freebsd-skq/sys/i386/xen/xen_machdep.c
gibbs fcdbf70fd9 Implement vector callback for PVHVM and unify event channel implementations
Re-structure Xen HVM support so that:
	- Xen is detected and hypercalls can be performed very
	  early in system startup.
	- Xen interrupt services are implemented using FreeBSD's native
	  interrupt delivery infrastructure.
	- the Xen interrupt service implementation is shared between PV
	  and HVM guests.
	- Xen interrupt handlers can optionally use a filter handler
	  in order to avoid the overhead of dispatch to an interrupt
	  thread.
	- interrupt load can be distributed among all available CPUs.
	- the overhead of accessing the emulated local and I/O apics
	  on HVM is removed for event channel port events.
	- a similar optimization can eventually, and fairly easily,
	  be used to optimize MSI.

Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure,
and misc Xen cleanups:

Sponsored by: Spectra Logic Corporation

Unification of PV & HVM interrupt infrastructure, bug fixes,
and misc Xen cleanups:

Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D

sys/x86/x86/local_apic.c:
sys/amd64/include/apicvar.h:
sys/i386/include/apicvar.h:
sys/amd64/amd64/apic_vector.S:
sys/i386/i386/apic_vector.s:
sys/amd64/amd64/machdep.c:
sys/i386/i386/machdep.c:
sys/i386/xen/exception.s:
sys/x86/include/segments.h:
	Reserve IDT vector 0x93 for the Xen event channel upcall
	interrupt handler.  On Hypervisors that support the direct
	vector callback feature, we can request that this vector be
	called directly by an injected HVM interrupt event, instead
	of a simulated PCI interrupt on the Xen platform PCI device.
	This avoids all of the overhead of dealing with the emulated
	I/O APIC and local APIC.  It also means that the Hypervisor
	can inject these events on any CPU, allowing upcalls for
	different ports to be handled in parallel.

sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
	Map Xen per-vcpu area during AP startup.

sys/amd64/include/intr_machdep.h:
sys/i386/include/intr_machdep.h:
	Increase the FreeBSD IRQ vector table to include space
	for event channel interrupt sources.

sys/amd64/include/pcpu.h:
sys/i386/include/pcpu.h:
	Remove Xen HVM per-cpu variable data.  These fields are now
	allocated via the dynamic per-cpu scheme.  See xen_intr.c
	for details.

sys/amd64/include/xen/hypercall.h:
sys/dev/xen/blkback/blkback.c:
sys/i386/include/xen/xenvar.h:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/xen/gnttab.c:
	Prefer FreeBSD primatives to Linux ones in Xen support code.

sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
sys/dev/xen/balloon/balloon.c:
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/console/xencons_ring.c:
sys/dev/xen/control/control.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/dev/xen/xenpci/xenpci.c:
sys/i386/i386/machdep.c:
sys/i386/include/pmap.h:
sys/i386/include/xen/xenfunc.h:
sys/i386/isa/npx.c:
sys/i386/xen/clock.c:
sys/i386/xen/mp_machdep.c:
sys/i386/xen/mptable.c:
sys/i386/xen/xen_clock_util.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/xen_rtc.c:
sys/xen/evtchn/evtchn_dev.c:
sys/xen/features.c:
sys/xen/gnttab.c:
sys/xen/gnttab.h:
sys/xen/hvm.h:
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbus_if.m:
sys/xen/xenbus/xenbusb_front.c:
sys/xen/xenbus/xenbusvar.h:
sys/xen/xenstore/xenstore.c:
sys/xen/xenstore/xenstore_dev.c:
sys/xen/xenstore/xenstorevar.h:
	Pull common Xen OS support functions/settings into xen/xen-os.h.

sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
	Remove constants, macros, and functions unused in FreeBSD's Xen
	support.

sys/xen/xen-os.h:
sys/i386/xen/xen_machdep.c:
sys/x86/xen/hvm.c:
	Introduce new functions xen_domain(), xen_pv_domain(), and
	xen_hvm_domain().  These are used in favor of #ifdefs so that
	FreeBSD can dynamically detect and adapt to the presence of
	a hypervisor.  The goal is to have an HVM optimized GENERIC,
	but more is necessary before this is possible.

sys/amd64/amd64/machdep.c:
sys/dev/xen/xenpci/xenpcivar.h:
sys/dev/xen/xenpci/xenpci.c:
sys/x86/xen/hvm.c:
sys/sys/kernel.h:
	Refactor magic ioport, Hypercall table and Hypervisor shared
	information page setup, and move it to a dedicated HVM support
	module.

	HVM mode initialization is now triggered during the
	SI_SUB_HYPERVISOR phase of system startup.  This currently
	occurs just after the kernel VM is fully setup which is
	just enough infrastructure to allow the hypercall table
	and shared info page to be properly mapped.

sys/xen/hvm.h:
sys/x86/xen/hvm.c:
	Add definitions and a method for configuring Hypervisor event
	delievery via a direct vector callback.

sys/amd64/include/xen/xen-os.h:
sys/x86/xen/hvm.c:

sys/conf/files:
sys/conf/files.amd64:
sys/conf/files.i386:
	Adjust kernel build to reflect the refactoring of early
	Xen startup code and Xen interrupt services.

sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
sys/dev/xen/control/control.c:
sys/dev/xen/evtchn/evtchn_dev.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/xen/xenstore/xenstore.c:
sys/xen/evtchn/evtchn_dev.c:
sys/dev/xen/console/console.c:
sys/dev/xen/console/xencons_ring.c
	Adjust drivers to use new xen_intr_*() API.

sys/dev/xen/blkback/blkback.c:
	Since blkback defers all event handling to a taskqueue,
	convert this task queue to a "fast" taskqueue, and schedule
	it via an interrupt filter.  This avoids an unnecessary
	ithread context switch.

sys/xen/xenstore/xenstore.c:
	The xenstore driver is MPSAFE.  Indicate as much when
	registering its interrupt handler.

sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbusvar.h:
	Remove unused event channel APIs.

sys/xen/evtchn.h:
	Remove all kernel Xen interrupt service API definitions
	from this file.  It is now only used for structure and
	ioctl definitions related to the event channel userland
	device driver.

	Update the definitions in this file to match those from
	NetBSD.  Implementing this interface will be necessary for
	Dom0 support.

sys/xen/evtchn/evtchnvar.h:
	Add a header file for implemenation internal APIs related
	to managing event channels event delivery.  This is used
	to allow, for example, the event channel userland device
	driver to access low-level routines that typical kernel
	consumers of event channel services should never access.

sys/xen/interface/event_channel.h:
sys/xen/xen_intr.h:
	Standardize on the evtchn_port_t type for referring to
	an event channel port id.  In order to prevent low-level
	event channel APIs from leaking to kernel consumers who
	should not have access to this data, the type is defined
	twice: Once in the Xen provided event_channel.h, and again
	in xen/xen_intr.h.  The double declaration is protected by
	__XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared
	twice within a given compilation unit.

sys/xen/xen_intr.h:
sys/xen/evtchn/evtchn.c:
sys/x86/xen/xen_intr.c:
sys/dev/xen/xenpci/evtchn.c:
sys/dev/xen/xenpci/xenpcivar.h:
	New implementation of Xen interrupt services.  This is
	similar in many respects to the i386 PV implementation with
	the exception that events for bound to event channel ports
	(i.e. not IPI, virtual IRQ, or physical IRQ) are further
	optimized to avoid mask/unmask operations that aren't
	necessary for these edge triggered events.

	Stubs exist for supporting physical IRQ binding, but will
	need additional work before this implementation can be
	fully shared between PV and HVM.

sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
sys/i386/xen/mp_machdep.c
sys/x86/xen/hvm.c:
	Add support for placing vcpu_info into an arbritary memory
	page instead of using HYPERVISOR_shared_info->vcpu_info.
	This allows the creation of domains with more than 32 vcpus.

sys/i386/i386/machdep.c:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/exception.s:
	Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00

1271 lines
31 KiB
C

/*
*
* Copyright (c) 2004 Christian Limpach.
* Copyright (c) 2004-2006,2008 Kip Macy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christian Limpach.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mount.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/rwlock.h>
#include <sys/sysproto.h>
#include <xen/xen-os.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/segments.h>
#include <machine/pcb.h>
#include <machine/stdarg.h>
#include <machine/vmparam.h>
#include <machine/cpu.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/asmacros.h>
#include <xen/hypervisor.h>
#include <machine/xen/xenvar.h>
#include <machine/xen/xenfunc.h>
#include <machine/xen/xenpmap.h>
#include <machine/xen/xenfunc.h>
#include <xen/interface/memory.h>
#include <machine/xen/features.h>
#ifdef SMP
#include <machine/privatespace.h>
#endif
#include <vm/vm_page.h>
#define IDTVEC(name) __CONCAT(X,name)
extern inthand_t
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
int xendebug_flags;
start_info_t *xen_start_info;
shared_info_t *HYPERVISOR_shared_info;
xen_pfn_t *xen_machine_phys = machine_to_phys_mapping;
xen_pfn_t *xen_phys_machine;
xen_pfn_t *xen_pfn_to_mfn_frame_list[16];
xen_pfn_t *xen_pfn_to_mfn_frame_list_list;
int preemptable, init_first;
extern unsigned int avail_space;
int xen_vector_callback_enabled = 0;
enum xen_domain_type xen_domain_type = XEN_PV_DOMAIN;
void ni_cli(void);
void ni_sti(void);
void
ni_cli(void)
{
CTR0(KTR_SPARE2, "ni_cli disabling interrupts");
__asm__("pushl %edx;"
"pushl %eax;"
);
__cli();
__asm__("popl %eax;"
"popl %edx;"
);
}
void
ni_sti(void)
{
__asm__("pushl %edx;"
"pushl %esi;"
"pushl %eax;"
);
__sti();
__asm__("popl %eax;"
"popl %esi;"
"popl %edx;"
);
}
void
force_evtchn_callback(void)
{
(void)HYPERVISOR_xen_version(0, NULL);
}
/*
* Modify the cmd_line by converting ',' to NULLs so that it is in a format
* suitable for the static env vars.
*/
char *
xen_setbootenv(char *cmd_line)
{
char *cmd_line_next;
/* Skip leading spaces */
for (; *cmd_line == ' '; cmd_line++);
xc_printf("xen_setbootenv(): cmd_line='%s'\n", cmd_line);
for (cmd_line_next = cmd_line; strsep(&cmd_line_next, ",") != NULL;);
return cmd_line;
}
static struct
{
const char *ev;
int mask;
} howto_names[] = {
{"boot_askname", RB_ASKNAME},
{"boot_single", RB_SINGLE},
{"boot_nosync", RB_NOSYNC},
{"boot_halt", RB_ASKNAME},
{"boot_serial", RB_SERIAL},
{"boot_cdrom", RB_CDROM},
{"boot_gdb", RB_GDB},
{"boot_gdb_pause", RB_RESERVED1},
{"boot_verbose", RB_VERBOSE},
{"boot_multicons", RB_MULTIPLE},
{NULL, 0}
};
int
xen_boothowto(char *envp)
{
int i, howto = 0;
/* get equivalents from the environment */
for (i = 0; howto_names[i].ev != NULL; i++)
if (getenv(howto_names[i].ev) != NULL)
howto |= howto_names[i].mask;
return howto;
}
#define XC_PRINTF_BUFSIZE 1024
void
xc_printf(const char *fmt, ...)
{
__va_list ap;
int retval;
static char buf[XC_PRINTF_BUFSIZE];
va_start(ap, fmt);
retval = vsnprintf(buf, XC_PRINTF_BUFSIZE - 1, fmt, ap);
va_end(ap);
buf[retval] = 0;
(void)HYPERVISOR_console_write(buf, retval);
}
#define XPQUEUE_SIZE 128
struct mmu_log {
char *file;
int line;
};
#ifdef SMP
/* per-cpu queues and indices */
#ifdef INVARIANTS
static struct mmu_log xpq_queue_log[XEN_LEGACY_MAX_VCPUS][XPQUEUE_SIZE];
#endif
static int xpq_idx[XEN_LEGACY_MAX_VCPUS];
static mmu_update_t xpq_queue[XEN_LEGACY_MAX_VCPUS][XPQUEUE_SIZE];
#define XPQ_QUEUE_LOG xpq_queue_log[vcpu]
#define XPQ_QUEUE xpq_queue[vcpu]
#define XPQ_IDX xpq_idx[vcpu]
#define SET_VCPU() int vcpu = smp_processor_id()
#else
static mmu_update_t xpq_queue[XPQUEUE_SIZE];
#ifdef INVARIANTS
static struct mmu_log xpq_queue_log[XPQUEUE_SIZE];
#endif
static int xpq_idx = 0;
#define XPQ_QUEUE_LOG xpq_queue_log
#define XPQ_QUEUE xpq_queue
#define XPQ_IDX xpq_idx
#define SET_VCPU()
#endif /* !SMP */
#define XPQ_IDX_INC atomic_add_int(&XPQ_IDX, 1);
#if 0
static void
xen_dump_queue(void)
{
int _xpq_idx = XPQ_IDX;
int i;
if (_xpq_idx <= 1)
return;
xc_printf("xen_dump_queue(): %u entries\n", _xpq_idx);
for (i = 0; i < _xpq_idx; i++) {
xc_printf(" val: %llx ptr: %llx\n", XPQ_QUEUE[i].val,
XPQ_QUEUE[i].ptr);
}
}
#endif
static __inline void
_xen_flush_queue(void)
{
SET_VCPU();
int _xpq_idx = XPQ_IDX;
int error, i;
#ifdef INVARIANTS
if (__predict_true(gdtset))
CRITICAL_ASSERT(curthread);
#endif
XPQ_IDX = 0;
/* Make sure index is cleared first to avoid double updates. */
error = HYPERVISOR_mmu_update((mmu_update_t *)&XPQ_QUEUE,
_xpq_idx, NULL, DOMID_SELF);
#if 0
if (__predict_true(gdtset))
for (i = _xpq_idx; i > 0;) {
if (i >= 3) {
CTR6(KTR_PMAP, "mmu:val: %lx ptr: %lx val: %lx "
"ptr: %lx val: %lx ptr: %lx",
(XPQ_QUEUE[i-1].val & 0xffffffff),
(XPQ_QUEUE[i-1].ptr & 0xffffffff),
(XPQ_QUEUE[i-2].val & 0xffffffff),
(XPQ_QUEUE[i-2].ptr & 0xffffffff),
(XPQ_QUEUE[i-3].val & 0xffffffff),
(XPQ_QUEUE[i-3].ptr & 0xffffffff));
i -= 3;
} else if (i == 2) {
CTR4(KTR_PMAP, "mmu: val: %lx ptr: %lx val: %lx ptr: %lx",
(XPQ_QUEUE[i-1].val & 0xffffffff),
(XPQ_QUEUE[i-1].ptr & 0xffffffff),
(XPQ_QUEUE[i-2].val & 0xffffffff),
(XPQ_QUEUE[i-2].ptr & 0xffffffff));
i = 0;
} else {
CTR2(KTR_PMAP, "mmu: val: %lx ptr: %lx",
(XPQ_QUEUE[i-1].val & 0xffffffff),
(XPQ_QUEUE[i-1].ptr & 0xffffffff));
i = 0;
}
}
#endif
if (__predict_false(error < 0)) {
for (i = 0; i < _xpq_idx; i++)
printf("val: %llx ptr: %llx\n",
XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
panic("Failed to execute MMU updates: %d", error);
}
}
void
xen_flush_queue(void)
{
SET_VCPU();
if (__predict_true(gdtset))
critical_enter();
if (XPQ_IDX != 0) _xen_flush_queue();
if (__predict_true(gdtset))
critical_exit();
}
static __inline void
xen_increment_idx(void)
{
SET_VCPU();
XPQ_IDX++;
if (__predict_false(XPQ_IDX == XPQUEUE_SIZE))
xen_flush_queue();
}
void
xen_check_queue(void)
{
#ifdef INVARIANTS
SET_VCPU();
KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
#endif
}
void
xen_invlpg(vm_offset_t va)
{
struct mmuext_op op;
op.cmd = MMUEXT_INVLPG_ALL;
op.arg1.linear_addr = va & ~PAGE_MASK;
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_load_cr3(u_int val)
{
struct mmuext_op op;
#ifdef INVARIANTS
SET_VCPU();
KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
#endif
op.cmd = MMUEXT_NEW_BASEPTR;
op.arg1.mfn = xpmap_ptom(val) >> PAGE_SHIFT;
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
#ifdef KTR
static __inline u_int
rebp(void)
{
u_int data;
__asm __volatile("movl 4(%%ebp),%0" : "=r" (data));
return (data);
}
#endif
u_int
read_eflags(void)
{
vcpu_info_t *_vcpu;
u_int eflags;
eflags = _read_eflags();
_vcpu = &HYPERVISOR_shared_info->vcpu_info[smp_processor_id()];
if (_vcpu->evtchn_upcall_mask)
eflags &= ~PSL_I;
return (eflags);
}
void
write_eflags(u_int eflags)
{
u_int intr;
CTR2(KTR_SPARE2, "%x xen_restore_flags eflags %x", rebp(), eflags);
intr = ((eflags & PSL_I) == 0);
__restore_flags(intr);
_write_eflags(eflags);
}
void
xen_cli(void)
{
CTR1(KTR_SPARE2, "%x xen_cli disabling interrupts", rebp());
__cli();
}
void
xen_sti(void)
{
CTR1(KTR_SPARE2, "%x xen_sti enabling interrupts", rebp());
__sti();
}
u_int
xen_rcr2(void)
{
return (HYPERVISOR_shared_info->vcpu_info[curcpu].arch.cr2);
}
void
_xen_machphys_update(vm_paddr_t mfn, vm_paddr_t pfn, char *file, int line)
{
SET_VCPU();
if (__predict_true(gdtset))
critical_enter();
XPQ_QUEUE[XPQ_IDX].ptr = (mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE;
XPQ_QUEUE[XPQ_IDX].val = pfn;
#ifdef INVARIANTS
XPQ_QUEUE_LOG[XPQ_IDX].file = file;
XPQ_QUEUE_LOG[XPQ_IDX].line = line;
#endif
xen_increment_idx();
if (__predict_true(gdtset))
critical_exit();
}
extern struct rwlock pvh_global_lock;
void
_xen_queue_pt_update(vm_paddr_t ptr, vm_paddr_t val, char *file, int line)
{
SET_VCPU();
if (__predict_true(gdtset))
rw_assert(&pvh_global_lock, RA_WLOCKED);
KASSERT((ptr & 7) == 0, ("misaligned update"));
if (__predict_true(gdtset))
critical_enter();
XPQ_QUEUE[XPQ_IDX].ptr = ((uint64_t)ptr) | MMU_NORMAL_PT_UPDATE;
XPQ_QUEUE[XPQ_IDX].val = (uint64_t)val;
#ifdef INVARIANTS
XPQ_QUEUE_LOG[XPQ_IDX].file = file;
XPQ_QUEUE_LOG[XPQ_IDX].line = line;
#endif
xen_increment_idx();
if (__predict_true(gdtset))
critical_exit();
}
void
xen_pgdpt_pin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_PIN_L3_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pgd_pin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_PIN_L2_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pgd_unpin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_UNPIN_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pt_pin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_PIN_L1_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pt_unpin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_UNPIN_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_set_ldt(vm_paddr_t ptr, unsigned long len)
{
struct mmuext_op op;
op.cmd = MMUEXT_SET_LDT;
op.arg1.linear_addr = ptr;
op.arg2.nr_ents = len;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void xen_tlb_flush(void)
{
struct mmuext_op op;
op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_update_descriptor(union descriptor *table, union descriptor *entry)
{
vm_paddr_t pa;
pt_entry_t *ptp;
ptp = vtopte((vm_offset_t)table);
pa = (*ptp & PG_FRAME) | ((vm_offset_t)table & PAGE_MASK);
if (HYPERVISOR_update_descriptor(pa, *(uint64_t *)entry))
panic("HYPERVISOR_update_descriptor failed\n");
}
#if 0
/*
* Bitmap is indexed by page number. If bit is set, the page is part of a
* xen_create_contiguous_region() area of memory.
*/
unsigned long *contiguous_bitmap;
static void
contiguous_bitmap_set(unsigned long first_page, unsigned long nr_pages)
{
unsigned long start_off, end_off, curr_idx, end_idx;
curr_idx = first_page / BITS_PER_LONG;
start_off = first_page & (BITS_PER_LONG-1);
end_idx = (first_page + nr_pages) / BITS_PER_LONG;
end_off = (first_page + nr_pages) & (BITS_PER_LONG-1);
if (curr_idx == end_idx) {
contiguous_bitmap[curr_idx] |=
((1UL<<end_off)-1) & -(1UL<<start_off);
} else {
contiguous_bitmap[curr_idx] |= -(1UL<<start_off);
while ( ++curr_idx < end_idx )
contiguous_bitmap[curr_idx] = ~0UL;
contiguous_bitmap[curr_idx] |= (1UL<<end_off)-1;
}
}
static void
contiguous_bitmap_clear(unsigned long first_page, unsigned long nr_pages)
{
unsigned long start_off, end_off, curr_idx, end_idx;
curr_idx = first_page / BITS_PER_LONG;
start_off = first_page & (BITS_PER_LONG-1);
end_idx = (first_page + nr_pages) / BITS_PER_LONG;
end_off = (first_page + nr_pages) & (BITS_PER_LONG-1);
if (curr_idx == end_idx) {
contiguous_bitmap[curr_idx] &=
-(1UL<<end_off) | ((1UL<<start_off)-1);
} else {
contiguous_bitmap[curr_idx] &= (1UL<<start_off)-1;
while ( ++curr_idx != end_idx )
contiguous_bitmap[curr_idx] = 0;
contiguous_bitmap[curr_idx] &= -(1UL<<end_off);
}
}
#endif
/* Ensure multi-page extents are contiguous in machine memory. */
int
xen_create_contiguous_region(vm_page_t pages, int npages)
{
unsigned long mfn, i, flags;
int order;
struct xen_memory_reservation reservation = {
.nr_extents = 1,
.extent_order = 0,
.domid = DOMID_SELF
};
set_xen_guest_handle(reservation.extent_start, &mfn);
balloon_lock(flags);
/* can currently only handle power of two allocation */
PANIC_IF(ffs(npages) != fls(npages));
/* 0. determine order */
order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
/* 1. give away machine pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
mfn = PFNTOMFN(pfn);
PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
PANIC_IF(HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation) != 1);
}
/* 2. Get a new contiguous memory extent. */
reservation.extent_order = order;
/* xenlinux hardcodes this because of aacraid - maybe set to 0 if we're not
* running with a broxen driver XXXEN
*/
reservation.address_bits = 31;
if (HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1)
goto fail;
/* 3. Map the new extent in place of old pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
xen_machphys_update(mfn+i, pfn);
PFNTOMFN(pfn) = mfn+i;
}
xen_tlb_flush();
#if 0
contiguous_bitmap_set(VM_PAGE_TO_PHYS(&pages[0]) >> PAGE_SHIFT, 1UL << order);
#endif
balloon_unlock(flags);
return 0;
fail:
reservation.extent_order = 0;
reservation.address_bits = 0;
for (i = 0; i < (1 << order); i++) {
int pfn;
pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
PANIC_IF(HYPERVISOR_memory_op(
XENMEM_increase_reservation, &reservation) != 1);
xen_machphys_update(mfn, pfn);
PFNTOMFN(pfn) = mfn;
}
xen_tlb_flush();
balloon_unlock(flags);
return ENOMEM;
}
void
xen_destroy_contiguous_region(void *addr, int npages)
{
unsigned long mfn, i, flags, order, pfn0;
struct xen_memory_reservation reservation = {
.nr_extents = 1,
.extent_order = 0,
.domid = DOMID_SELF
};
set_xen_guest_handle(reservation.extent_start, &mfn);
pfn0 = vtophys(addr) >> PAGE_SHIFT;
#if 0
scrub_pages(vstart, 1 << order);
#endif
/* can currently only handle power of two allocation */
PANIC_IF(ffs(npages) != fls(npages));
/* 0. determine order */
order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
balloon_lock(flags);
#if 0
contiguous_bitmap_clear(vtophys(addr) >> PAGE_SHIFT, 1UL << order);
#endif
/* 1. Zap current PTEs, giving away the underlying pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
uint64_t new_val = 0;
pfn = vtomach((char *)addr + i*PAGE_SIZE) >> PAGE_SHIFT;
PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)((char *)addr + (i * PAGE_SIZE)), new_val, 0));
PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
PANIC_IF(HYPERVISOR_memory_op(
XENMEM_decrease_reservation, &reservation) != 1);
}
/* 2. Map new pages in place of old pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
uint64_t new_val;
pfn = pfn0 + i;
PANIC_IF(HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1);
new_val = mfn << PAGE_SHIFT;
PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)addr + (i * PAGE_SIZE),
new_val, PG_KERNEL));
xen_machphys_update(mfn, pfn);
PFNTOMFN(pfn) = mfn;
}
xen_tlb_flush();
balloon_unlock(flags);
}
extern vm_offset_t proc0kstack;
extern int vm86paddr, vm86phystk;
char *bootmem_start, *bootmem_current, *bootmem_end;
pteinfo_t *pteinfo_list;
void initvalues(start_info_t *startinfo);
struct xenstore_domain_interface;
extern struct xenstore_domain_interface *xen_store;
char *console_page;
void *
bootmem_alloc(unsigned int size)
{
char *retptr;
retptr = bootmem_current;
PANIC_IF(retptr + size > bootmem_end);
bootmem_current += size;
return retptr;
}
void
bootmem_free(void *ptr, unsigned int size)
{
char *tptr;
tptr = ptr;
PANIC_IF(tptr != bootmem_current - size ||
bootmem_current - size < bootmem_start);
bootmem_current -= size;
}
#if 0
static vm_paddr_t
xpmap_mtop2(vm_paddr_t mpa)
{
return ((machine_to_phys_mapping[mpa >> PAGE_SHIFT] << PAGE_SHIFT)
) | (mpa & ~PG_FRAME);
}
static pd_entry_t
xpmap_get_bootpde(vm_paddr_t va)
{
return ((pd_entry_t *)xen_start_info->pt_base)[va >> 22];
}
static pd_entry_t
xpmap_get_vbootpde(vm_paddr_t va)
{
pd_entry_t pde;
pde = xpmap_get_bootpde(va);
if ((pde & PG_V) == 0)
return (pde & ~PG_FRAME);
return (pde & ~PG_FRAME) |
(xpmap_mtop2(pde & PG_FRAME) + KERNBASE);
}
static pt_entry_t 8*
xpmap_get_bootptep(vm_paddr_t va)
{
pd_entry_t pde;
pde = xpmap_get_vbootpde(va);
if ((pde & PG_V) == 0)
return (void *)-1;
#define PT_MASK 0x003ff000 /* page table address bits */
return &(((pt_entry_t *)(pde & PG_FRAME))[(va & PT_MASK) >> PAGE_SHIFT]);
}
static pt_entry_t
xpmap_get_bootpte(vm_paddr_t va)
{
return xpmap_get_bootptep(va)[0];
}
#endif
#ifdef ADD_ISA_HOLE
static void
shift_phys_machine(unsigned long *phys_machine, int nr_pages)
{
unsigned long *tmp_page, *current_page, *next_page;
int i;
tmp_page = bootmem_alloc(PAGE_SIZE);
current_page = phys_machine + nr_pages - (PAGE_SIZE/sizeof(unsigned long));
next_page = current_page - (PAGE_SIZE/sizeof(unsigned long));
bcopy(phys_machine, tmp_page, PAGE_SIZE);
while (current_page > phys_machine) {
/* save next page */
bcopy(next_page, tmp_page, PAGE_SIZE);
/* shift down page */
bcopy(current_page, next_page, PAGE_SIZE);
/* finish swap */
bcopy(tmp_page, current_page, PAGE_SIZE);
current_page -= (PAGE_SIZE/sizeof(unsigned long));
next_page -= (PAGE_SIZE/sizeof(unsigned long));
}
bootmem_free(tmp_page, PAGE_SIZE);
for (i = 0; i < nr_pages; i++) {
xen_machphys_update(phys_machine[i], i);
}
memset(phys_machine, INVALID_P2M_ENTRY, PAGE_SIZE);
}
#endif /* ADD_ISA_HOLE */
/*
* Build a directory of the pages that make up our Physical to Machine
* mapping table. The Xen suspend/restore code uses this to find our
* mapping table.
*/
static void
init_frame_list_list(void *arg)
{
unsigned long nr_pages = xen_start_info->nr_pages;
#define FPP (PAGE_SIZE/sizeof(xen_pfn_t))
int i, j, k;
xen_pfn_to_mfn_frame_list_list = malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
for (i = 0, j = 0, k = -1; i < nr_pages;
i += FPP, j++) {
if ((j & (FPP - 1)) == 0) {
k++;
xen_pfn_to_mfn_frame_list[k] =
malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
xen_pfn_to_mfn_frame_list_list[k] =
VTOMFN(xen_pfn_to_mfn_frame_list[k]);
j = 0;
}
xen_pfn_to_mfn_frame_list[k][j] =
VTOMFN(&xen_phys_machine[i]);
}
HYPERVISOR_shared_info->arch.max_pfn = nr_pages;
HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list
= VTOMFN(xen_pfn_to_mfn_frame_list_list);
}
SYSINIT(init_fll, SI_SUB_DEVFS, SI_ORDER_ANY, init_frame_list_list, NULL);
extern unsigned long physfree;
int pdir, curoffset;
extern int nkpt;
extern uint32_t kernbase;
void
initvalues(start_info_t *startinfo)
{
vm_offset_t cur_space, cur_space_pt;
struct physdev_set_iopl set_iopl;
int l3_pages, l2_pages, l1_pages, offset;
vm_paddr_t console_page_ma, xen_store_ma;
vm_offset_t tmpva;
vm_paddr_t shinfo;
#ifdef PAE
vm_paddr_t IdlePDPTma, IdlePDPTnewma;
vm_paddr_t IdlePTDnewma[4];
pd_entry_t *IdlePDPTnew, *IdlePTDnew;
vm_paddr_t IdlePTDma[4];
#else
vm_paddr_t IdlePTDma[1];
#endif
unsigned long i;
int ncpus = MAXCPU;
nkpt = min(
min(
max((startinfo->nr_pages >> NPGPTD_SHIFT), nkpt),
NPGPTD*NPDEPG - KPTDI),
(HYPERVISOR_VIRT_START - KERNBASE) >> PDRSHIFT);
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
#ifdef notyet
/*
* need to install handler
*/
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments_notify);
#endif
xen_start_info = startinfo;
xen_phys_machine = (xen_pfn_t *)startinfo->mfn_list;
IdlePTD = (pd_entry_t *)((uint8_t *)startinfo->pt_base + PAGE_SIZE);
l1_pages = 0;
#ifdef PAE
l3_pages = 1;
l2_pages = 0;
IdlePDPT = (pd_entry_t *)startinfo->pt_base;
IdlePDPTma = VTOM(startinfo->pt_base);
for (i = (KERNBASE >> 30);
(i < 4) && (IdlePDPT[i] != 0); i++)
l2_pages++;
/*
* Note that only one page directory has been allocated at this point.
* Thus, if KERNBASE
*/
for (i = 0; i < l2_pages; i++)
IdlePTDma[i] = VTOM(IdlePTD + i*PAGE_SIZE);
l2_pages = (l2_pages == 0) ? 1 : l2_pages;
#else
l3_pages = 0;
l2_pages = 1;
#endif
for (i = (((KERNBASE>>18) & PAGE_MASK)>>PAGE_SHIFT);
(i<l2_pages*NPDEPG) && (i<(VM_MAX_KERNEL_ADDRESS>>PDRSHIFT)); i++) {
if (IdlePTD[i] == 0)
break;
l1_pages++;
}
/* number of pages allocated after the pts + 1*/;
cur_space = xen_start_info->pt_base +
(l3_pages + l2_pages + l1_pages + 1)*PAGE_SIZE;
xc_printf("initvalues(): wooh - availmem=%x,%x\n", avail_space,
cur_space);
xc_printf("KERNBASE=%x,pt_base=%x, VTOPFN(base)=%x, nr_pt_frames=%x\n",
KERNBASE,xen_start_info->pt_base, VTOPFN(xen_start_info->pt_base),
xen_start_info->nr_pt_frames);
xendebug_flags = 0; /* 0xffffffff; */
#ifdef ADD_ISA_HOLE
shift_phys_machine(xen_phys_machine, xen_start_info->nr_pages);
#endif
XENPRINTF("IdlePTD %p\n", IdlePTD);
XENPRINTF("nr_pages: %ld shared_info: 0x%lx flags: 0x%lx pt_base: 0x%lx "
"mod_start: 0x%lx mod_len: 0x%lx\n",
xen_start_info->nr_pages, xen_start_info->shared_info,
xen_start_info->flags, xen_start_info->pt_base,
xen_start_info->mod_start, xen_start_info->mod_len);
#ifdef PAE
IdlePDPTnew = (pd_entry_t *)cur_space; cur_space += PAGE_SIZE;
bzero(IdlePDPTnew, PAGE_SIZE);
IdlePDPTnewma = VTOM(IdlePDPTnew);
IdlePTDnew = (pd_entry_t *)cur_space; cur_space += 4*PAGE_SIZE;
bzero(IdlePTDnew, 4*PAGE_SIZE);
for (i = 0; i < 4; i++)
IdlePTDnewma[i] = VTOM((uint8_t *)IdlePTDnew + i*PAGE_SIZE);
/*
* L3
*
* Copy the 4 machine addresses of the new PTDs in to the PDPT
*
*/
for (i = 0; i < 4; i++)
IdlePDPTnew[i] = IdlePTDnewma[i] | PG_V;
__asm__("nop;");
/*
*
* re-map the new PDPT read-only
*/
PT_SET_MA(IdlePDPTnew, IdlePDPTnewma | PG_V);
/*
*
* Unpin the current PDPT
*/
xen_pt_unpin(IdlePDPTma);
#endif /* PAE */
/* Map proc0's KSTACK */
proc0kstack = cur_space; cur_space += (KSTACK_PAGES * PAGE_SIZE);
xc_printf("proc0kstack=%u\n", proc0kstack);
/* vm86/bios stack */
cur_space += PAGE_SIZE;
/* Map space for the vm86 region */
vm86paddr = (vm_offset_t)cur_space;
cur_space += (PAGE_SIZE * 3);
/* allocate 4 pages for bootmem allocator */
bootmem_start = bootmem_current = (char *)cur_space;
cur_space += (4 * PAGE_SIZE);
bootmem_end = (char *)cur_space;
/* allocate pages for gdt */
gdt = (union descriptor *)cur_space;
cur_space += PAGE_SIZE*ncpus;
/* allocate page for ldt */
ldt = (union descriptor *)cur_space; cur_space += PAGE_SIZE;
cur_space += PAGE_SIZE;
/* unmap remaining pages from initial chunk
*
*/
for (tmpva = cur_space; tmpva < (((uint32_t)&kernbase) + (l1_pages<<PDRSHIFT));
tmpva += PAGE_SIZE) {
bzero((char *)tmpva, PAGE_SIZE);
PT_SET_MA(tmpva, (vm_paddr_t)0);
}
PT_UPDATES_FLUSH();
memcpy(((uint8_t *)IdlePTDnew) + ((unsigned int)(KERNBASE >> 18)),
((uint8_t *)IdlePTD) + ((KERNBASE >> 18) & PAGE_MASK),
l1_pages*sizeof(pt_entry_t));
for (i = 0; i < 4; i++) {
PT_SET_MA((uint8_t *)IdlePTDnew + i*PAGE_SIZE,
IdlePTDnewma[i] | PG_V);
}
xen_load_cr3(VTOP(IdlePDPTnew));
xen_pgdpt_pin(VTOM(IdlePDPTnew));
/* allocate remainder of nkpt pages */
cur_space_pt = cur_space;
for (offset = (KERNBASE >> PDRSHIFT), i = l1_pages; i < nkpt;
i++, cur_space += PAGE_SIZE) {
pdir = (offset + i) / NPDEPG;
curoffset = ((offset + i) % NPDEPG);
if (((offset + i) << PDRSHIFT) == VM_MAX_KERNEL_ADDRESS)
break;
/*
* make sure that all the initial page table pages
* have been zeroed
*/
PT_SET_MA(cur_space, VTOM(cur_space) | PG_V | PG_RW);
bzero((char *)cur_space, PAGE_SIZE);
PT_SET_MA(cur_space, (vm_paddr_t)0);
xen_pt_pin(VTOM(cur_space));
xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
curoffset*sizeof(vm_paddr_t)),
VTOM(cur_space) | PG_KERNEL);
PT_UPDATES_FLUSH();
}
for (i = 0; i < 4; i++) {
pdir = (PTDPTDI + i) / NPDEPG;
curoffset = (PTDPTDI + i) % NPDEPG;
xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
curoffset*sizeof(vm_paddr_t)),
IdlePTDnewma[i] | PG_V);
}
PT_UPDATES_FLUSH();
IdlePTD = IdlePTDnew;
IdlePDPT = IdlePDPTnew;
IdlePDPTma = IdlePDPTnewma;
HYPERVISOR_shared_info = (shared_info_t *)cur_space;
cur_space += PAGE_SIZE;
xen_store = (struct xenstore_domain_interface *)cur_space;
cur_space += PAGE_SIZE;
console_page = (char *)cur_space;
cur_space += PAGE_SIZE;
/*
* shared_info is an unsigned long so this will randomly break if
* it is allocated above 4GB - I guess people are used to that
* sort of thing with Xen ... sigh
*/
shinfo = xen_start_info->shared_info;
PT_SET_MA(HYPERVISOR_shared_info, shinfo | PG_KERNEL);
xc_printf("#4\n");
xen_store_ma = (((vm_paddr_t)xen_start_info->store_mfn) << PAGE_SHIFT);
PT_SET_MA(xen_store, xen_store_ma | PG_KERNEL);
console_page_ma = (((vm_paddr_t)xen_start_info->console.domU.mfn) << PAGE_SHIFT);
PT_SET_MA(console_page, console_page_ma | PG_KERNEL);
xc_printf("#5\n");
set_iopl.iopl = 1;
PANIC_IF(HYPERVISOR_physdev_op(PHYSDEVOP_SET_IOPL, &set_iopl));
xc_printf("#6\n");
#if 0
/* add page table for KERNBASE */
xen_queue_pt_update(IdlePTDma + KPTDI*sizeof(vm_paddr_t),
VTOM(cur_space) | PG_KERNEL);
xen_flush_queue();
#ifdef PAE
xen_queue_pt_update(pdir_shadow_ma[3] + KPTDI*sizeof(vm_paddr_t),
VTOM(cur_space) | PG_V | PG_A);
#else
xen_queue_pt_update(pdir_shadow_ma + KPTDI*sizeof(vm_paddr_t),
VTOM(cur_space) | PG_V | PG_A);
#endif
xen_flush_queue();
cur_space += PAGE_SIZE;
xc_printf("#6\n");
#endif /* 0 */
#ifdef notyet
if (xen_start_info->flags & SIF_INITDOMAIN) {
/* Map first megabyte */
for (i = 0; i < (256 << PAGE_SHIFT); i += PAGE_SIZE)
PT_SET_MA(KERNBASE + i, i | PG_KERNEL | PG_NC_PCD);
xen_flush_queue();
}
#endif
/*
* re-map kernel text read-only
*
*/
for (i = (((vm_offset_t)&btext) & ~PAGE_MASK);
i < (((vm_offset_t)&etext) & ~PAGE_MASK); i += PAGE_SIZE)
PT_SET_MA(i, VTOM(i) | PG_V | PG_A);
xc_printf("#7\n");
physfree = VTOP(cur_space);
init_first = physfree >> PAGE_SHIFT;
IdlePTD = (pd_entry_t *)VTOP(IdlePTD);
IdlePDPT = (pd_entry_t *)VTOP(IdlePDPT);
setup_xen_features();
xc_printf("#8, proc0kstack=%u\n", proc0kstack);
}
trap_info_t trap_table[] = {
{ 0, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(div)},
{ 1, 0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dbg)},
{ 3, 3|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bpt)},
{ 4, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ofl)},
/* This is UPL on Linux and KPL on BSD */
{ 5, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bnd)},
{ 6, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ill)},
{ 7, 0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dna)},
/*
* { 8, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(XXX)},
* no handler for double fault
*/
{ 9, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpusegm)},
{10, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(tss)},
{11, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(missing)},
{12, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(stk)},
{13, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(prot)},
{14, 0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(page)},
{15, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(rsvd)},
{16, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpu)},
{17, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(align)},
{18, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(mchk)},
{19, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(xmm)},
{0x80, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(int0x80_syscall)},
{ 0, 0, 0, 0 }
};
/* Perform a multicall and check that individual calls succeeded. */
int
HYPERVISOR_multicall(struct multicall_entry * call_list, int nr_calls)
{
int ret = 0;
int i;
/* Perform the multicall. */
PANIC_IF(_HYPERVISOR_multicall(call_list, nr_calls));
/* Check the results of individual hypercalls. */
for (i = 0; i < nr_calls; i++)
if (__predict_false(call_list[i].result < 0))
ret++;
if (__predict_false(ret > 0))
panic("%d multicall(s) failed: cpu %d\n",
ret, smp_processor_id());
/* If we didn't panic already, everything succeeded. */
return (0);
}
/********** CODE WORTH KEEPING ABOVE HERE *****************/
void xen_failsafe_handler(void);
void
xen_failsafe_handler(void)
{
panic("xen_failsafe_handler called!\n");
}
void xen_handle_thread_switch(struct pcb *pcb);
/* This is called by cpu_switch() when switching threads. */
/* The pcb arg refers to the process control block of the */
/* next thread which is to run */
void
xen_handle_thread_switch(struct pcb *pcb)
{
uint32_t *a = (uint32_t *)&PCPU_GET(fsgs_gdt)[0];
uint32_t *b = (uint32_t *)&pcb->pcb_fsd;
multicall_entry_t mcl[3];
int i = 0;
/* Notify Xen of task switch */
mcl[i].op = __HYPERVISOR_stack_switch;
mcl[i].args[0] = GSEL(GDATA_SEL, SEL_KPL);
mcl[i++].args[1] = (unsigned long)pcb;
/* Check for update of fsd */
if (*a != *b || *(a+1) != *(b+1)) {
mcl[i].op = __HYPERVISOR_update_descriptor;
*(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
*(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
}
a += 2;
b += 2;
/* Check for update of gsd */
if (*a != *b || *(a+1) != *(b+1)) {
mcl[i].op = __HYPERVISOR_update_descriptor;
*(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
*(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
}
(void)HYPERVISOR_multicall(mcl, i);
}