freebsd-skq/sys/fs/nfsclient/nfs_clvnops.c
kevans 11e74d9fa2 Provide O_SEARCH
O_SEARCH is defined by POSIX [0] to open a directory for searching, skipping
permissions checks on the directory itself after the initial open(). This is
close to the semantics we've historically applied for O_EXEC on a directory,
which is UB according to POSIX. Conveniently, O_SEARCH on a file is also
explicitly undefined behavior according to POSIX, so O_EXEC would be a fine
choice. The spec goes on to state that O_SEARCH and O_EXEC need not be
distinct values, but they're not defined to be the same value.

This was pointed out as an incompatibility with other systems that had made
its way into libarchive, which had assumed that O_EXEC was an alias for
O_SEARCH.

This defines compatibility O_SEARCH/FSEARCH (equivalent to O_EXEC and FEXEC
respectively) and expands our UB for O_EXEC on a directory. O_EXEC on a
directory is checked in vn_open_vnode already, so for completeness we add a
NOEXECCHECK when O_SEARCH has been specified on the top-level fd and do not
re-check that when descending in namei.

[0] https://pubs.opengroup.org/onlinepubs/9699919799/

Reviewed by:	kib
Differential Revision:	https://reviews.freebsd.org/D23247
2020-02-02 16:34:57 +00:00

4296 lines
112 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from nfs_vnops.c 8.16 (Berkeley) 5/27/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* vnode op calls for Sun NFS version 2, 3 and 4
*/
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/resourcevar.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/extattr.h>
#include <sys/filio.h>
#include <sys/jail.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/namei.h>
#include <sys/socket.h>
#include <sys/vnode.h>
#include <sys/dirent.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/signalvar.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <fs/nfs/nfsport.h>
#include <fs/nfsclient/nfsnode.h>
#include <fs/nfsclient/nfsmount.h>
#include <fs/nfsclient/nfs.h>
#include <fs/nfsclient/nfs_kdtrace.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <nfs/nfs_lock.h>
#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
dtrace_nfsclient_accesscache_flush_probe_func_t
dtrace_nfscl_accesscache_flush_done_probe;
uint32_t nfscl_accesscache_flush_done_id;
dtrace_nfsclient_accesscache_get_probe_func_t
dtrace_nfscl_accesscache_get_hit_probe,
dtrace_nfscl_accesscache_get_miss_probe;
uint32_t nfscl_accesscache_get_hit_id;
uint32_t nfscl_accesscache_get_miss_id;
dtrace_nfsclient_accesscache_load_probe_func_t
dtrace_nfscl_accesscache_load_done_probe;
uint32_t nfscl_accesscache_load_done_id;
#endif /* !KDTRACE_HOOKS */
/* Defs */
#define TRUE 1
#define FALSE 0
extern struct nfsstatsv1 nfsstatsv1;
extern int nfsrv_useacl;
extern int nfscl_debuglevel;
MALLOC_DECLARE(M_NEWNFSREQ);
static vop_read_t nfsfifo_read;
static vop_write_t nfsfifo_write;
static vop_close_t nfsfifo_close;
static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
struct thread *);
static vop_lookup_t nfs_lookup;
static vop_create_t nfs_create;
static vop_mknod_t nfs_mknod;
static vop_open_t nfs_open;
static vop_pathconf_t nfs_pathconf;
static vop_close_t nfs_close;
static vop_access_t nfs_access;
static vop_getattr_t nfs_getattr;
static vop_setattr_t nfs_setattr;
static vop_read_t nfs_read;
static vop_fsync_t nfs_fsync;
static vop_remove_t nfs_remove;
static vop_link_t nfs_link;
static vop_rename_t nfs_rename;
static vop_mkdir_t nfs_mkdir;
static vop_rmdir_t nfs_rmdir;
static vop_symlink_t nfs_symlink;
static vop_readdir_t nfs_readdir;
static vop_strategy_t nfs_strategy;
static int nfs_lookitup(struct vnode *, char *, int,
struct ucred *, struct thread *, struct nfsnode **);
static int nfs_sillyrename(struct vnode *, struct vnode *,
struct componentname *);
static vop_access_t nfsspec_access;
static vop_readlink_t nfs_readlink;
static vop_print_t nfs_print;
static vop_advlock_t nfs_advlock;
static vop_advlockasync_t nfs_advlockasync;
static vop_getacl_t nfs_getacl;
static vop_setacl_t nfs_setacl;
static vop_advise_t nfs_advise;
static vop_allocate_t nfs_allocate;
static vop_copy_file_range_t nfs_copy_file_range;
static vop_ioctl_t nfs_ioctl;
static vop_getextattr_t nfs_getextattr;
static vop_setextattr_t nfs_setextattr;
static vop_listextattr_t nfs_listextattr;
static vop_deleteextattr_t nfs_deleteextattr;
static vop_lock1_t nfs_lock;
/*
* Global vfs data structures for nfs
*/
static struct vop_vector newnfs_vnodeops_nosig = {
.vop_default = &default_vnodeops,
.vop_access = nfs_access,
.vop_advlock = nfs_advlock,
.vop_advlockasync = nfs_advlockasync,
.vop_close = nfs_close,
.vop_create = nfs_create,
.vop_fsync = nfs_fsync,
.vop_getattr = nfs_getattr,
.vop_getpages = ncl_getpages,
.vop_putpages = ncl_putpages,
.vop_inactive = ncl_inactive,
.vop_link = nfs_link,
.vop_lock1 = nfs_lock,
.vop_lookup = nfs_lookup,
.vop_mkdir = nfs_mkdir,
.vop_mknod = nfs_mknod,
.vop_open = nfs_open,
.vop_pathconf = nfs_pathconf,
.vop_print = nfs_print,
.vop_read = nfs_read,
.vop_readdir = nfs_readdir,
.vop_readlink = nfs_readlink,
.vop_reclaim = ncl_reclaim,
.vop_remove = nfs_remove,
.vop_rename = nfs_rename,
.vop_rmdir = nfs_rmdir,
.vop_setattr = nfs_setattr,
.vop_strategy = nfs_strategy,
.vop_symlink = nfs_symlink,
.vop_write = ncl_write,
.vop_getacl = nfs_getacl,
.vop_setacl = nfs_setacl,
.vop_advise = nfs_advise,
.vop_allocate = nfs_allocate,
.vop_copy_file_range = nfs_copy_file_range,
.vop_ioctl = nfs_ioctl,
.vop_getextattr = nfs_getextattr,
.vop_setextattr = nfs_setextattr,
.vop_listextattr = nfs_listextattr,
.vop_deleteextattr = nfs_deleteextattr,
};
VFS_VOP_VECTOR_REGISTER(newnfs_vnodeops_nosig);
static int
nfs_vnodeops_bypass(struct vop_generic_args *a)
{
return (vop_sigdefer(&newnfs_vnodeops_nosig, a));
}
struct vop_vector newnfs_vnodeops = {
.vop_default = &default_vnodeops,
.vop_bypass = nfs_vnodeops_bypass,
};
VFS_VOP_VECTOR_REGISTER(newnfs_vnodeops);
static struct vop_vector newnfs_fifoops_nosig = {
.vop_default = &fifo_specops,
.vop_access = nfsspec_access,
.vop_close = nfsfifo_close,
.vop_fsync = nfs_fsync,
.vop_getattr = nfs_getattr,
.vop_inactive = ncl_inactive,
.vop_pathconf = nfs_pathconf,
.vop_print = nfs_print,
.vop_read = nfsfifo_read,
.vop_reclaim = ncl_reclaim,
.vop_setattr = nfs_setattr,
.vop_write = nfsfifo_write,
};
VFS_VOP_VECTOR_REGISTER(newnfs_fifoops_nosig);
static int
nfs_fifoops_bypass(struct vop_generic_args *a)
{
return (vop_sigdefer(&newnfs_fifoops_nosig, a));
}
struct vop_vector newnfs_fifoops = {
.vop_default = &default_vnodeops,
.vop_bypass = nfs_fifoops_bypass,
};
VFS_VOP_VECTOR_REGISTER(newnfs_fifoops);
static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
struct componentname *cnp, struct vattr *vap);
static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
int namelen, struct ucred *cred, struct thread *td);
static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
struct componentname *scnp, struct sillyrename *sp);
/*
* Global variables
*/
SYSCTL_DECL(_vfs_nfs);
static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
&nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
static int nfs_prime_access_cache = 0;
SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
&nfs_prime_access_cache, 0,
"Prime NFS ACCESS cache when fetching attributes");
static int newnfs_commit_on_close = 0;
SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
&newnfs_commit_on_close, 0, "write+commit on close, else only write");
static int nfs_clean_pages_on_close = 1;
SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
&nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
int newnfs_directio_enable = 0;
SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
&newnfs_directio_enable, 0, "Enable NFS directio");
int nfs_keep_dirty_on_error;
SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW,
&nfs_keep_dirty_on_error, 0, "Retry pageout if error returned");
/*
* This sysctl allows other processes to mmap a file that has been opened
* O_DIRECT by a process. In general, having processes mmap the file while
* Direct IO is in progress can lead to Data Inconsistencies. But, we allow
* this by default to prevent DoS attacks - to prevent a malicious user from
* opening up files O_DIRECT preventing other users from mmap'ing these
* files. "Protected" environments where stricter consistency guarantees are
* required can disable this knob. The process that opened the file O_DIRECT
* cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
* meaningful.
*/
int newnfs_directio_allow_mmap = 1;
SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
&newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
#define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \
| NFSACCESS_EXTEND | NFSACCESS_EXECUTE \
| NFSACCESS_DELETE | NFSACCESS_LOOKUP)
/*
* SMP Locking Note :
* The list of locks after the description of the lock is the ordering
* of other locks acquired with the lock held.
* np->n_mtx : Protects the fields in the nfsnode.
VM Object Lock
VI_MTX (acquired indirectly)
* nmp->nm_mtx : Protects the fields in the nfsmount.
rep->r_mtx
* ncl_iod_mutex : Global lock, protects shared nfsiod state.
* nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
nmp->nm_mtx
rep->r_mtx
* rep->r_mtx : Protects the fields in an nfsreq.
*/
static int
nfs_lock(struct vop_lock1_args *ap)
{
struct vnode *vp;
struct nfsnode *np;
u_quad_t nsize;
int error, lktype;
bool onfault;
vp = ap->a_vp;
lktype = ap->a_flags & LK_TYPE_MASK;
error = VOP_LOCK1_APV(&default_vnodeops, ap);
if (error != 0 || vp->v_op != &newnfs_vnodeops)
return (error);
np = VTONFS(vp);
if (np == NULL)
return (0);
NFSLOCKNODE(np);
if ((np->n_flag & NVNSETSZSKIP) == 0 || (lktype != LK_SHARED &&
lktype != LK_EXCLUSIVE && lktype != LK_UPGRADE &&
lktype != LK_TRYUPGRADE)) {
NFSUNLOCKNODE(np);
return (0);
}
onfault = (ap->a_flags & LK_EATTR_MASK) == LK_NOWAIT &&
(ap->a_flags & LK_INIT_MASK) == LK_CANRECURSE &&
(lktype == LK_SHARED || lktype == LK_EXCLUSIVE);
if (onfault && vp->v_vnlock->lk_recurse == 0) {
/*
* Force retry in vm_fault(), to make the lock request
* sleepable, which allows us to piggy-back the
* sleepable call to vnode_pager_setsize().
*/
NFSUNLOCKNODE(np);
VOP_UNLOCK(vp);
return (EBUSY);
}
if ((ap->a_flags & LK_NOWAIT) != 0 ||
(lktype == LK_SHARED && vp->v_vnlock->lk_recurse > 0)) {
NFSUNLOCKNODE(np);
return (0);
}
if (lktype == LK_SHARED) {
NFSUNLOCKNODE(np);
VOP_UNLOCK(vp);
ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
ap->a_flags |= LK_EXCLUSIVE;
error = VOP_LOCK1_APV(&default_vnodeops, ap);
if (error != 0 || vp->v_op != &newnfs_vnodeops)
return (error);
if (vp->v_data == NULL)
goto downgrade;
MPASS(vp->v_data == np);
NFSLOCKNODE(np);
if ((np->n_flag & NVNSETSZSKIP) == 0) {
NFSUNLOCKNODE(np);
goto downgrade;
}
}
np->n_flag &= ~NVNSETSZSKIP;
nsize = np->n_size;
NFSUNLOCKNODE(np);
vnode_pager_setsize(vp, nsize);
downgrade:
if (lktype == LK_SHARED) {
ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
ap->a_flags |= LK_DOWNGRADE;
(void)VOP_LOCK1_APV(&default_vnodeops, ap);
}
return (0);
}
static int
nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
struct ucred *cred, u_int32_t *retmode)
{
int error = 0, attrflag, i, lrupos;
u_int32_t rmode;
struct nfsnode *np = VTONFS(vp);
struct nfsvattr nfsva;
error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
&rmode, NULL);
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (!error) {
lrupos = 0;
NFSLOCKNODE(np);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
if (np->n_accesscache[i].uid == cred->cr_uid) {
np->n_accesscache[i].mode = rmode;
np->n_accesscache[i].stamp = time_second;
break;
}
if (i > 0 && np->n_accesscache[i].stamp <
np->n_accesscache[lrupos].stamp)
lrupos = i;
}
if (i == NFS_ACCESSCACHESIZE) {
np->n_accesscache[lrupos].uid = cred->cr_uid;
np->n_accesscache[lrupos].mode = rmode;
np->n_accesscache[lrupos].stamp = time_second;
}
NFSUNLOCKNODE(np);
if (retmode != NULL)
*retmode = rmode;
KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
#ifdef KDTRACE_HOOKS
if (error != 0)
KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
error);
#endif
return (error);
}
/*
* nfs access vnode op.
* For nfs version 2, just return ok. File accesses may fail later.
* For nfs version 3, use the access rpc to check accessibility. If file modes
* are changed on the server, accesses might still fail later.
*/
static int
nfs_access(struct vop_access_args *ap)
{
struct vnode *vp = ap->a_vp;
int error = 0, i, gotahit;
u_int32_t mode, wmode, rmode;
int v34 = NFS_ISV34(vp);
struct nfsnode *np = VTONFS(vp);
/*
* Disallow write attempts on filesystems mounted read-only;
* unless the file is a socket, fifo, or a block or character
* device resident on the filesystem.
*/
if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
switch (vp->v_type) {
case VREG:
case VDIR:
case VLNK:
return (EROFS);
default:
break;
}
}
/*
* For nfs v3 or v4, check to see if we have done this recently, and if
* so return our cached result instead of making an ACCESS call.
* If not, do an access rpc, otherwise you are stuck emulating
* ufs_access() locally using the vattr. This may not be correct,
* since the server may apply other access criteria such as
* client uid-->server uid mapping that we do not know about.
*/
if (v34) {
if (ap->a_accmode & VREAD)
mode = NFSACCESS_READ;
else
mode = 0;
if (vp->v_type != VDIR) {
if (ap->a_accmode & VWRITE)
mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
if (ap->a_accmode & VAPPEND)
mode |= NFSACCESS_EXTEND;
if (ap->a_accmode & VEXEC)
mode |= NFSACCESS_EXECUTE;
if (ap->a_accmode & VDELETE)
mode |= NFSACCESS_DELETE;
} else {
if (ap->a_accmode & VWRITE)
mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
if (ap->a_accmode & VAPPEND)
mode |= NFSACCESS_EXTEND;
if (ap->a_accmode & VEXEC)
mode |= NFSACCESS_LOOKUP;
if (ap->a_accmode & VDELETE)
mode |= NFSACCESS_DELETE;
if (ap->a_accmode & VDELETE_CHILD)
mode |= NFSACCESS_MODIFY;
}
/* XXX safety belt, only make blanket request if caching */
if (nfsaccess_cache_timeout > 0) {
wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
NFSACCESS_DELETE | NFSACCESS_LOOKUP;
} else {
wmode = mode;
}
/*
* Does our cached result allow us to give a definite yes to
* this request?
*/
gotahit = 0;
NFSLOCKNODE(np);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
if (time_second < (np->n_accesscache[i].stamp
+ nfsaccess_cache_timeout) &&
(np->n_accesscache[i].mode & mode) == mode) {
NFSINCRGLOBAL(nfsstatsv1.accesscache_hits);
gotahit = 1;
}
break;
}
}
NFSUNLOCKNODE(np);
#ifdef KDTRACE_HOOKS
if (gotahit != 0)
KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
ap->a_cred->cr_uid, mode);
else
KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
ap->a_cred->cr_uid, mode);
#endif
if (gotahit == 0) {
/*
* Either a no, or a don't know. Go to the wire.
*/
NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
error = nfs34_access_otw(vp, wmode, ap->a_td,
ap->a_cred, &rmode);
if (!error &&
(rmode & mode) != mode)
error = EACCES;
}
return (error);
} else {
if ((error = nfsspec_access(ap)) != 0) {
return (error);
}
/*
* Attempt to prevent a mapped root from accessing a file
* which it shouldn't. We try to read a byte from the file
* if the user is root and the file is not zero length.
* After calling nfsspec_access, we should have the correct
* file size cached.
*/
NFSLOCKNODE(np);
if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
&& VTONFS(vp)->n_size > 0) {
struct iovec aiov;
struct uio auio;
char buf[1];
NFSUNLOCKNODE(np);
aiov.iov_base = buf;
aiov.iov_len = 1;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = 0;
auio.uio_resid = 1;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_READ;
auio.uio_td = ap->a_td;
if (vp->v_type == VREG)
error = ncl_readrpc(vp, &auio, ap->a_cred);
else if (vp->v_type == VDIR) {
char* bp;
bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
aiov.iov_base = bp;
aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
error = ncl_readdirrpc(vp, &auio, ap->a_cred,
ap->a_td);
free(bp, M_TEMP);
} else if (vp->v_type == VLNK)
error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
else
error = EACCES;
} else
NFSUNLOCKNODE(np);
return (error);
}
}
/*
* nfs open vnode op
* Check to see if the type is ok
* and that deletion is not in progress.
* For paged in text files, you will need to flush the page cache
* if consistency is lost.
*/
/* ARGSUSED */
static int
nfs_open(struct vop_open_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct vattr vattr;
int error;
int fmode = ap->a_mode;
struct ucred *cred;
vm_object_t obj;
if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
return (EOPNOTSUPP);
/*
* For NFSv4, we need to do the Open Op before cache validation,
* so that we conform to RFC3530 Sec. 9.3.1.
*/
if (NFS_ISV4(vp)) {
error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
if (error) {
error = nfscl_maperr(ap->a_td, error, (uid_t)0,
(gid_t)0);
return (error);
}
}
/*
* Now, if this Open will be doing reading, re-validate/flush the
* cache, so that Close/Open coherency is maintained.
*/
NFSLOCKNODE(np);
if (np->n_flag & NMODIFIED) {
NFSUNLOCKNODE(np);
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error == EINTR || error == EIO) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
NFSLOCKNODE(np);
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
if (vp->v_type == VDIR)
np->n_direofoffset = 0;
NFSUNLOCKNODE(np);
error = VOP_GETATTR(vp, &vattr, ap->a_cred);
if (error) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
NFSLOCKNODE(np);
np->n_mtime = vattr.va_mtime;
if (NFS_ISV4(vp))
np->n_change = vattr.va_filerev;
} else {
NFSUNLOCKNODE(np);
error = VOP_GETATTR(vp, &vattr, ap->a_cred);
if (error) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
NFSLOCKNODE(np);
if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
if (vp->v_type == VDIR)
np->n_direofoffset = 0;
NFSUNLOCKNODE(np);
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error == EINTR || error == EIO) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
NFSLOCKNODE(np);
np->n_mtime = vattr.va_mtime;
if (NFS_ISV4(vp))
np->n_change = vattr.va_filerev;
}
}
/*
* If the object has >= 1 O_DIRECT active opens, we disable caching.
*/
if (newnfs_directio_enable && (fmode & O_DIRECT) &&
(vp->v_type == VREG)) {
if (np->n_directio_opens == 0) {
NFSUNLOCKNODE(np);
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
NFSLOCKNODE(np);
np->n_flag |= NNONCACHE;
}
np->n_directio_opens++;
}
/* If opened for writing via NFSv4.1 or later, mark that for pNFS. */
if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0)
np->n_flag |= NWRITEOPENED;
/*
* If this is an open for writing, capture a reference to the
* credentials, so they can be used by ncl_putpages(). Using
* these write credentials is preferable to the credentials of
* whatever thread happens to be doing the VOP_PUTPAGES() since
* the write RPCs are less likely to fail with EACCES.
*/
if ((fmode & FWRITE) != 0) {
cred = np->n_writecred;
np->n_writecred = crhold(ap->a_cred);
} else
cred = NULL;
NFSUNLOCKNODE(np);
if (cred != NULL)
crfree(cred);
vnode_create_vobject(vp, vattr.va_size, ap->a_td);
/*
* If the text file has been mmap'd, flush any dirty pages to the
* buffer cache and then...
* Make sure all writes are pushed to the NFS server. If this is not
* done, the modify time of the file can change while the text
* file is being executed. This will cause the process that is
* executing the text file to be terminated.
*/
if (vp->v_writecount <= -1) {
if ((obj = vp->v_object) != NULL &&
vm_object_mightbedirty(obj)) {
VM_OBJECT_WLOCK(obj);
vm_object_page_clean(obj, 0, 0, OBJPC_SYNC);
VM_OBJECT_WUNLOCK(obj);
}
/* Now, flush the buffer cache. */
ncl_flush(vp, MNT_WAIT, curthread, 0, 0);
/* And, finally, make sure that n_mtime is up to date. */
np = VTONFS(vp);
NFSLOCKNODE(np);
np->n_mtime = np->n_vattr.na_mtime;
NFSUNLOCKNODE(np);
}
return (0);
}
/*
* nfs close vnode op
* What an NFS client should do upon close after writing is a debatable issue.
* Most NFS clients push delayed writes to the server upon close, basically for
* two reasons:
* 1 - So that any write errors may be reported back to the client process
* doing the close system call. By far the two most likely errors are
* NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
* 2 - To put a worst case upper bound on cache inconsistency between
* multiple clients for the file.
* There is also a consistency problem for Version 2 of the protocol w.r.t.
* not being able to tell if other clients are writing a file concurrently,
* since there is no way of knowing if the changed modify time in the reply
* is only due to the write for this client.
* (NFS Version 3 provides weak cache consistency data in the reply that
* should be sufficient to detect and handle this case.)
*
* The current code does the following:
* for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
* for NFS Version 3 - flush dirty buffers to the server but don't invalidate
* or commit them (this satisfies 1 and 2 except for the
* case where the server crashes after this close but
* before the commit RPC, which is felt to be "good
* enough". Changing the last argument to ncl_flush() to
* a 1 would force a commit operation, if it is felt a
* commit is necessary now.
* for NFS Version 4 - flush the dirty buffers and commit them, if
* nfscl_mustflush() says this is necessary.
* It is necessary if there is no write delegation held,
* in order to satisfy open/close coherency.
* If the file isn't cached on local stable storage,
* it may be necessary in order to detect "out of space"
* errors from the server, if the write delegation
* issued by the server doesn't allow the file to grow.
*/
/* ARGSUSED */
static int
nfs_close(struct vop_close_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct nfsvattr nfsva;
struct ucred *cred;
int error = 0, ret, localcred = 0;
int fmode = ap->a_fflag;
if (NFSCL_FORCEDISM(vp->v_mount))
return (0);
/*
* During shutdown, a_cred isn't valid, so just use root.
*/
if (ap->a_cred == NOCRED) {
cred = newnfs_getcred();
localcred = 1;
} else {
cred = ap->a_cred;
}
if (vp->v_type == VREG) {
/*
* Examine and clean dirty pages, regardless of NMODIFIED.
* This closes a major hole in close-to-open consistency.
* We want to push out all dirty pages (and buffers) on
* close, regardless of whether they were dirtied by
* mmap'ed writes or via write().
*/
if (nfs_clean_pages_on_close && vp->v_object) {
VM_OBJECT_WLOCK(vp->v_object);
vm_object_page_clean(vp->v_object, 0, 0, 0);
VM_OBJECT_WUNLOCK(vp->v_object);
}
NFSLOCKNODE(np);
if (np->n_flag & NMODIFIED) {
NFSUNLOCKNODE(np);
if (NFS_ISV3(vp)) {
/*
* Under NFSv3 we have dirty buffers to dispose of. We
* must flush them to the NFS server. We have the option
* of waiting all the way through the commit rpc or just
* waiting for the initial write. The default is to only
* wait through the initial write so the data is in the
* server's cache, which is roughly similar to the state
* a standard disk subsystem leaves the file in on close().
*
* We cannot clear the NMODIFIED bit in np->n_flag due to
* potential races with other processes, and certainly
* cannot clear it if we don't commit.
* These races occur when there is no longer the old
* traditional vnode locking implemented for Vnode Ops.
*/
int cm = newnfs_commit_on_close ? 1 : 0;
error = ncl_flush(vp, MNT_WAIT, ap->a_td, cm, 0);
/* np->n_flag &= ~NMODIFIED; */
} else if (NFS_ISV4(vp)) {
if (nfscl_mustflush(vp) != 0) {
int cm = newnfs_commit_on_close ? 1 : 0;
error = ncl_flush(vp, MNT_WAIT, ap->a_td,
cm, 0);
/*
* as above w.r.t races when clearing
* NMODIFIED.
* np->n_flag &= ~NMODIFIED;
*/
}
} else {
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
}
NFSLOCKNODE(np);
}
/*
* Invalidate the attribute cache in all cases.
* An open is going to fetch fresh attrs any way, other procs
* on this node that have file open will be forced to do an
* otw attr fetch, but this is safe.
* --> A user found that their RPC count dropped by 20% when
* this was commented out and I can't see any requirement
* for it, so I've disabled it when negative lookups are
* enabled. (What does this have to do with negative lookup
* caching? Well nothing, except it was reported by the
* same user that needed negative lookup caching and I wanted
* there to be a way to disable it to see if it
* is the cause of some caching/coherency issue that might
* crop up.)
*/
if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) {
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
}
if (np->n_flag & NWRITEERR) {
np->n_flag &= ~NWRITEERR;
error = np->n_error;
}
NFSUNLOCKNODE(np);
}
if (NFS_ISV4(vp)) {
/*
* Get attributes so "change" is up to date.
*/
if (error == 0 && nfscl_mustflush(vp) != 0 &&
vp->v_type == VREG &&
(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) {
ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
NULL);
if (!ret) {
np->n_change = nfsva.na_filerev;
(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
NULL, 0, 0);
}
}
/*
* and do the close.
*/
ret = nfsrpc_close(vp, 0, ap->a_td);
if (!error && ret)
error = ret;
if (error)
error = nfscl_maperr(ap->a_td, error, (uid_t)0,
(gid_t)0);
}
if (newnfs_directio_enable)
KASSERT((np->n_directio_asyncwr == 0),
("nfs_close: dirty unflushed (%d) directio buffers\n",
np->n_directio_asyncwr));
if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
NFSLOCKNODE(np);
KASSERT((np->n_directio_opens > 0),
("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
np->n_directio_opens--;
if (np->n_directio_opens == 0)
np->n_flag &= ~NNONCACHE;
NFSUNLOCKNODE(np);
}
if (localcred)
NFSFREECRED(cred);
return (error);
}
/*
* nfs getattr call from vfs.
*/
static int
nfs_getattr(struct vop_getattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct thread *td = curthread; /* XXX */
struct nfsnode *np = VTONFS(vp);
int error = 0;
struct nfsvattr nfsva;
struct vattr *vap = ap->a_vap;
struct vattr vattr;
/*
* Update local times for special files.
*/
NFSLOCKNODE(np);
if (np->n_flag & (NACC | NUPD))
np->n_flag |= NCHG;
NFSUNLOCKNODE(np);
/*
* First look in the cache.
*/
if (ncl_getattrcache(vp, &vattr) == 0) {
vap->va_type = vattr.va_type;
vap->va_mode = vattr.va_mode;
vap->va_nlink = vattr.va_nlink;
vap->va_uid = vattr.va_uid;
vap->va_gid = vattr.va_gid;
vap->va_fsid = vattr.va_fsid;
vap->va_fileid = vattr.va_fileid;
vap->va_size = vattr.va_size;
vap->va_blocksize = vattr.va_blocksize;
vap->va_atime = vattr.va_atime;
vap->va_mtime = vattr.va_mtime;
vap->va_ctime = vattr.va_ctime;
vap->va_gen = vattr.va_gen;
vap->va_flags = vattr.va_flags;
vap->va_rdev = vattr.va_rdev;
vap->va_bytes = vattr.va_bytes;
vap->va_filerev = vattr.va_filerev;
/*
* Get the local modify time for the case of a write
* delegation.
*/
nfscl_deleggetmodtime(vp, &vap->va_mtime);
return (0);
}
if (NFS_ISV34(vp) && nfs_prime_access_cache &&
nfsaccess_cache_timeout > 0) {
NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
if (ncl_getattrcache(vp, ap->a_vap) == 0) {
nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
return (0);
}
}
error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
if (!error)
error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
if (!error) {
/*
* Get the local modify time for the case of a write
* delegation.
*/
nfscl_deleggetmodtime(vp, &vap->va_mtime);
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* nfs setattr call.
*/
static int
nfs_setattr(struct vop_setattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct thread *td = curthread; /* XXX */
struct vattr *vap = ap->a_vap;
int error = 0;
u_quad_t tsize;
#ifndef nolint
tsize = (u_quad_t)0;
#endif
/*
* Setting of flags and marking of atimes are not supported.
*/
if (vap->va_flags != VNOVAL)
return (EOPNOTSUPP);
/*
* Disallow write attempts if the filesystem is mounted read-only.
*/
if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
(vp->v_mount->mnt_flag & MNT_RDONLY))
return (EROFS);
if (vap->va_size != VNOVAL) {
switch (vp->v_type) {
case VDIR:
return (EISDIR);
case VCHR:
case VBLK:
case VSOCK:
case VFIFO:
if (vap->va_mtime.tv_sec == VNOVAL &&
vap->va_atime.tv_sec == VNOVAL &&
vap->va_mode == (mode_t)VNOVAL &&
vap->va_uid == (uid_t)VNOVAL &&
vap->va_gid == (gid_t)VNOVAL)
return (0);
vap->va_size = VNOVAL;
break;
default:
/*
* Disallow write attempts if the filesystem is
* mounted read-only.
*/
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
/*
* We run vnode_pager_setsize() early (why?),
* we must set np->n_size now to avoid vinvalbuf
* V_SAVE races that might setsize a lower
* value.
*/
NFSLOCKNODE(np);
tsize = np->n_size;
NFSUNLOCKNODE(np);
error = ncl_meta_setsize(vp, td, vap->va_size);
NFSLOCKNODE(np);
if (np->n_flag & NMODIFIED) {
tsize = np->n_size;
NFSUNLOCKNODE(np);
error = ncl_vinvalbuf(vp, vap->va_size == 0 ?
0 : V_SAVE, td, 1);
if (error != 0) {
vnode_pager_setsize(vp, tsize);
return (error);
}
/*
* Call nfscl_delegmodtime() to set the modify time
* locally, as required.
*/
nfscl_delegmodtime(vp);
} else
NFSUNLOCKNODE(np);
/*
* np->n_size has already been set to vap->va_size
* in ncl_meta_setsize(). We must set it again since
* nfs_loadattrcache() could be called through
* ncl_meta_setsize() and could modify np->n_size.
*/
NFSLOCKNODE(np);
np->n_vattr.na_size = np->n_size = vap->va_size;
NFSUNLOCKNODE(np);
}
} else {
NFSLOCKNODE(np);
if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
(np->n_flag & NMODIFIED) && vp->v_type == VREG) {
NFSUNLOCKNODE(np);
error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
if (error == EINTR || error == EIO)
return (error);
} else
NFSUNLOCKNODE(np);
}
error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
if (error && vap->va_size != VNOVAL) {
NFSLOCKNODE(np);
np->n_size = np->n_vattr.na_size = tsize;
vnode_pager_setsize(vp, tsize);
NFSUNLOCKNODE(np);
}
return (error);
}
/*
* Do an nfs setattr rpc.
*/
static int
nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
struct thread *td)
{
struct nfsnode *np = VTONFS(vp);
int error, ret, attrflag, i;
struct nfsvattr nfsva;
if (NFS_ISV34(vp)) {
NFSLOCKNODE(np);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
np->n_accesscache[i].stamp = 0;
np->n_flag |= NDELEGMOD;
NFSUNLOCKNODE(np);
KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
}
error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
NULL);
if (attrflag) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (ret && !error)
error = ret;
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
return (error);
}
/*
* nfs lookup call, one step at a time...
* First look in cache
* If not found, unlock the directory nfsnode and do the rpc
*/
static int
nfs_lookup(struct vop_lookup_args *ap)
{
struct componentname *cnp = ap->a_cnp;
struct vnode *dvp = ap->a_dvp;
struct vnode **vpp = ap->a_vpp;
struct mount *mp = dvp->v_mount;
int flags = cnp->cn_flags;
struct vnode *newvp;
struct nfsmount *nmp;
struct nfsnode *np, *newnp;
int error = 0, attrflag, dattrflag, ltype, ncticks;
struct thread *td = cnp->cn_thread;
struct nfsfh *nfhp;
struct nfsvattr dnfsva, nfsva;
struct vattr vattr;
struct timespec nctime;
*vpp = NULLVP;
if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
(cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
return (EROFS);
if (dvp->v_type != VDIR)
return (ENOTDIR);
nmp = VFSTONFS(mp);
np = VTONFS(dvp);
/* For NFSv4, wait until any remove is done. */
NFSLOCKNODE(np);
while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
np->n_flag |= NREMOVEWANT;
(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
}
NFSUNLOCKNODE(np);
error = vn_dir_check_exec(dvp, cnp);
if (error != 0)
return (error);
error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
if (error > 0 && error != ENOENT)
return (error);
if (error == -1) {
/*
* Lookups of "." are special and always return the
* current directory. cache_lookup() already handles
* associated locking bookkeeping, etc.
*/
if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
/* XXX: Is this really correct? */
if (cnp->cn_nameiop != LOOKUP &&
(flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
return (0);
}
/*
* We only accept a positive hit in the cache if the
* change time of the file matches our cached copy.
* Otherwise, we discard the cache entry and fallback
* to doing a lookup RPC. We also only trust cache
* entries for less than nm_nametimeo seconds.
*
* To better handle stale file handles and attributes,
* clear the attribute cache of this node if it is a
* leaf component, part of an open() call, and not
* locally modified before fetching the attributes.
* This should allow stale file handles to be detected
* here where we can fall back to a LOOKUP RPC to
* recover rather than having nfs_open() detect the
* stale file handle and failing open(2) with ESTALE.
*/
newvp = *vpp;
newnp = VTONFS(newvp);
if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
(flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
!(newnp->n_flag & NMODIFIED)) {
NFSLOCKNODE(newnp);
newnp->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
NFSUNLOCKNODE(newnp);
}
if (nfscl_nodeleg(newvp, 0) == 0 ||
((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
timespeccmp(&vattr.va_ctime, &nctime, ==))) {
NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
if (cnp->cn_nameiop != LOOKUP &&
(flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
return (0);
}
cache_purge(newvp);
if (dvp != newvp)
vput(newvp);
else
vrele(newvp);
*vpp = NULLVP;
} else if (error == ENOENT) {
if (VN_IS_DOOMED(dvp))
return (ENOENT);
/*
* We only accept a negative hit in the cache if the
* modification time of the parent directory matches
* the cached copy in the name cache entry.
* Otherwise, we discard all of the negative cache
* entries for this directory. We also only trust
* negative cache entries for up to nm_negnametimeo
* seconds.
*/
if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
timespeccmp(&vattr.va_mtime, &nctime, ==)) {
NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
return (ENOENT);
}
cache_purge_negative(dvp);
}
newvp = NULLVP;
NFSINCRGLOBAL(nfsstatsv1.lookupcache_misses);
error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
NULL);
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (error) {
if (newvp != NULLVP) {
vput(newvp);
*vpp = NULLVP;
}
if (error != ENOENT) {
if (NFS_ISV4(dvp))
error = nfscl_maperr(td, error, (uid_t)0,
(gid_t)0);
return (error);
}
/* The requested file was not found. */
if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
(flags & ISLASTCN)) {
/*
* XXX: UFS does a full VOP_ACCESS(dvp,
* VWRITE) here instead of just checking
* MNT_RDONLY.
*/
if (mp->mnt_flag & MNT_RDONLY)
return (EROFS);
cnp->cn_flags |= SAVENAME;
return (EJUSTRETURN);
}
if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) {
/*
* Cache the modification time of the parent
* directory from the post-op attributes in
* the name cache entry. The negative cache
* entry will be ignored once the directory
* has changed. Don't bother adding the entry
* if the directory has already changed.
*/
NFSLOCKNODE(np);
if (timespeccmp(&np->n_vattr.na_mtime,
&dnfsva.na_mtime, ==)) {
NFSUNLOCKNODE(np);
cache_enter_time(dvp, NULL, cnp,
&dnfsva.na_mtime, NULL);
} else
NFSUNLOCKNODE(np);
}
return (ENOENT);
}
/*
* Handle RENAME case...
*/
if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
free(nfhp, M_NFSFH);
return (EISDIR);
}
error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
LK_EXCLUSIVE);
if (error)
return (error);
newvp = NFSTOV(np);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
*vpp = newvp;
cnp->cn_flags |= SAVENAME;
return (0);
}
if (flags & ISDOTDOT) {
ltype = NFSVOPISLOCKED(dvp);
error = vfs_busy(mp, MBF_NOWAIT);
if (error != 0) {
vfs_ref(mp);
NFSVOPUNLOCK(dvp);
error = vfs_busy(mp, 0);
NFSVOPLOCK(dvp, ltype | LK_RETRY);
vfs_rel(mp);
if (error == 0 && VN_IS_DOOMED(dvp)) {
vfs_unbusy(mp);
error = ENOENT;
}
if (error != 0)
return (error);
}
NFSVOPUNLOCK(dvp);
error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
cnp->cn_lkflags);
if (error == 0)
newvp = NFSTOV(np);
vfs_unbusy(mp);
if (newvp != dvp)
NFSVOPLOCK(dvp, ltype | LK_RETRY);
if (VN_IS_DOOMED(dvp)) {
if (error == 0) {
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
}
error = ENOENT;
}
if (error != 0)
return (error);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
free(nfhp, M_NFSFH);
VREF(dvp);
newvp = dvp;
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
} else {
error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
cnp->cn_lkflags);
if (error)
return (error);
newvp = NFSTOV(np);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
!(np->n_flag & NMODIFIED)) {
/*
* Flush the attribute cache when opening a
* leaf node to ensure that fresh attributes
* are fetched in nfs_open() since we did not
* fetch attributes from the LOOKUP reply.
*/
NFSLOCKNODE(np);
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
NFSUNLOCKNODE(np);
}
}
if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
if ((cnp->cn_flags & MAKEENTRY) &&
(cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime);
*vpp = newvp;
return (0);
}
/*
* nfs read call.
* Just call ncl_bioread() to do the work.
*/
static int
nfs_read(struct vop_read_args *ap)
{
struct vnode *vp = ap->a_vp;
switch (vp->v_type) {
case VREG:
return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
case VDIR:
return (EISDIR);
default:
return (EOPNOTSUPP);
}
}
/*
* nfs readlink call
*/
static int
nfs_readlink(struct vop_readlink_args *ap)
{
struct vnode *vp = ap->a_vp;
if (vp->v_type != VLNK)
return (EINVAL);
return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
}
/*
* Do a readlink rpc.
* Called by ncl_doio() from below the buffer cache.
*/
int
ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
{
int error, ret, attrflag;
struct nfsvattr nfsva;
error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
&attrflag, NULL);
if (attrflag) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (ret && !error)
error = ret;
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs read rpc call
* Ditto above
*/
int
ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
{
int error, ret, attrflag;
struct nfsvattr nfsva;
struct nfsmount *nmp;
nmp = VFSTONFS(vnode_mount(vp));
error = EIO;
attrflag = 0;
if (NFSHASPNFS(nmp))
error = nfscl_doiods(vp, uiop, NULL, NULL,
NFSV4OPEN_ACCESSREAD, 0, cred, uiop->uio_td);
NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error);
if (error != 0)
error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva,
&attrflag, NULL);
if (attrflag) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (ret && !error)
error = ret;
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs write call
*/
int
ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
int *iomode, int *must_commit, int called_from_strategy)
{
struct nfsvattr nfsva;
int error, attrflag, ret;
struct nfsmount *nmp;
nmp = VFSTONFS(vnode_mount(vp));
error = EIO;
attrflag = 0;
if (NFSHASPNFS(nmp))
error = nfscl_doiods(vp, uiop, iomode, must_commit,
NFSV4OPEN_ACCESSWRITE, 0, cred, uiop->uio_td);
NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error);
if (error != 0)
error = nfsrpc_write(vp, uiop, iomode, must_commit, cred,
uiop->uio_td, &nfsva, &attrflag, NULL,
called_from_strategy);
if (attrflag) {
if (VTONFS(vp)->n_flag & ND_NFSV4)
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1);
else
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1);
if (ret && !error)
error = ret;
}
if (DOINGASYNC(vp))
*iomode = NFSWRITE_FILESYNC;
if (error && NFS_ISV4(vp))
error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs mknod rpc
* For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
* mode set to specify the file type and the size field for rdev.
*/
static int
nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
struct vattr *vap)
{
struct nfsvattr nfsva, dnfsva;
struct vnode *newvp = NULL;
struct nfsnode *np = NULL, *dnp;
struct nfsfh *nfhp;
struct vattr vattr;
int error = 0, attrflag, dattrflag;
u_int32_t rdev;
if (vap->va_type == VCHR || vap->va_type == VBLK)
rdev = vap->va_rdev;
else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
rdev = 0xffffffff;
else
return (EOPNOTSUPP);
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
return (error);
error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
&nfsva, &nfhp, &attrflag, &dattrflag, NULL);
if (!error) {
if (!nfhp)
(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
&dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
NULL);
if (nfhp)
error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
}
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (!error) {
newvp = NFSTOV(np);
if (attrflag != 0) {
error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
if (error != 0)
vput(newvp);
}
}
if (!error) {
*vpp = newvp;
} else if (NFS_ISV4(dvp)) {
error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
vap->va_gid);
}
dnp = VTONFS(dvp);
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (!dattrflag) {
dnp->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
NFSUNLOCKNODE(dnp);
return (error);
}
/*
* nfs mknod vop
* just call nfs_mknodrpc() to do the work.
*/
/* ARGSUSED */
static int
nfs_mknod(struct vop_mknod_args *ap)
{
return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
}
static struct mtx nfs_cverf_mtx;
MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
MTX_DEF);
static nfsquad_t
nfs_get_cverf(void)
{
static nfsquad_t cverf;
nfsquad_t ret;
static int cverf_initialized = 0;
mtx_lock(&nfs_cverf_mtx);
if (cverf_initialized == 0) {
cverf.lval[0] = arc4random();
cverf.lval[1] = arc4random();
cverf_initialized = 1;
} else
cverf.qval++;
ret = cverf;
mtx_unlock(&nfs_cverf_mtx);
return (ret);
}
/*
* nfs file create call
*/
static int
nfs_create(struct vop_create_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np = NULL, *dnp;
struct vnode *newvp = NULL;
struct nfsmount *nmp;
struct nfsvattr dnfsva, nfsva;
struct nfsfh *nfhp;
nfsquad_t cverf;
int error = 0, attrflag, dattrflag, fmode = 0;
struct vattr vattr;
/*
* Oops, not for me..
*/
if (vap->va_type == VSOCK)
return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
return (error);
if (vap->va_vaflags & VA_EXCLUSIVE)
fmode |= O_EXCL;
dnp = VTONFS(dvp);
nmp = VFSTONFS(vnode_mount(dvp));
again:
/* For NFSv4, wait until any remove is done. */
NFSLOCKNODE(dnp);
while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
dnp->n_flag |= NREMOVEWANT;
(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
}
NFSUNLOCKNODE(dnp);
cverf = nfs_get_cverf();
error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
&nfhp, &attrflag, &dattrflag, NULL);
if (!error) {
if (nfhp == NULL)
(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
&dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
NULL);
if (nfhp != NULL)
error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
}
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (!error) {
newvp = NFSTOV(np);
if (attrflag == 0)
error = nfsrpc_getattr(newvp, cnp->cn_cred,
cnp->cn_thread, &nfsva, NULL);
if (error == 0)
error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
}
if (error) {
if (newvp != NULL) {
vput(newvp);
newvp = NULL;
}
if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
error == NFSERR_NOTSUPP) {
fmode &= ~O_EXCL;
goto again;
}
} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
if (nfscl_checksattr(vap, &nfsva)) {
error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
cnp->cn_thread, &nfsva, &attrflag, NULL);
if (error && (vap->va_uid != (uid_t)VNOVAL ||
vap->va_gid != (gid_t)VNOVAL)) {
/* try again without setting uid/gid */
vap->va_uid = (uid_t)VNOVAL;
vap->va_gid = (uid_t)VNOVAL;
error = nfsrpc_setattr(newvp, vap, NULL,
cnp->cn_cred, cnp->cn_thread, &nfsva,
&attrflag, NULL);
}
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
NULL, 0, 1);
if (error != 0)
vput(newvp);
}
}
if (!error) {
if ((cnp->cn_flags & MAKEENTRY) && attrflag)
cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
NULL);
*ap->a_vpp = newvp;
} else if (NFS_ISV4(dvp)) {
error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
vap->va_gid);
}
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (!dattrflag) {
dnp->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
NFSUNLOCKNODE(dnp);
return (error);
}
/*
* nfs file remove call
* To try and make nfs semantics closer to ufs semantics, a file that has
* other processes using the vnode is renamed instead of removed and then
* removed later on the last close.
* - If v_usecount > 1
* If a rename is not already in the works
* call nfs_sillyrename() to set it up
* else
* do the remove rpc
*/
static int
nfs_remove(struct vop_remove_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *dvp = ap->a_dvp;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np = VTONFS(vp);
int error = 0;
struct vattr vattr;
KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
if (vp->v_type == VDIR)
error = EPERM;
else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
vattr.va_nlink > 1)) {
/*
* Purge the name cache so that the chance of a lookup for
* the name succeeding while the remove is in progress is
* minimized. Without node locking it can still happen, such
* that an I/O op returns ESTALE, but since you get this if
* another host removes the file..
*/
cache_purge(vp);
/*
* throw away biocache buffers, mainly to avoid
* unnecessary delayed writes later.
*/
error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
if (error != EINTR && error != EIO)
/* Do the rpc */
error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
/*
* Kludge City: If the first reply to the remove rpc is lost..
* the reply to the retransmitted request will be ENOENT
* since the file was in fact removed
* Therefore, we cheat and return success.
*/
if (error == ENOENT)
error = 0;
} else if (!np->n_sillyrename)
error = nfs_sillyrename(dvp, vp, cnp);
NFSLOCKNODE(np);
np->n_attrstamp = 0;
NFSUNLOCKNODE(np);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
return (error);
}
/*
* nfs file remove rpc called from nfs_inactive
*/
int
ncl_removeit(struct sillyrename *sp, struct vnode *vp)
{
/*
* Make sure that the directory vnode is still valid.
* XXX we should lock sp->s_dvp here.
*/
if (sp->s_dvp->v_type == VBAD)
return (0);
return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
sp->s_cred, NULL));
}
/*
* Nfs remove rpc, called from nfs_remove() and ncl_removeit().
*/
static int
nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
int namelen, struct ucred *cred, struct thread *td)
{
struct nfsvattr dnfsva;
struct nfsnode *dnp = VTONFS(dvp);
int error = 0, dattrflag;
NFSLOCKNODE(dnp);
dnp->n_flag |= NREMOVEINPROG;
NFSUNLOCKNODE(dnp);
error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
&dattrflag, NULL);
NFSLOCKNODE(dnp);
if ((dnp->n_flag & NREMOVEWANT)) {
dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
NFSUNLOCKNODE(dnp);
wakeup((caddr_t)dnp);
} else {
dnp->n_flag &= ~NREMOVEINPROG;
NFSUNLOCKNODE(dnp);
}
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (!dattrflag) {
dnp->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
NFSUNLOCKNODE(dnp);
if (error && NFS_ISV4(dvp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs file rename call
*/
static int
nfs_rename(struct vop_rename_args *ap)
{
struct vnode *fvp = ap->a_fvp;
struct vnode *tvp = ap->a_tvp;
struct vnode *fdvp = ap->a_fdvp;
struct vnode *tdvp = ap->a_tdvp;
struct componentname *tcnp = ap->a_tcnp;
struct componentname *fcnp = ap->a_fcnp;
struct nfsnode *fnp = VTONFS(ap->a_fvp);
struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
struct nfsv4node *newv4 = NULL;
int error;
KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
(fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
/* Check for cross-device rename */
if ((fvp->v_mount != tdvp->v_mount) ||
(tvp && (fvp->v_mount != tvp->v_mount))) {
error = EXDEV;
goto out;
}
if (fvp == tvp) {
printf("nfs_rename: fvp == tvp (can't happen)\n");
error = 0;
goto out;
}
if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0)
goto out;
/*
* We have to flush B_DELWRI data prior to renaming
* the file. If we don't, the delayed-write buffers
* can be flushed out later after the file has gone stale
* under NFSV3. NFSV2 does not have this problem because
* ( as far as I can tell ) it flushes dirty buffers more
* often.
*
* Skip the rename operation if the fsync fails, this can happen
* due to the server's volume being full, when we pushed out data
* that was written back to our cache earlier. Not checking for
* this condition can result in potential (silent) data loss.
*/
error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
NFSVOPUNLOCK(fvp);
if (!error && tvp)
error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
if (error)
goto out;
/*
* If the tvp exists and is in use, sillyrename it before doing the
* rename of the new file over it.
* XXX Can't sillyrename a directory.
*/
if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
vput(tvp);
tvp = NULL;
}
error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
tcnp->cn_thread);
if (error == 0 && NFS_ISV4(tdvp)) {
/*
* For NFSv4, check to see if it is the same name and
* replace the name, if it is different.
*/
newv4 = malloc(
sizeof (struct nfsv4node) +
tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
M_NFSV4NODE, M_WAITOK);
NFSLOCKNODE(tdnp);
NFSLOCKNODE(fnp);
if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
(fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
tcnp->cn_namelen) ||
tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
tdnp->n_fhp->nfh_len))) {
#ifdef notdef
{ char nnn[100]; int nnnl;
nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
bcopy(tcnp->cn_nameptr, nnn, nnnl);
nnn[nnnl] = '\0';
printf("ren replace=%s\n",nnn);
}
#endif
free(fnp->n_v4, M_NFSV4NODE);
fnp->n_v4 = newv4;
newv4 = NULL;
fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
fnp->n_v4->n4_namelen = tcnp->cn_namelen;
NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
tdnp->n_fhp->nfh_len);
NFSBCOPY(tcnp->cn_nameptr,
NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
}
NFSUNLOCKNODE(tdnp);
NFSUNLOCKNODE(fnp);
if (newv4 != NULL)
free(newv4, M_NFSV4NODE);
}
if (fvp->v_type == VDIR) {
if (tvp != NULL && tvp->v_type == VDIR)
cache_purge(tdvp);
cache_purge(fdvp);
}
out:
if (tdvp == tvp)
vrele(tdvp);
else
vput(tdvp);
if (tvp)
vput(tvp);
vrele(fdvp);
vrele(fvp);
/*
* Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
*/
if (error == ENOENT)
error = 0;
return (error);
}
/*
* nfs file rename rpc called from nfs_remove() above
*/
static int
nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
struct sillyrename *sp)
{
return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
scnp->cn_thread));
}
/*
* Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
*/
static int
nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
int tnamelen, struct ucred *cred, struct thread *td)
{
struct nfsvattr fnfsva, tnfsva;
struct nfsnode *fdnp = VTONFS(fdvp);
struct nfsnode *tdnp = VTONFS(tdvp);
int error = 0, fattrflag, tattrflag;
error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
&tattrflag, NULL, NULL);
NFSLOCKNODE(fdnp);
fdnp->n_flag |= NMODIFIED;
if (fattrflag != 0) {
NFSUNLOCKNODE(fdnp);
(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
} else {
fdnp->n_attrstamp = 0;
NFSUNLOCKNODE(fdnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
}
NFSLOCKNODE(tdnp);
tdnp->n_flag |= NMODIFIED;
if (tattrflag != 0) {
NFSUNLOCKNODE(tdnp);
(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
} else {
tdnp->n_attrstamp = 0;
NFSUNLOCKNODE(tdnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
}
if (error && NFS_ISV4(fdvp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs hard link create call
*/
static int
nfs_link(struct vop_link_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *tdvp = ap->a_tdvp;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np, *tdnp;
struct nfsvattr nfsva, dnfsva;
int error = 0, attrflag, dattrflag;
/*
* Push all writes to the server, so that the attribute cache
* doesn't get "out of sync" with the server.
* XXX There should be a better way!
*/
VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
&dattrflag, NULL);
tdnp = VTONFS(tdvp);
NFSLOCKNODE(tdnp);
tdnp->n_flag |= NMODIFIED;
if (dattrflag != 0) {
NFSUNLOCKNODE(tdnp);
(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
} else {
tdnp->n_attrstamp = 0;
NFSUNLOCKNODE(tdnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
}
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
else {
np = VTONFS(vp);
NFSLOCKNODE(np);
np->n_attrstamp = 0;
NFSUNLOCKNODE(np);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
}
/*
* If negative lookup caching is enabled, I might as well
* add an entry for this node. Not necessary for correctness,
* but if negative caching is enabled, then the system
* must care about lookup caching hit rate, so...
*/
if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
(cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL);
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
(gid_t)0);
return (error);
}
/*
* nfs symbolic link create call
*/
static int
nfs_symlink(struct vop_symlink_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsvattr nfsva, dnfsva;
struct nfsfh *nfhp;
struct nfsnode *np = NULL, *dnp;
struct vnode *newvp = NULL;
int error = 0, attrflag, dattrflag, ret;
vap->va_type = VLNK;
error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
&nfsva, &nfhp, &attrflag, &dattrflag, NULL);
if (nfhp) {
ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
&np, NULL, LK_EXCLUSIVE);
if (!ret)
newvp = NFSTOV(np);
else if (!error)
error = ret;
}
if (newvp != NULL) {
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
} else if (!error) {
/*
* If we do not have an error and we could not extract the
* newvp from the response due to the request being NFSv2, we
* have to do a lookup in order to obtain a newvp to return.
*/
error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &np);
if (!error)
newvp = NFSTOV(np);
}
if (error) {
if (newvp)
vput(newvp);
if (NFS_ISV4(dvp))
error = nfscl_maperr(cnp->cn_thread, error,
vap->va_uid, vap->va_gid);
} else {
*ap->a_vpp = newvp;
}
dnp = VTONFS(dvp);
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (dattrflag != 0) {
NFSUNLOCKNODE(dnp);
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
} else {
dnp->n_attrstamp = 0;
NFSUNLOCKNODE(dnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
/*
* If negative lookup caching is enabled, I might as well
* add an entry for this node. Not necessary for correctness,
* but if negative caching is enabled, then the system
* must care about lookup caching hit rate, so...
*/
if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
(cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL);
}
return (error);
}
/*
* nfs make dir call
*/
static int
nfs_mkdir(struct vop_mkdir_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np = NULL, *dnp;
struct vnode *newvp = NULL;
struct vattr vattr;
struct nfsfh *nfhp;
struct nfsvattr nfsva, dnfsva;
int error = 0, attrflag, dattrflag, ret;
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
return (error);
vap->va_type = VDIR;
error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
&attrflag, &dattrflag, NULL);
dnp = VTONFS(dvp);
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (dattrflag != 0) {
NFSUNLOCKNODE(dnp);
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
} else {
dnp->n_attrstamp = 0;
NFSUNLOCKNODE(dnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
if (nfhp) {
ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
&np, NULL, LK_EXCLUSIVE);
if (!ret) {
newvp = NFSTOV(np);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
NULL, 0, 1);
} else if (!error)
error = ret;
}
if (!error && newvp == NULL) {
error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &np);
if (!error) {
newvp = NFSTOV(np);
if (newvp->v_type != VDIR)
error = EEXIST;
}
}
if (error) {
if (newvp)
vput(newvp);
if (NFS_ISV4(dvp))
error = nfscl_maperr(cnp->cn_thread, error,
vap->va_uid, vap->va_gid);
} else {
/*
* If negative lookup caching is enabled, I might as well
* add an entry for this node. Not necessary for correctness,
* but if negative caching is enabled, then the system
* must care about lookup caching hit rate, so...
*/
if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
(cnp->cn_flags & MAKEENTRY) &&
attrflag != 0 && dattrflag != 0)
cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
&dnfsva.na_ctime);
*ap->a_vpp = newvp;
}
return (error);
}
/*
* nfs remove directory call
*/
static int
nfs_rmdir(struct vop_rmdir_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *dvp = ap->a_dvp;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *dnp;
struct nfsvattr dnfsva;
int error, dattrflag;
if (dvp == vp)
return (EINVAL);
error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
dnp = VTONFS(dvp);
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (dattrflag != 0) {
NFSUNLOCKNODE(dnp);
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
} else {
dnp->n_attrstamp = 0;
NFSUNLOCKNODE(dnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
cache_purge(dvp);
cache_purge(vp);
if (error && NFS_ISV4(dvp))
error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
(gid_t)0);
/*
* Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
*/
if (error == ENOENT)
error = 0;
return (error);
}
/*
* nfs readdir call
*/
static int
nfs_readdir(struct vop_readdir_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct uio *uio = ap->a_uio;
ssize_t tresid, left;
int error = 0;
struct vattr vattr;
if (ap->a_eofflag != NULL)
*ap->a_eofflag = 0;
if (vp->v_type != VDIR)
return(EPERM);
/*
* First, check for hit on the EOF offset cache
*/
if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
(np->n_flag & NMODIFIED) == 0) {
if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
NFSLOCKNODE(np);
if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
!NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
NFSUNLOCKNODE(np);
NFSINCRGLOBAL(nfsstatsv1.direofcache_hits);
if (ap->a_eofflag != NULL)
*ap->a_eofflag = 1;
return (0);
} else
NFSUNLOCKNODE(np);
}
}
/*
* NFS always guarantees that directory entries don't straddle
* DIRBLKSIZ boundaries. As such, we need to limit the size
* to an exact multiple of DIRBLKSIZ, to avoid copying a partial
* directory entry.
*/
left = uio->uio_resid % DIRBLKSIZ;
if (left == uio->uio_resid)
return (EINVAL);
uio->uio_resid -= left;
/*
* Call ncl_bioread() to do the real work.
*/
tresid = uio->uio_resid;
error = ncl_bioread(vp, uio, 0, ap->a_cred);
if (!error && uio->uio_resid == tresid) {
NFSINCRGLOBAL(nfsstatsv1.direofcache_misses);
if (ap->a_eofflag != NULL)
*ap->a_eofflag = 1;
}
/* Add the partial DIRBLKSIZ (left) back in. */
uio->uio_resid += left;
return (error);
}
/*
* Readdir rpc call.
* Called from below the buffer cache by ncl_doio().
*/
int
ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
struct thread *td)
{
struct nfsvattr nfsva;
nfsuint64 *cookiep, cookie;
struct nfsnode *dnp = VTONFS(vp);
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error = 0, eof, attrflag;
KASSERT(uiop->uio_iovcnt == 1 &&
(uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
(uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
("nfs readdirrpc bad uio"));
/*
* If there is no cookie, assume directory was stale.
*/
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
if (cookiep) {
cookie = *cookiep;
ncl_dircookie_unlock(dnp);
} else {
ncl_dircookie_unlock(dnp);
return (NFSERR_BAD_COOKIE);
}
if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
(void)ncl_fsinfo(nmp, vp, cred, td);
error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
&attrflag, &eof, NULL);
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (!error) {
/*
* We are now either at the end of the directory or have filled
* the block.
*/
if (eof)
dnp->n_direofoffset = uiop->uio_offset;
else {
if (uiop->uio_resid > 0)
printf("EEK! readdirrpc resid > 0\n");
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
*cookiep = cookie;
ncl_dircookie_unlock(dnp);
}
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
*/
int
ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
struct thread *td)
{
struct nfsvattr nfsva;
nfsuint64 *cookiep, cookie;
struct nfsnode *dnp = VTONFS(vp);
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error = 0, attrflag, eof;
KASSERT(uiop->uio_iovcnt == 1 &&
(uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
(uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
("nfs readdirplusrpc bad uio"));
/*
* If there is no cookie, assume directory was stale.
*/
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
if (cookiep) {
cookie = *cookiep;
ncl_dircookie_unlock(dnp);
} else {
ncl_dircookie_unlock(dnp);
return (NFSERR_BAD_COOKIE);
}
if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
(void)ncl_fsinfo(nmp, vp, cred, td);
error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
&attrflag, &eof, NULL);
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (!error) {
/*
* We are now either at end of the directory or have filled the
* the block.
*/
if (eof)
dnp->n_direofoffset = uiop->uio_offset;
else {
if (uiop->uio_resid > 0)
printf("EEK! readdirplusrpc resid > 0\n");
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
*cookiep = cookie;
ncl_dircookie_unlock(dnp);
}
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* Silly rename. To make the NFS filesystem that is stateless look a little
* more like the "ufs" a remove of an active vnode is translated to a rename
* to a funny looking filename that is removed by nfs_inactive on the
* nfsnode. There is the potential for another process on a different client
* to create the same funny name between the nfs_lookitup() fails and the
* nfs_rename() completes, but...
*/
static int
nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
{
struct sillyrename *sp;
struct nfsnode *np;
int error;
short pid;
unsigned int lticks;
cache_purge(dvp);
np = VTONFS(vp);
KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
sp = malloc(sizeof (struct sillyrename),
M_NEWNFSREQ, M_WAITOK);
sp->s_cred = crhold(cnp->cn_cred);
sp->s_dvp = dvp;
VREF(dvp);
/*
* Fudge together a funny name.
* Changing the format of the funny name to accommodate more
* sillynames per directory.
* The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
* CPU ticks since boot.
*/
pid = cnp->cn_thread->td_proc->p_pid;
lticks = (unsigned int)ticks;
for ( ; ; ) {
sp->s_namlen = sprintf(sp->s_name,
".nfs.%08x.%04x4.4", lticks,
pid);
if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
cnp->cn_thread, NULL))
break;
lticks++;
}
error = nfs_renameit(dvp, vp, cnp, sp);
if (error)
goto bad;
error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
cnp->cn_thread, &np);
np->n_sillyrename = sp;
return (0);
bad:
vrele(sp->s_dvp);
crfree(sp->s_cred);
free(sp, M_NEWNFSREQ);
return (error);
}
/*
* Look up a file name and optionally either update the file handle or
* allocate an nfsnode, depending on the value of npp.
* npp == NULL --> just do the lookup
* *npp == NULL --> allocate a new nfsnode and make sure attributes are
* handled too
* *npp != NULL --> update the file handle in the vnode
*/
static int
nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
struct thread *td, struct nfsnode **npp)
{
struct vnode *newvp = NULL, *vp;
struct nfsnode *np, *dnp = VTONFS(dvp);
struct nfsfh *nfhp, *onfhp;
struct nfsvattr nfsva, dnfsva;
struct componentname cn;
int error = 0, attrflag, dattrflag;
u_int hash;
error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
&nfhp, &attrflag, &dattrflag, NULL);
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (npp && !error) {
if (*npp != NULL) {
np = *npp;
vp = NFSTOV(np);
/*
* For NFSv4, check to see if it is the same name and
* replace the name, if it is different.
*/
if (np->n_v4 != NULL && nfsva.na_type == VREG &&
(np->n_v4->n4_namelen != len ||
NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
dnp->n_fhp->nfh_len))) {
#ifdef notdef
{ char nnn[100]; int nnnl;
nnnl = (len < 100) ? len : 99;
bcopy(name, nnn, nnnl);
nnn[nnnl] = '\0';
printf("replace=%s\n",nnn);
}
#endif
free(np->n_v4, M_NFSV4NODE);
np->n_v4 = malloc(
sizeof (struct nfsv4node) +
dnp->n_fhp->nfh_len + len - 1,
M_NFSV4NODE, M_WAITOK);
np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
np->n_v4->n4_namelen = len;
NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
dnp->n_fhp->nfh_len);
NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
}
hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
FNV1_32_INIT);
onfhp = np->n_fhp;
/*
* Rehash node for new file handle.
*/
vfs_hash_rehash(vp, hash);
np->n_fhp = nfhp;
if (onfhp != NULL)
free(onfhp, M_NFSFH);
newvp = NFSTOV(np);
} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
free(nfhp, M_NFSFH);
VREF(dvp);
newvp = dvp;
} else {
cn.cn_nameptr = name;
cn.cn_namelen = len;
error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
&np, NULL, LK_EXCLUSIVE);
if (error)
return (error);
newvp = NFSTOV(np);
}
if (!attrflag && *npp == NULL) {
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
return (ENOENT);
}
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
}
if (npp && *npp == NULL) {
if (error) {
if (newvp) {
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
}
} else
*npp = np;
}
if (error && NFS_ISV4(dvp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* Nfs Version 3 and 4 commit rpc
*/
int
ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
struct thread *td)
{
struct nfsvattr nfsva;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
struct nfsnode *np;
struct uio uio;
int error, attrflag;
np = VTONFS(vp);
error = EIO;
attrflag = 0;
if (NFSHASPNFS(nmp) && (np->n_flag & NDSCOMMIT) != 0) {
uio.uio_offset = offset;
uio.uio_resid = cnt;
error = nfscl_doiods(vp, &uio, NULL, NULL,
NFSV4OPEN_ACCESSWRITE, 1, cred, td);
if (error != 0) {
NFSLOCKNODE(np);
np->n_flag &= ~NDSCOMMIT;
NFSUNLOCKNODE(np);
}
}
if (error != 0) {
mtx_lock(&nmp->nm_mtx);
if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
mtx_unlock(&nmp->nm_mtx);
return (0);
}
mtx_unlock(&nmp->nm_mtx);
error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva,
&attrflag, NULL);
}
if (attrflag != 0)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
0, 1);
if (error != 0 && NFS_ISV4(vp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* Strategy routine.
* For async requests when nfsiod(s) are running, queue the request by
* calling ncl_asyncio(), otherwise just all ncl_doio() to do the
* request.
*/
static int
nfs_strategy(struct vop_strategy_args *ap)
{
struct buf *bp;
struct vnode *vp;
struct ucred *cr;
bp = ap->a_bp;
vp = ap->a_vp;
KASSERT(bp->b_vp == vp, ("missing b_getvp"));
KASSERT(!(bp->b_flags & B_DONE),
("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
if (vp->v_type == VREG && bp->b_blkno == bp->b_lblkno)
bp->b_blkno = bp->b_lblkno * (vp->v_bufobj.bo_bsize /
DEV_BSIZE);
if (bp->b_iocmd == BIO_READ)
cr = bp->b_rcred;
else
cr = bp->b_wcred;
/*
* If the op is asynchronous and an i/o daemon is waiting
* queue the request, wake it up and wait for completion
* otherwise just do it ourselves.
*/
if ((bp->b_flags & B_ASYNC) == 0 ||
ncl_asyncio(VFSTONFS(vp->v_mount), bp, NOCRED, curthread))
(void) ncl_doio(vp, bp, cr, curthread, 1);
return (0);
}
/*
* fsync vnode op. Just call ncl_flush() with commit == 1.
*/
/* ARGSUSED */
static int
nfs_fsync(struct vop_fsync_args *ap)
{
if (ap->a_vp->v_type != VREG) {
/*
* For NFS, metadata is changed synchronously on the server,
* so there is nothing to flush. Also, ncl_flush() clears
* the NMODIFIED flag and that shouldn't be done here for
* directories.
*/
return (0);
}
return (ncl_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1, 0));
}
/*
* Flush all the blocks associated with a vnode.
* Walk through the buffer pool and push any dirty pages
* associated with the vnode.
* If the called_from_renewthread argument is TRUE, it has been called
* from the NFSv4 renew thread and, as such, cannot block indefinitely
* waiting for a buffer write to complete.
*/
int
ncl_flush(struct vnode *vp, int waitfor, struct thread *td,
int commit, int called_from_renewthread)
{
struct nfsnode *np = VTONFS(vp);
struct buf *bp;
int i;
struct buf *nbp;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
int passone = 1, trycnt = 0;
u_quad_t off, endoff, toff;
struct ucred* wcred = NULL;
struct buf **bvec = NULL;
struct bufobj *bo;
#ifndef NFS_COMMITBVECSIZ
#define NFS_COMMITBVECSIZ 20
#endif
struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
u_int bvecsize = 0, bveccount;
if (called_from_renewthread != 0)
slptimeo = hz;
if (nmp->nm_flag & NFSMNT_INT)
slpflag = PCATCH;
if (!commit)
passone = 0;
bo = &vp->v_bufobj;
/*
* A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
* server, but has not been committed to stable storage on the server
* yet. On the first pass, the byte range is worked out and the commit
* rpc is done. On the second pass, ncl_writebp() is called to do the
* job.
*/
again:
off = (u_quad_t)-1;
endoff = 0;
bvecpos = 0;
if (NFS_ISV34(vp) && commit) {
if (bvec != NULL && bvec != bvec_on_stack)
free(bvec, M_TEMP);
/*
* Count up how many buffers waiting for a commit.
*/
bveccount = 0;
BO_LOCK(bo);
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (!BUF_ISLOCKED(bp) &&
(bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
== (B_DELWRI | B_NEEDCOMMIT))
bveccount++;
}
/*
* Allocate space to remember the list of bufs to commit. It is
* important to use M_NOWAIT here to avoid a race with nfs_write.
* If we can't get memory (for whatever reason), we will end up
* committing the buffers one-by-one in the loop below.
*/
if (bveccount > NFS_COMMITBVECSIZ) {
/*
* Release the vnode interlock to avoid a lock
* order reversal.
*/
BO_UNLOCK(bo);
bvec = (struct buf **)
malloc(bveccount * sizeof(struct buf *),
M_TEMP, M_NOWAIT);
BO_LOCK(bo);
if (bvec == NULL) {
bvec = bvec_on_stack;
bvecsize = NFS_COMMITBVECSIZ;
} else
bvecsize = bveccount;
} else {
bvec = bvec_on_stack;
bvecsize = NFS_COMMITBVECSIZ;
}
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (bvecpos >= bvecsize)
break;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
nbp = TAILQ_NEXT(bp, b_bobufs);
continue;
}
if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
(B_DELWRI | B_NEEDCOMMIT)) {
BUF_UNLOCK(bp);
nbp = TAILQ_NEXT(bp, b_bobufs);
continue;
}
BO_UNLOCK(bo);
bremfree(bp);
/*
* Work out if all buffers are using the same cred
* so we can deal with them all with one commit.
*
* NOTE: we are not clearing B_DONE here, so we have
* to do it later on in this routine if we intend to
* initiate I/O on the bp.
*
* Note: to avoid loopback deadlocks, we do not
* assign b_runningbufspace.
*/
if (wcred == NULL)
wcred = bp->b_wcred;
else if (wcred != bp->b_wcred)
wcred = NOCRED;
vfs_busy_pages(bp, 1);
BO_LOCK(bo);
/*
* bp is protected by being locked, but nbp is not
* and vfs_busy_pages() may sleep. We have to
* recalculate nbp.
*/
nbp = TAILQ_NEXT(bp, b_bobufs);
/*
* A list of these buffers is kept so that the
* second loop knows which buffers have actually
* been committed. This is necessary, since there
* may be a race between the commit rpc and new
* uncommitted writes on the file.
*/
bvec[bvecpos++] = bp;
toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
bp->b_dirtyoff;
if (toff < off)
off = toff;
toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
if (toff > endoff)
endoff = toff;
}
BO_UNLOCK(bo);
}
if (bvecpos > 0) {
/*
* Commit data on the server, as required.
* If all bufs are using the same wcred, then use that with
* one call for all of them, otherwise commit each one
* separately.
*/
if (wcred != NOCRED)
retv = ncl_commit(vp, off, (int)(endoff - off),
wcred, td);
else {
retv = 0;
for (i = 0; i < bvecpos; i++) {
off_t off, size;
bp = bvec[i];
off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
bp->b_dirtyoff;
size = (u_quad_t)(bp->b_dirtyend
- bp->b_dirtyoff);
retv = ncl_commit(vp, off, (int)size,
bp->b_wcred, td);
if (retv) break;
}
}
if (retv == NFSERR_STALEWRITEVERF)
ncl_clearcommit(vp->v_mount);
/*
* Now, either mark the blocks I/O done or mark the
* blocks dirty, depending on whether the commit
* succeeded.
*/
for (i = 0; i < bvecpos; i++) {
bp = bvec[i];
bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
if (retv) {
/*
* Error, leave B_DELWRI intact
*/
vfs_unbusy_pages(bp);
brelse(bp);
} else {
/*
* Success, remove B_DELWRI ( bundirty() ).
*
* b_dirtyoff/b_dirtyend seem to be NFS
* specific. We should probably move that
* into bundirty(). XXX
*/
bufobj_wref(bo);
bp->b_flags |= B_ASYNC;
bundirty(bp);
bp->b_flags &= ~B_DONE;
bp->b_ioflags &= ~BIO_ERROR;
bp->b_dirtyoff = bp->b_dirtyend = 0;
bufdone(bp);
}
}
}
/*
* Start/do any write(s) that are required.
*/
loop:
BO_LOCK(bo);
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
if (waitfor != MNT_WAIT || passone)
continue;
error = BUF_TIMELOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo);
if (error == 0) {
BUF_UNLOCK(bp);
goto loop;
}
if (error == ENOLCK) {
error = 0;
goto loop;
}
if (called_from_renewthread != 0) {
/*
* Return EIO so the flush will be retried
* later.
*/
error = EIO;
goto done;
}
if (newnfs_sigintr(nmp, td)) {
error = EINTR;
goto done;
}
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = 2 * hz;
}
goto loop;
}
if ((bp->b_flags & B_DELWRI) == 0)
panic("nfs_fsync: not dirty");
if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
BUF_UNLOCK(bp);
continue;
}
BO_UNLOCK(bo);
bremfree(bp);
bp->b_flags |= B_ASYNC;
bwrite(bp);
if (newnfs_sigintr(nmp, td)) {
error = EINTR;
goto done;
}
goto loop;
}
if (passone) {
passone = 0;
BO_UNLOCK(bo);
goto again;
}
if (waitfor == MNT_WAIT) {
while (bo->bo_numoutput) {
error = bufobj_wwait(bo, slpflag, slptimeo);
if (error) {
BO_UNLOCK(bo);
if (called_from_renewthread != 0) {
/*
* Return EIO so that the flush will be
* retried later.
*/
error = EIO;
goto done;
}
error = newnfs_sigintr(nmp, td);
if (error)
goto done;
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = 2 * hz;
}
BO_LOCK(bo);
}
}
if (bo->bo_dirty.bv_cnt != 0 && commit) {
BO_UNLOCK(bo);
goto loop;
}
/*
* Wait for all the async IO requests to drain
*/
BO_UNLOCK(bo);
NFSLOCKNODE(np);
while (np->n_directio_asyncwr > 0) {
np->n_flag |= NFSYNCWAIT;
error = newnfs_msleep(td, &np->n_directio_asyncwr,
&np->n_mtx, slpflag | (PRIBIO + 1),
"nfsfsync", 0);
if (error) {
if (newnfs_sigintr(nmp, td)) {
NFSUNLOCKNODE(np);
error = EINTR;
goto done;
}
}
}
NFSUNLOCKNODE(np);
} else
BO_UNLOCK(bo);
if (NFSHASPNFS(nmp)) {
nfscl_layoutcommit(vp, td);
/*
* Invalidate the attribute cache, since writes to a DS
* won't update the size attribute.
*/
NFSLOCKNODE(np);
np->n_attrstamp = 0;
} else
NFSLOCKNODE(np);
if (np->n_flag & NWRITEERR) {
error = np->n_error;
np->n_flag &= ~NWRITEERR;
}
if (commit && bo->bo_dirty.bv_cnt == 0 &&
bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
np->n_flag &= ~NMODIFIED;
NFSUNLOCKNODE(np);
done:
if (bvec != NULL && bvec != bvec_on_stack)
free(bvec, M_TEMP);
if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
(bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
np->n_directio_asyncwr != 0)) {
if (trycnt++ < 5) {
/* try, try again... */
passone = 1;
wcred = NULL;
bvec = NULL;
bvecsize = 0;
goto again;
}
vn_printf(vp, "ncl_flush failed");
error = called_from_renewthread != 0 ? EIO : EBUSY;
}
return (error);
}
/*
* NFS advisory byte-level locks.
*/
static int
nfs_advlock(struct vop_advlock_args *ap)
{
struct vnode *vp = ap->a_vp;
struct ucred *cred;
struct nfsnode *np = VTONFS(ap->a_vp);
struct proc *p = (struct proc *)ap->a_id;
struct thread *td = curthread; /* XXX */
struct vattr va;
int ret, error;
u_quad_t size;
error = NFSVOPLOCK(vp, LK_SHARED);
if (error != 0)
return (EBADF);
if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) {
if (vp->v_type != VREG) {
error = EINVAL;
goto out;
}
if ((ap->a_flags & F_POSIX) != 0)
cred = p->p_ucred;
else
cred = td->td_ucred;
NFSVOPLOCK(vp, LK_UPGRADE | LK_RETRY);
if (VN_IS_DOOMED(vp)) {
error = EBADF;
goto out;
}
/*
* If this is unlocking a write locked region, flush and
* commit them before unlocking. This is required by
* RFC3530 Sec. 9.3.2.
*/
if (ap->a_op == F_UNLCK &&
nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id,
ap->a_flags))
(void) ncl_flush(vp, MNT_WAIT, td, 1, 0);
/*
* Loop around doing the lock op, while a blocking lock
* must wait for the lock op to succeed.
*/
do {
ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags);
if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
ap->a_op == F_SETLK) {
NFSVOPUNLOCK(vp);
error = nfs_catnap(PZERO | PCATCH, ret,
"ncladvl");
if (error)
return (EINTR);
NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
if (VN_IS_DOOMED(vp)) {
error = EBADF;
goto out;
}
}
} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
ap->a_op == F_SETLK);
if (ret == NFSERR_DENIED) {
error = EAGAIN;
goto out;
} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
error = ret;
goto out;
} else if (ret != 0) {
error = EACCES;
goto out;
}
/*
* Now, if we just got a lock, invalidate data in the buffer
* cache, as required, so that the coherency conforms with
* RFC3530 Sec. 9.3.2.
*/
if (ap->a_op == F_SETLK) {
if ((np->n_flag & NMODIFIED) == 0) {
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
ret = VOP_GETATTR(vp, &va, cred);
}
if ((np->n_flag & NMODIFIED) || ret ||
np->n_change != va.va_filerev) {
(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
ret = VOP_GETATTR(vp, &va, cred);
if (!ret) {
np->n_mtime = va.va_mtime;
np->n_change = va.va_filerev;
}
}
/* Mark that a file lock has been acquired. */
NFSLOCKNODE(np);
np->n_flag |= NHASBEENLOCKED;
NFSUNLOCKNODE(np);
}
} else if (!NFS_ISV4(vp)) {
if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
size = VTONFS(vp)->n_size;
NFSVOPUNLOCK(vp);
error = lf_advlock(ap, &(vp->v_lockf), size);
} else {
if (nfs_advlock_p != NULL)
error = nfs_advlock_p(ap);
else {
NFSVOPUNLOCK(vp);
error = ENOLCK;
}
}
if (error == 0 && ap->a_op == F_SETLK) {
error = NFSVOPLOCK(vp, LK_SHARED);
if (error == 0) {
/* Mark that a file lock has been acquired. */
NFSLOCKNODE(np);
np->n_flag |= NHASBEENLOCKED;
NFSUNLOCKNODE(np);
NFSVOPUNLOCK(vp);
}
}
return (error);
} else
error = EOPNOTSUPP;
out:
NFSVOPUNLOCK(vp);
return (error);
}
/*
* NFS advisory byte-level locks.
*/
static int
nfs_advlockasync(struct vop_advlockasync_args *ap)
{
struct vnode *vp = ap->a_vp;
u_quad_t size;
int error;
if (NFS_ISV4(vp))
return (EOPNOTSUPP);
error = NFSVOPLOCK(vp, LK_SHARED);
if (error)
return (error);
if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
size = VTONFS(vp)->n_size;
NFSVOPUNLOCK(vp);
error = lf_advlockasync(ap, &(vp->v_lockf), size);
} else {
NFSVOPUNLOCK(vp);
error = EOPNOTSUPP;
}
return (error);
}
/*
* Print out the contents of an nfsnode.
*/
static int
nfs_print(struct vop_print_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
printf("\tfileid %jd fsid 0x%jx", (uintmax_t)np->n_vattr.na_fileid,
(uintmax_t)np->n_vattr.na_fsid);
if (vp->v_type == VFIFO)
fifo_printinfo(vp);
printf("\n");
return (0);
}
/*
* This is the "real" nfs::bwrite(struct buf*).
* We set B_CACHE if this is a VMIO buffer.
*/
int
ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
{
int oldflags, rtval;
if (bp->b_flags & B_INVAL) {
brelse(bp);
return (0);
}
oldflags = bp->b_flags;
bp->b_flags |= B_CACHE;
/*
* Undirty the bp. We will redirty it later if the I/O fails.
*/
bundirty(bp);
bp->b_flags &= ~B_DONE;
bp->b_ioflags &= ~BIO_ERROR;
bp->b_iocmd = BIO_WRITE;
bufobj_wref(bp->b_bufobj);
curthread->td_ru.ru_oublock++;
/*
* Note: to avoid loopback deadlocks, we do not
* assign b_runningbufspace.
*/
vfs_busy_pages(bp, 1);
BUF_KERNPROC(bp);
bp->b_iooffset = dbtob(bp->b_blkno);
bstrategy(bp);
if ((oldflags & B_ASYNC) != 0)
return (0);
rtval = bufwait(bp);
if (oldflags & B_DELWRI)
reassignbuf(bp);
brelse(bp);
return (rtval);
}
/*
* nfs special file access vnode op.
* Essentially just get vattr and then imitate iaccess() since the device is
* local to the client.
*/
static int
nfsspec_access(struct vop_access_args *ap)
{
struct vattr *vap;
struct ucred *cred = ap->a_cred;
struct vnode *vp = ap->a_vp;
accmode_t accmode = ap->a_accmode;
struct vattr vattr;
int error;
/*
* Disallow write attempts on filesystems mounted read-only;
* unless the file is a socket, fifo, or a block or character
* device resident on the filesystem.
*/
if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
switch (vp->v_type) {
case VREG:
case VDIR:
case VLNK:
return (EROFS);
default:
break;
}
}
vap = &vattr;
error = VOP_GETATTR(vp, vap, cred);
if (error)
goto out;
error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
accmode, cred, NULL);
out:
return error;
}
/*
* Read wrapper for fifos.
*/
static int
nfsfifo_read(struct vop_read_args *ap)
{
struct nfsnode *np = VTONFS(ap->a_vp);
int error;
/*
* Set access flag.
*/
NFSLOCKNODE(np);
np->n_flag |= NACC;
vfs_timestamp(&np->n_atim);
NFSUNLOCKNODE(np);
error = fifo_specops.vop_read(ap);
return error;
}
/*
* Write wrapper for fifos.
*/
static int
nfsfifo_write(struct vop_write_args *ap)
{
struct nfsnode *np = VTONFS(ap->a_vp);
/*
* Set update flag.
*/
NFSLOCKNODE(np);
np->n_flag |= NUPD;
vfs_timestamp(&np->n_mtim);
NFSUNLOCKNODE(np);
return(fifo_specops.vop_write(ap));
}
/*
* Close wrapper for fifos.
*
* Update the times on the nfsnode then do fifo close.
*/
static int
nfsfifo_close(struct vop_close_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct vattr vattr;
struct timespec ts;
NFSLOCKNODE(np);
if (np->n_flag & (NACC | NUPD)) {
vfs_timestamp(&ts);
if (np->n_flag & NACC)
np->n_atim = ts;
if (np->n_flag & NUPD)
np->n_mtim = ts;
np->n_flag |= NCHG;
if (vrefcnt(vp) == 1 &&
(vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
VATTR_NULL(&vattr);
if (np->n_flag & NACC)
vattr.va_atime = np->n_atim;
if (np->n_flag & NUPD)
vattr.va_mtime = np->n_mtim;
NFSUNLOCKNODE(np);
(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
goto out;
}
}
NFSUNLOCKNODE(np);
out:
return (fifo_specops.vop_close(ap));
}
/*
* Just call ncl_writebp() with the force argument set to 1.
*
* NOTE: B_DONE may or may not be set in a_bp on call.
*/
static int
nfs_bwrite(struct buf *bp)
{
return (ncl_writebp(bp, 1, curthread));
}
struct buf_ops buf_ops_newnfs = {
.bop_name = "buf_ops_nfs",
.bop_write = nfs_bwrite,
.bop_strategy = bufstrategy,
.bop_sync = bufsync,
.bop_bdflush = bufbdflush,
};
static int
nfs_getacl(struct vop_getacl_args *ap)
{
int error;
if (ap->a_type != ACL_TYPE_NFS4)
return (EOPNOTSUPP);
error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
NULL);
if (error > NFSERR_STALE) {
(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
error = EPERM;
}
return (error);
}
static int
nfs_setacl(struct vop_setacl_args *ap)
{
int error;
if (ap->a_type != ACL_TYPE_NFS4)
return (EOPNOTSUPP);
error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
NULL);
if (error > NFSERR_STALE) {
(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
error = EPERM;
}
return (error);
}
/*
* VOP_ADVISE for NFS.
* Just return 0 for any errors, since it is just a hint.
*/
static int
nfs_advise(struct vop_advise_args *ap)
{
struct thread *td = curthread;
struct nfsmount *nmp;
uint64_t len;
int error;
/*
* First do vop_stdadvise() to handle the buffer cache.
*/
error = vop_stdadvise(ap);
if (error != 0)
return (error);
if (ap->a_start < 0 || ap->a_end < 0)
return (0);
if (ap->a_end == OFF_MAX)
len = 0;
else if (ap->a_end < ap->a_start)
return (0);
else
len = ap->a_end - ap->a_start + 1;
nmp = VFSTONFS(ap->a_vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(NFSHASPNFS(nmp) && (nmp->nm_privflag & NFSMNTP_IOADVISETHRUMDS) ==
0) || (nmp->nm_privflag & NFSMNTP_NOADVISE) != 0) {
mtx_unlock(&nmp->nm_mtx);
return (0);
}
mtx_unlock(&nmp->nm_mtx);
error = nfsrpc_advise(ap->a_vp, ap->a_start, len, ap->a_advice,
td->td_ucred, td);
if (error == NFSERR_NOTSUPP) {
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOADVISE;
mtx_unlock(&nmp->nm_mtx);
}
return (0);
}
/*
* nfs allocate call
*/
static int
nfs_allocate(struct vop_allocate_args *ap)
{
struct vnode *vp = ap->a_vp;
struct thread *td = curthread;
struct nfsvattr nfsva;
struct nfsmount *nmp;
int attrflag, error, ret;
attrflag = 0;
nmp = VFSTONFS(vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (NFSHASNFSV4(nmp) && nmp->nm_minorvers >= NFSV42_MINORVERSION &&
(nmp->nm_privflag & NFSMNTP_NOALLOCATE) == 0) {
mtx_unlock(&nmp->nm_mtx);
/*
* Flush first to ensure that the allocate adds to the
* file's allocation on the server.
*/
error = ncl_flush(vp, MNT_WAIT, td, 1, 0);
if (error == 0)
error = nfsrpc_allocate(vp, *ap->a_offset, *ap->a_len,
&nfsva, &attrflag, td->td_ucred, td, NULL);
if (error == 0) {
*ap->a_offset += *ap->a_len;
*ap->a_len = 0;
} else if (error == NFSERR_NOTSUPP) {
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOALLOCATE;
mtx_unlock(&nmp->nm_mtx);
}
} else {
mtx_unlock(&nmp->nm_mtx);
error = EIO;
}
/*
* If the NFS server cannot perform the Allocate operation, just call
* vop_stdallocate() to perform it.
*/
if (error != 0)
error = vop_stdallocate(ap);
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (error == 0 && ret != 0)
error = ret;
}
if (error != 0)
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs copy_file_range call
*/
static int
nfs_copy_file_range(struct vop_copy_file_range_args *ap)
{
struct vnode *invp = ap->a_invp;
struct vnode *outvp = ap->a_outvp;
struct mount *mp;
struct nfsvattr innfsva, outnfsva;
struct vattr *vap;
struct uio io;
struct nfsmount *nmp;
size_t len, len2, copiedlen;
int error, inattrflag, outattrflag, ret, ret2;
off_t inoff, outoff;
bool consecutive, must_commit, tryoutcred;
ret = ret2 = 0;
nmp = VFSTONFS(invp->v_mount);
mtx_lock(&nmp->nm_mtx);
/* NFSv4.2 Copy is not permitted for infile == outfile. */
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(nmp->nm_privflag & NFSMNTP_NOCOPY) != 0 || invp == outvp) {
mtx_unlock(&nmp->nm_mtx);
error = vn_generic_copy_file_range(ap->a_invp, ap->a_inoffp,
ap->a_outvp, ap->a_outoffp, ap->a_lenp, ap->a_flags,
ap->a_incred, ap->a_outcred, ap->a_fsizetd);
return (error);
}
mtx_unlock(&nmp->nm_mtx);
/* Lock both vnodes, avoiding risk of deadlock. */
do {
mp = NULL;
error = vn_start_write(outvp, &mp, V_WAIT);
if (error == 0) {
error = vn_lock(outvp, LK_EXCLUSIVE);
if (error == 0) {
error = vn_lock(invp, LK_SHARED | LK_NOWAIT);
if (error == 0)
break;
VOP_UNLOCK(outvp);
if (mp != NULL)
vn_finished_write(mp);
mp = NULL;
error = vn_lock(invp, LK_SHARED);
if (error == 0)
VOP_UNLOCK(invp);
}
}
if (mp != NULL)
vn_finished_write(mp);
} while (error == 0);
if (error != 0)
return (error);
/*
* Do the vn_rlimit_fsize() check. Should this be above the VOP layer?
*/
io.uio_offset = *ap->a_outoffp;
io.uio_resid = *ap->a_lenp;
error = vn_rlimit_fsize(outvp, &io, ap->a_fsizetd);
/*
* Flush the input file so that the data is up to date before
* the copy. Flush writes for the output file so that they
* do not overwrite the data copied to the output file by the Copy.
* Set the commit argument for both flushes so that the data is on
* stable storage before the Copy RPC. This is done in case the
* server reboots during the Copy and needs to be redone.
*/
if (error == 0)
error = ncl_flush(invp, MNT_WAIT, curthread, 1, 0);
if (error == 0)
error = ncl_flush(outvp, MNT_WAIT, curthread, 1, 0);
/* Do the actual NFSv4.2 RPC. */
len = *ap->a_lenp;
mtx_lock(&nmp->nm_mtx);
if ((nmp->nm_privflag & NFSMNTP_NOCONSECUTIVE) == 0)
consecutive = true;
else
consecutive = false;
mtx_unlock(&nmp->nm_mtx);
inoff = *ap->a_inoffp;
outoff = *ap->a_outoffp;
tryoutcred = true;
must_commit = false;
if (error == 0) {
vap = &VTONFS(invp)->n_vattr.na_vattr;
error = VOP_GETATTR(invp, vap, ap->a_incred);
if (error == 0) {
/*
* Clip "len" at va_size so that RFC compliant servers
* will not reply NFSERR_INVAL.
* Setting "len == 0" for the RPC would be preferred,
* but some Linux servers do not support that.
*/
if (inoff >= vap->va_size)
*ap->a_lenp = len = 0;
else if (inoff + len > vap->va_size)
*ap->a_lenp = len = vap->va_size - inoff;
} else
error = 0;
}
copiedlen = 0;
while (len > 0 && error == 0) {
inattrflag = outattrflag = 0;
len2 = len;
if (tryoutcred)
error = nfsrpc_copy_file_range(invp, ap->a_inoffp,
outvp, ap->a_outoffp, &len2, ap->a_flags,
&inattrflag, &innfsva, &outattrflag, &outnfsva,
ap->a_outcred, consecutive, &must_commit);
else
error = nfsrpc_copy_file_range(invp, ap->a_inoffp,
outvp, ap->a_outoffp, &len2, ap->a_flags,
&inattrflag, &innfsva, &outattrflag, &outnfsva,
ap->a_incred, consecutive, &must_commit);
if (inattrflag != 0)
ret = nfscl_loadattrcache(&invp, &innfsva, NULL, NULL,
0, 1);
if (outattrflag != 0)
ret2 = nfscl_loadattrcache(&outvp, &outnfsva, NULL,
NULL, 1, 1);
if (error == 0) {
if (consecutive == false) {
if (len2 == len) {
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |=
NFSMNTP_NOCONSECUTIVE;
mtx_unlock(&nmp->nm_mtx);
} else
error = NFSERR_OFFLOADNOREQS;
}
/*
* If the Copy returns a length == 0, it hit the
* EOF on the input file.
*/
if (len2 == 0) {
*ap->a_lenp = copiedlen;
len = 0;
} else {
len -= len2;
copiedlen += len2;
}
if (len == 0 && must_commit && error == 0)
error = ncl_commit(outvp, outoff, *ap->a_lenp,
ap->a_outcred, curthread);
if (error == 0 && ret != 0)
error = ret;
if (error == 0 && ret2 != 0)
error = ret2;
} else if (error == NFSERR_OFFLOADNOREQS && consecutive) {
/*
* Try consecutive == false, which is ok only if all
* bytes are copied.
*/
consecutive = false;
error = 0;
} else if (error == NFSERR_ACCES && tryoutcred) {
/* Try again with incred. */
tryoutcred = false;
error = 0;
}
if (error == NFSERR_STALEWRITEVERF) {
/*
* Server rebooted, so do it all again.
*/
*ap->a_inoffp = inoff;
*ap->a_outoffp = outoff;
len = *ap->a_lenp;
must_commit = false;
error = 0;
}
}
VOP_UNLOCK(invp);
VOP_UNLOCK(outvp);
if (mp != NULL)
vn_finished_write(mp);
if (error == NFSERR_NOTSUPP || error == NFSERR_OFFLOADNOREQS ||
error == NFSERR_ACCES) {
/*
* Unlike the NFSv4.2 Copy, vn_generic_copy_file_range() can
* use a_incred for the read and a_outcred for the write, so
* try this for NFSERR_ACCES failures for the Copy.
* For NFSERR_NOTSUPP and NFSERR_OFFLOADNOREQS, the Copy can
* never succeed, so disable it.
*/
if (error != NFSERR_ACCES) {
/* Can never do Copy on this mount. */
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOCOPY;
mtx_unlock(&nmp->nm_mtx);
}
*ap->a_inoffp = inoff;
*ap->a_outoffp = outoff;
error = vn_generic_copy_file_range(ap->a_invp, ap->a_inoffp,
ap->a_outvp, ap->a_outoffp, ap->a_lenp, ap->a_flags,
ap->a_incred, ap->a_outcred, ap->a_fsizetd);
} else if (error != 0)
*ap->a_lenp = 0;
if (error != 0)
error = nfscl_maperr(curthread, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs ioctl call
*/
static int
nfs_ioctl(struct vop_ioctl_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsvattr nfsva;
struct nfsmount *nmp;
int attrflag, content, error, ret;
bool eof = false; /* shut up compiler. */
if (vp->v_type != VREG)
return (ENOTTY);
nmp = VFSTONFS(vp->v_mount);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION) {
error = vop_stdioctl(ap);
return (error);
}
/* Do the actual NFSv4.2 RPC. */
switch (ap->a_command) {
case FIOSEEKDATA:
content = NFSV4CONTENT_DATA;
break;
case FIOSEEKHOLE:
content = NFSV4CONTENT_HOLE;
break;
default:
return (ENOTTY);
}
error = vn_lock(vp, LK_SHARED);
if (error != 0)
return (EBADF);
attrflag = 0;
if (*((off_t *)ap->a_data) >= VTONFS(vp)->n_size)
error = ENXIO;
else {
/*
* Flush all writes, so that the server is up to date.
* Although a Commit is not required, the commit argument
* is set so that, for a pNFS File/Flexible File Layout
* server, the LayoutCommit will be done to ensure the file
* size is up to date on the Metadata Server.
*/
error = ncl_flush(vp, MNT_WAIT, ap->a_td, 1, 0);
if (error == 0)
error = nfsrpc_seek(vp, (off_t *)ap->a_data, &eof,
content, ap->a_cred, &nfsva, &attrflag);
/* If at eof for FIOSEEKDATA, return ENXIO. */
if (eof && error == 0 && content == NFSV4CONTENT_DATA)
error = ENXIO;
}
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (error == 0 && ret != 0)
error = ret;
}
NFSVOPUNLOCK(vp);
if (error != 0)
error = ENXIO;
return (error);
}
/*
* nfs getextattr call
*/
static int
nfs_getextattr(struct vop_getextattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsmount *nmp;
struct ucred *cred;
struct thread *td = ap->a_td;
struct nfsvattr nfsva;
ssize_t len;
int attrflag, error, ret;
nmp = VFSTONFS(vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(nmp->nm_privflag & NFSMNTP_NOXATTR) != 0 ||
ap->a_attrnamespace != EXTATTR_NAMESPACE_USER) {
mtx_unlock(&nmp->nm_mtx);
return (EOPNOTSUPP);
}
mtx_unlock(&nmp->nm_mtx);
cred = ap->a_cred;
if (cred == NULL)
cred = td->td_ucred;
/* Do the actual NFSv4.2 Optional Extended Attribute (RFC-8276) RPC. */
attrflag = 0;
error = nfsrpc_getextattr(vp, ap->a_name, ap->a_uio, &len, &nfsva,
&attrflag, cred, td);
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (error == 0 && ret != 0)
error = ret;
}
if (error == 0 && ap->a_size != NULL)
*ap->a_size = len;
switch (error) {
case NFSERR_NOTSUPP:
case NFSERR_OPILLEGAL:
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOXATTR;
mtx_unlock(&nmp->nm_mtx);
error = EOPNOTSUPP;
break;
case NFSERR_NOXATTR:
case NFSERR_XATTR2BIG:
error = ENOATTR;
break;
default:
error = nfscl_maperr(td, error, 0, 0);
break;
}
return (error);
}
/*
* nfs setextattr call
*/
static int
nfs_setextattr(struct vop_setextattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsmount *nmp;
struct ucred *cred;
struct thread *td = ap->a_td;
struct nfsvattr nfsva;
int attrflag, error, ret;
nmp = VFSTONFS(vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(nmp->nm_privflag & NFSMNTP_NOXATTR) != 0 ||
ap->a_attrnamespace != EXTATTR_NAMESPACE_USER) {
mtx_unlock(&nmp->nm_mtx);
return (EOPNOTSUPP);
}
mtx_unlock(&nmp->nm_mtx);
if (ap->a_uio->uio_resid <= 0)
return (EINVAL);
cred = ap->a_cred;
if (cred == NULL)
cred = td->td_ucred;
/* Do the actual NFSv4.2 Optional Extended Attribute (RFC-8276) RPC. */
attrflag = 0;
error = nfsrpc_setextattr(vp, ap->a_name, ap->a_uio, &nfsva,
&attrflag, cred, td);
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (error == 0 && ret != 0)
error = ret;
}
switch (error) {
case NFSERR_NOTSUPP:
case NFSERR_OPILLEGAL:
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOXATTR;
mtx_unlock(&nmp->nm_mtx);
error = EOPNOTSUPP;
break;
case NFSERR_NOXATTR:
case NFSERR_XATTR2BIG:
error = ENOATTR;
break;
default:
error = nfscl_maperr(td, error, 0, 0);
break;
}
return (error);
}
/*
* nfs listextattr call
*/
static int
nfs_listextattr(struct vop_listextattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsmount *nmp;
struct ucred *cred;
struct thread *td = ap->a_td;
struct nfsvattr nfsva;
size_t len, len2;
uint64_t cookie;
int attrflag, error, ret;
bool eof;
nmp = VFSTONFS(vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(nmp->nm_privflag & NFSMNTP_NOXATTR) != 0 ||
ap->a_attrnamespace != EXTATTR_NAMESPACE_USER) {
mtx_unlock(&nmp->nm_mtx);
return (EOPNOTSUPP);
}
mtx_unlock(&nmp->nm_mtx);
cred = ap->a_cred;
if (cred == NULL)
cred = td->td_ucred;
/* Loop around doing List Extended Attribute RPCs. */
eof = false;
cookie = 0;
len2 = 0;
error = 0;
while (!eof && error == 0) {
len = nmp->nm_rsize;
attrflag = 0;
error = nfsrpc_listextattr(vp, &cookie, ap->a_uio, &len, &eof,
&nfsva, &attrflag, cred, td);
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1);
if (error == 0 && ret != 0)
error = ret;
}
if (error == 0) {
len2 += len;
if (len2 > SSIZE_MAX)
error = ENOATTR;
}
}
if (error == 0 && ap->a_size != NULL)
*ap->a_size = len2;
switch (error) {
case NFSERR_NOTSUPP:
case NFSERR_OPILLEGAL:
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOXATTR;
mtx_unlock(&nmp->nm_mtx);
error = EOPNOTSUPP;
break;
case NFSERR_NOXATTR:
case NFSERR_XATTR2BIG:
error = ENOATTR;
break;
default:
error = nfscl_maperr(td, error, 0, 0);
break;
}
return (error);
}
/*
* nfs setextattr call
*/
static int
nfs_deleteextattr(struct vop_deleteextattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsmount *nmp;
struct nfsvattr nfsva;
int attrflag, error, ret;
nmp = VFSTONFS(vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(nmp->nm_privflag & NFSMNTP_NOXATTR) != 0 ||
ap->a_attrnamespace != EXTATTR_NAMESPACE_USER) {
mtx_unlock(&nmp->nm_mtx);
return (EOPNOTSUPP);
}
mtx_unlock(&nmp->nm_mtx);
/* Do the actual NFSv4.2 Optional Extended Attribute (RFC-8276) RPC. */
attrflag = 0;
error = nfsrpc_rmextattr(vp, ap->a_name, &nfsva, &attrflag, ap->a_cred,
ap->a_td);
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (error == 0 && ret != 0)
error = ret;
}
switch (error) {
case NFSERR_NOTSUPP:
case NFSERR_OPILLEGAL:
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOXATTR;
mtx_unlock(&nmp->nm_mtx);
error = EOPNOTSUPP;
break;
case NFSERR_NOXATTR:
case NFSERR_XATTR2BIG:
error = ENOATTR;
break;
default:
error = nfscl_maperr(ap->a_td, error, 0, 0);
break;
}
return (error);
}
/*
* Return POSIX pathconf information applicable to nfs filesystems.
*/
static int
nfs_pathconf(struct vop_pathconf_args *ap)
{
struct nfsv3_pathconf pc;
struct nfsvattr nfsva;
struct vnode *vp = ap->a_vp;
struct nfsmount *nmp;
struct thread *td = curthread;
off_t off;
bool eof;
int attrflag, error;
if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX ||
ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED ||
ap->a_name == _PC_NO_TRUNC)) ||
(NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) {
/*
* Since only the above 4 a_names are returned by the NFSv3
* Pathconf RPC, there is no point in doing it for others.
* For NFSv4, the Pathconf RPC (actually a Getattr Op.) can
* be used for _PC_NFS4_ACL as well.
*/
error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva,
&attrflag, NULL);
if (attrflag != 0)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1);
if (error != 0)
return (error);
} else {
/*
* For NFSv2 (or NFSv3 when not one of the above 4 a_names),
* just fake them.
*/
pc.pc_linkmax = NFS_LINK_MAX;
pc.pc_namemax = NFS_MAXNAMLEN;
pc.pc_notrunc = 1;
pc.pc_chownrestricted = 1;
pc.pc_caseinsensitive = 0;
pc.pc_casepreserving = 1;
error = 0;
}
switch (ap->a_name) {
case _PC_LINK_MAX:
#ifdef _LP64
*ap->a_retval = pc.pc_linkmax;
#else
*ap->a_retval = MIN(LONG_MAX, pc.pc_linkmax);
#endif
break;
case _PC_NAME_MAX:
*ap->a_retval = pc.pc_namemax;
break;
case _PC_PIPE_BUF:
if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO)
*ap->a_retval = PIPE_BUF;
else
error = EINVAL;
break;
case _PC_CHOWN_RESTRICTED:
*ap->a_retval = pc.pc_chownrestricted;
break;
case _PC_NO_TRUNC:
*ap->a_retval = pc.pc_notrunc;
break;
case _PC_ACL_NFS4:
if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 &&
NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL))
*ap->a_retval = 1;
else
*ap->a_retval = 0;
break;
case _PC_ACL_PATH_MAX:
if (NFS_ISV4(vp))
*ap->a_retval = ACL_MAX_ENTRIES;
else
*ap->a_retval = 3;
break;
case _PC_PRIO_IO:
*ap->a_retval = 0;
break;
case _PC_SYNC_IO:
*ap->a_retval = 0;
break;
case _PC_ALLOC_SIZE_MIN:
*ap->a_retval = vp->v_mount->mnt_stat.f_bsize;
break;
case _PC_FILESIZEBITS:
if (NFS_ISV34(vp))
*ap->a_retval = 64;
else
*ap->a_retval = 32;
break;
case _PC_REC_INCR_XFER_SIZE:
*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
break;
case _PC_REC_MAX_XFER_SIZE:
*ap->a_retval = -1; /* means ``unlimited'' */
break;
case _PC_REC_MIN_XFER_SIZE:
*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
break;
case _PC_REC_XFER_ALIGN:
*ap->a_retval = PAGE_SIZE;
break;
case _PC_SYMLINK_MAX:
*ap->a_retval = NFS_MAXPATHLEN;
break;
case _PC_MIN_HOLE_SIZE:
/* Only some NFSv4.2 servers support Seek for Holes. */
*ap->a_retval = 0;
nmp = VFSTONFS(vp->v_mount);
if (NFS_ISV4(vp) && nmp->nm_minorvers == NFSV42_MINORVERSION) {
/*
* NFSv4.2 doesn't have an attribute for hole size,
* so all we can do is see if the Seek operation is
* supported and then use f_iosize as a "best guess".
*/
mtx_lock(&nmp->nm_mtx);
if ((nmp->nm_privflag & NFSMNTP_SEEKTESTED) == 0) {
mtx_unlock(&nmp->nm_mtx);
off = 0;
attrflag = 0;
error = nfsrpc_seek(vp, &off, &eof,
NFSV4CONTENT_HOLE, td->td_ucred, &nfsva,
&attrflag);
if (attrflag != 0)
nfscl_loadattrcache(&vp, &nfsva,
NULL, NULL, 0, 1);
mtx_lock(&nmp->nm_mtx);
if (error == NFSERR_NOTSUPP)
nmp->nm_privflag |= NFSMNTP_SEEKTESTED;
else
nmp->nm_privflag |= NFSMNTP_SEEKTESTED |
NFSMNTP_SEEK;
error = 0;
}
if ((nmp->nm_privflag & NFSMNTP_SEEK) != 0)
*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
mtx_unlock(&nmp->nm_mtx);
}
break;
default:
error = vop_stdpathconf(ap);
break;
}
return (error);
}