freebsd-skq/sys/compat/linux/linux_misc.c
jhb 675c87997e - Pass the MPSAFE flag to namei() in linux_uselib() and handle conditional
Giant VFS locking in that function.
- Remove bogus code to handle the case where namei() returns success but a
  NULL vnode pointer.
- Note that this code duplicates exec_check_permissions() and annotate
  where it differs.
- Hold the vnode lock longer to protect the write to set VV_TEXT in
  v_vflag.
- Mark linux_uselib() MPSAFE.

Reviewed by:	rwatson
2006-07-21 20:22:13 +00:00

1397 lines
32 KiB
C

/*-
* Copyright (c) 2002 Doug Rabson
* Copyright (c) 1994-1995 Søren Schmidt
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/blist.h>
#include <sys/fcntl.h>
#if defined(__i386__)
#include <sys/imgact_aout.h>
#endif
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/stat.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <sys/wait.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/swap_pager.h>
#include <posix4/sched.h>
#include <compat/linux/linux_sysproto.h>
#ifdef COMPAT_LINUX32
#include <machine/../linux32/linux.h>
#include <machine/../linux32/linux32_proto.h>
#else
#include <machine/../linux/linux.h>
#include <machine/../linux/linux_proto.h>
#endif
#include <compat/linux/linux_mib.h>
#include <compat/linux/linux_util.h>
#ifdef __i386__
#include <machine/cputypes.h>
#endif
#define BSD_TO_LINUX_SIGNAL(sig) \
(((sig) <= LINUX_SIGTBLSZ) ? bsd_to_linux_signal[_SIG_IDX(sig)] : sig)
static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
RLIMIT_MEMLOCK, -1
};
struct l_sysinfo {
l_long uptime; /* Seconds since boot */
l_ulong loads[3]; /* 1, 5, and 15 minute load averages */
#define LINUX_SYSINFO_LOADS_SCALE 65536
l_ulong totalram; /* Total usable main memory size */
l_ulong freeram; /* Available memory size */
l_ulong sharedram; /* Amount of shared memory */
l_ulong bufferram; /* Memory used by buffers */
l_ulong totalswap; /* Total swap space size */
l_ulong freeswap; /* swap space still available */
l_ushort procs; /* Number of current processes */
l_ulong totalbig;
l_ulong freebig;
l_uint mem_unit;
char _f[6]; /* Pads structure to 64 bytes */
};
int
linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
{
struct l_sysinfo sysinfo;
vm_object_t object;
int i, j;
struct timespec ts;
getnanouptime(&ts);
if (ts.tv_nsec != 0)
ts.tv_sec++;
sysinfo.uptime = ts.tv_sec;
/* Use the information from the mib to get our load averages */
for (i = 0; i < 3; i++)
sysinfo.loads[i] = averunnable.ldavg[i] *
LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
sysinfo.totalram = physmem * PAGE_SIZE;
sysinfo.freeram = sysinfo.totalram - cnt.v_wire_count * PAGE_SIZE;
sysinfo.sharedram = 0;
mtx_lock(&vm_object_list_mtx);
TAILQ_FOREACH(object, &vm_object_list, object_list)
if (object->shadow_count > 1)
sysinfo.sharedram += object->resident_page_count;
mtx_unlock(&vm_object_list_mtx);
sysinfo.sharedram *= PAGE_SIZE;
sysinfo.bufferram = 0;
swap_pager_status(&i, &j);
sysinfo.totalswap= i * PAGE_SIZE;
sysinfo.freeswap = (i - j) * PAGE_SIZE;
sysinfo.procs = nprocs;
/* The following are only present in newer Linux kernels. */
sysinfo.totalbig = 0;
sysinfo.freebig = 0;
sysinfo.mem_unit = 1;
return copyout(&sysinfo, args->info, sizeof(sysinfo));
}
int
linux_alarm(struct thread *td, struct linux_alarm_args *args)
{
struct itimerval it, old_it;
int error;
#ifdef DEBUG
if (ldebug(alarm))
printf(ARGS(alarm, "%u"), args->secs);
#endif
if (args->secs > 100000000)
return (EINVAL);
it.it_value.tv_sec = (long)args->secs;
it.it_value.tv_usec = 0;
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 0;
error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
if (error)
return (error);
if (timevalisset(&old_it.it_value)) {
if (old_it.it_value.tv_usec != 0)
old_it.it_value.tv_sec++;
td->td_retval[0] = old_it.it_value.tv_sec;
}
return (0);
}
int
linux_brk(struct thread *td, struct linux_brk_args *args)
{
struct vmspace *vm = td->td_proc->p_vmspace;
vm_offset_t new, old;
struct obreak_args /* {
char * nsize;
} */ tmp;
#ifdef DEBUG
if (ldebug(brk))
printf(ARGS(brk, "%p"), (void *)(uintptr_t)args->dsend);
#endif
old = (vm_offset_t)vm->vm_daddr + ctob(vm->vm_dsize);
new = (vm_offset_t)args->dsend;
tmp.nsize = (char *) new;
if (((caddr_t)new > vm->vm_daddr) && !obreak(td, &tmp))
td->td_retval[0] = (long)new;
else
td->td_retval[0] = (long)old;
return 0;
}
#if defined(__i386__)
/* XXX: what about amd64/linux32? */
int
linux_uselib(struct thread *td, struct linux_uselib_args *args)
{
struct nameidata ni;
struct vnode *vp;
struct exec *a_out;
struct vattr attr;
vm_offset_t vmaddr;
unsigned long file_offset;
vm_offset_t buffer;
unsigned long bss_size;
char *library;
int error;
int locked, vfslocked;
LCONVPATHEXIST(td, args->library, &library);
#ifdef DEBUG
if (ldebug(uselib))
printf(ARGS(uselib, "%s"), library);
#endif
a_out = NULL;
vfslocked = 0;
locked = 0;
vp = NULL;
NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | MPSAFE | AUDITVNODE1,
UIO_SYSSPACE, library, td);
error = namei(&ni);
LFREEPATH(library);
if (error)
goto cleanup;
vp = ni.ni_vp;
vfslocked = NDHASGIANT(&ni);
NDFREE(&ni, NDF_ONLY_PNBUF);
/*
* From here on down, we have a locked vnode that must be unlocked.
* XXX: The code below largely duplicates exec_check_permissions().
*/
locked = 1;
/* Writable? */
if (vp->v_writecount) {
error = ETXTBSY;
goto cleanup;
}
/* Executable? */
error = VOP_GETATTR(vp, &attr, td->td_ucred, td);
if (error)
goto cleanup;
if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) {
/* EACCESS is what exec(2) returns. */
error = ENOEXEC;
goto cleanup;
}
/* Sensible size? */
if (attr.va_size == 0) {
error = ENOEXEC;
goto cleanup;
}
/* Can we access it? */
error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
if (error)
goto cleanup;
/*
* XXX: This should use vn_open() so that it is properly authorized,
* and to reduce code redundancy all over the place here.
* XXX: Not really, it duplicates far more of exec_check_permissions()
* than vn_open().
*/
#ifdef MAC
error = mac_check_vnode_open(td->td_ucred, vp, FREAD);
if (error)
goto cleanup;
#endif
error = VOP_OPEN(vp, FREAD, td->td_ucred, td, -1);
if (error)
goto cleanup;
/* Pull in executable header into kernel_map */
error = vm_mmap(kernel_map, (vm_offset_t *)&a_out, PAGE_SIZE,
VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0);
if (error)
goto cleanup;
/* Is it a Linux binary ? */
if (((a_out->a_magic >> 16) & 0xff) != 0x64) {
error = ENOEXEC;
goto cleanup;
}
/*
* While we are here, we should REALLY do some more checks
*/
/* Set file/virtual offset based on a.out variant. */
switch ((int)(a_out->a_magic & 0xffff)) {
case 0413: /* ZMAGIC */
file_offset = 1024;
break;
case 0314: /* QMAGIC */
file_offset = 0;
break;
default:
error = ENOEXEC;
goto cleanup;
}
bss_size = round_page(a_out->a_bss);
/* Check various fields in header for validity/bounds. */
if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) {
error = ENOEXEC;
goto cleanup;
}
/* text + data can't exceed file size */
if (a_out->a_data + a_out->a_text > attr.va_size) {
error = EFAULT;
goto cleanup;
}
/*
* text/data/bss must not exceed limits
* XXX - this is not complete. it should check current usage PLUS
* the resources needed by this library.
*/
PROC_LOCK(td->td_proc);
if (a_out->a_text > maxtsiz ||
a_out->a_data + bss_size > lim_cur(td->td_proc, RLIMIT_DATA)) {
PROC_UNLOCK(td->td_proc);
error = ENOMEM;
goto cleanup;
}
PROC_UNLOCK(td->td_proc);
/*
* Prevent more writers.
* XXX: Note that if any of the VM operations fail below we don't
* clear this flag.
*/
vp->v_vflag |= VV_TEXT;
/*
* Lock no longer needed
*/
locked = 0;
VOP_UNLOCK(vp, 0, td);
VFS_UNLOCK_GIANT(vfslocked);
/*
* Check if file_offset page aligned. Currently we cannot handle
* misalinged file offsets, and so we read in the entire image
* (what a waste).
*/
if (file_offset & PAGE_MASK) {
#ifdef DEBUG
printf("uselib: Non page aligned binary %lu\n", file_offset);
#endif
/* Map text+data read/write/execute */
/* a_entry is the load address and is page aligned */
vmaddr = trunc_page(a_out->a_entry);
/* get anon user mapping, read+write+execute */
error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
&vmaddr, a_out->a_text + a_out->a_data, FALSE, VM_PROT_ALL,
VM_PROT_ALL, 0);
if (error)
goto cleanup;
/* map file into kernel_map */
error = vm_mmap(kernel_map, &buffer,
round_page(a_out->a_text + a_out->a_data + file_offset),
VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp,
trunc_page(file_offset));
if (error)
goto cleanup;
/* copy from kernel VM space to user space */
error = copyout(PTRIN(buffer + file_offset),
(void *)vmaddr, a_out->a_text + a_out->a_data);
/* release temporary kernel space */
vm_map_remove(kernel_map, buffer, buffer +
round_page(a_out->a_text + a_out->a_data + file_offset));
if (error)
goto cleanup;
} else {
#ifdef DEBUG
printf("uselib: Page aligned binary %lu\n", file_offset);
#endif
/*
* for QMAGIC, a_entry is 20 bytes beyond the load address
* to skip the executable header
*/
vmaddr = trunc_page(a_out->a_entry);
/*
* Map it all into the process's space as a single
* copy-on-write "data" segment.
*/
error = vm_mmap(&td->td_proc->p_vmspace->vm_map, &vmaddr,
a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL,
MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset);
if (error)
goto cleanup;
}
#ifdef DEBUG
printf("mem=%08lx = %08lx %08lx\n", (long)vmaddr, ((long*)vmaddr)[0],
((long*)vmaddr)[1]);
#endif
if (bss_size != 0) {
/* Calculate BSS start address */
vmaddr = trunc_page(a_out->a_entry) + a_out->a_text +
a_out->a_data;
/* allocate some 'anon' space */
error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
&vmaddr, bss_size, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0);
if (error)
goto cleanup;
}
cleanup:
/* Unlock vnode if needed */
if (locked) {
VOP_UNLOCK(vp, 0, td);
VFS_UNLOCK_GIANT(vfslocked);
}
/* Release the kernel mapping. */
if (a_out)
vm_map_remove(kernel_map, (vm_offset_t)a_out,
(vm_offset_t)a_out + PAGE_SIZE);
return error;
}
#endif /* __i386__ */
int
linux_select(struct thread *td, struct linux_select_args *args)
{
l_timeval ltv;
struct timeval tv0, tv1, utv, *tvp;
int error;
#ifdef DEBUG
if (ldebug(select))
printf(ARGS(select, "%d, %p, %p, %p, %p"), args->nfds,
(void *)args->readfds, (void *)args->writefds,
(void *)args->exceptfds, (void *)args->timeout);
#endif
/*
* Store current time for computation of the amount of
* time left.
*/
if (args->timeout) {
if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
goto select_out;
utv.tv_sec = ltv.tv_sec;
utv.tv_usec = ltv.tv_usec;
#ifdef DEBUG
if (ldebug(select))
printf(LMSG("incoming timeout (%jd/%ld)"),
(intmax_t)utv.tv_sec, utv.tv_usec);
#endif
if (itimerfix(&utv)) {
/*
* The timeval was invalid. Convert it to something
* valid that will act as it does under Linux.
*/
utv.tv_sec += utv.tv_usec / 1000000;
utv.tv_usec %= 1000000;
if (utv.tv_usec < 0) {
utv.tv_sec -= 1;
utv.tv_usec += 1000000;
}
if (utv.tv_sec < 0)
timevalclear(&utv);
}
microtime(&tv0);
tvp = &utv;
} else
tvp = NULL;
error = kern_select(td, args->nfds, args->readfds, args->writefds,
args->exceptfds, tvp);
#ifdef DEBUG
if (ldebug(select))
printf(LMSG("real select returns %d"), error);
#endif
if (error) {
/*
* See fs/select.c in the Linux kernel. Without this,
* Maelstrom doesn't work.
*/
if (error == ERESTART)
error = EINTR;
goto select_out;
}
if (args->timeout) {
if (td->td_retval[0]) {
/*
* Compute how much time was left of the timeout,
* by subtracting the current time and the time
* before we started the call, and subtracting
* that result from the user-supplied value.
*/
microtime(&tv1);
timevalsub(&tv1, &tv0);
timevalsub(&utv, &tv1);
if (utv.tv_sec < 0)
timevalclear(&utv);
} else
timevalclear(&utv);
#ifdef DEBUG
if (ldebug(select))
printf(LMSG("outgoing timeout (%jd/%ld)"),
(intmax_t)utv.tv_sec, utv.tv_usec);
#endif
ltv.tv_sec = utv.tv_sec;
ltv.tv_usec = utv.tv_usec;
if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
goto select_out;
}
select_out:
#ifdef DEBUG
if (ldebug(select))
printf(LMSG("select_out -> %d"), error);
#endif
return error;
}
int
linux_mremap(struct thread *td, struct linux_mremap_args *args)
{
struct munmap_args /* {
void *addr;
size_t len;
} */ bsd_args;
int error = 0;
#ifdef DEBUG
if (ldebug(mremap))
printf(ARGS(mremap, "%p, %08lx, %08lx, %08lx"),
(void *)(uintptr_t)args->addr,
(unsigned long)args->old_len,
(unsigned long)args->new_len,
(unsigned long)args->flags);
#endif
args->new_len = round_page(args->new_len);
args->old_len = round_page(args->old_len);
if (args->new_len > args->old_len) {
td->td_retval[0] = 0;
return ENOMEM;
}
if (args->new_len < args->old_len) {
bsd_args.addr =
(caddr_t)((uintptr_t)args->addr + args->new_len);
bsd_args.len = args->old_len - args->new_len;
error = munmap(td, &bsd_args);
}
td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
return error;
}
#define LINUX_MS_ASYNC 0x0001
#define LINUX_MS_INVALIDATE 0x0002
#define LINUX_MS_SYNC 0x0004
int
linux_msync(struct thread *td, struct linux_msync_args *args)
{
struct msync_args bsd_args;
bsd_args.addr = (caddr_t)(uintptr_t)args->addr;
bsd_args.len = (uintptr_t)args->len;
bsd_args.flags = args->fl & ~LINUX_MS_SYNC;
return msync(td, &bsd_args);
}
int
linux_time(struct thread *td, struct linux_time_args *args)
{
struct timeval tv;
l_time_t tm;
int error;
#ifdef DEBUG
if (ldebug(time))
printf(ARGS(time, "*"));
#endif
microtime(&tv);
tm = tv.tv_sec;
if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
return error;
td->td_retval[0] = tm;
return 0;
}
struct l_times_argv {
l_long tms_utime;
l_long tms_stime;
l_long tms_cutime;
l_long tms_cstime;
};
#define CLK_TCK 100 /* Linux uses 100 */
#define CONVTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
int
linux_times(struct thread *td, struct linux_times_args *args)
{
struct timeval tv, utime, stime, cutime, cstime;
struct l_times_argv tms;
struct proc *p;
int error;
#ifdef DEBUG
if (ldebug(times))
printf(ARGS(times, "*"));
#endif
if (args->buf != NULL) {
p = td->td_proc;
PROC_LOCK(p);
calcru(p, &utime, &stime);
calccru(p, &cutime, &cstime);
PROC_UNLOCK(p);
tms.tms_utime = CONVTCK(utime);
tms.tms_stime = CONVTCK(stime);
tms.tms_cutime = CONVTCK(cutime);
tms.tms_cstime = CONVTCK(cstime);
if ((error = copyout(&tms, args->buf, sizeof(tms))))
return error;
}
microuptime(&tv);
td->td_retval[0] = (int)CONVTCK(tv);
return 0;
}
int
linux_newuname(struct thread *td, struct linux_newuname_args *args)
{
struct l_new_utsname utsname;
char osname[LINUX_MAX_UTSNAME];
char osrelease[LINUX_MAX_UTSNAME];
char *p;
#ifdef DEBUG
if (ldebug(newuname))
printf(ARGS(newuname, "*"));
#endif
linux_get_osname(td, osname);
linux_get_osrelease(td, osrelease);
bzero(&utsname, sizeof(utsname));
strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
for (p = utsname.version; *p != '\0'; ++p)
if (*p == '\n') {
*p = '\0';
break;
}
#ifdef __i386__
{
const char *class;
switch (cpu_class) {
case CPUCLASS_686:
class = "i686";
break;
case CPUCLASS_586:
class = "i586";
break;
case CPUCLASS_486:
class = "i486";
break;
default:
class = "i386";
}
strlcpy(utsname.machine, class, LINUX_MAX_UTSNAME);
}
#elif defined(__amd64__) /* XXX: Linux can change 'personality'. */
#ifdef COMPAT_LINUX32
strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
#else
strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
#endif /* COMPAT_LINUX32 */
#else /* something other than i386 or amd64 - assume we and Linux agree */
strlcpy(utsname.machine, machine, LINUX_MAX_UTSNAME);
#endif /* __i386__ */
strlcpy(utsname.domainname, domainname, LINUX_MAX_UTSNAME);
return (copyout(&utsname, args->buf, sizeof(utsname)));
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
struct l_utimbuf {
l_time_t l_actime;
l_time_t l_modtime;
};
int
linux_utime(struct thread *td, struct linux_utime_args *args)
{
struct timeval tv[2], *tvp;
struct l_utimbuf lut;
char *fname;
int error;
LCONVPATHEXIST(td, args->fname, &fname);
#ifdef DEBUG
if (ldebug(utime))
printf(ARGS(utime, "%s, *"), fname);
#endif
if (args->times) {
if ((error = copyin(args->times, &lut, sizeof lut))) {
LFREEPATH(fname);
return error;
}
tv[0].tv_sec = lut.l_actime;
tv[0].tv_usec = 0;
tv[1].tv_sec = lut.l_modtime;
tv[1].tv_usec = 0;
tvp = tv;
} else
tvp = NULL;
error = kern_utimes(td, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE);
LFREEPATH(fname);
return (error);
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
#define __WCLONE 0x80000000
int
linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
{
int error, options, tmpstat;
#ifdef DEBUG
if (ldebug(waitpid))
printf(ARGS(waitpid, "%d, %p, %d"),
args->pid, (void *)args->status, args->options);
#endif
options = (args->options & (WNOHANG | WUNTRACED));
/* WLINUXCLONE should be equal to __WCLONE, but we make sure */
if (args->options & __WCLONE)
options |= WLINUXCLONE;
error = kern_wait(td, args->pid, &tmpstat, options, NULL);
if (error)
return error;
if (args->status) {
tmpstat &= 0xffff;
if (WIFSIGNALED(tmpstat))
tmpstat = (tmpstat & 0xffffff80) |
BSD_TO_LINUX_SIGNAL(WTERMSIG(tmpstat));
else if (WIFSTOPPED(tmpstat))
tmpstat = (tmpstat & 0xffff00ff) |
(BSD_TO_LINUX_SIGNAL(WSTOPSIG(tmpstat)) << 8);
return copyout(&tmpstat, args->status, sizeof(int));
}
return 0;
}
int
linux_wait4(struct thread *td, struct linux_wait4_args *args)
{
int error, options, tmpstat;
struct rusage ru, *rup;
struct proc *p;
#ifdef DEBUG
if (ldebug(wait4))
printf(ARGS(wait4, "%d, %p, %d, %p"),
args->pid, (void *)args->status, args->options,
(void *)args->rusage);
#endif
options = (args->options & (WNOHANG | WUNTRACED));
/* WLINUXCLONE should be equal to __WCLONE, but we make sure */
if (args->options & __WCLONE)
options |= WLINUXCLONE;
if (args->rusage != NULL)
rup = &ru;
else
rup = NULL;
error = kern_wait(td, args->pid, &tmpstat, options, rup);
if (error)
return error;
p = td->td_proc;
PROC_LOCK(p);
sigqueue_delete(&p->p_sigqueue, SIGCHLD);
PROC_UNLOCK(p);
if (args->status) {
tmpstat &= 0xffff;
if (WIFSIGNALED(tmpstat))
tmpstat = (tmpstat & 0xffffff80) |
BSD_TO_LINUX_SIGNAL(WTERMSIG(tmpstat));
else if (WIFSTOPPED(tmpstat))
tmpstat = (tmpstat & 0xffff00ff) |
(BSD_TO_LINUX_SIGNAL(WSTOPSIG(tmpstat)) << 8);
error = copyout(&tmpstat, args->status, sizeof(int));
}
if (args->rusage != NULL && error == 0)
error = copyout(&ru, args->rusage, sizeof(ru));
return (error);
}
int
linux_mknod(struct thread *td, struct linux_mknod_args *args)
{
char *path;
int error;
LCONVPATHCREAT(td, args->path, &path);
#ifdef DEBUG
if (ldebug(mknod))
printf(ARGS(mknod, "%s, %d, %d"), path, args->mode, args->dev);
#endif
if (args->mode & S_IFIFO)
error = kern_mkfifo(td, path, UIO_SYSSPACE, args->mode);
else
error = kern_mknod(td, path, UIO_SYSSPACE, args->mode,
args->dev);
LFREEPATH(path);
return (error);
}
/*
* UGH! This is just about the dumbest idea I've ever heard!!
*/
int
linux_personality(struct thread *td, struct linux_personality_args *args)
{
#ifdef DEBUG
if (ldebug(personality))
printf(ARGS(personality, "%lu"), (unsigned long)args->per);
#endif
if (args->per != 0)
return EINVAL;
/* Yes Jim, it's still a Linux... */
td->td_retval[0] = 0;
return 0;
}
struct l_itimerval {
l_timeval it_interval;
l_timeval it_value;
};
#define B2L_ITIMERVAL(bip, lip) \
(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \
(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \
(bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \
(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
int
linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
{
int error;
struct l_itimerval ls;
struct itimerval aitv, oitv;
#ifdef DEBUG
if (ldebug(setitimer))
printf(ARGS(setitimer, "%p, %p"),
(void *)uap->itv, (void *)uap->oitv);
#endif
if (uap->itv == NULL) {
uap->itv = uap->oitv;
return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
}
error = copyin(uap->itv, &ls, sizeof(ls));
if (error != 0)
return (error);
B2L_ITIMERVAL(&aitv, &ls);
#ifdef DEBUG
if (ldebug(setitimer)) {
printf("setitimer: value: sec: %jd, usec: %ld\n",
(intmax_t)aitv.it_value.tv_sec, aitv.it_value.tv_usec);
printf("setitimer: interval: sec: %jd, usec: %ld\n",
(intmax_t)aitv.it_interval.tv_sec, aitv.it_interval.tv_usec);
}
#endif
error = kern_setitimer(td, uap->which, &aitv, &oitv);
if (error != 0 || uap->oitv == NULL)
return (error);
B2L_ITIMERVAL(&ls, &oitv);
return (copyout(&ls, uap->oitv, sizeof(ls)));
}
int
linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
{
int error;
struct l_itimerval ls;
struct itimerval aitv;
#ifdef DEBUG
if (ldebug(getitimer))
printf(ARGS(getitimer, "%p"), (void *)uap->itv);
#endif
error = kern_getitimer(td, uap->which, &aitv);
if (error != 0)
return (error);
B2L_ITIMERVAL(&ls, &aitv);
return (copyout(&ls, uap->itv, sizeof(ls)));
}
int
linux_nice(struct thread *td, struct linux_nice_args *args)
{
struct setpriority_args bsd_args;
bsd_args.which = PRIO_PROCESS;
bsd_args.who = 0; /* current process */
bsd_args.prio = args->inc;
return setpriority(td, &bsd_args);
}
int
linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
{
struct ucred *newcred, *oldcred;
l_gid_t linux_gidset[NGROUPS];
gid_t *bsd_gidset;
int ngrp, error;
struct proc *p;
ngrp = args->gidsetsize;
if (ngrp < 0 || ngrp >= NGROUPS)
return (EINVAL);
error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
if (error)
return (error);
newcred = crget();
p = td->td_proc;
PROC_LOCK(p);
oldcred = p->p_ucred;
/*
* cr_groups[0] holds egid. Setting the whole set from
* the supplied set will cause egid to be changed too.
* Keep cr_groups[0] unchanged to prevent that.
*/
if ((error = suser_cred(oldcred, SUSER_ALLOWJAIL)) != 0) {
PROC_UNLOCK(p);
crfree(newcred);
return (error);
}
crcopy(newcred, oldcred);
if (ngrp > 0) {
newcred->cr_ngroups = ngrp + 1;
bsd_gidset = newcred->cr_groups;
ngrp--;
while (ngrp >= 0) {
bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
ngrp--;
}
}
else
newcred->cr_ngroups = 1;
setsugid(p);
p->p_ucred = newcred;
PROC_UNLOCK(p);
crfree(oldcred);
return (0);
}
int
linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
{
struct ucred *cred;
l_gid_t linux_gidset[NGROUPS];
gid_t *bsd_gidset;
int bsd_gidsetsz, ngrp, error;
cred = td->td_ucred;
bsd_gidset = cred->cr_groups;
bsd_gidsetsz = cred->cr_ngroups - 1;
/*
* cr_groups[0] holds egid. Returning the whole set
* here will cause a duplicate. Exclude cr_groups[0]
* to prevent that.
*/
if ((ngrp = args->gidsetsize) == 0) {
td->td_retval[0] = bsd_gidsetsz;
return (0);
}
if (ngrp < bsd_gidsetsz)
return (EINVAL);
ngrp = 0;
while (ngrp < bsd_gidsetsz) {
linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
ngrp++;
}
if ((error = copyout(linux_gidset, args->grouplist,
ngrp * sizeof(l_gid_t))))
return (error);
td->td_retval[0] = ngrp;
return (0);
}
int
linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
{
struct rlimit bsd_rlim;
struct l_rlimit rlim;
u_int which;
int error;
#ifdef DEBUG
if (ldebug(setrlimit))
printf(ARGS(setrlimit, "%d, %p"),
args->resource, (void *)args->rlim);
#endif
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
error = copyin(args->rlim, &rlim, sizeof(rlim));
if (error)
return (error);
bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
return (kern_setrlimit(td, which, &bsd_rlim));
}
int
linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
{
struct l_rlimit rlim;
struct proc *p = td->td_proc;
struct rlimit bsd_rlim;
u_int which;
#ifdef DEBUG
if (ldebug(old_getrlimit))
printf(ARGS(old_getrlimit, "%d, %p"),
args->resource, (void *)args->rlim);
#endif
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
PROC_LOCK(p);
lim_rlimit(p, which, &bsd_rlim);
PROC_UNLOCK(p);
#ifdef COMPAT_LINUX32
rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
if (rlim.rlim_cur == UINT_MAX)
rlim.rlim_cur = INT_MAX;
rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
if (rlim.rlim_max == UINT_MAX)
rlim.rlim_max = INT_MAX;
#else
rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
if (rlim.rlim_cur == ULONG_MAX)
rlim.rlim_cur = LONG_MAX;
rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
if (rlim.rlim_max == ULONG_MAX)
rlim.rlim_max = LONG_MAX;
#endif
return (copyout(&rlim, args->rlim, sizeof(rlim)));
}
int
linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
{
struct l_rlimit rlim;
struct proc *p = td->td_proc;
struct rlimit bsd_rlim;
u_int which;
#ifdef DEBUG
if (ldebug(getrlimit))
printf(ARGS(getrlimit, "%d, %p"),
args->resource, (void *)args->rlim);
#endif
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
PROC_LOCK(p);
lim_rlimit(p, which, &bsd_rlim);
PROC_UNLOCK(p);
rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
return (copyout(&rlim, args->rlim, sizeof(rlim)));
}
int
linux_sched_setscheduler(struct thread *td,
struct linux_sched_setscheduler_args *args)
{
struct sched_setscheduler_args bsd;
#ifdef DEBUG
if (ldebug(sched_setscheduler))
printf(ARGS(sched_setscheduler, "%d, %d, %p"),
args->pid, args->policy, (const void *)args->param);
#endif
switch (args->policy) {
case LINUX_SCHED_OTHER:
bsd.policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
bsd.policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
bsd.policy = SCHED_RR;
break;
default:
return EINVAL;
}
bsd.pid = args->pid;
bsd.param = (struct sched_param *)args->param;
return sched_setscheduler(td, &bsd);
}
int
linux_sched_getscheduler(struct thread *td,
struct linux_sched_getscheduler_args *args)
{
struct sched_getscheduler_args bsd;
int error;
#ifdef DEBUG
if (ldebug(sched_getscheduler))
printf(ARGS(sched_getscheduler, "%d"), args->pid);
#endif
bsd.pid = args->pid;
error = sched_getscheduler(td, &bsd);
switch (td->td_retval[0]) {
case SCHED_OTHER:
td->td_retval[0] = LINUX_SCHED_OTHER;
break;
case SCHED_FIFO:
td->td_retval[0] = LINUX_SCHED_FIFO;
break;
case SCHED_RR:
td->td_retval[0] = LINUX_SCHED_RR;
break;
}
return error;
}
int
linux_sched_get_priority_max(struct thread *td,
struct linux_sched_get_priority_max_args *args)
{
struct sched_get_priority_max_args bsd;
#ifdef DEBUG
if (ldebug(sched_get_priority_max))
printf(ARGS(sched_get_priority_max, "%d"), args->policy);
#endif
switch (args->policy) {
case LINUX_SCHED_OTHER:
bsd.policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
bsd.policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
bsd.policy = SCHED_RR;
break;
default:
return EINVAL;
}
return sched_get_priority_max(td, &bsd);
}
int
linux_sched_get_priority_min(struct thread *td,
struct linux_sched_get_priority_min_args *args)
{
struct sched_get_priority_min_args bsd;
#ifdef DEBUG
if (ldebug(sched_get_priority_min))
printf(ARGS(sched_get_priority_min, "%d"), args->policy);
#endif
switch (args->policy) {
case LINUX_SCHED_OTHER:
bsd.policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
bsd.policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
bsd.policy = SCHED_RR;
break;
default:
return EINVAL;
}
return sched_get_priority_min(td, &bsd);
}
#define REBOOT_CAD_ON 0x89abcdef
#define REBOOT_CAD_OFF 0
#define REBOOT_HALT 0xcdef0123
int
linux_reboot(struct thread *td, struct linux_reboot_args *args)
{
struct reboot_args bsd_args;
#ifdef DEBUG
if (ldebug(reboot))
printf(ARGS(reboot, "0x%x"), args->cmd);
#endif
if (args->cmd == REBOOT_CAD_ON || args->cmd == REBOOT_CAD_OFF)
return (0);
bsd_args.opt = (args->cmd == REBOOT_HALT) ? RB_HALT : 0;
return (reboot(td, &bsd_args));
}
/*
* The FreeBSD native getpid(2), getgid(2) and getuid(2) also modify
* td->td_retval[1] when COMPAT_43 is defined. This
* globbers registers that are assumed to be preserved. The following
* lightweight syscalls fixes this. See also linux_getgid16() and
* linux_getuid16() in linux_uid16.c.
*
* linux_getpid() - MP SAFE
* linux_getgid() - MP SAFE
* linux_getuid() - MP SAFE
*/
int
linux_getpid(struct thread *td, struct linux_getpid_args *args)
{
td->td_retval[0] = td->td_proc->p_pid;
return (0);
}
int
linux_getgid(struct thread *td, struct linux_getgid_args *args)
{
td->td_retval[0] = td->td_ucred->cr_rgid;
return (0);
}
int
linux_getuid(struct thread *td, struct linux_getuid_args *args)
{
td->td_retval[0] = td->td_ucred->cr_ruid;
return (0);
}
int
linux_getsid(struct thread *td, struct linux_getsid_args *args)
{
struct getsid_args bsd;
bsd.pid = args->pid;
return getsid(td, &bsd);
}
int
linux_nosys(struct thread *td, struct nosys_args *ignore)
{
return (ENOSYS);
}
int
linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
{
struct getpriority_args bsd_args;
int error;
bsd_args.which = args->which;
bsd_args.who = args->who;
error = getpriority(td, &bsd_args);
td->td_retval[0] = 20 - td->td_retval[0];
return error;
}
int
linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
{
int name[2];
int error;
name[0] = CTL_KERN;
name[1] = KERN_HOSTNAME;
if ((error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL)))
return (error);
return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
args->len, 0, 0));
}