260ba0bff1
Mainly focus on files that use BSD 2-Clause license, however the tool I was using mis-identified many licenses so this was mostly a manual - error prone - task. The Software Package Data Exchange (SPDX) group provides a specification to make it easier for automated tools to detect and summarize well known opensource licenses. We are gradually adopting the specification, noting that the tags are considered only advisory and do not, in any way, superceed or replace the license texts.
162 lines
4.3 KiB
C
162 lines
4.3 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2007 Steven G. Kargl
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <fenv.h>
|
|
#include <float.h>
|
|
|
|
#include "fpmath.h"
|
|
#include "math.h"
|
|
|
|
/* Return (x + ulp) for normal positive x. Assumes no overflow. */
|
|
static inline long double
|
|
inc(long double x)
|
|
{
|
|
union IEEEl2bits u;
|
|
|
|
u.e = x;
|
|
if (++u.bits.manl == 0) {
|
|
if (++u.bits.manh == 0) {
|
|
u.bits.exp++;
|
|
u.bits.manh |= LDBL_NBIT;
|
|
}
|
|
}
|
|
return (u.e);
|
|
}
|
|
|
|
/* Return (x - ulp) for normal positive x. Assumes no underflow. */
|
|
static inline long double
|
|
dec(long double x)
|
|
{
|
|
union IEEEl2bits u;
|
|
|
|
u.e = x;
|
|
if (u.bits.manl-- == 0) {
|
|
if (u.bits.manh-- == LDBL_NBIT) {
|
|
u.bits.exp--;
|
|
u.bits.manh |= LDBL_NBIT;
|
|
}
|
|
}
|
|
return (u.e);
|
|
}
|
|
|
|
#pragma STDC FENV_ACCESS ON
|
|
|
|
/*
|
|
* This is slow, but simple and portable. You should use hardware sqrt
|
|
* if possible.
|
|
*/
|
|
|
|
long double
|
|
sqrtl(long double x)
|
|
{
|
|
union IEEEl2bits u;
|
|
int k, r;
|
|
long double lo, xn;
|
|
fenv_t env;
|
|
|
|
u.e = x;
|
|
|
|
/* If x = NaN, then sqrt(x) = NaN. */
|
|
/* If x = Inf, then sqrt(x) = Inf. */
|
|
/* If x = -Inf, then sqrt(x) = NaN. */
|
|
if (u.bits.exp == LDBL_MAX_EXP * 2 - 1)
|
|
return (x * x + x);
|
|
|
|
/* If x = +-0, then sqrt(x) = +-0. */
|
|
if ((u.bits.manh | u.bits.manl | u.bits.exp) == 0)
|
|
return (x);
|
|
|
|
/* If x < 0, then raise invalid and return NaN */
|
|
if (u.bits.sign)
|
|
return ((x - x) / (x - x));
|
|
|
|
feholdexcept(&env);
|
|
|
|
if (u.bits.exp == 0) {
|
|
/* Adjust subnormal numbers. */
|
|
u.e *= 0x1.0p514;
|
|
k = -514;
|
|
} else {
|
|
k = 0;
|
|
}
|
|
/*
|
|
* u.e is a normal number, so break it into u.e = e*2^n where
|
|
* u.e = (2*e)*2^2k for odd n and u.e = (4*e)*2^2k for even n.
|
|
*/
|
|
if ((u.bits.exp - 0x3ffe) & 1) { /* n is odd. */
|
|
k += u.bits.exp - 0x3fff; /* 2k = n - 1. */
|
|
u.bits.exp = 0x3fff; /* u.e in [1,2). */
|
|
} else {
|
|
k += u.bits.exp - 0x4000; /* 2k = n - 2. */
|
|
u.bits.exp = 0x4000; /* u.e in [2,4). */
|
|
}
|
|
|
|
/*
|
|
* Newton's iteration.
|
|
* Split u.e into a high and low part to achieve additional precision.
|
|
*/
|
|
xn = sqrt(u.e); /* 53-bit estimate of sqrtl(x). */
|
|
#if LDBL_MANT_DIG > 100
|
|
xn = (xn + (u.e / xn)) * 0.5; /* 106-bit estimate. */
|
|
#endif
|
|
lo = u.e;
|
|
u.bits.manl = 0; /* Zero out lower bits. */
|
|
lo = (lo - u.e) / xn; /* Low bits divided by xn. */
|
|
xn = xn + (u.e / xn); /* High portion of estimate. */
|
|
u.e = xn + lo; /* Combine everything. */
|
|
u.bits.exp += (k >> 1) - 1;
|
|
|
|
feclearexcept(FE_INEXACT);
|
|
r = fegetround();
|
|
fesetround(FE_TOWARDZERO); /* Set to round-toward-zero. */
|
|
xn = x / u.e; /* Chopped quotient (inexact?). */
|
|
|
|
if (!fetestexcept(FE_INEXACT)) { /* Quotient is exact. */
|
|
if (xn == u.e) {
|
|
fesetenv(&env);
|
|
return (u.e);
|
|
}
|
|
/* Round correctly for inputs like x = y**2 - ulp. */
|
|
xn = dec(xn); /* xn = xn - ulp. */
|
|
}
|
|
|
|
if (r == FE_TONEAREST) {
|
|
xn = inc(xn); /* xn = xn + ulp. */
|
|
} else if (r == FE_UPWARD) {
|
|
u.e = inc(u.e); /* u.e = u.e + ulp. */
|
|
xn = inc(xn); /* xn = xn + ulp. */
|
|
}
|
|
u.e = u.e + xn; /* Chopped sum. */
|
|
feupdateenv(&env); /* Restore env and raise inexact */
|
|
u.bits.exp--;
|
|
return (u.e);
|
|
}
|