97b7fb767e
are supposed to continue firing as long as there is work to do, not stop after the first invocation. This is damage control after a patch that has been committed prematurely. Tested by: kris
1444 lines
37 KiB
C
1444 lines
37 KiB
C
/*
|
|
* Copyright (c) 1989, 1991, 1993, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Rick Macklem at The University of Guelph.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Socket operations for use by nfs
|
|
*/
|
|
|
|
#include "opt_inet6.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/tcp.h>
|
|
|
|
#include <rpc/rpcclnt.h>
|
|
|
|
#include <nfs/rpcv2.h>
|
|
#include <nfs/nfsproto.h>
|
|
#include <nfsclient/nfs.h>
|
|
#include <nfs/xdr_subs.h>
|
|
#include <nfsclient/nfsm_subs.h>
|
|
#include <nfsclient/nfsmount.h>
|
|
#include <nfsclient/nfsnode.h>
|
|
|
|
#include <nfs4client/nfs4.h>
|
|
|
|
#define TRUE 1
|
|
#define FALSE 0
|
|
|
|
/*
|
|
* Estimate rto for an nfs rpc sent via. an unreliable datagram.
|
|
* Use the mean and mean deviation of rtt for the appropriate type of rpc
|
|
* for the frequent rpcs and a default for the others.
|
|
* The justification for doing "other" this way is that these rpcs
|
|
* happen so infrequently that timer est. would probably be stale.
|
|
* Also, since many of these rpcs are
|
|
* non-idempotent, a conservative timeout is desired.
|
|
* getattr, lookup - A+2D
|
|
* read, write - A+4D
|
|
* other - nm_timeo
|
|
*/
|
|
#define NFS_RTO(n, t) \
|
|
((t) == 0 ? (n)->nm_timeo : \
|
|
((t) < 3 ? \
|
|
(((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
|
|
((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
|
|
#define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
|
|
#define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
|
|
|
|
/*
|
|
* Defines which timer to use for the procnum.
|
|
* 0 - default
|
|
* 1 - getattr
|
|
* 2 - lookup
|
|
* 3 - read
|
|
* 4 - write
|
|
*/
|
|
static int proct[NFS_NPROCS] = {
|
|
0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
static int nfs_realign_test;
|
|
static int nfs_realign_count;
|
|
static int nfs_bufpackets = 4;
|
|
|
|
SYSCTL_DECL(_vfs_nfs);
|
|
|
|
SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, "");
|
|
SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, "");
|
|
SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, "");
|
|
|
|
|
|
/*
|
|
* There is a congestion window for outstanding rpcs maintained per mount
|
|
* point. The cwnd size is adjusted in roughly the way that:
|
|
* Van Jacobson, Congestion avoidance and Control, In "Proceedings of
|
|
* SIGCOMM '88". ACM, August 1988.
|
|
* describes for TCP. The cwnd size is chopped in half on a retransmit timeout
|
|
* and incremented by 1/cwnd when each rpc reply is received and a full cwnd
|
|
* of rpcs is in progress.
|
|
* (The sent count and cwnd are scaled for integer arith.)
|
|
* Variants of "slow start" were tried and were found to be too much of a
|
|
* performance hit (ave. rtt 3 times larger),
|
|
* I suspect due to the large rtt that nfs rpcs have.
|
|
*/
|
|
#define NFS_CWNDSCALE 256
|
|
#define NFS_MAXCWND (NFS_CWNDSCALE * 32)
|
|
#define NFS_NBACKOFF 8
|
|
static int nfs_backoff[NFS_NBACKOFF] = { 2, 4, 8, 16, 32, 64, 128, 256, };
|
|
struct callout nfs_callout;
|
|
|
|
static int nfs_msg(struct thread *, char *, char *);
|
|
static int nfs_rcvlock(struct nfsreq *);
|
|
static void nfs_rcvunlock(struct nfsreq *);
|
|
static void nfs_realign(struct mbuf **pm, int hsiz);
|
|
static int nfs_receive(struct nfsreq *rep, struct sockaddr **aname,
|
|
struct mbuf **mp);
|
|
static int nfs_reply(struct nfsreq *);
|
|
static void nfs_softterm(struct nfsreq *rep);
|
|
static int nfs_reconnect(struct nfsreq *rep);
|
|
|
|
/*
|
|
* Initialize sockets and congestion for a new NFS connection.
|
|
* We do not free the sockaddr if error.
|
|
*/
|
|
int
|
|
nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
|
|
{
|
|
struct socket *so;
|
|
int s, error, rcvreserve, sndreserve;
|
|
int pktscale;
|
|
struct sockaddr *saddr;
|
|
struct thread *td = &thread0; /* only used for socreate and sobind */
|
|
|
|
GIANT_REQUIRED; /* XXX until socket locking done */
|
|
|
|
nmp->nm_so = NULL;
|
|
saddr = nmp->nm_nam;
|
|
error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
|
|
nmp->nm_soproto, nmp->nm_mountp->mnt_cred, td);
|
|
if (error)
|
|
goto bad;
|
|
so = nmp->nm_so;
|
|
nmp->nm_soflags = so->so_proto->pr_flags;
|
|
|
|
/*
|
|
* Some servers require that the client port be a reserved port number.
|
|
*/
|
|
if (nmp->nm_flag & NFSMNT_RESVPORT) {
|
|
struct sockopt sopt;
|
|
int ip, ip2, len;
|
|
struct sockaddr_in6 ssin;
|
|
struct sockaddr *sa;
|
|
|
|
bzero(&sopt, sizeof sopt);
|
|
switch(saddr->sa_family) {
|
|
case AF_INET:
|
|
sopt.sopt_level = IPPROTO_IP;
|
|
sopt.sopt_name = IP_PORTRANGE;
|
|
ip = IP_PORTRANGE_LOW;
|
|
ip2 = IP_PORTRANGE_DEFAULT;
|
|
len = sizeof (struct sockaddr_in);
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
sopt.sopt_level = IPPROTO_IPV6;
|
|
sopt.sopt_name = IPV6_PORTRANGE;
|
|
ip = IPV6_PORTRANGE_LOW;
|
|
ip2 = IPV6_PORTRANGE_DEFAULT;
|
|
len = sizeof (struct sockaddr_in6);
|
|
break;
|
|
#endif
|
|
default:
|
|
goto noresvport;
|
|
}
|
|
sa = (struct sockaddr *)&ssin;
|
|
bzero(sa, len);
|
|
sa->sa_len = len;
|
|
sa->sa_family = saddr->sa_family;
|
|
sopt.sopt_dir = SOPT_SET;
|
|
sopt.sopt_val = (void *)&ip;
|
|
sopt.sopt_valsize = sizeof(ip);
|
|
error = sosetopt(so, &sopt);
|
|
if (error)
|
|
goto bad;
|
|
error = sobind(so, sa, td);
|
|
if (error)
|
|
goto bad;
|
|
ip = ip2;
|
|
error = sosetopt(so, &sopt);
|
|
if (error)
|
|
goto bad;
|
|
noresvport: ;
|
|
}
|
|
|
|
/*
|
|
* Protocols that do not require connections may be optionally left
|
|
* unconnected for servers that reply from a port other than NFS_PORT.
|
|
*/
|
|
if (nmp->nm_flag & NFSMNT_NOCONN) {
|
|
if (nmp->nm_soflags & PR_CONNREQUIRED) {
|
|
error = ENOTCONN;
|
|
goto bad;
|
|
}
|
|
} else {
|
|
error = soconnect(so, nmp->nm_nam, td);
|
|
if (error)
|
|
goto bad;
|
|
|
|
/*
|
|
* Wait for the connection to complete. Cribbed from the
|
|
* connect system call but with the wait timing out so
|
|
* that interruptible mounts don't hang here for a long time.
|
|
*/
|
|
s = splnet();
|
|
while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
|
|
(void) tsleep(&so->so_timeo,
|
|
PSOCK, "nfscon", 2 * hz);
|
|
if ((so->so_state & SS_ISCONNECTING) &&
|
|
so->so_error == 0 && rep &&
|
|
(error = nfs_sigintr(nmp, rep, rep->r_td)) != 0) {
|
|
so->so_state &= ~SS_ISCONNECTING;
|
|
splx(s);
|
|
goto bad;
|
|
}
|
|
}
|
|
if (so->so_error) {
|
|
error = so->so_error;
|
|
so->so_error = 0;
|
|
splx(s);
|
|
goto bad;
|
|
}
|
|
splx(s);
|
|
}
|
|
so->so_rcv.sb_timeo = 5 * hz;
|
|
so->so_snd.sb_timeo = 5 * hz;
|
|
|
|
/*
|
|
* Get buffer reservation size from sysctl, but impose reasonable
|
|
* limits.
|
|
*/
|
|
pktscale = nfs_bufpackets;
|
|
if (pktscale < 2)
|
|
pktscale = 2;
|
|
if (pktscale > 64)
|
|
pktscale = 64;
|
|
|
|
if (nmp->nm_sotype == SOCK_DGRAM) {
|
|
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale;
|
|
rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
|
|
NFS_MAXPKTHDR) * pktscale;
|
|
} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
|
|
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale;
|
|
rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
|
|
NFS_MAXPKTHDR) * pktscale;
|
|
} else {
|
|
if (nmp->nm_sotype != SOCK_STREAM)
|
|
panic("nfscon sotype");
|
|
if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
|
|
struct sockopt sopt;
|
|
int val;
|
|
|
|
bzero(&sopt, sizeof sopt);
|
|
sopt.sopt_dir = SOPT_SET;
|
|
sopt.sopt_level = SOL_SOCKET;
|
|
sopt.sopt_name = SO_KEEPALIVE;
|
|
sopt.sopt_val = &val;
|
|
sopt.sopt_valsize = sizeof val;
|
|
val = 1;
|
|
sosetopt(so, &sopt);
|
|
}
|
|
if (so->so_proto->pr_protocol == IPPROTO_TCP) {
|
|
struct sockopt sopt;
|
|
int val;
|
|
|
|
bzero(&sopt, sizeof sopt);
|
|
sopt.sopt_dir = SOPT_SET;
|
|
sopt.sopt_level = IPPROTO_TCP;
|
|
sopt.sopt_name = TCP_NODELAY;
|
|
sopt.sopt_val = &val;
|
|
sopt.sopt_valsize = sizeof val;
|
|
val = 1;
|
|
sosetopt(so, &sopt);
|
|
}
|
|
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
|
|
sizeof (u_int32_t)) * pktscale;
|
|
rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
|
|
sizeof (u_int32_t)) * pktscale;
|
|
}
|
|
error = soreserve(so, sndreserve, rcvreserve);
|
|
if (error)
|
|
goto bad;
|
|
so->so_rcv.sb_flags |= SB_NOINTR;
|
|
so->so_snd.sb_flags |= SB_NOINTR;
|
|
|
|
/* Initialize other non-zero congestion variables */
|
|
nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
|
|
nmp->nm_srtt[3] = (NFS_TIMEO << 3);
|
|
nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
|
|
nmp->nm_sdrtt[3] = 0;
|
|
nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
|
|
nmp->nm_sent = 0;
|
|
nmp->nm_timeouts = 0;
|
|
return (0);
|
|
|
|
bad:
|
|
nfs_disconnect(nmp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Reconnect routine:
|
|
* Called when a connection is broken on a reliable protocol.
|
|
* - clean up the old socket
|
|
* - nfs_connect() again
|
|
* - set R_MUSTRESEND for all outstanding requests on mount point
|
|
* If this fails the mount point is DEAD!
|
|
* nb: Must be called with the nfs_sndlock() set on the mount point.
|
|
*/
|
|
static int
|
|
nfs_reconnect(struct nfsreq *rep)
|
|
{
|
|
struct nfsreq *rp;
|
|
struct nfsmount *nmp = rep->r_nmp;
|
|
int error;
|
|
|
|
nfs_disconnect(nmp);
|
|
while ((error = nfs_connect(nmp, rep)) != 0) {
|
|
if (error == EINTR || error == ERESTART)
|
|
return (EINTR);
|
|
(void) tsleep(&lbolt, PSOCK, "nfscon", 0);
|
|
}
|
|
|
|
/*
|
|
* Loop through outstanding request list and fix up all requests
|
|
* on old socket.
|
|
*/
|
|
TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
|
|
if (rp->r_nmp == nmp)
|
|
rp->r_flags |= R_MUSTRESEND;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* NFS disconnect. Clean up and unlink.
|
|
*/
|
|
void
|
|
nfs_disconnect(struct nfsmount *nmp)
|
|
{
|
|
struct socket *so;
|
|
|
|
GIANT_REQUIRED; /* XXX until socket locking done */
|
|
|
|
if (nmp->nm_so) {
|
|
so = nmp->nm_so;
|
|
nmp->nm_so = NULL;
|
|
soshutdown(so, 2);
|
|
soclose(so);
|
|
}
|
|
}
|
|
|
|
void
|
|
nfs_safedisconnect(struct nfsmount *nmp)
|
|
{
|
|
struct nfsreq dummyreq;
|
|
|
|
bzero(&dummyreq, sizeof(dummyreq));
|
|
dummyreq.r_nmp = nmp;
|
|
nfs_rcvlock(&dummyreq);
|
|
nfs_disconnect(nmp);
|
|
nfs_rcvunlock(&dummyreq);
|
|
}
|
|
|
|
/*
|
|
* This is the nfs send routine. For connection based socket types, it
|
|
* must be called with an nfs_sndlock() on the socket.
|
|
* - return EINTR if the RPC is terminated, 0 otherwise
|
|
* - set R_MUSTRESEND if the send fails for any reason
|
|
* - do any cleanup required by recoverable socket errors (?)
|
|
*/
|
|
int
|
|
nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
|
|
struct nfsreq *rep)
|
|
{
|
|
struct sockaddr *sendnam;
|
|
int error, soflags, flags;
|
|
|
|
GIANT_REQUIRED; /* XXX until socket locking done */
|
|
|
|
KASSERT(rep, ("nfs_send: called with rep == NULL"));
|
|
|
|
if (rep->r_flags & R_SOFTTERM) {
|
|
m_freem(top);
|
|
return (EINTR);
|
|
}
|
|
if ((so = rep->r_nmp->nm_so) == NULL) {
|
|
rep->r_flags |= R_MUSTRESEND;
|
|
m_freem(top);
|
|
return (0);
|
|
}
|
|
rep->r_flags &= ~R_MUSTRESEND;
|
|
soflags = rep->r_nmp->nm_soflags;
|
|
|
|
if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
|
|
sendnam = NULL;
|
|
else
|
|
sendnam = nam;
|
|
if (so->so_type == SOCK_SEQPACKET)
|
|
flags = MSG_EOR;
|
|
else
|
|
flags = 0;
|
|
|
|
error = so->so_proto->pr_usrreqs->pru_sosend(so, sendnam, 0, top, 0,
|
|
flags, curthread /*XXX*/);
|
|
if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
|
|
error = 0;
|
|
rep->r_flags |= R_MUSTRESEND;
|
|
}
|
|
|
|
if (error) {
|
|
/*
|
|
* Don't report EPIPE errors on nfs sockets.
|
|
* These can be due to idle tcp mounts which will be closed by
|
|
* netapp, solaris, etc. if left idle too long.
|
|
*/
|
|
if (error != EPIPE) {
|
|
log(LOG_INFO, "nfs send error %d for server %s\n",
|
|
error,
|
|
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
|
|
}
|
|
/*
|
|
* Deal with errors for the client side.
|
|
*/
|
|
if (rep->r_flags & R_SOFTTERM)
|
|
error = EINTR;
|
|
else
|
|
rep->r_flags |= R_MUSTRESEND;
|
|
|
|
/*
|
|
* Handle any recoverable (soft) socket errors here. (?)
|
|
*/
|
|
if (error != EINTR && error != ERESTART &&
|
|
error != EWOULDBLOCK && error != EPIPE)
|
|
error = 0;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
|
|
* done by soreceive(), but for SOCK_STREAM we must deal with the Record
|
|
* Mark and consolidate the data into a new mbuf list.
|
|
* nb: Sometimes TCP passes the data up to soreceive() in long lists of
|
|
* small mbufs.
|
|
* For SOCK_STREAM we must be very careful to read an entire record once
|
|
* we have read any of it, even if the system call has been interrupted.
|
|
*/
|
|
static int
|
|
nfs_receive(struct nfsreq *rep, struct sockaddr **aname, struct mbuf **mp)
|
|
{
|
|
struct socket *so;
|
|
struct uio auio;
|
|
struct iovec aio;
|
|
struct mbuf *m;
|
|
struct mbuf *control;
|
|
u_int32_t len;
|
|
struct sockaddr **getnam;
|
|
int error, sotype, rcvflg;
|
|
struct thread *td = curthread; /* XXX */
|
|
|
|
GIANT_REQUIRED; /* XXX until socket locking done */
|
|
|
|
/*
|
|
* Set up arguments for soreceive()
|
|
*/
|
|
*mp = NULL;
|
|
*aname = NULL;
|
|
sotype = rep->r_nmp->nm_sotype;
|
|
|
|
/*
|
|
* For reliable protocols, lock against other senders/receivers
|
|
* in case a reconnect is necessary.
|
|
* For SOCK_STREAM, first get the Record Mark to find out how much
|
|
* more there is to get.
|
|
* We must lock the socket against other receivers
|
|
* until we have an entire rpc request/reply.
|
|
*/
|
|
if (sotype != SOCK_DGRAM) {
|
|
error = nfs_sndlock(rep);
|
|
if (error)
|
|
return (error);
|
|
tryagain:
|
|
/*
|
|
* Check for fatal errors and resending request.
|
|
*/
|
|
/*
|
|
* Ugh: If a reconnect attempt just happened, nm_so
|
|
* would have changed. NULL indicates a failed
|
|
* attempt that has essentially shut down this
|
|
* mount point.
|
|
*/
|
|
if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
|
|
nfs_sndunlock(rep);
|
|
return (EINTR);
|
|
}
|
|
so = rep->r_nmp->nm_so;
|
|
if (!so) {
|
|
error = nfs_reconnect(rep);
|
|
if (error) {
|
|
nfs_sndunlock(rep);
|
|
return (error);
|
|
}
|
|
goto tryagain;
|
|
}
|
|
while (rep->r_flags & R_MUSTRESEND) {
|
|
m = m_copym(rep->r_mreq, 0, M_COPYALL, M_TRYWAIT);
|
|
nfsstats.rpcretries++;
|
|
error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
|
|
if (error) {
|
|
if (error == EINTR || error == ERESTART ||
|
|
(error = nfs_reconnect(rep)) != 0) {
|
|
nfs_sndunlock(rep);
|
|
return (error);
|
|
}
|
|
goto tryagain;
|
|
}
|
|
}
|
|
nfs_sndunlock(rep);
|
|
if (sotype == SOCK_STREAM) {
|
|
aio.iov_base = (caddr_t) &len;
|
|
aio.iov_len = sizeof(u_int32_t);
|
|
auio.uio_iov = &aio;
|
|
auio.uio_iovcnt = 1;
|
|
auio.uio_segflg = UIO_SYSSPACE;
|
|
auio.uio_rw = UIO_READ;
|
|
auio.uio_offset = 0;
|
|
auio.uio_resid = sizeof(u_int32_t);
|
|
auio.uio_td = td;
|
|
do {
|
|
rcvflg = MSG_WAITALL;
|
|
error = so->so_proto->pr_usrreqs->pru_soreceive
|
|
(so, NULL, &auio, NULL, NULL, &rcvflg);
|
|
if (error == EWOULDBLOCK && rep) {
|
|
if (rep->r_flags & R_SOFTTERM)
|
|
return (EINTR);
|
|
}
|
|
} while (error == EWOULDBLOCK);
|
|
if (!error && auio.uio_resid > 0) {
|
|
/*
|
|
* Don't log a 0 byte receive; it means
|
|
* that the socket has been closed, and
|
|
* can happen during normal operation
|
|
* (forcible unmount or Solaris server).
|
|
*/
|
|
if (auio.uio_resid != sizeof (u_int32_t))
|
|
log(LOG_INFO,
|
|
"short receive (%d/%d) from nfs server %s\n",
|
|
(int)(sizeof(u_int32_t) - auio.uio_resid),
|
|
(int)sizeof(u_int32_t),
|
|
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
|
|
error = EPIPE;
|
|
}
|
|
if (error)
|
|
goto errout;
|
|
len = ntohl(len) & ~0x80000000;
|
|
/*
|
|
* This is SERIOUS! We are out of sync with the sender
|
|
* and forcing a disconnect/reconnect is all I can do.
|
|
*/
|
|
if (len > NFS_MAXPACKET) {
|
|
log(LOG_ERR, "%s (%d) from nfs server %s\n",
|
|
"impossible packet length",
|
|
len,
|
|
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
|
|
error = EFBIG;
|
|
goto errout;
|
|
}
|
|
auio.uio_resid = len;
|
|
do {
|
|
rcvflg = MSG_WAITALL;
|
|
error = so->so_proto->pr_usrreqs->pru_soreceive
|
|
(so, NULL,
|
|
&auio, mp, NULL, &rcvflg);
|
|
} while (error == EWOULDBLOCK || error == EINTR ||
|
|
error == ERESTART);
|
|
if (!error && auio.uio_resid > 0) {
|
|
if (len != auio.uio_resid)
|
|
log(LOG_INFO,
|
|
"short receive (%d/%d) from nfs server %s\n",
|
|
len - auio.uio_resid, len,
|
|
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
|
|
error = EPIPE;
|
|
}
|
|
} else {
|
|
/*
|
|
* NB: Since uio_resid is big, MSG_WAITALL is ignored
|
|
* and soreceive() will return when it has either a
|
|
* control msg or a data msg.
|
|
* We have no use for control msg., but must grab them
|
|
* and then throw them away so we know what is going
|
|
* on.
|
|
*/
|
|
auio.uio_resid = len = 100000000; /* Anything Big */
|
|
auio.uio_td = td;
|
|
do {
|
|
rcvflg = 0;
|
|
error = so->so_proto->pr_usrreqs->pru_soreceive
|
|
(so, NULL,
|
|
&auio, mp, &control, &rcvflg);
|
|
if (control)
|
|
m_freem(control);
|
|
if (error == EWOULDBLOCK && rep) {
|
|
if (rep->r_flags & R_SOFTTERM)
|
|
return (EINTR);
|
|
}
|
|
} while (error == EWOULDBLOCK ||
|
|
(!error && *mp == NULL && control));
|
|
if ((rcvflg & MSG_EOR) == 0)
|
|
printf("Egad!!\n");
|
|
if (!error && *mp == NULL)
|
|
error = EPIPE;
|
|
len -= auio.uio_resid;
|
|
}
|
|
errout:
|
|
if (error && error != EINTR && error != ERESTART) {
|
|
m_freem(*mp);
|
|
*mp = NULL;
|
|
if (error != EPIPE)
|
|
log(LOG_INFO,
|
|
"receive error %d from nfs server %s\n",
|
|
error,
|
|
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
|
|
error = nfs_sndlock(rep);
|
|
if (!error) {
|
|
error = nfs_reconnect(rep);
|
|
if (!error)
|
|
goto tryagain;
|
|
else
|
|
nfs_sndunlock(rep);
|
|
}
|
|
}
|
|
} else {
|
|
if ((so = rep->r_nmp->nm_so) == NULL)
|
|
return (EACCES);
|
|
if (so->so_state & SS_ISCONNECTED)
|
|
getnam = NULL;
|
|
else
|
|
getnam = aname;
|
|
auio.uio_resid = len = 1000000;
|
|
auio.uio_td = td;
|
|
do {
|
|
rcvflg = 0;
|
|
error = so->so_proto->pr_usrreqs->pru_soreceive
|
|
(so, getnam, &auio, mp,
|
|
NULL, &rcvflg);
|
|
if (error == EWOULDBLOCK &&
|
|
(rep->r_flags & R_SOFTTERM))
|
|
return (EINTR);
|
|
} while (error == EWOULDBLOCK);
|
|
len -= auio.uio_resid;
|
|
}
|
|
if (error) {
|
|
m_freem(*mp);
|
|
*mp = NULL;
|
|
}
|
|
/*
|
|
* Search for any mbufs that are not a multiple of 4 bytes long
|
|
* or with m_data not longword aligned.
|
|
* These could cause pointer alignment problems, so copy them to
|
|
* well aligned mbufs.
|
|
*/
|
|
nfs_realign(mp, 5 * NFSX_UNSIGNED);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Implement receipt of reply on a socket.
|
|
* We must search through the list of received datagrams matching them
|
|
* with outstanding requests using the xid, until ours is found.
|
|
*/
|
|
/* ARGSUSED */
|
|
static int
|
|
nfs_reply(struct nfsreq *myrep)
|
|
{
|
|
struct nfsreq *rep;
|
|
struct nfsmount *nmp = myrep->r_nmp;
|
|
int32_t t1;
|
|
struct mbuf *mrep, *md;
|
|
struct sockaddr *nam;
|
|
u_int32_t rxid, *tl;
|
|
caddr_t dpos;
|
|
int error;
|
|
|
|
/*
|
|
* Loop around until we get our own reply
|
|
*/
|
|
for (;;) {
|
|
/*
|
|
* Lock against other receivers so that I don't get stuck in
|
|
* sbwait() after someone else has received my reply for me.
|
|
* Also necessary for connection based protocols to avoid
|
|
* race conditions during a reconnect.
|
|
* If nfs_rcvlock() returns EALREADY, that means that
|
|
* the reply has already been recieved by another
|
|
* process and we can return immediately. In this
|
|
* case, the lock is not taken to avoid races with
|
|
* other processes.
|
|
*/
|
|
error = nfs_rcvlock(myrep);
|
|
if (error == EALREADY)
|
|
return (0);
|
|
if (error)
|
|
return (error);
|
|
/*
|
|
* Get the next Rpc reply off the socket
|
|
*/
|
|
error = nfs_receive(myrep, &nam, &mrep);
|
|
nfs_rcvunlock(myrep);
|
|
if (error) {
|
|
|
|
/*
|
|
* Ignore routing errors on connectionless protocols??
|
|
*/
|
|
if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
|
|
nmp->nm_so->so_error = 0;
|
|
if (myrep->r_flags & R_GETONEREP)
|
|
return (0);
|
|
continue;
|
|
}
|
|
return (error);
|
|
}
|
|
if (nam)
|
|
FREE(nam, M_SONAME);
|
|
|
|
/*
|
|
* Get the xid and check that it is an rpc reply
|
|
*/
|
|
md = mrep;
|
|
dpos = mtod(md, caddr_t);
|
|
tl = nfsm_dissect(u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
rxid = *tl++;
|
|
if (*tl != rpc_reply) {
|
|
nfsstats.rpcinvalid++;
|
|
m_freem(mrep);
|
|
nfsmout:
|
|
if (myrep->r_flags & R_GETONEREP)
|
|
return (0);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Loop through the request list to match up the reply
|
|
* Iff no match, just drop the datagram
|
|
*/
|
|
TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
|
|
if (rep->r_mrep == NULL && rxid == rep->r_xid) {
|
|
/* Found it.. */
|
|
rep->r_mrep = mrep;
|
|
rep->r_md = md;
|
|
rep->r_dpos = dpos;
|
|
/*
|
|
* Update congestion window.
|
|
* Do the additive increase of
|
|
* one rpc/rtt.
|
|
*/
|
|
if (nmp->nm_cwnd <= nmp->nm_sent) {
|
|
nmp->nm_cwnd +=
|
|
(NFS_CWNDSCALE * NFS_CWNDSCALE +
|
|
(nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
|
|
if (nmp->nm_cwnd > NFS_MAXCWND)
|
|
nmp->nm_cwnd = NFS_MAXCWND;
|
|
}
|
|
if (rep->r_flags & R_SENT) {
|
|
rep->r_flags &= ~R_SENT;
|
|
nmp->nm_sent -= NFS_CWNDSCALE;
|
|
}
|
|
/*
|
|
* Update rtt using a gain of 0.125 on the mean
|
|
* and a gain of 0.25 on the deviation.
|
|
*/
|
|
if (rep->r_flags & R_TIMING) {
|
|
/*
|
|
* Since the timer resolution of
|
|
* NFS_HZ is so course, it can often
|
|
* result in r_rtt == 0. Since
|
|
* r_rtt == N means that the actual
|
|
* rtt is between N+dt and N+2-dt ticks,
|
|
* add 1.
|
|
*/
|
|
t1 = rep->r_rtt + 1;
|
|
t1 -= (NFS_SRTT(rep) >> 3);
|
|
NFS_SRTT(rep) += t1;
|
|
if (t1 < 0)
|
|
t1 = -t1;
|
|
t1 -= (NFS_SDRTT(rep) >> 2);
|
|
NFS_SDRTT(rep) += t1;
|
|
}
|
|
nmp->nm_timeouts = 0;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* If not matched to a request, drop it.
|
|
* If it's mine, get out.
|
|
*/
|
|
if (rep == 0) {
|
|
nfsstats.rpcunexpected++;
|
|
m_freem(mrep);
|
|
} else if (rep == myrep) {
|
|
if (rep->r_mrep == NULL)
|
|
panic("nfsreply nil");
|
|
return (0);
|
|
}
|
|
if (myrep->r_flags & R_GETONEREP)
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* nfs_request - goes something like this
|
|
* - fill in request struct
|
|
* - links it into list
|
|
* - calls nfs_send() for first transmit
|
|
* - calls nfs_receive() to get reply
|
|
* - break down rpc header and return with nfs reply pointed to
|
|
* by mrep or error
|
|
* nb: always frees up mreq mbuf list
|
|
*/
|
|
/* XXX overloaded before */
|
|
#define NQ_TRYLATERDEL 15 /* Initial try later delay (sec) */
|
|
|
|
int
|
|
nfs_request(struct vnode *vp, struct mbuf *mrest, int procnum,
|
|
struct thread *td, struct ucred *cred, struct mbuf **mrp,
|
|
struct mbuf **mdp, caddr_t *dposp)
|
|
{
|
|
struct mbuf *mrep, *m2;
|
|
struct nfsreq *rep;
|
|
u_int32_t *tl;
|
|
int i;
|
|
struct nfsmount *nmp;
|
|
struct mbuf *m, *md, *mheadend;
|
|
time_t waituntil;
|
|
caddr_t dpos;
|
|
int s, error = 0, mrest_len, auth_len, auth_type;
|
|
int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0;
|
|
u_int32_t xid;
|
|
|
|
/* Reject requests while attempting a forced unmount. */
|
|
if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
|
|
m_freem(mrest);
|
|
return (ESTALE);
|
|
}
|
|
nmp = VFSTONFS(vp->v_mount);
|
|
if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
|
|
return nfs4_request(vp, mrest, procnum, td, cred, mrp, mdp, dposp);
|
|
MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
|
|
rep->r_nmp = nmp;
|
|
rep->r_vp = vp;
|
|
rep->r_td = td;
|
|
rep->r_procnum = procnum;
|
|
mrest_len = m_length(mrest, NULL);
|
|
|
|
/*
|
|
* Get the RPC header with authorization.
|
|
*/
|
|
auth_type = RPCAUTH_UNIX;
|
|
if (cred->cr_ngroups < 1)
|
|
panic("nfsreq nogrps");
|
|
auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
|
|
nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
|
|
5 * NFSX_UNSIGNED;
|
|
m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
|
|
mrest, mrest_len, &mheadend, &xid);
|
|
|
|
/*
|
|
* For stream protocols, insert a Sun RPC Record Mark.
|
|
*/
|
|
if (nmp->nm_sotype == SOCK_STREAM) {
|
|
M_PREPEND(m, NFSX_UNSIGNED, M_TRYWAIT);
|
|
*mtod(m, u_int32_t *) = htonl(0x80000000 |
|
|
(m->m_pkthdr.len - NFSX_UNSIGNED));
|
|
}
|
|
rep->r_mreq = m;
|
|
rep->r_xid = xid;
|
|
tryagain:
|
|
if (nmp->nm_flag & NFSMNT_SOFT)
|
|
rep->r_retry = nmp->nm_retry;
|
|
else
|
|
rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
|
|
rep->r_rtt = rep->r_rexmit = 0;
|
|
if (proct[procnum] > 0)
|
|
rep->r_flags = R_TIMING;
|
|
else
|
|
rep->r_flags = 0;
|
|
rep->r_mrep = NULL;
|
|
|
|
/*
|
|
* Do the client side RPC.
|
|
*/
|
|
nfsstats.rpcrequests++;
|
|
/*
|
|
* Chain request into list of outstanding requests. Be sure
|
|
* to put it LAST so timer finds oldest requests first.
|
|
*/
|
|
s = splsoftclock();
|
|
if (TAILQ_EMPTY(&nfs_reqq))
|
|
callout_reset(&nfs_callout, nfs_ticks, nfs_timer, NULL);
|
|
TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
|
|
|
|
/*
|
|
* If backing off another request or avoiding congestion, don't
|
|
* send this one now but let timer do it. If not timing a request,
|
|
* do it now.
|
|
*/
|
|
if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
|
|
(nmp->nm_flag & NFSMNT_DUMBTIMR) ||
|
|
nmp->nm_sent < nmp->nm_cwnd)) {
|
|
splx(s);
|
|
if (nmp->nm_soflags & PR_CONNREQUIRED)
|
|
error = nfs_sndlock(rep);
|
|
if (!error) {
|
|
m2 = m_copym(m, 0, M_COPYALL, M_TRYWAIT);
|
|
error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
|
|
if (nmp->nm_soflags & PR_CONNREQUIRED)
|
|
nfs_sndunlock(rep);
|
|
}
|
|
if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
|
|
nmp->nm_sent += NFS_CWNDSCALE;
|
|
rep->r_flags |= R_SENT;
|
|
}
|
|
} else {
|
|
splx(s);
|
|
rep->r_rtt = -1;
|
|
}
|
|
|
|
/*
|
|
* Wait for the reply from our send or the timer's.
|
|
*/
|
|
if (!error || error == EPIPE)
|
|
error = nfs_reply(rep);
|
|
|
|
/*
|
|
* RPC done, unlink the request.
|
|
*/
|
|
s = splsoftclock();
|
|
TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
|
|
if (TAILQ_EMPTY(&nfs_reqq))
|
|
callout_stop(&nfs_callout);
|
|
splx(s);
|
|
|
|
/*
|
|
* Decrement the outstanding request count.
|
|
*/
|
|
if (rep->r_flags & R_SENT) {
|
|
rep->r_flags &= ~R_SENT; /* paranoia */
|
|
nmp->nm_sent -= NFS_CWNDSCALE;
|
|
}
|
|
|
|
/*
|
|
* If there was a successful reply and a tprintf msg.
|
|
* tprintf a response.
|
|
*/
|
|
if (!error && (rep->r_flags & R_TPRINTFMSG))
|
|
nfs_msg(rep->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
|
|
"is alive again");
|
|
mrep = rep->r_mrep;
|
|
md = rep->r_md;
|
|
dpos = rep->r_dpos;
|
|
if (error) {
|
|
m_freem(rep->r_mreq);
|
|
free((caddr_t)rep, M_NFSREQ);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* break down the rpc header and check if ok
|
|
*/
|
|
tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED);
|
|
if (*tl++ == rpc_msgdenied) {
|
|
if (*tl == rpc_mismatch)
|
|
error = EOPNOTSUPP;
|
|
else
|
|
error = EACCES;
|
|
m_freem(mrep);
|
|
m_freem(rep->r_mreq);
|
|
free((caddr_t)rep, M_NFSREQ);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Just throw away any verifyer (ie: kerberos etc).
|
|
*/
|
|
i = fxdr_unsigned(int, *tl++); /* verf type */
|
|
i = fxdr_unsigned(int32_t, *tl); /* len */
|
|
if (i > 0)
|
|
nfsm_adv(nfsm_rndup(i));
|
|
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
|
|
/* 0 == ok */
|
|
if (*tl == 0) {
|
|
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
|
|
if (*tl != 0) {
|
|
error = fxdr_unsigned(int, *tl);
|
|
if ((nmp->nm_flag & NFSMNT_NFSV3) &&
|
|
error == NFSERR_TRYLATER) {
|
|
m_freem(mrep);
|
|
error = 0;
|
|
waituntil = time_second + trylater_delay;
|
|
while (time_second < waituntil)
|
|
(void) tsleep(&lbolt,
|
|
PSOCK, "nqnfstry", 0);
|
|
trylater_delay *= nfs_backoff[trylater_cnt];
|
|
if (trylater_cnt < NFS_NBACKOFF - 1)
|
|
trylater_cnt++;
|
|
goto tryagain;
|
|
}
|
|
|
|
/*
|
|
* If the File Handle was stale, invalidate the
|
|
* lookup cache, just in case.
|
|
*/
|
|
if (error == ESTALE)
|
|
cache_purge(vp);
|
|
if (nmp->nm_flag & NFSMNT_NFSV3) {
|
|
*mrp = mrep;
|
|
*mdp = md;
|
|
*dposp = dpos;
|
|
error |= NFSERR_RETERR;
|
|
} else
|
|
m_freem(mrep);
|
|
m_freem(rep->r_mreq);
|
|
free((caddr_t)rep, M_NFSREQ);
|
|
return (error);
|
|
}
|
|
|
|
*mrp = mrep;
|
|
*mdp = md;
|
|
*dposp = dpos;
|
|
m_freem(rep->r_mreq);
|
|
FREE((caddr_t)rep, M_NFSREQ);
|
|
return (0);
|
|
}
|
|
m_freem(mrep);
|
|
error = EPROTONOSUPPORT;
|
|
nfsmout:
|
|
m_freem(rep->r_mreq);
|
|
free((caddr_t)rep, M_NFSREQ);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Nfs timer routine
|
|
* Scan the nfsreq list and retranmit any requests that have timed out
|
|
* To avoid retransmission attempts on STREAM sockets (in the future) make
|
|
* sure to set the r_retry field to 0 (implies nm_retry == 0).
|
|
*/
|
|
void
|
|
nfs_timer(void *arg)
|
|
{
|
|
struct nfsreq *rep;
|
|
struct mbuf *m;
|
|
struct socket *so;
|
|
struct nfsmount *nmp;
|
|
int timeo;
|
|
int s, error;
|
|
struct thread *td;
|
|
|
|
td = &thread0; /* XXX for credentials, may break if sleep */
|
|
s = splnet();
|
|
TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
|
|
nmp = rep->r_nmp;
|
|
if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
|
|
continue;
|
|
if (nfs_sigintr(nmp, rep, rep->r_td)) {
|
|
nfs_softterm(rep);
|
|
continue;
|
|
}
|
|
if (rep->r_rtt >= 0) {
|
|
rep->r_rtt++;
|
|
if (nmp->nm_flag & NFSMNT_DUMBTIMR)
|
|
timeo = nmp->nm_timeo;
|
|
else
|
|
timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
|
|
if (nmp->nm_timeouts > 0)
|
|
timeo *= nfs_backoff[nmp->nm_timeouts - 1];
|
|
if (rep->r_rtt <= timeo)
|
|
continue;
|
|
if (nmp->nm_timeouts < NFS_NBACKOFF)
|
|
nmp->nm_timeouts++;
|
|
}
|
|
/*
|
|
* Check for server not responding
|
|
*/
|
|
if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
|
|
rep->r_rexmit > nmp->nm_deadthresh) {
|
|
nfs_msg(rep->r_td,
|
|
nmp->nm_mountp->mnt_stat.f_mntfromname,
|
|
"not responding");
|
|
rep->r_flags |= R_TPRINTFMSG;
|
|
}
|
|
if (rep->r_rexmit >= rep->r_retry) { /* too many */
|
|
nfsstats.rpctimeouts++;
|
|
nfs_softterm(rep);
|
|
continue;
|
|
}
|
|
if (nmp->nm_sotype != SOCK_DGRAM) {
|
|
if (++rep->r_rexmit > NFS_MAXREXMIT)
|
|
rep->r_rexmit = NFS_MAXREXMIT;
|
|
continue;
|
|
}
|
|
if ((so = nmp->nm_so) == NULL)
|
|
continue;
|
|
|
|
/*
|
|
* If there is enough space and the window allows..
|
|
* Resend it
|
|
* Set r_rtt to -1 in case we fail to send it now.
|
|
*/
|
|
rep->r_rtt = -1;
|
|
if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
|
|
((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
|
|
(rep->r_flags & R_SENT) ||
|
|
nmp->nm_sent < nmp->nm_cwnd) &&
|
|
(m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
|
|
if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
|
|
error = (*so->so_proto->pr_usrreqs->pru_send)
|
|
(so, 0, m, NULL, NULL, td);
|
|
else
|
|
error = (*so->so_proto->pr_usrreqs->pru_send)
|
|
(so, 0, m, nmp->nm_nam, NULL, td);
|
|
if (error) {
|
|
if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
|
|
so->so_error = 0;
|
|
} else {
|
|
/*
|
|
* Iff first send, start timing
|
|
* else turn timing off, backoff timer
|
|
* and divide congestion window by 2.
|
|
*/
|
|
if (rep->r_flags & R_SENT) {
|
|
rep->r_flags &= ~R_TIMING;
|
|
if (++rep->r_rexmit > NFS_MAXREXMIT)
|
|
rep->r_rexmit = NFS_MAXREXMIT;
|
|
nmp->nm_cwnd >>= 1;
|
|
if (nmp->nm_cwnd < NFS_CWNDSCALE)
|
|
nmp->nm_cwnd = NFS_CWNDSCALE;
|
|
nfsstats.rpcretries++;
|
|
} else {
|
|
rep->r_flags |= R_SENT;
|
|
nmp->nm_sent += NFS_CWNDSCALE;
|
|
}
|
|
rep->r_rtt = 0;
|
|
}
|
|
}
|
|
}
|
|
splx(s);
|
|
callout_reset(&nfs_callout, nfs_ticks, nfs_timer, NULL);
|
|
}
|
|
|
|
/*
|
|
* Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
|
|
* wait for all requests to complete. This is used by forced unmounts
|
|
* to terminate any outstanding RPCs.
|
|
*/
|
|
int
|
|
nfs_nmcancelreqs(nmp)
|
|
struct nfsmount *nmp;
|
|
{
|
|
struct nfsreq *req;
|
|
int i, s;
|
|
|
|
s = splnet();
|
|
TAILQ_FOREACH(req, &nfs_reqq, r_chain) {
|
|
if (nmp != req->r_nmp || req->r_mrep != NULL ||
|
|
(req->r_flags & R_SOFTTERM))
|
|
continue;
|
|
nfs_softterm(req);
|
|
}
|
|
splx(s);
|
|
|
|
for (i = 0; i < 30; i++) {
|
|
s = splnet();
|
|
TAILQ_FOREACH(req, &nfs_reqq, r_chain) {
|
|
if (nmp == req->r_nmp)
|
|
break;
|
|
}
|
|
splx(s);
|
|
if (req == NULL)
|
|
return (0);
|
|
tsleep(&lbolt, PSOCK, "nfscancel", 0);
|
|
}
|
|
return (EBUSY);
|
|
}
|
|
|
|
/*
|
|
* Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT).
|
|
* The nm_send count is decremented now to avoid deadlocks when the process in
|
|
* soreceive() hasn't yet managed to send its own request.
|
|
*/
|
|
|
|
static void
|
|
nfs_softterm(struct nfsreq *rep)
|
|
{
|
|
|
|
rep->r_flags |= R_SOFTTERM;
|
|
if (rep->r_flags & R_SENT) {
|
|
rep->r_nmp->nm_sent -= NFS_CWNDSCALE;
|
|
rep->r_flags &= ~R_SENT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Test for a termination condition pending on the process.
|
|
* This is used for NFSMNT_INT mounts.
|
|
*/
|
|
int
|
|
nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
sigset_t tmpset;
|
|
|
|
if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
|
|
return nfs4_sigintr(nmp, rep, td);
|
|
if (rep && (rep->r_flags & R_SOFTTERM))
|
|
return (EINTR);
|
|
/* Terminate all requests while attempting a forced unmount. */
|
|
if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
|
|
return (EINTR);
|
|
if (!(nmp->nm_flag & NFSMNT_INT))
|
|
return (0);
|
|
if (td == NULL)
|
|
return (0);
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
tmpset = p->p_siglist;
|
|
SIGSETNAND(tmpset, td->td_sigmask);
|
|
mtx_lock(&p->p_sigacts->ps_mtx);
|
|
SIGSETNAND(tmpset, p->p_sigacts->ps_sigignore);
|
|
mtx_unlock(&p->p_sigacts->ps_mtx);
|
|
if (SIGNOTEMPTY(p->p_siglist) && NFSINT_SIGMASK(tmpset)) {
|
|
PROC_UNLOCK(p);
|
|
return (EINTR);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Lock a socket against others.
|
|
* Necessary for STREAM sockets to ensure you get an entire rpc request/reply
|
|
* and also to avoid race conditions between the processes with nfs requests
|
|
* in progress when a reconnect is necessary.
|
|
*/
|
|
int
|
|
nfs_sndlock(struct nfsreq *rep)
|
|
{
|
|
int *statep = &rep->r_nmp->nm_state;
|
|
struct thread *td;
|
|
int slpflag = 0, slptimeo = 0;
|
|
|
|
td = rep->r_td;
|
|
if (rep->r_nmp->nm_flag & NFSMNT_INT)
|
|
slpflag = PCATCH;
|
|
while (*statep & NFSSTA_SNDLOCK) {
|
|
if (nfs_sigintr(rep->r_nmp, rep, td))
|
|
return (EINTR);
|
|
*statep |= NFSSTA_WANTSND;
|
|
(void) tsleep(statep, slpflag | (PZERO - 1),
|
|
"nfsndlck", slptimeo);
|
|
if (slpflag == PCATCH) {
|
|
slpflag = 0;
|
|
slptimeo = 2 * hz;
|
|
}
|
|
}
|
|
*statep |= NFSSTA_SNDLOCK;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unlock the stream socket for others.
|
|
*/
|
|
void
|
|
nfs_sndunlock(struct nfsreq *rep)
|
|
{
|
|
int *statep = &rep->r_nmp->nm_state;
|
|
|
|
if ((*statep & NFSSTA_SNDLOCK) == 0)
|
|
panic("nfs sndunlock");
|
|
*statep &= ~NFSSTA_SNDLOCK;
|
|
if (*statep & NFSSTA_WANTSND) {
|
|
*statep &= ~NFSSTA_WANTSND;
|
|
wakeup(statep);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nfs_rcvlock(struct nfsreq *rep)
|
|
{
|
|
int *statep = &rep->r_nmp->nm_state;
|
|
int slpflag, slptimeo = 0;
|
|
|
|
if (rep->r_nmp->nm_flag & NFSMNT_INT)
|
|
slpflag = PCATCH;
|
|
else
|
|
slpflag = 0;
|
|
while (*statep & NFSSTA_RCVLOCK) {
|
|
if (nfs_sigintr(rep->r_nmp, rep, rep->r_td))
|
|
return (EINTR);
|
|
*statep |= NFSSTA_WANTRCV;
|
|
(void) tsleep(statep, slpflag | (PZERO - 1), "nfsrcvlk",
|
|
slptimeo);
|
|
/*
|
|
* If our reply was recieved while we were sleeping,
|
|
* then just return without taking the lock to avoid a
|
|
* situation where a single iod could 'capture' the
|
|
* recieve lock.
|
|
*/
|
|
if (rep->r_mrep != NULL)
|
|
return (EALREADY);
|
|
if (slpflag == PCATCH) {
|
|
slpflag = 0;
|
|
slptimeo = 2 * hz;
|
|
}
|
|
}
|
|
/* Always fail if our request has been cancelled. */
|
|
if (rep != NULL && (rep->r_flags & R_SOFTTERM))
|
|
return (EINTR);
|
|
*statep |= NFSSTA_RCVLOCK;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unlock the stream socket for others.
|
|
*/
|
|
static void
|
|
nfs_rcvunlock(struct nfsreq *rep)
|
|
{
|
|
int *statep = &rep->r_nmp->nm_state;
|
|
|
|
if ((*statep & NFSSTA_RCVLOCK) == 0)
|
|
panic("nfs rcvunlock");
|
|
*statep &= ~NFSSTA_RCVLOCK;
|
|
if (*statep & NFSSTA_WANTRCV) {
|
|
*statep &= ~NFSSTA_WANTRCV;
|
|
wakeup(statep);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* nfs_realign:
|
|
*
|
|
* Check for badly aligned mbuf data and realign by copying the unaligned
|
|
* portion of the data into a new mbuf chain and freeing the portions
|
|
* of the old chain that were replaced.
|
|
*
|
|
* We cannot simply realign the data within the existing mbuf chain
|
|
* because the underlying buffers may contain other rpc commands and
|
|
* we cannot afford to overwrite them.
|
|
*
|
|
* We would prefer to avoid this situation entirely. The situation does
|
|
* not occur with NFS/UDP and is supposed to only occassionally occur
|
|
* with TCP. Use vfs.nfs.realign_count and realign_test to check this.
|
|
*/
|
|
static void
|
|
nfs_realign(struct mbuf **pm, int hsiz)
|
|
{
|
|
struct mbuf *m;
|
|
struct mbuf *n = NULL;
|
|
int off = 0;
|
|
|
|
++nfs_realign_test;
|
|
while ((m = *pm) != NULL) {
|
|
if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) {
|
|
MGET(n, M_TRYWAIT, MT_DATA);
|
|
if (m->m_len >= MINCLSIZE) {
|
|
MCLGET(n, M_TRYWAIT);
|
|
}
|
|
n->m_len = 0;
|
|
break;
|
|
}
|
|
pm = &m->m_next;
|
|
}
|
|
/*
|
|
* If n is non-NULL, loop on m copying data, then replace the
|
|
* portion of the chain that had to be realigned.
|
|
*/
|
|
if (n != NULL) {
|
|
++nfs_realign_count;
|
|
while (m) {
|
|
m_copyback(n, off, m->m_len, mtod(m, caddr_t));
|
|
off += m->m_len;
|
|
m = m->m_next;
|
|
}
|
|
m_freem(*pm);
|
|
*pm = n;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
nfs_msg(struct thread *td, char *server, char *msg)
|
|
{
|
|
|
|
tprintf(td ? td->td_proc : NULL, LOG_INFO,
|
|
"nfs server %s: %s\n", server, msg);
|
|
return (0);
|
|
}
|