show_domains = strchr(modif, 'd') != NULL;
show_mappings = strchr(modif, 'm') != NULL;
for (i = 0; i < dmar_devcnt; i++) {
dmar_print_one(i, show_domains, show_mappings);
if (db_pager_quit)
break;
}
}
#endif
struct iommu_unit *
iommu_find(device_t dev, bool verbose)
{
struct dmar_unit *dmar;
dmar = dmar_find(dev, verbose);
return (&dmar->iommu);
}