freebsd-skq/sys/net/if_spppsubr.c

5476 lines
134 KiB
C

/*
* Synchronous PPP/Cisco/Frame Relay link level subroutines.
* Keepalive protocol implemented in both Cisco and PPP modes.
*/
/*-
* Copyright (C) 1994-2000 Cronyx Engineering.
* Author: Serge Vakulenko, <vak@cronyx.ru>
*
* Heavily revamped to conform to RFC 1661.
* Copyright (C) 1997, 2001 Joerg Wunsch.
*
* This software is distributed with NO WARRANTIES, not even the implied
* warranties for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Authors grant any other persons or organisations permission to use
* or modify this software as long as this message is kept with the software,
* all derivative works or modified versions.
*
* From: Version 2.4, Thu Apr 30 17:17:21 MSD 1997
*
* $FreeBSD$
*/
#include <sys/param.h>
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipx.h"
#endif
#ifdef NetBSD1_3
# if NetBSD1_3 > 6
# include "opt_inet.h"
# include "opt_inet6.h"
# include "opt_iso.h"
# endif
#endif
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/sockio.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
#include <sys/random.h>
#endif
#include <sys/malloc.h>
#include <sys/mbuf.h>
#if defined (__OpenBSD__)
#include <sys/md5k.h>
#else
#include <sys/md5.h>
#endif
#include <net/if.h>
#include <net/netisr.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <net/slcompress.h>
#if defined (__NetBSD__) || defined (__OpenBSD__)
#include <machine/cpu.h> /* XXX for softnet */
#endif
#include <machine/stdarg.h>
#include <netinet/in_var.h>
#ifdef INET
#include <netinet/ip.h>
#include <netinet/tcp.h>
#endif
#if defined (__FreeBSD__) || defined (__OpenBSD__)
# include <netinet/if_ether.h>
#else
# include <net/ethertypes.h>
#endif
#ifdef IPX
#include <netipx/ipx.h>
#include <netipx/ipx_if.h>
#endif
#include <net/if_sppp.h>
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
# define IOCTL_CMD_T u_long
#else
# define IOCTL_CMD_T int
#endif
#define MAXALIVECNT 3 /* max. alive packets */
/*
* Interface flags that can be set in an ifconfig command.
*
* Setting link0 will make the link passive, i.e. it will be marked
* as being administrative openable, but won't be opened to begin
* with. Incoming calls will be answered, or subsequent calls with
* -link1 will cause the administrative open of the LCP layer.
*
* Setting link1 will cause the link to auto-dial only as packets
* arrive to be sent.
*
* Setting IFF_DEBUG will syslog the option negotiation and state
* transitions at level kern.debug. Note: all logs consistently look
* like
*
* <if-name><unit>: <proto-name> <additional info...>
*
* with <if-name><unit> being something like "bppp0", and <proto-name>
* being one of "lcp", "ipcp", "cisco", "chap", "pap", etc.
*/
#define IFF_PASSIVE IFF_LINK0 /* wait passively for connection */
#define IFF_AUTO IFF_LINK1 /* auto-dial on output */
#define IFF_CISCO IFF_LINK2 /* auto-dial on output */
#define PPP_ALLSTATIONS 0xff /* All-Stations broadcast address */
#define PPP_UI 0x03 /* Unnumbered Information */
#define PPP_IP 0x0021 /* Internet Protocol */
#define PPP_ISO 0x0023 /* ISO OSI Protocol */
#define PPP_XNS 0x0025 /* Xerox NS Protocol */
#define PPP_IPX 0x002b /* Novell IPX Protocol */
#define PPP_VJ_COMP 0x002d /* VJ compressed TCP/IP */
#define PPP_VJ_UCOMP 0x002f /* VJ uncompressed TCP/IP */
#define PPP_IPV6 0x0057 /* Internet Protocol Version 6 */
#define PPP_LCP 0xc021 /* Link Control Protocol */
#define PPP_PAP 0xc023 /* Password Authentication Protocol */
#define PPP_CHAP 0xc223 /* Challenge-Handshake Auth Protocol */
#define PPP_IPCP 0x8021 /* Internet Protocol Control Protocol */
#define PPP_IPV6CP 0x8057 /* IPv6 Control Protocol */
#define CONF_REQ 1 /* PPP configure request */
#define CONF_ACK 2 /* PPP configure acknowledge */
#define CONF_NAK 3 /* PPP configure negative ack */
#define CONF_REJ 4 /* PPP configure reject */
#define TERM_REQ 5 /* PPP terminate request */
#define TERM_ACK 6 /* PPP terminate acknowledge */
#define CODE_REJ 7 /* PPP code reject */
#define PROTO_REJ 8 /* PPP protocol reject */
#define ECHO_REQ 9 /* PPP echo request */
#define ECHO_REPLY 10 /* PPP echo reply */
#define DISC_REQ 11 /* PPP discard request */
#define LCP_OPT_MRU 1 /* maximum receive unit */
#define LCP_OPT_ASYNC_MAP 2 /* async control character map */
#define LCP_OPT_AUTH_PROTO 3 /* authentication protocol */
#define LCP_OPT_QUAL_PROTO 4 /* quality protocol */
#define LCP_OPT_MAGIC 5 /* magic number */
#define LCP_OPT_RESERVED 6 /* reserved */
#define LCP_OPT_PROTO_COMP 7 /* protocol field compression */
#define LCP_OPT_ADDR_COMP 8 /* address/control field compression */
#define IPCP_OPT_ADDRESSES 1 /* both IP addresses; deprecated */
#define IPCP_OPT_COMPRESSION 2 /* IP compression protocol (VJ) */
#define IPCP_OPT_ADDRESS 3 /* local IP address */
#define IPV6CP_OPT_IFID 1 /* interface identifier */
#define IPV6CP_OPT_COMPRESSION 2 /* IPv6 compression protocol */
#define IPCP_COMP_VJ 0x2d /* Code for VJ compression */
#define PAP_REQ 1 /* PAP name/password request */
#define PAP_ACK 2 /* PAP acknowledge */
#define PAP_NAK 3 /* PAP fail */
#define CHAP_CHALLENGE 1 /* CHAP challenge request */
#define CHAP_RESPONSE 2 /* CHAP challenge response */
#define CHAP_SUCCESS 3 /* CHAP response ok */
#define CHAP_FAILURE 4 /* CHAP response failed */
#define CHAP_MD5 5 /* hash algorithm - MD5 */
#define CISCO_MULTICAST 0x8f /* Cisco multicast address */
#define CISCO_UNICAST 0x0f /* Cisco unicast address */
#define CISCO_KEEPALIVE 0x8035 /* Cisco keepalive protocol */
#define CISCO_ADDR_REQ 0 /* Cisco address request */
#define CISCO_ADDR_REPLY 1 /* Cisco address reply */
#define CISCO_KEEPALIVE_REQ 2 /* Cisco keepalive request */
/* states are named and numbered according to RFC 1661 */
#define STATE_INITIAL 0
#define STATE_STARTING 1
#define STATE_CLOSED 2
#define STATE_STOPPED 3
#define STATE_CLOSING 4
#define STATE_STOPPING 5
#define STATE_REQ_SENT 6
#define STATE_ACK_RCVD 7
#define STATE_ACK_SENT 8
#define STATE_OPENED 9
struct ppp_header {
u_char address;
u_char control;
u_short protocol;
} __packed;
#define PPP_HEADER_LEN sizeof (struct ppp_header)
struct lcp_header {
u_char type;
u_char ident;
u_short len;
} __packed;
#define LCP_HEADER_LEN sizeof (struct lcp_header)
struct cisco_packet {
u_long type;
u_long par1;
u_long par2;
u_short rel;
u_short time0;
u_short time1;
} __packed;
#define CISCO_PACKET_LEN sizeof (struct cisco_packet)
/*
* We follow the spelling and capitalization of RFC 1661 here, to make
* it easier comparing with the standard. Please refer to this RFC in
* case you can't make sense out of these abbreviation; it will also
* explain the semantics related to the various events and actions.
*/
struct cp {
u_short proto; /* PPP control protocol number */
u_char protoidx; /* index into state table in struct sppp */
u_char flags;
#define CP_LCP 0x01 /* this is the LCP */
#define CP_AUTH 0x02 /* this is an authentication protocol */
#define CP_NCP 0x04 /* this is a NCP */
#define CP_QUAL 0x08 /* this is a quality reporting protocol */
const char *name; /* name of this control protocol */
/* event handlers */
void (*Up)(struct sppp *sp);
void (*Down)(struct sppp *sp);
void (*Open)(struct sppp *sp);
void (*Close)(struct sppp *sp);
void (*TO)(void *sp);
int (*RCR)(struct sppp *sp, struct lcp_header *h, int len);
void (*RCN_rej)(struct sppp *sp, struct lcp_header *h, int len);
void (*RCN_nak)(struct sppp *sp, struct lcp_header *h, int len);
/* actions */
void (*tlu)(struct sppp *sp);
void (*tld)(struct sppp *sp);
void (*tls)(struct sppp *sp);
void (*tlf)(struct sppp *sp);
void (*scr)(struct sppp *sp);
};
#if defined(__FreeBSD__) && __FreeBSD__ >= 3 && __FreeBSD_version < 501113
#define SPP_FMT "%s%d: "
#define SPP_ARGS(ifp) (ifp)->if_name, (ifp)->if_unit
#else
#define SPP_FMT "%s: "
#define SPP_ARGS(ifp) (ifp)->if_xname
#endif
#define SPPP_LOCK(sp) \
do { \
if (!((sp)->pp_if.if_flags & IFF_NEEDSGIANT)) \
mtx_lock (&(sp)->mtx); \
} while (0)
#define SPPP_UNLOCK(sp) \
do { \
if (!((sp)->pp_if.if_flags & IFF_NEEDSGIANT)) \
mtx_unlock (&(sp)->mtx); \
} while (0)
#define SPPP_LOCK_ASSERT(sp) \
do { \
if (!((sp)->pp_if.if_flags & IFF_NEEDSGIANT)) \
mtx_assert (&(sp)->mtx, MA_OWNED); \
} while (0)
#define SPPP_LOCK_OWNED(sp) \
(!((sp)->pp_if.if_flags & IFF_NEEDSGIANT) && \
mtx_owned (&sp->mtx))
#ifdef INET
/*
* The following disgusting hack gets around the problem that IP TOS
* can't be set yet. We want to put "interactive" traffic on a high
* priority queue. To decide if traffic is interactive, we check that
* a) it is TCP and b) one of its ports is telnet, rlogin or ftp control.
*
* XXX is this really still necessary? - joerg -
*/
static const u_short interactive_ports[8] = {
0, 513, 0, 0,
0, 21, 0, 23,
};
#define INTERACTIVE(p) (interactive_ports[(p) & 7] == (p))
#endif
/* almost every function needs these */
#define STDDCL \
struct ifnet *ifp = &sp->pp_if; \
int debug = ifp->if_flags & IFF_DEBUG
static int sppp_output(struct ifnet *ifp, struct mbuf *m,
struct sockaddr *dst, struct rtentry *rt);
static void sppp_cisco_send(struct sppp *sp, int type, long par1, long par2);
static void sppp_cisco_input(struct sppp *sp, struct mbuf *m);
static void sppp_cp_input(const struct cp *cp, struct sppp *sp,
struct mbuf *m);
static void sppp_cp_send(struct sppp *sp, u_short proto, u_char type,
u_char ident, u_short len, void *data);
/* static void sppp_cp_timeout(void *arg); */
static void sppp_cp_change_state(const struct cp *cp, struct sppp *sp,
int newstate);
static void sppp_auth_send(const struct cp *cp,
struct sppp *sp, unsigned int type, unsigned int id,
...);
static void sppp_up_event(const struct cp *cp, struct sppp *sp);
static void sppp_down_event(const struct cp *cp, struct sppp *sp);
static void sppp_open_event(const struct cp *cp, struct sppp *sp);
static void sppp_close_event(const struct cp *cp, struct sppp *sp);
static void sppp_to_event(const struct cp *cp, struct sppp *sp);
static void sppp_null(struct sppp *sp);
static void sppp_pp_up(struct sppp *sp);
static void sppp_pp_down(struct sppp *sp);
static void sppp_lcp_init(struct sppp *sp);
static void sppp_lcp_up(struct sppp *sp);
static void sppp_lcp_down(struct sppp *sp);
static void sppp_lcp_open(struct sppp *sp);
static void sppp_lcp_close(struct sppp *sp);
static void sppp_lcp_TO(void *sp);
static int sppp_lcp_RCR(struct sppp *sp, struct lcp_header *h, int len);
static void sppp_lcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len);
static void sppp_lcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len);
static void sppp_lcp_tlu(struct sppp *sp);
static void sppp_lcp_tld(struct sppp *sp);
static void sppp_lcp_tls(struct sppp *sp);
static void sppp_lcp_tlf(struct sppp *sp);
static void sppp_lcp_scr(struct sppp *sp);
static void sppp_lcp_check_and_close(struct sppp *sp);
static int sppp_ncp_check(struct sppp *sp);
static void sppp_ipcp_init(struct sppp *sp);
static void sppp_ipcp_up(struct sppp *sp);
static void sppp_ipcp_down(struct sppp *sp);
static void sppp_ipcp_open(struct sppp *sp);
static void sppp_ipcp_close(struct sppp *sp);
static void sppp_ipcp_TO(void *sp);
static int sppp_ipcp_RCR(struct sppp *sp, struct lcp_header *h, int len);
static void sppp_ipcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len);
static void sppp_ipcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len);
static void sppp_ipcp_tlu(struct sppp *sp);
static void sppp_ipcp_tld(struct sppp *sp);
static void sppp_ipcp_tls(struct sppp *sp);
static void sppp_ipcp_tlf(struct sppp *sp);
static void sppp_ipcp_scr(struct sppp *sp);
static void sppp_ipv6cp_init(struct sppp *sp);
static void sppp_ipv6cp_up(struct sppp *sp);
static void sppp_ipv6cp_down(struct sppp *sp);
static void sppp_ipv6cp_open(struct sppp *sp);
static void sppp_ipv6cp_close(struct sppp *sp);
static void sppp_ipv6cp_TO(void *sp);
static int sppp_ipv6cp_RCR(struct sppp *sp, struct lcp_header *h, int len);
static void sppp_ipv6cp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len);
static void sppp_ipv6cp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len);
static void sppp_ipv6cp_tlu(struct sppp *sp);
static void sppp_ipv6cp_tld(struct sppp *sp);
static void sppp_ipv6cp_tls(struct sppp *sp);
static void sppp_ipv6cp_tlf(struct sppp *sp);
static void sppp_ipv6cp_scr(struct sppp *sp);
static void sppp_pap_input(struct sppp *sp, struct mbuf *m);
static void sppp_pap_init(struct sppp *sp);
static void sppp_pap_open(struct sppp *sp);
static void sppp_pap_close(struct sppp *sp);
static void sppp_pap_TO(void *sp);
static void sppp_pap_my_TO(void *sp);
static void sppp_pap_tlu(struct sppp *sp);
static void sppp_pap_tld(struct sppp *sp);
static void sppp_pap_scr(struct sppp *sp);
static void sppp_chap_input(struct sppp *sp, struct mbuf *m);
static void sppp_chap_init(struct sppp *sp);
static void sppp_chap_open(struct sppp *sp);
static void sppp_chap_close(struct sppp *sp);
static void sppp_chap_TO(void *sp);
static void sppp_chap_tlu(struct sppp *sp);
static void sppp_chap_tld(struct sppp *sp);
static void sppp_chap_scr(struct sppp *sp);
static const char *sppp_auth_type_name(u_short proto, u_char type);
static const char *sppp_cp_type_name(u_char type);
static const char *sppp_dotted_quad(u_long addr);
static const char *sppp_ipcp_opt_name(u_char opt);
#ifdef INET6
static const char *sppp_ipv6cp_opt_name(u_char opt);
#endif
static const char *sppp_lcp_opt_name(u_char opt);
static const char *sppp_phase_name(enum ppp_phase phase);
static const char *sppp_proto_name(u_short proto);
static const char *sppp_state_name(int state);
static int sppp_params(struct sppp *sp, u_long cmd, void *data);
static int sppp_strnlen(u_char *p, int max);
static void sppp_keepalive(void *dummy);
static void sppp_phase_network(struct sppp *sp);
static void sppp_print_bytes(const u_char *p, u_short len);
static void sppp_print_string(const char *p, u_short len);
static void sppp_qflush(struct ifqueue *ifq);
static void sppp_set_ip_addr(struct sppp *sp, u_long src);
#ifdef INET6
static void sppp_get_ip6_addrs(struct sppp *sp, struct in6_addr *src,
struct in6_addr *dst, struct in6_addr *srcmask);
#ifdef IPV6CP_MYIFID_DYN
static void sppp_set_ip6_addr(struct sppp *sp, const struct in6_addr *src);
static void sppp_gen_ip6_addr(struct sppp *sp, const struct in6_addr *src);
#endif
static void sppp_suggest_ip6_addr(struct sppp *sp, struct in6_addr *src);
#endif
/* if_start () wrapper */
static void sppp_ifstart (struct ifnet *ifp);
/* our control protocol descriptors */
static const struct cp lcp = {
PPP_LCP, IDX_LCP, CP_LCP, "lcp",
sppp_lcp_up, sppp_lcp_down, sppp_lcp_open, sppp_lcp_close,
sppp_lcp_TO, sppp_lcp_RCR, sppp_lcp_RCN_rej, sppp_lcp_RCN_nak,
sppp_lcp_tlu, sppp_lcp_tld, sppp_lcp_tls, sppp_lcp_tlf,
sppp_lcp_scr
};
static const struct cp ipcp = {
PPP_IPCP, IDX_IPCP,
#ifdef INET /* don't run IPCP if there's no IPv4 support */
CP_NCP,
#else
0,
#endif
"ipcp",
sppp_ipcp_up, sppp_ipcp_down, sppp_ipcp_open, sppp_ipcp_close,
sppp_ipcp_TO, sppp_ipcp_RCR, sppp_ipcp_RCN_rej, sppp_ipcp_RCN_nak,
sppp_ipcp_tlu, sppp_ipcp_tld, sppp_ipcp_tls, sppp_ipcp_tlf,
sppp_ipcp_scr
};
static const struct cp ipv6cp = {
PPP_IPV6CP, IDX_IPV6CP,
#ifdef INET6 /*don't run IPv6CP if there's no IPv6 support*/
CP_NCP,
#else
0,
#endif
"ipv6cp",
sppp_ipv6cp_up, sppp_ipv6cp_down, sppp_ipv6cp_open, sppp_ipv6cp_close,
sppp_ipv6cp_TO, sppp_ipv6cp_RCR, sppp_ipv6cp_RCN_rej, sppp_ipv6cp_RCN_nak,
sppp_ipv6cp_tlu, sppp_ipv6cp_tld, sppp_ipv6cp_tls, sppp_ipv6cp_tlf,
sppp_ipv6cp_scr
};
static const struct cp pap = {
PPP_PAP, IDX_PAP, CP_AUTH, "pap",
sppp_null, sppp_null, sppp_pap_open, sppp_pap_close,
sppp_pap_TO, 0, 0, 0,
sppp_pap_tlu, sppp_pap_tld, sppp_null, sppp_null,
sppp_pap_scr
};
static const struct cp chap = {
PPP_CHAP, IDX_CHAP, CP_AUTH, "chap",
sppp_null, sppp_null, sppp_chap_open, sppp_chap_close,
sppp_chap_TO, 0, 0, 0,
sppp_chap_tlu, sppp_chap_tld, sppp_null, sppp_null,
sppp_chap_scr
};
static const struct cp *cps[IDX_COUNT] = {
&lcp, /* IDX_LCP */
&ipcp, /* IDX_IPCP */
&ipv6cp, /* IDX_IPV6CP */
&pap, /* IDX_PAP */
&chap, /* IDX_CHAP */
};
static int
sppp_modevent(module_t mod, int type, void *unused)
{
switch (type) {
case MOD_LOAD:
break;
case MOD_UNLOAD:
return EACCES;
default:
return EOPNOTSUPP;
}
return 0;
}
static moduledata_t spppmod = {
"sppp",
sppp_modevent,
0
};
MODULE_VERSION(sppp, 1);
DECLARE_MODULE(sppp, spppmod, SI_SUB_DRIVERS, SI_ORDER_ANY);
/*
* Exported functions, comprising our interface to the lower layer.
*/
/*
* Process the received packet.
*/
void
sppp_input(struct ifnet *ifp, struct mbuf *m)
{
struct ppp_header *h;
int isr = -1;
struct sppp *sp = (struct sppp *)ifp;
u_char *iphdr;
int hlen, vjlen, do_account = 0;
int debug;
SPPP_LOCK(sp);
debug = ifp->if_flags & IFF_DEBUG;
if (ifp->if_flags & IFF_UP)
/* Count received bytes, add FCS and one flag */
ifp->if_ibytes += m->m_pkthdr.len + 3;
if (m->m_pkthdr.len <= PPP_HEADER_LEN) {
/* Too small packet, drop it. */
if (debug)
log(LOG_DEBUG,
SPP_FMT "input packet is too small, %d bytes\n",
SPP_ARGS(ifp), m->m_pkthdr.len);
drop:
m_freem (m);
SPPP_UNLOCK(sp);
drop2:
++ifp->if_ierrors;
++ifp->if_iqdrops;
return;
}
if (sp->pp_mode == PP_FR) {
sppp_fr_input (sp, m);
SPPP_UNLOCK(sp);
return;
}
/* Get PPP header. */
h = mtod (m, struct ppp_header*);
m_adj (m, PPP_HEADER_LEN);
switch (h->address) {
case PPP_ALLSTATIONS:
if (h->control != PPP_UI)
goto invalid;
if (sp->pp_mode == IFF_CISCO) {
if (debug)
log(LOG_DEBUG,
SPP_FMT "PPP packet in Cisco mode "
"<addr=0x%x ctrl=0x%x proto=0x%x>\n",
SPP_ARGS(ifp),
h->address, h->control, ntohs(h->protocol));
goto drop;
}
switch (ntohs (h->protocol)) {
default:
if (debug)
log(LOG_DEBUG,
SPP_FMT "rejecting protocol "
"<addr=0x%x ctrl=0x%x proto=0x%x>\n",
SPP_ARGS(ifp),
h->address, h->control, ntohs(h->protocol));
if (sp->state[IDX_LCP] == STATE_OPENED)
sppp_cp_send (sp, PPP_LCP, PROTO_REJ,
++sp->pp_seq[IDX_LCP], m->m_pkthdr.len + 2,
&h->protocol);
++ifp->if_noproto;
goto drop;
case PPP_LCP:
sppp_cp_input(&lcp, sp, m);
m_freem (m);
SPPP_UNLOCK(sp);
return;
case PPP_PAP:
if (sp->pp_phase >= PHASE_AUTHENTICATE)
sppp_pap_input(sp, m);
m_freem (m);
SPPP_UNLOCK(sp);
return;
case PPP_CHAP:
if (sp->pp_phase >= PHASE_AUTHENTICATE)
sppp_chap_input(sp, m);
m_freem (m);
SPPP_UNLOCK(sp);
return;
#ifdef INET
case PPP_IPCP:
if (sp->pp_phase == PHASE_NETWORK)
sppp_cp_input(&ipcp, sp, m);
m_freem (m);
SPPP_UNLOCK(sp);
return;
case PPP_IP:
if (sp->state[IDX_IPCP] == STATE_OPENED) {
isr = NETISR_IP;
}
do_account++;
break;
case PPP_VJ_COMP:
if (sp->state[IDX_IPCP] == STATE_OPENED) {
if ((vjlen =
sl_uncompress_tcp_core(mtod(m, u_char *),
m->m_len, m->m_len,
TYPE_COMPRESSED_TCP,
sp->pp_comp,
&iphdr, &hlen)) <= 0) {
if (debug)
log(LOG_INFO,
SPP_FMT "VJ uncompress failed on compressed packet\n",
SPP_ARGS(ifp));
goto drop;
}
/*
* Trim the VJ header off the packet, and prepend
* the uncompressed IP header (which will usually
* end up in two chained mbufs since there's not
* enough leading space in the existing mbuf).
*/
m_adj(m, vjlen);
M_PREPEND(m, hlen, M_DONTWAIT);
if (m == NULL) {
SPPP_UNLOCK(sp);
goto drop2;
}
bcopy(iphdr, mtod(m, u_char *), hlen);
isr = NETISR_IP;
}
do_account++;
break;
case PPP_VJ_UCOMP:
if (sp->state[IDX_IPCP] == STATE_OPENED) {
if (sl_uncompress_tcp_core(mtod(m, u_char *),
m->m_len, m->m_len,
TYPE_UNCOMPRESSED_TCP,
sp->pp_comp,
&iphdr, &hlen) != 0) {
if (debug)
log(LOG_INFO,
SPP_FMT "VJ uncompress failed on uncompressed packet\n",
SPP_ARGS(ifp));
goto drop;
}
isr = NETISR_IP;
}
do_account++;
break;
#endif
#ifdef INET6
case PPP_IPV6CP:
if (sp->pp_phase == PHASE_NETWORK)
sppp_cp_input(&ipv6cp, sp, m);
m_freem (m);
SPPP_UNLOCK(sp);
return;
case PPP_IPV6:
if (sp->state[IDX_IPV6CP] == STATE_OPENED)
isr = NETISR_IPV6;
do_account++;
break;
#endif
#ifdef IPX
case PPP_IPX:
/* IPX IPXCP not implemented yet */
if (sp->pp_phase == PHASE_NETWORK)
isr = NETISR_IPX;
do_account++;
break;
#endif
}
break;
case CISCO_MULTICAST:
case CISCO_UNICAST:
/* Don't check the control field here (RFC 1547). */
if (sp->pp_mode != IFF_CISCO) {
if (debug)
log(LOG_DEBUG,
SPP_FMT "Cisco packet in PPP mode "
"<addr=0x%x ctrl=0x%x proto=0x%x>\n",
SPP_ARGS(ifp),
h->address, h->control, ntohs(h->protocol));
goto drop;
}
switch (ntohs (h->protocol)) {
default:
++ifp->if_noproto;
goto invalid;
case CISCO_KEEPALIVE:
sppp_cisco_input ((struct sppp*) ifp, m);
m_freem (m);
SPPP_UNLOCK(sp);
return;
#ifdef INET
case ETHERTYPE_IP:
isr = NETISR_IP;
do_account++;
break;
#endif
#ifdef INET6
case ETHERTYPE_IPV6:
isr = NETISR_IPV6;
do_account++;
break;
#endif
#ifdef IPX
case ETHERTYPE_IPX:
isr = NETISR_IPX;
do_account++;
break;
#endif
}
break;
default: /* Invalid PPP packet. */
invalid:
if (debug)
log(LOG_DEBUG,
SPP_FMT "invalid input packet "
"<addr=0x%x ctrl=0x%x proto=0x%x>\n",
SPP_ARGS(ifp),
h->address, h->control, ntohs(h->protocol));
goto drop;
}
if (! (ifp->if_flags & IFF_UP) || isr == -1)
goto drop;
SPPP_UNLOCK(sp);
/* Check queue. */
if (netisr_queue(isr, m)) { /* (0) on success. */
if (debug)
log(LOG_DEBUG, SPP_FMT "protocol queue overflow\n",
SPP_ARGS(ifp));
goto drop2;
}
if (do_account)
/*
* Do only account for network packets, not for control
* packets. This is used by some subsystems to detect
* idle lines.
*/
sp->pp_last_recv = time_second;
}
static void
sppp_ifstart_sched(void *dummy)
{
struct sppp *sp = dummy;
sp->if_start(&sp->pp_if);
}
/* if_start () wrapper function. We use it to schedule real if_start () for
* execution. We can't call it directly
*/
static void
sppp_ifstart(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp*) ifp;
if (SPPP_LOCK_OWNED(sp)) {
if (callout_pending(&sp->ifstart_callout))
return;
callout_reset(&sp->ifstart_callout, 1, sppp_ifstart_sched,
(void *)sp);
} else {
sp->if_start(ifp);
}
}
/*
* Enqueue transmit packet.
*/
static int
sppp_output(struct ifnet *ifp, struct mbuf *m,
struct sockaddr *dst, struct rtentry *rt)
{
struct sppp *sp = (struct sppp*) ifp;
struct ppp_header *h;
struct ifqueue *ifq = NULL;
int s, error, rv = 0;
int ipproto = PPP_IP;
int debug = ifp->if_flags & IFF_DEBUG;
s = splimp();
SPPP_LOCK(sp);
if ((ifp->if_flags & IFF_UP) == 0 ||
(ifp->if_flags & (IFF_RUNNING | IFF_AUTO)) == 0) {
#ifdef INET6
drop:
#endif
m_freem (m);
SPPP_UNLOCK(sp);
splx (s);
return (ENETDOWN);
}
if ((ifp->if_flags & (IFF_RUNNING | IFF_AUTO)) == IFF_AUTO) {
#ifdef INET6
/*
* XXX
*
* Hack to prevent the initialization-time generated
* IPv6 multicast packet to erroneously cause a
* dialout event in case IPv6 has been
* administratively disabled on that interface.
*/
if (dst->sa_family == AF_INET6 &&
!(sp->confflags & CONF_ENABLE_IPV6))
goto drop;
#endif
/*
* Interface is not yet running, but auto-dial. Need
* to start LCP for it.
*/
ifp->if_flags |= IFF_RUNNING;
splx(s);
lcp.Open(sp);
s = splimp();
}
#ifdef INET
if (dst->sa_family == AF_INET) {
/* XXX Check mbuf length here? */
struct ip *ip = mtod (m, struct ip*);
struct tcphdr *tcp = (struct tcphdr*) ((long*)ip + ip->ip_hl);
/*
* When using dynamic local IP address assignment by using
* 0.0.0.0 as a local address, the first TCP session will
* not connect because the local TCP checksum is computed
* using 0.0.0.0 which will later become our real IP address
* so the TCP checksum computed at the remote end will
* become invalid. So we
* - don't let packets with src ip addr 0 thru
* - we flag TCP packets with src ip 0 as an error
*/
if(ip->ip_src.s_addr == INADDR_ANY) /* -hm */
{
m_freem(m);
SPPP_UNLOCK(sp);
splx(s);
if(ip->ip_p == IPPROTO_TCP)
return(EADDRNOTAVAIL);
else
return(0);
}
/*
* Put low delay, telnet, rlogin and ftp control packets
* in front of the queue or let ALTQ take care.
*/
if (ALTQ_IS_ENABLED(&ifp->if_snd))
;
else if (_IF_QFULL(&sp->pp_fastq))
;
else if (ip->ip_tos & IPTOS_LOWDELAY)
ifq = &sp->pp_fastq;
else if (m->m_len < sizeof *ip + sizeof *tcp)
;
else if (ip->ip_p != IPPROTO_TCP)
;
else if (INTERACTIVE (ntohs (tcp->th_sport)))
ifq = &sp->pp_fastq;
else if (INTERACTIVE (ntohs (tcp->th_dport)))
ifq = &sp->pp_fastq;
/*
* Do IP Header compression
*/
if (sp->pp_mode != IFF_CISCO && sp->pp_mode != PP_FR &&
(sp->ipcp.flags & IPCP_VJ) && ip->ip_p == IPPROTO_TCP)
switch (sl_compress_tcp(m, ip, sp->pp_comp,
sp->ipcp.compress_cid)) {
case TYPE_COMPRESSED_TCP:
ipproto = PPP_VJ_COMP;
break;
case TYPE_UNCOMPRESSED_TCP:
ipproto = PPP_VJ_UCOMP;
break;
case TYPE_IP:
ipproto = PPP_IP;
break;
default:
m_freem(m);
SPPP_UNLOCK(sp);
splx(s);
return (EINVAL);
}
}
#endif
#ifdef INET6
if (dst->sa_family == AF_INET6) {
/* XXX do something tricky here? */
}
#endif
if (sp->pp_mode == PP_FR) {
/* Add frame relay header. */
m = sppp_fr_header (sp, m, dst->sa_family);
if (! m)
goto nobufs;
goto out;
}
/*
* Prepend general data packet PPP header. For now, IP only.
*/
M_PREPEND (m, PPP_HEADER_LEN, M_DONTWAIT);
if (! m) {
nobufs: if (debug)
log(LOG_DEBUG, SPP_FMT "no memory for transmit header\n",
SPP_ARGS(ifp));
++ifp->if_oerrors;
SPPP_UNLOCK(sp);
splx (s);
return (ENOBUFS);
}
/*
* May want to check size of packet
* (albeit due to the implementation it's always enough)
*/
h = mtod (m, struct ppp_header*);
if (sp->pp_mode == IFF_CISCO) {
h->address = CISCO_UNICAST; /* unicast address */
h->control = 0;
} else {
h->address = PPP_ALLSTATIONS; /* broadcast address */
h->control = PPP_UI; /* Unnumbered Info */
}
switch (dst->sa_family) {
#ifdef INET
case AF_INET: /* Internet Protocol */
if (sp->pp_mode == IFF_CISCO)
h->protocol = htons (ETHERTYPE_IP);
else {
/*
* Don't choke with an ENETDOWN early. It's
* possible that we just started dialing out,
* so don't drop the packet immediately. If
* we notice that we run out of buffer space
* below, we will however remember that we are
* not ready to carry IP packets, and return
* ENETDOWN, as opposed to ENOBUFS.
*/
h->protocol = htons(ipproto);
if (sp->state[IDX_IPCP] != STATE_OPENED)
rv = ENETDOWN;
}
break;
#endif
#ifdef INET6
case AF_INET6: /* Internet Protocol */
if (sp->pp_mode == IFF_CISCO)
h->protocol = htons (ETHERTYPE_IPV6);
else {
/*
* Don't choke with an ENETDOWN early. It's
* possible that we just started dialing out,
* so don't drop the packet immediately. If
* we notice that we run out of buffer space
* below, we will however remember that we are
* not ready to carry IP packets, and return
* ENETDOWN, as opposed to ENOBUFS.
*/
h->protocol = htons(PPP_IPV6);
if (sp->state[IDX_IPV6CP] != STATE_OPENED)
rv = ENETDOWN;
}
break;
#endif
#ifdef IPX
case AF_IPX: /* Novell IPX Protocol */
h->protocol = htons (sp->pp_mode == IFF_CISCO ?
ETHERTYPE_IPX : PPP_IPX);
break;
#endif
default:
m_freem (m);
++ifp->if_oerrors;
SPPP_UNLOCK(sp);
splx (s);
return (EAFNOSUPPORT);
}
/*
* Queue message on interface, and start output if interface
* not yet active.
*/
out:
if (ifq != NULL)
error = !(IF_HANDOFF_ADJ(ifq, m, ifp, 3));
else
IFQ_HANDOFF_ADJ(ifp, m, 3, error);
if (error) {
++ifp->if_oerrors;
SPPP_UNLOCK(sp);
splx (s);
return (rv? rv: ENOBUFS);
}
SPPP_UNLOCK(sp);
splx (s);
/*
* Unlike in sppp_input(), we can always bump the timestamp
* here since sppp_output() is only called on behalf of
* network-layer traffic; control-layer traffic is handled
* by sppp_cp_send().
*/
sp->pp_last_sent = time_second;
return (0);
}
void
sppp_attach(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp*) ifp;
/* Initialize mtx lock */
mtx_init(&sp->mtx, "sppp", MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE);
/* Initialize keepalive handler. */
callout_init(&sp->keepalive_callout,
(ifp->if_flags & IFF_NEEDSGIANT) ? 0 : CALLOUT_MPSAFE);
callout_reset(&sp->keepalive_callout, hz * 10, sppp_keepalive,
(void *)sp);
sp->pp_if.if_mtu = PP_MTU;
sp->pp_if.if_flags = IFF_POINTOPOINT | IFF_MULTICAST;
sp->pp_if.if_type = IFT_PPP;
sp->pp_if.if_output = sppp_output;
#if 0
sp->pp_flags = PP_KEEPALIVE;
#endif
sp->pp_if.if_snd.ifq_maxlen = 32;
sp->pp_fastq.ifq_maxlen = 32;
sp->pp_cpq.ifq_maxlen = 20;
sp->pp_loopcnt = 0;
sp->pp_alivecnt = 0;
bzero(&sp->pp_seq[0], sizeof(sp->pp_seq));
bzero(&sp->pp_rseq[0], sizeof(sp->pp_rseq));
sp->pp_phase = PHASE_DEAD;
sp->pp_up = sppp_pp_up;
sp->pp_down = sppp_pp_down;
if(!mtx_initialized(&sp->pp_cpq.ifq_mtx))
mtx_init(&sp->pp_cpq.ifq_mtx, "sppp_cpq", NULL, MTX_DEF);
if(!mtx_initialized(&sp->pp_fastq.ifq_mtx))
mtx_init(&sp->pp_fastq.ifq_mtx, "sppp_fastq", NULL, MTX_DEF);
sp->pp_last_recv = sp->pp_last_sent = time_second;
sp->confflags = 0;
#ifdef INET
sp->confflags |= CONF_ENABLE_VJ;
#endif
#ifdef INET6
sp->confflags |= CONF_ENABLE_IPV6;
#endif
callout_init(&sp->ifstart_callout,
(ifp->if_flags & IFF_NEEDSGIANT) ? 0 : CALLOUT_MPSAFE);
sp->if_start = ifp->if_start;
ifp->if_start = sppp_ifstart;
sp->pp_comp = malloc(sizeof(struct slcompress), M_TEMP, M_WAITOK);
sl_compress_init(sp->pp_comp, -1);
sppp_lcp_init(sp);
sppp_ipcp_init(sp);
sppp_ipv6cp_init(sp);
sppp_pap_init(sp);
sppp_chap_init(sp);
}
void
sppp_detach(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp*) ifp;
int i;
KASSERT(mtx_initialized(&sp->mtx), ("sppp mutex is not initialized"));
/* Stop keepalive handler. */
if (!callout_drain(&sp->keepalive_callout))
callout_stop(&sp->keepalive_callout);
for (i = 0; i < IDX_COUNT; i++) {
if (!callout_drain(&sp->ch[i]))
callout_stop(&sp->ch[i]);
}
if (!callout_drain(&sp->pap_my_to_ch))
callout_stop(&sp->pap_my_to_ch);
mtx_destroy(&sp->pp_cpq.ifq_mtx);
mtx_destroy(&sp->pp_fastq.ifq_mtx);
mtx_destroy(&sp->mtx);
}
/*
* Flush the interface output queue.
*/
static void
sppp_flush_unlocked(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp*) ifp;
sppp_qflush ((struct ifqueue *)&sp->pp_if.if_snd);
sppp_qflush (&sp->pp_fastq);
sppp_qflush (&sp->pp_cpq);
}
void
sppp_flush(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp*) ifp;
SPPP_LOCK(sp);
sppp_flush_unlocked (ifp);
SPPP_UNLOCK(sp);
}
/*
* Check if the output queue is empty.
*/
int
sppp_isempty(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp*) ifp;
int empty, s;
s = splimp();
SPPP_LOCK(sp);
empty = !sp->pp_fastq.ifq_head && !sp->pp_cpq.ifq_head &&
!sp->pp_if.if_snd.ifq_head;
SPPP_UNLOCK(sp);
splx(s);
return (empty);
}
/*
* Get next packet to send.
*/
struct mbuf *
sppp_dequeue(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp*) ifp;
struct mbuf *m;
int s;
s = splimp();
SPPP_LOCK(sp);
/*
* Process only the control protocol queue until we have at
* least one NCP open.
*
* Do always serve all three queues in Cisco mode.
*/
IF_DEQUEUE(&sp->pp_cpq, m);
if (m == NULL &&
(sppp_ncp_check(sp) || sp->pp_mode == IFF_CISCO ||
sp->pp_mode == PP_FR)) {
IF_DEQUEUE(&sp->pp_fastq, m);
if (m == NULL)
IF_DEQUEUE (&sp->pp_if.if_snd, m);
}
SPPP_UNLOCK(sp);
splx(s);
return m;
}
/*
* Pick the next packet, do not remove it from the queue.
*/
struct mbuf *
sppp_pick(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp*)ifp;
struct mbuf *m;
int s;
s = splimp ();
SPPP_LOCK(sp);
m = sp->pp_cpq.ifq_head;
if (m == NULL &&
(sp->pp_phase == PHASE_NETWORK ||
sp->pp_mode == IFF_CISCO ||
sp->pp_mode == PP_FR))
if ((m = sp->pp_fastq.ifq_head) == NULL)
m = sp->pp_if.if_snd.ifq_head;
SPPP_UNLOCK(sp);
splx (s);
return (m);
}
/*
* Process an ioctl request. Called on low priority level.
*/
int
sppp_ioctl(struct ifnet *ifp, IOCTL_CMD_T cmd, void *data)
{
struct ifreq *ifr = (struct ifreq*) data;
struct sppp *sp = (struct sppp*) ifp;
int s, rv, going_up, going_down, newmode;
s = splimp();
SPPP_LOCK(sp);
rv = 0;
switch (cmd) {
case SIOCAIFADDR:
case SIOCSIFDSTADDR:
break;
case SIOCSIFADDR:
/* set the interface "up" when assigning an IP address */
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
going_up = ifp->if_flags & IFF_UP &&
(ifp->if_flags & IFF_RUNNING) == 0;
going_down = (ifp->if_flags & IFF_UP) == 0 &&
ifp->if_flags & IFF_RUNNING;
newmode = ifp->if_flags & IFF_PASSIVE;
if (!newmode)
newmode = ifp->if_flags & IFF_AUTO;
if (!newmode)
newmode = ifp->if_flags & IFF_CISCO;
ifp->if_flags &= ~(IFF_PASSIVE | IFF_AUTO | IFF_CISCO);
ifp->if_flags |= newmode;
if (!newmode)
newmode = sp->pp_flags & PP_FR;
if (newmode != sp->pp_mode) {
going_down = 1;
if (!going_up)
going_up = ifp->if_flags & IFF_RUNNING;
}
if (going_down) {
if (sp->pp_mode != IFF_CISCO &&
sp->pp_mode != PP_FR)
lcp.Close(sp);
else if (sp->pp_tlf)
(sp->pp_tlf)(sp);
sppp_flush_unlocked(ifp);
ifp->if_flags &= ~IFF_RUNNING;
sp->pp_mode = newmode;
}
if (going_up) {
if (sp->pp_mode != IFF_CISCO &&
sp->pp_mode != PP_FR)
lcp.Close(sp);
sp->pp_mode = newmode;
if (sp->pp_mode == 0) {
ifp->if_flags |= IFF_RUNNING;
lcp.Open(sp);
}
if ((sp->pp_mode == IFF_CISCO) ||
(sp->pp_mode == PP_FR)) {
if (sp->pp_tls)
(sp->pp_tls)(sp);
ifp->if_flags |= IFF_RUNNING;
}
}
break;
#ifdef SIOCSIFMTU
#ifndef ifr_mtu
#define ifr_mtu ifr_metric
#endif
case SIOCSIFMTU:
if (ifr->ifr_mtu < 128 || ifr->ifr_mtu > sp->lcp.their_mru)
return (EINVAL);
ifp->if_mtu = ifr->ifr_mtu;
break;
#endif
#ifdef SLIOCSETMTU
case SLIOCSETMTU:
if (*(short*)data < 128 || *(short*)data > sp->lcp.their_mru)
return (EINVAL);
ifp->if_mtu = *(short*)data;
break;
#endif
#ifdef SIOCGIFMTU
case SIOCGIFMTU:
ifr->ifr_mtu = ifp->if_mtu;
break;
#endif
#ifdef SLIOCGETMTU
case SLIOCGETMTU:
*(short*)data = ifp->if_mtu;
break;
#endif
case SIOCADDMULTI:
case SIOCDELMULTI:
break;
case SIOCGIFGENERIC:
case SIOCSIFGENERIC:
rv = sppp_params(sp, cmd, data);
break;
default:
rv = ENOTTY;
}
SPPP_UNLOCK(sp);
splx(s);
return rv;
}
/*
* Cisco framing implementation.
*/
/*
* Handle incoming Cisco keepalive protocol packets.
*/
static void
sppp_cisco_input(struct sppp *sp, struct mbuf *m)
{
STDDCL;
struct cisco_packet *h;
u_long me, mymask;
if (m->m_pkthdr.len < CISCO_PACKET_LEN) {
if (debug)
log(LOG_DEBUG,
SPP_FMT "cisco invalid packet length: %d bytes\n",
SPP_ARGS(ifp), m->m_pkthdr.len);
return;
}
h = mtod (m, struct cisco_packet*);
if (debug)
log(LOG_DEBUG,
SPP_FMT "cisco input: %d bytes "
"<0x%lx 0x%lx 0x%lx 0x%x 0x%x-0x%x>\n",
SPP_ARGS(ifp), m->m_pkthdr.len,
(u_long)ntohl (h->type), (u_long)h->par1, (u_long)h->par2, (u_int)h->rel,
(u_int)h->time0, (u_int)h->time1);
switch (ntohl (h->type)) {
default:
if (debug)
log(-1, SPP_FMT "cisco unknown packet type: 0x%lx\n",
SPP_ARGS(ifp), (u_long)ntohl (h->type));
break;
case CISCO_ADDR_REPLY:
/* Reply on address request, ignore */
break;
case CISCO_KEEPALIVE_REQ:
sp->pp_alivecnt = 0;
sp->pp_rseq[IDX_LCP] = ntohl (h->par1);
if (sp->pp_seq[IDX_LCP] == sp->pp_rseq[IDX_LCP]) {
/* Local and remote sequence numbers are equal.
* Probably, the line is in loopback mode. */
if (sp->pp_loopcnt >= MAXALIVECNT) {
printf (SPP_FMT "loopback\n",
SPP_ARGS(ifp));
sp->pp_loopcnt = 0;
if (ifp->if_flags & IFF_UP) {
if_down (ifp);
sppp_qflush (&sp->pp_cpq);
}
}
++sp->pp_loopcnt;
/* Generate new local sequence number */
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
sp->pp_seq[IDX_LCP] = random();
#else
sp->pp_seq[IDX_LCP] ^= time.tv_sec ^ time.tv_usec;
#endif
break;
}
sp->pp_loopcnt = 0;
if (! (ifp->if_flags & IFF_UP) &&
(ifp->if_flags & IFF_RUNNING)) {
if_up(ifp);
printf (SPP_FMT "up\n", SPP_ARGS(ifp));
}
break;
case CISCO_ADDR_REQ:
sppp_get_ip_addrs(sp, &me, 0, &mymask);
if (me != 0L)
sppp_cisco_send(sp, CISCO_ADDR_REPLY, me, mymask);
break;
}
}
/*
* Send Cisco keepalive packet.
*/
static void
sppp_cisco_send(struct sppp *sp, int type, long par1, long par2)
{
STDDCL;
struct ppp_header *h;
struct cisco_packet *ch;
struct mbuf *m;
struct timeval tv;
getmicrouptime(&tv);
MGETHDR (m, M_DONTWAIT, MT_DATA);
if (! m)
return;
m->m_pkthdr.len = m->m_len = PPP_HEADER_LEN + CISCO_PACKET_LEN;
m->m_pkthdr.rcvif = 0;
h = mtod (m, struct ppp_header*);
h->address = CISCO_MULTICAST;
h->control = 0;
h->protocol = htons (CISCO_KEEPALIVE);
ch = (struct cisco_packet*) (h + 1);
ch->type = htonl (type);
ch->par1 = htonl (par1);
ch->par2 = htonl (par2);
ch->rel = -1;
ch->time0 = htons ((u_short) (tv.tv_sec >> 16));
ch->time1 = htons ((u_short) tv.tv_sec);
if (debug)
log(LOG_DEBUG,
SPP_FMT "cisco output: <0x%lx 0x%lx 0x%lx 0x%x 0x%x-0x%x>\n",
SPP_ARGS(ifp), (u_long)ntohl (ch->type), (u_long)ch->par1,
(u_long)ch->par2, (u_int)ch->rel, (u_int)ch->time0, (u_int)ch->time1);
if (! IF_HANDOFF_ADJ(&sp->pp_cpq, m, ifp, 3))
ifp->if_oerrors++;
}
/*
* PPP protocol implementation.
*/
/*
* Send PPP control protocol packet.
*/
static void
sppp_cp_send(struct sppp *sp, u_short proto, u_char type,
u_char ident, u_short len, void *data)
{
STDDCL;
struct ppp_header *h;
struct lcp_header *lh;
struct mbuf *m;
if (len > MHLEN - PPP_HEADER_LEN - LCP_HEADER_LEN)
len = MHLEN - PPP_HEADER_LEN - LCP_HEADER_LEN;
MGETHDR (m, M_DONTWAIT, MT_DATA);
if (! m)
return;
m->m_pkthdr.len = m->m_len = PPP_HEADER_LEN + LCP_HEADER_LEN + len;
m->m_pkthdr.rcvif = 0;
h = mtod (m, struct ppp_header*);
h->address = PPP_ALLSTATIONS; /* broadcast address */
h->control = PPP_UI; /* Unnumbered Info */
h->protocol = htons (proto); /* Link Control Protocol */
lh = (struct lcp_header*) (h + 1);
lh->type = type;
lh->ident = ident;
lh->len = htons (LCP_HEADER_LEN + len);
if (len)
bcopy (data, lh+1, len);
if (debug) {
log(LOG_DEBUG, SPP_FMT "%s output <%s id=0x%x len=%d",
SPP_ARGS(ifp),
sppp_proto_name(proto),
sppp_cp_type_name (lh->type), lh->ident,
ntohs (lh->len));
sppp_print_bytes ((u_char*) (lh+1), len);
log(-1, ">\n");
}
if (! IF_HANDOFF_ADJ(&sp->pp_cpq, m, ifp, 3))
ifp->if_oerrors++;
}
/*
* Handle incoming PPP control protocol packets.
*/
static void
sppp_cp_input(const struct cp *cp, struct sppp *sp, struct mbuf *m)
{
STDDCL;
struct lcp_header *h;
int len = m->m_pkthdr.len;
int rv;
u_char *p;
if (len < 4) {
if (debug)
log(LOG_DEBUG,
SPP_FMT "%s invalid packet length: %d bytes\n",
SPP_ARGS(ifp), cp->name, len);
return;
}
h = mtod (m, struct lcp_header*);
if (debug) {
log(LOG_DEBUG,
SPP_FMT "%s input(%s): <%s id=0x%x len=%d",
SPP_ARGS(ifp), cp->name,
sppp_state_name(sp->state[cp->protoidx]),
sppp_cp_type_name (h->type), h->ident, ntohs (h->len));
sppp_print_bytes ((u_char*) (h+1), len-4);
log(-1, ">\n");
}
if (len > ntohs (h->len))
len = ntohs (h->len);
p = (u_char *)(h + 1);
switch (h->type) {
case CONF_REQ:
if (len < 4) {
if (debug)
log(-1, SPP_FMT "%s invalid conf-req length %d\n",
SPP_ARGS(ifp), cp->name,
len);
++ifp->if_ierrors;
break;
}
/* handle states where RCR doesn't get a SCA/SCN */
switch (sp->state[cp->protoidx]) {
case STATE_CLOSING:
case STATE_STOPPING:
return;
case STATE_CLOSED:
sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident,
0, 0);
return;
}
rv = (cp->RCR)(sp, h, len);
switch (sp->state[cp->protoidx]) {
case STATE_OPENED:
(cp->tld)(sp);
(cp->scr)(sp);
/* FALLTHROUGH */
case STATE_ACK_SENT:
case STATE_REQ_SENT:
/*
* sppp_cp_change_state() have the side effect of
* restarting the timeouts. We want to avoid that
* if the state don't change, otherwise we won't
* ever timeout and resend a configuration request
* that got lost.
*/
if (sp->state[cp->protoidx] == (rv ? STATE_ACK_SENT:
STATE_REQ_SENT))
break;
sppp_cp_change_state(cp, sp, rv?
STATE_ACK_SENT: STATE_REQ_SENT);
break;
case STATE_STOPPED:
sp->rst_counter[cp->protoidx] = sp->lcp.max_configure;
(cp->scr)(sp);
sppp_cp_change_state(cp, sp, rv?
STATE_ACK_SENT: STATE_REQ_SENT);
break;
case STATE_ACK_RCVD:
if (rv) {
sppp_cp_change_state(cp, sp, STATE_OPENED);
if (debug)
log(LOG_DEBUG, SPP_FMT "%s tlu\n",
SPP_ARGS(ifp),
cp->name);
(cp->tlu)(sp);
} else
sppp_cp_change_state(cp, sp, STATE_ACK_RCVD);
break;
default:
printf(SPP_FMT "%s illegal %s in state %s\n",
SPP_ARGS(ifp), cp->name,
sppp_cp_type_name(h->type),
sppp_state_name(sp->state[cp->protoidx]));
++ifp->if_ierrors;
}
break;
case CONF_ACK:
if (h->ident != sp->confid[cp->protoidx]) {
if (debug)
log(-1, SPP_FMT "%s id mismatch 0x%x != 0x%x\n",
SPP_ARGS(ifp), cp->name,
h->ident, sp->confid[cp->protoidx]);
++ifp->if_ierrors;
break;
}
switch (sp->state[cp->protoidx]) {
case STATE_CLOSED:
case STATE_STOPPED:
sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0);
break;
case STATE_CLOSING:
case STATE_STOPPING:
break;
case STATE_REQ_SENT:
sp->rst_counter[cp->protoidx] = sp->lcp.max_configure;
sppp_cp_change_state(cp, sp, STATE_ACK_RCVD);
break;
case STATE_OPENED:
(cp->tld)(sp);
/* FALLTHROUGH */
case STATE_ACK_RCVD:
(cp->scr)(sp);
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
case STATE_ACK_SENT:
sp->rst_counter[cp->protoidx] = sp->lcp.max_configure;
sppp_cp_change_state(cp, sp, STATE_OPENED);
if (debug)
log(LOG_DEBUG, SPP_FMT "%s tlu\n",
SPP_ARGS(ifp), cp->name);
(cp->tlu)(sp);
break;
default:
printf(SPP_FMT "%s illegal %s in state %s\n",
SPP_ARGS(ifp), cp->name,
sppp_cp_type_name(h->type),
sppp_state_name(sp->state[cp->protoidx]));
++ifp->if_ierrors;
}
break;
case CONF_NAK:
case CONF_REJ:
if (h->ident != sp->confid[cp->protoidx]) {
if (debug)
log(-1, SPP_FMT "%s id mismatch 0x%x != 0x%x\n",
SPP_ARGS(ifp), cp->name,
h->ident, sp->confid[cp->protoidx]);
++ifp->if_ierrors;
break;
}
if (h->type == CONF_NAK)
(cp->RCN_nak)(sp, h, len);
else /* CONF_REJ */
(cp->RCN_rej)(sp, h, len);
switch (sp->state[cp->protoidx]) {
case STATE_CLOSED:
case STATE_STOPPED:
sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0);
break;
case STATE_REQ_SENT:
case STATE_ACK_SENT:
sp->rst_counter[cp->protoidx] = sp->lcp.max_configure;
/*
* Slow things down a bit if we think we might be
* in loopback. Depend on the timeout to send the
* next configuration request.
*/
if (sp->pp_loopcnt)
break;
(cp->scr)(sp);
break;
case STATE_OPENED:
(cp->tld)(sp);
/* FALLTHROUGH */
case STATE_ACK_RCVD:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
(cp->scr)(sp);
break;
case STATE_CLOSING:
case STATE_STOPPING:
break;
default:
printf(SPP_FMT "%s illegal %s in state %s\n",
SPP_ARGS(ifp), cp->name,
sppp_cp_type_name(h->type),
sppp_state_name(sp->state[cp->protoidx]));
++ifp->if_ierrors;
}
break;
case TERM_REQ:
switch (sp->state[cp->protoidx]) {
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
/* FALLTHROUGH */
case STATE_CLOSED:
case STATE_STOPPED:
case STATE_CLOSING:
case STATE_STOPPING:
case STATE_REQ_SENT:
sta:
/* Send Terminate-Ack packet. */
if (debug)
log(LOG_DEBUG, SPP_FMT "%s send terminate-ack\n",
SPP_ARGS(ifp), cp->name);
sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0);
break;
case STATE_OPENED:
(cp->tld)(sp);
sp->rst_counter[cp->protoidx] = 0;
sppp_cp_change_state(cp, sp, STATE_STOPPING);
goto sta;
break;
default:
printf(SPP_FMT "%s illegal %s in state %s\n",
SPP_ARGS(ifp), cp->name,
sppp_cp_type_name(h->type),
sppp_state_name(sp->state[cp->protoidx]));
++ifp->if_ierrors;
}
break;
case TERM_ACK:
switch (sp->state[cp->protoidx]) {
case STATE_CLOSED:
case STATE_STOPPED:
case STATE_REQ_SENT:
case STATE_ACK_SENT:
break;
case STATE_CLOSING:
sppp_cp_change_state(cp, sp, STATE_CLOSED);
(cp->tlf)(sp);
break;
case STATE_STOPPING:
sppp_cp_change_state(cp, sp, STATE_STOPPED);
(cp->tlf)(sp);
break;
case STATE_ACK_RCVD:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
case STATE_OPENED:
(cp->tld)(sp);
(cp->scr)(sp);
sppp_cp_change_state(cp, sp, STATE_ACK_RCVD);
break;
default:
printf(SPP_FMT "%s illegal %s in state %s\n",
SPP_ARGS(ifp), cp->name,
sppp_cp_type_name(h->type),
sppp_state_name(sp->state[cp->protoidx]));
++ifp->if_ierrors;
}
break;
case CODE_REJ:
/* XXX catastrophic rejects (RXJ-) aren't handled yet. */
log(LOG_INFO,
SPP_FMT "%s: ignoring RXJ (%s) for proto 0x%x, "
"danger will robinson\n",
SPP_ARGS(ifp), cp->name,
sppp_cp_type_name(h->type), ntohs(*((u_short *)p)));
switch (sp->state[cp->protoidx]) {
case STATE_CLOSED:
case STATE_STOPPED:
case STATE_REQ_SENT:
case STATE_ACK_SENT:
case STATE_CLOSING:
case STATE_STOPPING:
case STATE_OPENED:
break;
case STATE_ACK_RCVD:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
default:
printf(SPP_FMT "%s illegal %s in state %s\n",
SPP_ARGS(ifp), cp->name,
sppp_cp_type_name(h->type),
sppp_state_name(sp->state[cp->protoidx]));
++ifp->if_ierrors;
}
break;
case PROTO_REJ:
{
int catastrophic;
const struct cp *upper;
int i;
u_int16_t proto;
catastrophic = 0;
upper = NULL;
proto = ntohs(*((u_int16_t *)p));
for (i = 0; i < IDX_COUNT; i++) {
if (cps[i]->proto == proto) {
upper = cps[i];
break;
}
}
if (upper == NULL)
catastrophic++;
if (catastrophic || debug)
log(catastrophic? LOG_INFO: LOG_DEBUG,
SPP_FMT "%s: RXJ%c (%s) for proto 0x%x (%s/%s)\n",
SPP_ARGS(ifp), cp->name, catastrophic ? '-' : '+',
sppp_cp_type_name(h->type), proto,
upper ? upper->name : "unknown",
upper ? sppp_state_name(sp->state[upper->protoidx]) : "?");
/*
* if we got RXJ+ against conf-req, the peer does not implement
* this particular protocol type. terminate the protocol.
*/
if (upper && !catastrophic) {
if (sp->state[upper->protoidx] == STATE_REQ_SENT) {
upper->Close(sp);
break;
}
}
/* XXX catastrophic rejects (RXJ-) aren't handled yet. */
switch (sp->state[cp->protoidx]) {
case STATE_CLOSED:
case STATE_STOPPED:
case STATE_REQ_SENT:
case STATE_ACK_SENT:
case STATE_CLOSING:
case STATE_STOPPING:
case STATE_OPENED:
break;
case STATE_ACK_RCVD:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
default:
printf(SPP_FMT "%s illegal %s in state %s\n",
SPP_ARGS(ifp), cp->name,
sppp_cp_type_name(h->type),
sppp_state_name(sp->state[cp->protoidx]));
++ifp->if_ierrors;
}
break;
}
case DISC_REQ:
if (cp->proto != PPP_LCP)
goto illegal;
/* Discard the packet. */
break;
case ECHO_REQ:
if (cp->proto != PPP_LCP)
goto illegal;
if (sp->state[cp->protoidx] != STATE_OPENED) {
if (debug)
log(-1, SPP_FMT "lcp echo req but lcp closed\n",
SPP_ARGS(ifp));
++ifp->if_ierrors;
break;
}
if (len < 8) {
if (debug)
log(-1, SPP_FMT "invalid lcp echo request "
"packet length: %d bytes\n",
SPP_ARGS(ifp), len);
break;
}
if ((sp->lcp.opts & (1 << LCP_OPT_MAGIC)) &&
ntohl (*(long*)(h+1)) == sp->lcp.magic) {
/* Line loopback mode detected. */
printf(SPP_FMT "loopback\n", SPP_ARGS(ifp));
sp->pp_loopcnt = MAXALIVECNT * 5;
if_down (ifp);
sppp_qflush (&sp->pp_cpq);
/* Shut down the PPP link. */
/* XXX */
lcp.Down(sp);
lcp.Up(sp);
break;
}
*(long*)(h+1) = htonl (sp->lcp.magic);
if (debug)
log(-1, SPP_FMT "got lcp echo req, sending echo rep\n",
SPP_ARGS(ifp));
sppp_cp_send (sp, PPP_LCP, ECHO_REPLY, h->ident, len-4, h+1);
break;
case ECHO_REPLY:
if (cp->proto != PPP_LCP)
goto illegal;
if (h->ident != sp->lcp.echoid) {
++ifp->if_ierrors;
break;
}
if (len < 8) {
if (debug)
log(-1, SPP_FMT "lcp invalid echo reply "
"packet length: %d bytes\n",
SPP_ARGS(ifp), len);
break;
}
if (debug)
log(-1, SPP_FMT "lcp got echo rep\n",
SPP_ARGS(ifp));
if (!(sp->lcp.opts & (1 << LCP_OPT_MAGIC)) ||
ntohl (*(long*)(h+1)) != sp->lcp.magic)
sp->pp_alivecnt = 0;
break;
default:
/* Unknown packet type -- send Code-Reject packet. */
illegal:
if (debug)
log(-1, SPP_FMT "%s send code-rej for 0x%x\n",
SPP_ARGS(ifp), cp->name, h->type);
sppp_cp_send(sp, cp->proto, CODE_REJ,
++sp->pp_seq[cp->protoidx], m->m_pkthdr.len, h);
++ifp->if_ierrors;
}
}
/*
* The generic part of all Up/Down/Open/Close/TO event handlers.
* Basically, the state transition handling in the automaton.
*/
static void
sppp_up_event(const struct cp *cp, struct sppp *sp)
{
STDDCL;
if (debug)
log(LOG_DEBUG, SPP_FMT "%s up(%s)\n",
SPP_ARGS(ifp), cp->name,
sppp_state_name(sp->state[cp->protoidx]));
switch (sp->state[cp->protoidx]) {
case STATE_INITIAL:
sppp_cp_change_state(cp, sp, STATE_CLOSED);
break;
case STATE_STARTING:
sp->rst_counter[cp->protoidx] = sp->lcp.max_configure;
(cp->scr)(sp);
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
default:
printf(SPP_FMT "%s illegal up in state %s\n",
SPP_ARGS(ifp), cp->name,
sppp_state_name(sp->state[cp->protoidx]));
}
}
static void
sppp_down_event(const struct cp *cp, struct sppp *sp)
{
STDDCL;
if (debug)
log(LOG_DEBUG, SPP_FMT "%s down(%s)\n",
SPP_ARGS(ifp), cp->name,
sppp_state_name(sp->state[cp->protoidx]));
switch (sp->state[cp->protoidx]) {
case STATE_CLOSED:
case STATE_CLOSING:
sppp_cp_change_state(cp, sp, STATE_INITIAL);
break;
case STATE_STOPPED:
sppp_cp_change_state(cp, sp, STATE_STARTING);
(cp->tls)(sp);
break;
case STATE_STOPPING:
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
sppp_cp_change_state(cp, sp, STATE_STARTING);
break;
case STATE_OPENED:
(cp->tld)(sp);
sppp_cp_change_state(cp, sp, STATE_STARTING);
break;
default:
printf(SPP_FMT "%s illegal down in state %s\n",
SPP_ARGS(ifp), cp->name,
sppp_state_name(sp->state[cp->protoidx]));
}
}
static void
sppp_open_event(const struct cp *cp, struct sppp *sp)
{
STDDCL;
if (debug)
log(LOG_DEBUG, SPP_FMT "%s open(%s)\n",
SPP_ARGS(ifp), cp->name,
sppp_state_name(sp->state[cp->protoidx]));
switch (sp->state[cp->protoidx]) {
case STATE_INITIAL:
sppp_cp_change_state(cp, sp, STATE_STARTING);
(cp->tls)(sp);
break;
case STATE_STARTING:
break;
case STATE_CLOSED:
sp->rst_counter[cp->protoidx] = sp->lcp.max_configure;
(cp->scr)(sp);
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
case STATE_STOPPED:
/*
* Try escaping stopped state. This seems to bite
* people occasionally, in particular for IPCP,
* presumably following previous IPCP negotiation
* aborts. Somehow, we must have missed a Down event
* which would have caused a transition into starting
* state, so as a bandaid we force the Down event now.
* This effectively implements (something like the)
* `restart' option mentioned in the state transition
* table of RFC 1661.
*/
sppp_cp_change_state(cp, sp, STATE_STARTING);
(cp->tls)(sp);
break;
case STATE_STOPPING:
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
case STATE_OPENED:
break;
case STATE_CLOSING:
sppp_cp_change_state(cp, sp, STATE_STOPPING);
break;
}
}
static void
sppp_close_event(const struct cp *cp, struct sppp *sp)
{
STDDCL;
if (debug)
log(LOG_DEBUG, SPP_FMT "%s close(%s)\n",
SPP_ARGS(ifp), cp->name,
sppp_state_name(sp->state[cp->protoidx]));
switch (sp->state[cp->protoidx]) {
case STATE_INITIAL:
case STATE_CLOSED:
case STATE_CLOSING:
break;
case STATE_STARTING:
sppp_cp_change_state(cp, sp, STATE_INITIAL);
(cp->tlf)(sp);
break;
case STATE_STOPPED:
sppp_cp_change_state(cp, sp, STATE_CLOSED);
break;
case STATE_STOPPING:
sppp_cp_change_state(cp, sp, STATE_CLOSING);
break;
case STATE_OPENED:
(cp->tld)(sp);
/* FALLTHROUGH */
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
sp->rst_counter[cp->protoidx] = sp->lcp.max_terminate;
sppp_cp_send(sp, cp->proto, TERM_REQ,
++sp->pp_seq[cp->protoidx], 0, 0);
sppp_cp_change_state(cp, sp, STATE_CLOSING);
break;
}
}
static void
sppp_to_event(const struct cp *cp, struct sppp *sp)
{
STDDCL;
int s;
s = splimp();
SPPP_LOCK(sp);
if (debug)
log(LOG_DEBUG, SPP_FMT "%s TO(%s) rst_counter = %d\n",
SPP_ARGS(ifp), cp->name,
sppp_state_name(sp->state[cp->protoidx]),
sp->rst_counter[cp->protoidx]);
if (--sp->rst_counter[cp->protoidx] < 0)
/* TO- event */
switch (sp->state[cp->protoidx]) {
case STATE_CLOSING:
sppp_cp_change_state(cp, sp, STATE_CLOSED);
(cp->tlf)(sp);
break;
case STATE_STOPPING:
sppp_cp_change_state(cp, sp, STATE_STOPPED);
(cp->tlf)(sp);
break;
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
sppp_cp_change_state(cp, sp, STATE_STOPPED);
(cp->tlf)(sp);
break;
}
else
/* TO+ event */
switch (sp->state[cp->protoidx]) {
case STATE_CLOSING:
case STATE_STOPPING:
sppp_cp_send(sp, cp->proto, TERM_REQ,
++sp->pp_seq[cp->protoidx], 0, 0);
callout_reset(&sp->ch[cp->protoidx], sp->lcp.timeout,
cp->TO, (void *)sp);
break;
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
(cp->scr)(sp);
/* sppp_cp_change_state() will restart the timer */
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
case STATE_ACK_SENT:
(cp->scr)(sp);
callout_reset(&sp->ch[cp->protoidx], sp->lcp.timeout,
cp->TO, (void *)sp);
break;
}
SPPP_UNLOCK(sp);
splx(s);
}
/*
* Change the state of a control protocol in the state automaton.
* Takes care of starting/stopping the restart timer.
*/
static void
sppp_cp_change_state(const struct cp *cp, struct sppp *sp, int newstate)
{
sp->state[cp->protoidx] = newstate;
callout_stop (&sp->ch[cp->protoidx]);
switch (newstate) {
case STATE_INITIAL:
case STATE_STARTING:
case STATE_CLOSED:
case STATE_STOPPED:
case STATE_OPENED:
break;
case STATE_CLOSING:
case STATE_STOPPING:
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
callout_reset(&sp->ch[cp->protoidx], sp->lcp.timeout,
cp->TO, (void *)sp);
break;
}
}
/*
*--------------------------------------------------------------------------*
* *
* The LCP implementation. *
* *
*--------------------------------------------------------------------------*
*/
static void
sppp_pp_up(struct sppp *sp)
{
SPPP_LOCK(sp);
lcp.Up(sp);
SPPP_UNLOCK(sp);
}
static void
sppp_pp_down(struct sppp *sp)
{
SPPP_LOCK(sp);
lcp.Down(sp);
SPPP_UNLOCK(sp);
}
static void
sppp_lcp_init(struct sppp *sp)
{
sp->lcp.opts = (1 << LCP_OPT_MAGIC);
sp->lcp.magic = 0;
sp->state[IDX_LCP] = STATE_INITIAL;
sp->fail_counter[IDX_LCP] = 0;
sp->pp_seq[IDX_LCP] = 0;
sp->pp_rseq[IDX_LCP] = 0;
sp->lcp.protos = 0;
sp->lcp.mru = sp->lcp.their_mru = PP_MTU;
/* Note that these values are relevant for all control protocols */
sp->lcp.timeout = 3 * hz;
sp->lcp.max_terminate = 2;
sp->lcp.max_configure = 10;
sp->lcp.max_failure = 10;
callout_init(&sp->ch[IDX_LCP],
(sp->pp_if.if_flags & IFF_NEEDSGIANT) ? 0 : CALLOUT_MPSAFE);
}
static void
sppp_lcp_up(struct sppp *sp)
{
STDDCL;
sp->pp_alivecnt = 0;
sp->lcp.opts = (1 << LCP_OPT_MAGIC);
sp->lcp.magic = 0;
sp->lcp.protos = 0;
sp->lcp.mru = sp->lcp.their_mru = PP_MTU;
/*
* If we are authenticator, negotiate LCP_AUTH
*/
if (sp->hisauth.proto != 0)
sp->lcp.opts |= (1 << LCP_OPT_AUTH_PROTO);
else
sp->lcp.opts &= ~(1 << LCP_OPT_AUTH_PROTO);
sp->pp_flags &= ~PP_NEEDAUTH;
/*
* If this interface is passive or dial-on-demand, and we are
* still in Initial state, it means we've got an incoming
* call. Activate the interface.
*/
if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) != 0) {
if (debug)
log(LOG_DEBUG,
SPP_FMT "Up event", SPP_ARGS(ifp));
ifp->if_flags |= IFF_RUNNING;
if (sp->state[IDX_LCP] == STATE_INITIAL) {
if (debug)
log(-1, "(incoming call)\n");
sp->pp_flags |= PP_CALLIN;
lcp.Open(sp);
} else if (debug)
log(-1, "\n");
} else if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) == 0 &&
(sp->state[IDX_LCP] == STATE_INITIAL)) {
ifp->if_flags |= IFF_RUNNING;
lcp.Open(sp);
}
sppp_up_event(&lcp, sp);
}
static void
sppp_lcp_down(struct sppp *sp)
{
STDDCL;
sppp_down_event(&lcp, sp);
/*
* If this is neither a dial-on-demand nor a passive
* interface, simulate an ``ifconfig down'' action, so the
* administrator can force a redial by another ``ifconfig
* up''. XXX For leased line operation, should we immediately
* try to reopen the connection here?
*/
if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) == 0) {
log(LOG_INFO,
SPP_FMT "Down event, taking interface down.\n",
SPP_ARGS(ifp));
if_down(ifp);
} else {
if (debug)
log(LOG_DEBUG,
SPP_FMT "Down event (carrier loss)\n",
SPP_ARGS(ifp));
sp->pp_flags &= ~PP_CALLIN;
if (sp->state[IDX_LCP] != STATE_INITIAL)
lcp.Close(sp);
ifp->if_flags &= ~IFF_RUNNING;
}
}
static void
sppp_lcp_open(struct sppp *sp)
{
sppp_open_event(&lcp, sp);
}
static void
sppp_lcp_close(struct sppp *sp)
{
sppp_close_event(&lcp, sp);
}
static void
sppp_lcp_TO(void *cookie)
{
sppp_to_event(&lcp, (struct sppp *)cookie);
}
/*
* Analyze a configure request. Return true if it was agreeable, and
* caused action sca, false if it has been rejected or nak'ed, and
* caused action scn. (The return value is used to make the state
* transition decision in the state automaton.)
*/
static int
sppp_lcp_RCR(struct sppp *sp, struct lcp_header *h, int len)
{
STDDCL;
u_char *buf, *r, *p;
int origlen, rlen;
u_long nmagic;
u_short authproto;
len -= 4;
origlen = len;
buf = r = malloc (len, M_TEMP, M_NOWAIT);
if (! buf)
return (0);
if (debug)
log(LOG_DEBUG, SPP_FMT "lcp parse opts: ",
SPP_ARGS(ifp));
/* pass 1: check for things that need to be rejected */
p = (void*) (h+1);
for (rlen=0; len>1 && p[1]; len-=p[1], p+=p[1]) {
if (debug)
log(-1, " %s ", sppp_lcp_opt_name(*p));
switch (*p) {
case LCP_OPT_MAGIC:
/* Magic number. */
if (len >= 6 && p[1] == 6)
continue;
if (debug)
log(-1, "[invalid] ");
break;
case LCP_OPT_ASYNC_MAP:
/* Async control character map. */
if (len >= 6 && p[1] == 6)
continue;
if (debug)
log(-1, "[invalid] ");
break;
case LCP_OPT_MRU:
/* Maximum receive unit. */
if (len >= 4 && p[1] == 4)
continue;
if (debug)
log(-1, "[invalid] ");
break;
case LCP_OPT_AUTH_PROTO:
if (len < 4) {
if (debug)
log(-1, "[invalid] ");
break;
}
authproto = (p[2] << 8) + p[3];
if (authproto == PPP_CHAP && p[1] != 5) {
if (debug)
log(-1, "[invalid chap len] ");
break;
}
if (sp->myauth.proto == 0) {
/* we are not configured to do auth */
if (debug)
log(-1, "[not configured] ");
break;
}
/*
* Remote want us to authenticate, remember this,
* so we stay in PHASE_AUTHENTICATE after LCP got
* up.
*/
sp->pp_flags |= PP_NEEDAUTH;
continue;
default:
/* Others not supported. */
if (debug)
log(-1, "[rej] ");
break;
}
/* Add the option to rejected list. */
bcopy (p, r, p[1]);
r += p[1];
rlen += p[1];
}
if (rlen) {
if (debug)
log(-1, " send conf-rej\n");
sppp_cp_send (sp, PPP_LCP, CONF_REJ, h->ident, rlen, buf);
return 0;
} else if (debug)
log(-1, "\n");
/*
* pass 2: check for option values that are unacceptable and
* thus require to be nak'ed.
*/
if (debug)
log(LOG_DEBUG, SPP_FMT "lcp parse opt values: ",
SPP_ARGS(ifp));
p = (void*) (h+1);
len = origlen;
for (rlen=0; len>1 && p[1]; len-=p[1], p+=p[1]) {
if (debug)
log(-1, " %s ", sppp_lcp_opt_name(*p));
switch (*p) {
case LCP_OPT_MAGIC:
/* Magic number -- extract. */
nmagic = (u_long)p[2] << 24 |
(u_long)p[3] << 16 | p[4] << 8 | p[5];
if (nmagic != sp->lcp.magic) {
sp->pp_loopcnt = 0;
if (debug)
log(-1, "0x%lx ", nmagic);
continue;
}
if (debug && sp->pp_loopcnt < MAXALIVECNT*5)
log(-1, "[glitch] ");
++sp->pp_loopcnt;
/*
* We negate our magic here, and NAK it. If
* we see it later in an NAK packet, we
* suggest a new one.
*/
nmagic = ~sp->lcp.magic;
/* Gonna NAK it. */
p[2] = nmagic >> 24;
p[3] = nmagic >> 16;
p[4] = nmagic >> 8;
p[5] = nmagic;
break;
case LCP_OPT_ASYNC_MAP:
/*
* Async control character map -- just ignore it.
*
* Quote from RFC 1662, chapter 6:
* To enable this functionality, synchronous PPP
* implementations MUST always respond to the
* Async-Control-Character-Map Configuration
* Option with the LCP Configure-Ack. However,
* acceptance of the Configuration Option does
* not imply that the synchronous implementation
* will do any ACCM mapping. Instead, all such
* octet mapping will be performed by the
* asynchronous-to-synchronous converter.
*/
continue;
case LCP_OPT_MRU:
/*
* Maximum receive unit. Always agreeable,
* but ignored by now.
*/
sp->lcp.their_mru = p[2] * 256 + p[3];
if (debug)
log(-1, "%lu ", sp->lcp.their_mru);
continue;
case LCP_OPT_AUTH_PROTO:
authproto = (p[2] << 8) + p[3];
if (sp->myauth.proto != authproto) {
/* not agreed, nak */
if (debug)
log(-1, "[mine %s != his %s] ",
sppp_proto_name(sp->hisauth.proto),
sppp_proto_name(authproto));
p[2] = sp->myauth.proto >> 8;
p[3] = sp->myauth.proto;
break;
}
if (authproto == PPP_CHAP && p[4] != CHAP_MD5) {
if (debug)
log(-1, "[chap not MD5] ");
p[4] = CHAP_MD5;
break;
}
continue;
}
/* Add the option to nak'ed list. */
bcopy (p, r, p[1]);
r += p[1];
rlen += p[1];
}
if (rlen) {
/*
* Local and remote magics equal -- loopback?
*/
if (sp->pp_loopcnt >= MAXALIVECNT*5) {
if (sp->pp_loopcnt == MAXALIVECNT*5)
printf (SPP_FMT "loopback\n",
SPP_ARGS(ifp));
if (ifp->if_flags & IFF_UP) {
if_down(ifp);
sppp_qflush(&sp->pp_cpq);
/* XXX ? */
lcp.Down(sp);
lcp.Up(sp);
}
} else if (!sp->pp_loopcnt &&
++sp->fail_counter[IDX_LCP] >= sp->lcp.max_failure) {
if (debug)
log(-1, " max_failure (%d) exceeded, "
"send conf-rej\n",
sp->lcp.max_failure);
sppp_cp_send(sp, PPP_LCP, CONF_REJ, h->ident, rlen, buf);
} else {
if (debug)
log(-1, " send conf-nak\n");
sppp_cp_send (sp, PPP_LCP, CONF_NAK, h->ident, rlen, buf);
}
} else {
if (debug)
log(-1, " send conf-ack\n");
sp->fail_counter[IDX_LCP] = 0;
sp->pp_loopcnt = 0;
sppp_cp_send (sp, PPP_LCP, CONF_ACK,
h->ident, origlen, h+1);
}
free (buf, M_TEMP);
return (rlen == 0);
}
/*
* Analyze the LCP Configure-Reject option list, and adjust our
* negotiation.
*/
static void
sppp_lcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len)
{
STDDCL;
u_char *buf, *p;
len -= 4;
buf = malloc (len, M_TEMP, M_NOWAIT);
if (!buf)
return;
if (debug)
log(LOG_DEBUG, SPP_FMT "lcp rej opts: ",
SPP_ARGS(ifp));
p = (void*) (h+1);
for (; len > 1 && p[1]; len -= p[1], p += p[1]) {
if (debug)
log(-1, " %s ", sppp_lcp_opt_name(*p));
switch (*p) {
case LCP_OPT_MAGIC:
/* Magic number -- can't use it, use 0 */
sp->lcp.opts &= ~(1 << LCP_OPT_MAGIC);
sp->lcp.magic = 0;
break;
case LCP_OPT_MRU:
/*
* Should not be rejected anyway, since we only
* negotiate a MRU if explicitly requested by
* peer.
*/
sp->lcp.opts &= ~(1 << LCP_OPT_MRU);
break;
case LCP_OPT_AUTH_PROTO:
/*
* Peer doesn't want to authenticate himself,
* deny unless this is a dialout call, and
* AUTHFLAG_NOCALLOUT is set.
*/
if ((sp->pp_flags & PP_CALLIN) == 0 &&
(sp->hisauth.flags & AUTHFLAG_NOCALLOUT) != 0) {
if (debug)
log(-1, "[don't insist on auth "
"for callout]");
sp->lcp.opts &= ~(1 << LCP_OPT_AUTH_PROTO);
break;
}
if (debug)
log(-1, "[access denied]\n");
lcp.Close(sp);
break;
}
}
if (debug)
log(-1, "\n");
free (buf, M_TEMP);
return;
}
/*
* Analyze the LCP Configure-NAK option list, and adjust our
* negotiation.
*/
static void
sppp_lcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len)
{
STDDCL;
u_char *buf, *p;
u_long magic;
len -= 4;
buf = malloc (len, M_TEMP, M_NOWAIT);
if (!buf)
return;
if (debug)
log(LOG_DEBUG, SPP_FMT "lcp nak opts: ",
SPP_ARGS(ifp));
p = (void*) (h+1);
for (; len > 1 && p[1]; len -= p[1], p += p[1]) {
if (debug)
log(-1, " %s ", sppp_lcp_opt_name(*p));
switch (*p) {
case LCP_OPT_MAGIC:
/* Magic number -- renegotiate */
if ((sp->lcp.opts & (1 << LCP_OPT_MAGIC)) &&
len >= 6 && p[1] == 6) {
magic = (u_long)p[2] << 24 |
(u_long)p[3] << 16 | p[4] << 8 | p[5];
/*
* If the remote magic is our negated one,
* this looks like a loopback problem.
* Suggest a new magic to make sure.
*/
if (magic == ~sp->lcp.magic) {
if (debug)
log(-1, "magic glitch ");
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
sp->lcp.magic = random();
#else
sp->lcp.magic = time.tv_sec + time.tv_usec;
#endif
} else {
sp->lcp.magic = magic;
if (debug)
log(-1, "%lu ", magic);
}
}
break;
case LCP_OPT_MRU:
/*
* Peer wants to advise us to negotiate an MRU.
* Agree on it if it's reasonable, or use
* default otherwise.
*/
if (len >= 4 && p[1] == 4) {
u_int mru = p[2] * 256 + p[3];
if (debug)
log(-1, "%d ", mru);
if (mru < PP_MTU || mru > PP_MAX_MRU)
mru = PP_MTU;
sp->lcp.mru = mru;
sp->lcp.opts |= (1 << LCP_OPT_MRU);
}
break;
case LCP_OPT_AUTH_PROTO:
/*
* Peer doesn't like our authentication method,
* deny.
*/
if (debug)
log(-1, "[access denied]\n");
lcp.Close(sp);
break;
}
}
if (debug)
log(-1, "\n");
free (buf, M_TEMP);
return;
}
static void
sppp_lcp_tlu(struct sppp *sp)
{
STDDCL;
int i;
u_long mask;
/* XXX ? */
if (! (ifp->if_flags & IFF_UP) &&
(ifp->if_flags & IFF_RUNNING)) {
/* Coming out of loopback mode. */
if_up(ifp);
printf (SPP_FMT "up\n", SPP_ARGS(ifp));
}
for (i = 0; i < IDX_COUNT; i++)
if ((cps[i])->flags & CP_QUAL)
(cps[i])->Open(sp);
if ((sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) != 0 ||
(sp->pp_flags & PP_NEEDAUTH) != 0)
sp->pp_phase = PHASE_AUTHENTICATE;
else
sp->pp_phase = PHASE_NETWORK;
if (debug)
log(LOG_DEBUG, SPP_FMT "phase %s\n", SPP_ARGS(ifp),
sppp_phase_name(sp->pp_phase));
/*
* Open all authentication protocols. This is even required
* if we already proceeded to network phase, since it might be
* that remote wants us to authenticate, so we might have to
* send a PAP request. Undesired authentication protocols
* don't do anything when they get an Open event.
*/
for (i = 0; i < IDX_COUNT; i++)
if ((cps[i])->flags & CP_AUTH)
(cps[i])->Open(sp);
if (sp->pp_phase == PHASE_NETWORK) {
/* Notify all NCPs. */
for (i = 0; i < IDX_COUNT; i++)
if (((cps[i])->flags & CP_NCP) &&
/*
* XXX
* Hack to administratively disable IPv6 if
* not desired. Perhaps we should have another
* flag for this, but right now, we can make
* all struct cp's read/only.
*/
(cps[i] != &ipv6cp ||
(sp->confflags & CONF_ENABLE_IPV6)))
(cps[i])->Open(sp);
}
/* Send Up events to all started protos. */
for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1)
if ((sp->lcp.protos & mask) && ((cps[i])->flags & CP_LCP) == 0)
(cps[i])->Up(sp);
/* notify low-level driver of state change */
if (sp->pp_chg)
sp->pp_chg(sp, (int)sp->pp_phase);
if (sp->pp_phase == PHASE_NETWORK)
/* if no NCP is starting, close down */
sppp_lcp_check_and_close(sp);
}
static void
sppp_lcp_tld(struct sppp *sp)
{
STDDCL;
int i;
u_long mask;
sp->pp_phase = PHASE_TERMINATE;
if (debug)
log(LOG_DEBUG, SPP_FMT "phase %s\n", SPP_ARGS(ifp),
sppp_phase_name(sp->pp_phase));
/*
* Take upper layers down. We send the Down event first and
* the Close second to prevent the upper layers from sending
* ``a flurry of terminate-request packets'', as the RFC
* describes it.
*/
for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1)
if ((sp->lcp.protos & mask) && ((cps[i])->flags & CP_LCP) == 0) {
(cps[i])->Down(sp);
(cps[i])->Close(sp);
}
}
static void
sppp_lcp_tls(struct sppp *sp)
{
STDDCL;
sp->pp_phase = PHASE_ESTABLISH;
if (debug)
log(LOG_DEBUG, SPP_FMT "phase %s\n", SPP_ARGS(ifp),
sppp_phase_name(sp->pp_phase));
/* Notify lower layer if desired. */
if (sp->pp_tls)
(sp->pp_tls)(sp);
else
(sp->pp_up)(sp);
}
static void
sppp_lcp_tlf(struct sppp *sp)
{
STDDCL;
sp->pp_phase = PHASE_DEAD;
if (debug)
log(LOG_DEBUG, SPP_FMT "phase %s\n", SPP_ARGS(ifp),
sppp_phase_name(sp->pp_phase));
/* Notify lower layer if desired. */
if (sp->pp_tlf)
(sp->pp_tlf)(sp);
else
(sp->pp_down)(sp);
}
static void
sppp_lcp_scr(struct sppp *sp)
{
char opt[6 /* magicnum */ + 4 /* mru */ + 5 /* chap */];
int i = 0;
u_short authproto;
if (sp->lcp.opts & (1 << LCP_OPT_MAGIC)) {
if (! sp->lcp.magic)
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
sp->lcp.magic = random();
#else
sp->lcp.magic = time.tv_sec + time.tv_usec;
#endif
opt[i++] = LCP_OPT_MAGIC;
opt[i++] = 6;
opt[i++] = sp->lcp.magic >> 24;
opt[i++] = sp->lcp.magic >> 16;
opt[i++] = sp->lcp.magic >> 8;
opt[i++] = sp->lcp.magic;
}
if (sp->lcp.opts & (1 << LCP_OPT_MRU)) {
opt[i++] = LCP_OPT_MRU;
opt[i++] = 4;
opt[i++] = sp->lcp.mru >> 8;
opt[i++] = sp->lcp.mru;
}
if (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) {
authproto = sp->hisauth.proto;
opt[i++] = LCP_OPT_AUTH_PROTO;
opt[i++] = authproto == PPP_CHAP? 5: 4;
opt[i++] = authproto >> 8;
opt[i++] = authproto;
if (authproto == PPP_CHAP)
opt[i++] = CHAP_MD5;
}
sp->confid[IDX_LCP] = ++sp->pp_seq[IDX_LCP];
sppp_cp_send (sp, PPP_LCP, CONF_REQ, sp->confid[IDX_LCP], i, &opt);
}
/*
* Check the open NCPs, return true if at least one NCP is open.
*/
static int
sppp_ncp_check(struct sppp *sp)
{
int i, mask;
for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1)
if ((sp->lcp.protos & mask) && (cps[i])->flags & CP_NCP)
return 1;
return 0;
}
/*
* Re-check the open NCPs and see if we should terminate the link.
* Called by the NCPs during their tlf action handling.
*/
static void
sppp_lcp_check_and_close(struct sppp *sp)
{
if (sp->pp_phase < PHASE_NETWORK)
/* don't bother, we are already going down */
return;
if (sppp_ncp_check(sp))
return;
lcp.Close(sp);
}
/*
*--------------------------------------------------------------------------*
* *
* The IPCP implementation. *
* *
*--------------------------------------------------------------------------*
*/
static void
sppp_ipcp_init(struct sppp *sp)
{
sp->ipcp.opts = 0;
sp->ipcp.flags = 0;
sp->state[IDX_IPCP] = STATE_INITIAL;
sp->fail_counter[IDX_IPCP] = 0;
sp->pp_seq[IDX_IPCP] = 0;
sp->pp_rseq[IDX_IPCP] = 0;
callout_init(&sp->ch[IDX_IPCP],
(sp->pp_if.if_flags & IFF_NEEDSGIANT) ? 0 : CALLOUT_MPSAFE);
}
static void
sppp_ipcp_up(struct sppp *sp)
{
sppp_up_event(&ipcp, sp);
}
static void
sppp_ipcp_down(struct sppp *sp)
{
sppp_down_event(&ipcp, sp);
}
static void
sppp_ipcp_open(struct sppp *sp)
{
STDDCL;
u_long myaddr, hisaddr;
sp->ipcp.flags &= ~(IPCP_HISADDR_SEEN | IPCP_MYADDR_SEEN |
IPCP_MYADDR_DYN | IPCP_VJ);
sp->ipcp.opts = 0;
sppp_get_ip_addrs(sp, &myaddr, &hisaddr, 0);
/*
* If we don't have his address, this probably means our
* interface doesn't want to talk IP at all. (This could
* be the case if somebody wants to speak only IPX, for
* example.) Don't open IPCP in this case.
*/
if (hisaddr == 0L) {
/* XXX this message should go away */
if (debug)
log(LOG_DEBUG, SPP_FMT "ipcp_open(): no IP interface\n",
SPP_ARGS(ifp));
return;
}
if (myaddr == 0L) {
/*
* I don't have an assigned address, so i need to
* negotiate my address.
*/
sp->ipcp.flags |= IPCP_MYADDR_DYN;
sp->ipcp.opts |= (1 << IPCP_OPT_ADDRESS);
} else
sp->ipcp.flags |= IPCP_MYADDR_SEEN;
if (sp->confflags & CONF_ENABLE_VJ) {
sp->ipcp.opts |= (1 << IPCP_OPT_COMPRESSION);
sp->ipcp.max_state = MAX_STATES - 1;
sp->ipcp.compress_cid = 1;
}
sppp_open_event(&ipcp, sp);
}
static void
sppp_ipcp_close(struct sppp *sp)
{
sppp_close_event(&ipcp, sp);
if (sp->ipcp.flags & IPCP_MYADDR_DYN)
/*
* My address was dynamic, clear it again.
*/
sppp_set_ip_addr(sp, 0L);
}
static void
sppp_ipcp_TO(void *cookie)
{
sppp_to_event(&ipcp, (struct sppp *)cookie);
}
/*
* Analyze a configure request. Return true if it was agreeable, and
* caused action sca, false if it has been rejected or nak'ed, and
* caused action scn. (The return value is used to make the state
* transition decision in the state automaton.)
*/
static int
sppp_ipcp_RCR(struct sppp *sp, struct lcp_header *h, int len)
{
u_char *buf, *r, *p;
struct ifnet *ifp = &sp->pp_if;
int rlen, origlen, debug = ifp->if_flags & IFF_DEBUG;
u_long hisaddr, desiredaddr;
int gotmyaddr = 0;
int desiredcomp;
len -= 4;
origlen = len;
/*
* Make sure to allocate a buf that can at least hold a
* conf-nak with an `address' option. We might need it below.
*/
buf = r = malloc ((len < 6? 6: len), M_TEMP, M_NOWAIT);
if (! buf)
return (0);
/* pass 1: see if we can recognize them */
if (debug)
log(LOG_DEBUG, SPP_FMT "ipcp parse opts: ",
SPP_ARGS(ifp));
p = (void*) (h+1);
for (rlen=0; len>1 && p[1]; len-=p[1], p+=p[1]) {
if (debug)
log(-1, " %s ", sppp_ipcp_opt_name(*p));
switch (*p) {
case IPCP_OPT_COMPRESSION:
if (!(sp->confflags & CONF_ENABLE_VJ)) {
/* VJ compression administratively disabled */
if (debug)
log(-1, "[locally disabled] ");
break;
}
/*
* In theory, we should only conf-rej an
* option that is shorter than RFC 1618
* requires (i.e. < 4), and should conf-nak
* anything else that is not VJ. However,
* since our algorithm always uses the
* original option to NAK it with new values,
* things would become more complicated. In
* pratice, the only commonly implemented IP
* compression option is VJ anyway, so the
* difference is negligible.
*/
if (len >= 6 && p[1] == 6) {
/*
* correctly formed compression option
* that could be VJ compression
*/
continue;
}
if (debug)
log(-1,
"optlen %d [invalid/unsupported] ",
p[1]);
break;
case IPCP_OPT_ADDRESS:
if (len >= 6 && p[1] == 6) {
/* correctly formed address option */
continue;
}
if (debug)
log(-1, "[invalid] ");
break;
default:
/* Others not supported. */
if (debug)
log(-1, "[rej] ");
break;
}
/* Add the option to rejected list. */
bcopy (p, r, p[1]);
r += p[1];
rlen += p[1];
}
if (rlen) {
if (debug)
log(-1, " send conf-rej\n");
sppp_cp_send (sp, PPP_IPCP, CONF_REJ, h->ident, rlen, buf);
return 0;
} else if (debug)
log(-1, "\n");
/* pass 2: parse option values */
sppp_get_ip_addrs(sp, 0, &hisaddr, 0);
if (debug)
log(LOG_DEBUG, SPP_FMT "ipcp parse opt values: ",
SPP_ARGS(ifp));
p = (void*) (h+1);
len = origlen;
for (rlen=0; len>1 && p[1]; len-=p[1], p+=p[1]) {
if (debug)
log(-1, " %s ", sppp_ipcp_opt_name(*p));
switch (*p) {
case IPCP_OPT_COMPRESSION:
desiredcomp = p[2] << 8 | p[3];
/* We only support VJ */
if (desiredcomp == IPCP_COMP_VJ) {
if (debug)
log(-1, "VJ [ack] ");
sp->ipcp.flags |= IPCP_VJ;
sl_compress_init(sp->pp_comp, p[4]);
sp->ipcp.max_state = p[4];
sp->ipcp.compress_cid = p[5];
continue;
}
if (debug)
log(-1,
"compproto %#04x [not supported] ",
desiredcomp);
p[2] = IPCP_COMP_VJ >> 8;
p[3] = IPCP_COMP_VJ;
p[4] = sp->ipcp.max_state;
p[5] = sp->ipcp.compress_cid;
break;
case IPCP_OPT_ADDRESS:
/* This is the address he wants in his end */
desiredaddr = p[2] << 24 | p[3] << 16 |
p[4] << 8 | p[5];
if (desiredaddr == hisaddr ||
(hisaddr >= 1 && hisaddr <= 254 && desiredaddr != 0)) {
/*
* Peer's address is same as our value,
* or we have set it to 0.0.0.* to
* indicate that we do not really care,
* this is agreeable. Gonna conf-ack
* it.
*/
if (debug)
log(-1, "%s [ack] ",
sppp_dotted_quad(hisaddr));
/* record that we've seen it already */
sp->ipcp.flags |= IPCP_HISADDR_SEEN;
continue;
}
/*
* The address wasn't agreeable. This is either
* he sent us 0.0.0.0, asking to assign him an
* address, or he send us another address not
* matching our value. Either case, we gonna
* conf-nak it with our value.
* XXX: we should "rej" if hisaddr == 0
*/
if (debug) {
if (desiredaddr == 0)
log(-1, "[addr requested] ");
else
log(-1, "%s [not agreed] ",
sppp_dotted_quad(desiredaddr));
}
p[2] = hisaddr >> 24;
p[3] = hisaddr >> 16;
p[4] = hisaddr >> 8;
p[5] = hisaddr;
break;
}
/* Add the option to nak'ed list. */
bcopy (p, r, p[1]);
r += p[1];
rlen += p[1];
}
/*
* If we are about to conf-ack the request, but haven't seen
* his address so far, gonna conf-nak it instead, with the
* `address' option present and our idea of his address being
* filled in there, to request negotiation of both addresses.
*
* XXX This can result in an endless req - nak loop if peer
* doesn't want to send us his address. Q: What should we do
* about it? XXX A: implement the max-failure counter.
*/
if (rlen == 0 && !(sp->ipcp.flags & IPCP_HISADDR_SEEN) && !gotmyaddr) {
buf[0] = IPCP_OPT_ADDRESS;
buf[1] = 6;
buf[2] = hisaddr >> 24;
buf[3] = hisaddr >> 16;
buf[4] = hisaddr >> 8;
buf[5] = hisaddr;
rlen = 6;
if (debug)
log(-1, "still need hisaddr ");
}
if (rlen) {
if (debug)
log(-1, " send conf-nak\n");
sppp_cp_send (sp, PPP_IPCP, CONF_NAK, h->ident, rlen, buf);
} else {
if (debug)
log(-1, " send conf-ack\n");
sppp_cp_send (sp, PPP_IPCP, CONF_ACK,
h->ident, origlen, h+1);
}
free (buf, M_TEMP);
return (rlen == 0);
}
/*
* Analyze the IPCP Configure-Reject option list, and adjust our
* negotiation.
*/
static void
sppp_ipcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len)
{
u_char *buf, *p;
struct ifnet *ifp = &sp->pp_if;
int debug = ifp->if_flags & IFF_DEBUG;
len -= 4;
buf = malloc (len, M_TEMP, M_NOWAIT);
if (!buf)
return;
if (debug)
log(LOG_DEBUG, SPP_FMT "ipcp rej opts: ",
SPP_ARGS(ifp));
p = (void*) (h+1);
for (; len > 1 && p[1]; len -= p[1], p += p[1]) {
if (debug)
log(-1, " %s ", sppp_ipcp_opt_name(*p));
switch (*p) {
case IPCP_OPT_COMPRESSION:
sp->ipcp.opts &= ~(1 << IPCP_OPT_COMPRESSION);
break;
case IPCP_OPT_ADDRESS:
/*
* Peer doesn't grok address option. This is
* bad. XXX Should we better give up here?
* XXX We could try old "addresses" option...
*/
sp->ipcp.opts &= ~(1 << IPCP_OPT_ADDRESS);
break;
}
}
if (debug)
log(-1, "\n");
free (buf, M_TEMP);
return;
}
/*
* Analyze the IPCP Configure-NAK option list, and adjust our
* negotiation.
*/
static void
sppp_ipcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len)
{
u_char *buf, *p;
struct ifnet *ifp = &sp->pp_if;
int debug = ifp->if_flags & IFF_DEBUG;
int desiredcomp;
u_long wantaddr;
len -= 4;
buf = malloc (len, M_TEMP, M_NOWAIT);
if (!buf)
return;
if (debug)
log(LOG_DEBUG, SPP_FMT "ipcp nak opts: ",
SPP_ARGS(ifp));
p = (void*) (h+1);
for (; len > 1 && p[1]; len -= p[1], p += p[1]) {
if (debug)
log(-1, " %s ", sppp_ipcp_opt_name(*p));
switch (*p) {
case IPCP_OPT_COMPRESSION:
if (len >= 6 && p[1] == 6) {
desiredcomp = p[2] << 8 | p[3];
if (debug)
log(-1, "[wantcomp %#04x] ",
desiredcomp);
if (desiredcomp == IPCP_COMP_VJ) {
sl_compress_init(sp->pp_comp, p[4]);
sp->ipcp.max_state = p[4];
sp->ipcp.compress_cid = p[5];
if (debug)
log(-1, "[agree] ");
} else
sp->ipcp.opts &=
~(1 << IPCP_OPT_COMPRESSION);
}
break;
case IPCP_OPT_ADDRESS:
/*
* Peer doesn't like our local IP address. See
* if we can do something for him. We'll drop
* him our address then.
*/
if (len >= 6 && p[1] == 6) {
wantaddr = p[2] << 24 | p[3] << 16 |
p[4] << 8 | p[5];
sp->ipcp.opts |= (1 << IPCP_OPT_ADDRESS);
if (debug)
log(-1, "[wantaddr %s] ",
sppp_dotted_quad(wantaddr));
/*
* When doing dynamic address assignment,
* we accept his offer. Otherwise, we
* ignore it and thus continue to negotiate
* our already existing value.
* XXX: Bogus, if he said no once, he'll
* just say no again, might as well die.
*/
if (sp->ipcp.flags & IPCP_MYADDR_DYN) {
sppp_set_ip_addr(sp, wantaddr);
if (debug)
log(-1, "[agree] ");
sp->ipcp.flags |= IPCP_MYADDR_SEEN;
}
}
break;
}
}
if (debug)
log(-1, "\n");
free (buf, M_TEMP);
return;
}
static void
sppp_ipcp_tlu(struct sppp *sp)
{
/* we are up - notify isdn daemon */
if (sp->pp_con)
sp->pp_con(sp);
}
static void
sppp_ipcp_tld(struct sppp *sp)
{
}
static void
sppp_ipcp_tls(struct sppp *sp)
{
/* indicate to LCP that it must stay alive */
sp->lcp.protos |= (1 << IDX_IPCP);
}
static void
sppp_ipcp_tlf(struct sppp *sp)
{
/* we no longer need LCP */
sp->lcp.protos &= ~(1 << IDX_IPCP);
sppp_lcp_check_and_close(sp);
}
static void
sppp_ipcp_scr(struct sppp *sp)
{
char opt[6 /* compression */ + 6 /* address */];
u_long ouraddr;
int i = 0;
if (sp->ipcp.opts & (1 << IPCP_OPT_COMPRESSION)) {
opt[i++] = IPCP_OPT_COMPRESSION;
opt[i++] = 6;
opt[i++] = IPCP_COMP_VJ >> 8;
opt[i++] = IPCP_COMP_VJ;
opt[i++] = sp->ipcp.max_state;
opt[i++] = sp->ipcp.compress_cid;
}
if (sp->ipcp.opts & (1 << IPCP_OPT_ADDRESS)) {
sppp_get_ip_addrs(sp, &ouraddr, 0, 0);
opt[i++] = IPCP_OPT_ADDRESS;
opt[i++] = 6;
opt[i++] = ouraddr >> 24;
opt[i++] = ouraddr >> 16;
opt[i++] = ouraddr >> 8;
opt[i++] = ouraddr;
}
sp->confid[IDX_IPCP] = ++sp->pp_seq[IDX_IPCP];
sppp_cp_send(sp, PPP_IPCP, CONF_REQ, sp->confid[IDX_IPCP], i, &opt);
}
/*
*--------------------------------------------------------------------------*
* *
* The IPv6CP implementation. *
* *
*--------------------------------------------------------------------------*
*/
#ifdef INET6
static void
sppp_ipv6cp_init(struct sppp *sp)
{
sp->ipv6cp.opts = 0;
sp->ipv6cp.flags = 0;
sp->state[IDX_IPV6CP] = STATE_INITIAL;
sp->fail_counter[IDX_IPV6CP] = 0;
sp->pp_seq[IDX_IPV6CP] = 0;
sp->pp_rseq[IDX_IPV6CP] = 0;
callout_init(&sp->ch[IDX_IPV6CP],
(sp->pp_if.if_flags & IFF_NEEDSGIANT) ? 0 : CALLOUT_MPSAFE);
}
static void
sppp_ipv6cp_up(struct sppp *sp)
{
sppp_up_event(&ipv6cp, sp);
}
static void
sppp_ipv6cp_down(struct sppp *sp)
{
sppp_down_event(&ipv6cp, sp);
}
static void
sppp_ipv6cp_open(struct sppp *sp)
{
STDDCL;
struct in6_addr myaddr, hisaddr;
#ifdef IPV6CP_MYIFID_DYN
sp->ipv6cp.flags &= ~(IPV6CP_MYIFID_SEEN|IPV6CP_MYIFID_DYN);
#else
sp->ipv6cp.flags &= ~IPV6CP_MYIFID_SEEN;
#endif
sppp_get_ip6_addrs(sp, &myaddr, &hisaddr, 0);
/*
* If we don't have our address, this probably means our
* interface doesn't want to talk IPv6 at all. (This could
* be the case if somebody wants to speak only IPX, for
* example.) Don't open IPv6CP in this case.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&myaddr)) {
/* XXX this message should go away */
if (debug)
log(LOG_DEBUG, SPP_FMT "ipv6cp_open(): no IPv6 interface\n",
SPP_ARGS(ifp));
return;
}
sp->ipv6cp.flags |= IPV6CP_MYIFID_SEEN;
sp->ipv6cp.opts |= (1 << IPV6CP_OPT_IFID);
sppp_open_event(&ipv6cp, sp);
}
static void
sppp_ipv6cp_close(struct sppp *sp)
{
sppp_close_event(&ipv6cp, sp);
}
static void
sppp_ipv6cp_TO(void *cookie)
{
sppp_to_event(&ipv6cp, (struct sppp *)cookie);
}
/*
* Analyze a configure request. Return true if it was agreeable, and
* caused action sca, false if it has been rejected or nak'ed, and
* caused action scn. (The return value is used to make the state
* transition decision in the state automaton.)
*/
static int
sppp_ipv6cp_RCR(struct sppp *sp, struct lcp_header *h, int len)
{
u_char *buf, *r, *p;
struct ifnet *ifp = &sp->pp_if;
int rlen, origlen, debug = ifp->if_flags & IFF_DEBUG;
struct in6_addr myaddr, desiredaddr, suggestaddr;
int ifidcount;
int type;
int collision, nohisaddr;
len -= 4;
origlen = len;
/*
* Make sure to allocate a buf that can at least hold a
* conf-nak with an `address' option. We might need it below.
*/
buf = r = malloc ((len < 6? 6: len), M_TEMP, M_NOWAIT);
if (! buf)
return (0);
/* pass 1: see if we can recognize them */
if (debug)
log(LOG_DEBUG, SPP_FMT "ipv6cp parse opts:",
SPP_ARGS(ifp));
p = (void*) (h+1);
ifidcount = 0;
for (rlen=0; len>1 && p[1]; len-=p[1], p+=p[1]) {
if (debug)
log(-1, " %s", sppp_ipv6cp_opt_name(*p));
switch (*p) {
case IPV6CP_OPT_IFID:
if (len >= 10 && p[1] == 10 && ifidcount == 0) {
/* correctly formed address option */
ifidcount++;
continue;
}
if (debug)
log(-1, " [invalid]");
break;
#ifdef notyet
case IPV6CP_OPT_COMPRESSION:
if (len >= 4 && p[1] >= 4) {
/* correctly formed compress option */
continue;
}
if (debug)
log(-1, " [invalid]");
break;
#endif
default:
/* Others not supported. */
if (debug)
log(-1, " [rej]");
break;
}
/* Add the option to rejected list. */
bcopy (p, r, p[1]);
r += p[1];
rlen += p[1];
}
if (rlen) {
if (debug)
log(-1, " send conf-rej\n");
sppp_cp_send (sp, PPP_IPV6CP, CONF_REJ, h->ident, rlen, buf);
goto end;
} else if (debug)
log(-1, "\n");
/* pass 2: parse option values */
sppp_get_ip6_addrs(sp, &myaddr, 0, 0);
if (debug)
log(LOG_DEBUG, SPP_FMT "ipv6cp parse opt values: ",
SPP_ARGS(ifp));
p = (void*) (h+1);
len = origlen;
type = CONF_ACK;
for (rlen=0; len>1 && p[1]; len-=p[1], p+=p[1]) {
if (debug)
log(-1, " %s", sppp_ipv6cp_opt_name(*p));
switch (*p) {
#ifdef notyet
case IPV6CP_OPT_COMPRESSION:
continue;
#endif
case IPV6CP_OPT_IFID:
bzero(&desiredaddr, sizeof(desiredaddr));
bcopy(&p[2], &desiredaddr.s6_addr[8], 8);
collision = (bcmp(&desiredaddr.s6_addr[8],
&myaddr.s6_addr[8], 8) == 0);
nohisaddr = IN6_IS_ADDR_UNSPECIFIED(&desiredaddr);
desiredaddr.s6_addr16[0] = htons(0xfe80);
desiredaddr.s6_addr16[1] = htons(sp->pp_if.if_index);
if (!collision && !nohisaddr) {
/* no collision, hisaddr known - Conf-Ack */
type = CONF_ACK;
if (debug) {
log(-1, " %s [%s]",
ip6_sprintf(&desiredaddr),
sppp_cp_type_name(type));
}
continue;
}
bzero(&suggestaddr, sizeof(&suggestaddr));
if (collision && nohisaddr) {
/* collision, hisaddr unknown - Conf-Rej */
type = CONF_REJ;
bzero(&p[2], 8);
} else {
/*
* - no collision, hisaddr unknown, or
* - collision, hisaddr known
* Conf-Nak, suggest hisaddr
*/
type = CONF_NAK;
sppp_suggest_ip6_addr(sp, &suggestaddr);
bcopy(&suggestaddr.s6_addr[8], &p[2], 8);
}
if (debug)
log(-1, " %s [%s]", ip6_sprintf(&desiredaddr),
sppp_cp_type_name(type));
break;
}
/* Add the option to nak'ed list. */
bcopy (p, r, p[1]);
r += p[1];
rlen += p[1];
}
if (rlen == 0 && type == CONF_ACK) {
if (debug)
log(-1, " send %s\n", sppp_cp_type_name(type));
sppp_cp_send (sp, PPP_IPV6CP, type, h->ident, origlen, h+1);
} else {
#ifdef DIAGNOSTIC
if (type == CONF_ACK)
panic("IPv6CP RCR: CONF_ACK with non-zero rlen");
#endif
if (debug) {
log(-1, " send %s suggest %s\n",
sppp_cp_type_name(type), ip6_sprintf(&suggestaddr));
}
sppp_cp_send (sp, PPP_IPV6CP, type, h->ident, rlen, buf);
}
end:
free (buf, M_TEMP);
return (rlen == 0);
}
/*
* Analyze the IPv6CP Configure-Reject option list, and adjust our
* negotiation.
*/
static void
sppp_ipv6cp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len)
{
u_char *buf, *p;
struct ifnet *ifp = &sp->pp_if;
int debug = ifp->if_flags & IFF_DEBUG;
len -= 4;
buf = malloc (len, M_TEMP, M_NOWAIT);
if (!buf)
return;
if (debug)
log(LOG_DEBUG, SPP_FMT "ipv6cp rej opts:",
SPP_ARGS(ifp));
p = (void*) (h+1);
for (; len > 1 && p[1]; len -= p[1], p += p[1]) {
if (debug)
log(-1, " %s", sppp_ipv6cp_opt_name(*p));
switch (*p) {
case IPV6CP_OPT_IFID:
/*
* Peer doesn't grok address option. This is
* bad. XXX Should we better give up here?
*/
sp->ipv6cp.opts &= ~(1 << IPV6CP_OPT_IFID);
break;
#ifdef notyet
case IPV6CP_OPT_COMPRESS:
sp->ipv6cp.opts &= ~(1 << IPV6CP_OPT_COMPRESS);
break;
#endif
}
}
if (debug)
log(-1, "\n");
free (buf, M_TEMP);
return;
}
/*
* Analyze the IPv6CP Configure-NAK option list, and adjust our
* negotiation.
*/
static void
sppp_ipv6cp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len)
{
u_char *buf, *p;
struct ifnet *ifp = &sp->pp_if;
int debug = ifp->if_flags & IFF_DEBUG;
struct in6_addr suggestaddr;
len -= 4;
buf = malloc (len, M_TEMP, M_NOWAIT);
if (!buf)
return;
if (debug)
log(LOG_DEBUG, SPP_FMT "ipv6cp nak opts:",
SPP_ARGS(ifp));
p = (void*) (h+1);
for (; len > 1 && p[1]; len -= p[1], p += p[1]) {
if (debug)
log(-1, " %s", sppp_ipv6cp_opt_name(*p));
switch (*p) {
case IPV6CP_OPT_IFID:
/*
* Peer doesn't like our local ifid. See
* if we can do something for him. We'll drop
* him our address then.
*/
if (len < 10 || p[1] != 10)
break;
bzero(&suggestaddr, sizeof(suggestaddr));
suggestaddr.s6_addr16[0] = htons(0xfe80);
suggestaddr.s6_addr16[1] = htons(sp->pp_if.if_index);
bcopy(&p[2], &suggestaddr.s6_addr[8], 8);
sp->ipv6cp.opts |= (1 << IPV6CP_OPT_IFID);
if (debug)
log(-1, " [suggestaddr %s]",
ip6_sprintf(&suggestaddr));
#ifdef IPV6CP_MYIFID_DYN
/*
* When doing dynamic address assignment,
* we accept his offer.
*/
if (sp->ipv6cp.flags & IPV6CP_MYIFID_DYN) {
struct in6_addr lastsuggest;
/*
* If <suggested myaddr from peer> equals to
* <hisaddr we have suggested last time>,
* we have a collision. generate new random
* ifid.
*/
sppp_suggest_ip6_addr(&lastsuggest);
if (IN6_ARE_ADDR_EQUAL(&suggestaddr,
lastsuggest)) {
if (debug)
log(-1, " [random]");
sppp_gen_ip6_addr(sp, &suggestaddr);
}
sppp_set_ip6_addr(sp, &suggestaddr, 0);
if (debug)
log(-1, " [agree]");
sp->ipv6cp.flags |= IPV6CP_MYIFID_SEEN;
}
#else
/*
* Since we do not do dynamic address assignment,
* we ignore it and thus continue to negotiate
* our already existing value. This can possibly
* go into infinite request-reject loop.
*
* This is not likely because we normally use
* ifid based on MAC-address.
* If you have no ethernet card on the node, too bad.
* XXX should we use fail_counter?
*/
#endif
break;
#ifdef notyet
case IPV6CP_OPT_COMPRESS:
/*
* Peer wants different compression parameters.
*/
break;
#endif
}
}
if (debug)
log(-1, "\n");
free (buf, M_TEMP);
return;
}
static void
sppp_ipv6cp_tlu(struct sppp *sp)
{
/* we are up - notify isdn daemon */
if (sp->pp_con)
sp->pp_con(sp);
}
static void
sppp_ipv6cp_tld(struct sppp *sp)
{
}
static void
sppp_ipv6cp_tls(struct sppp *sp)
{
/* indicate to LCP that it must stay alive */
sp->lcp.protos |= (1 << IDX_IPV6CP);
}
static void
sppp_ipv6cp_tlf(struct sppp *sp)
{
#if 0 /* need #if 0 to close IPv6CP properly */
/* we no longer need LCP */
sp->lcp.protos &= ~(1 << IDX_IPV6CP);
sppp_lcp_check_and_close(sp);
#endif
}
static void
sppp_ipv6cp_scr(struct sppp *sp)
{
char opt[10 /* ifid */ + 4 /* compression, minimum */];
struct in6_addr ouraddr;
int i = 0;
if (sp->ipv6cp.opts & (1 << IPV6CP_OPT_IFID)) {
sppp_get_ip6_addrs(sp, &ouraddr, 0, 0);
opt[i++] = IPV6CP_OPT_IFID;
opt[i++] = 10;
bcopy(&ouraddr.s6_addr[8], &opt[i], 8);
i += 8;
}
#ifdef notyet
if (sp->ipv6cp.opts & (1 << IPV6CP_OPT_COMPRESSION)) {
opt[i++] = IPV6CP_OPT_COMPRESSION;
opt[i++] = 4;
opt[i++] = 0; /* TBD */
opt[i++] = 0; /* TBD */
/* variable length data may follow */
}
#endif
sp->confid[IDX_IPV6CP] = ++sp->pp_seq[IDX_IPV6CP];
sppp_cp_send(sp, PPP_IPV6CP, CONF_REQ, sp->confid[IDX_IPV6CP], i, &opt);
}
#else /*INET6*/
static void sppp_ipv6cp_init(struct sppp *sp)
{
}
static void sppp_ipv6cp_up(struct sppp *sp)
{
}
static void sppp_ipv6cp_down(struct sppp *sp)
{
}
static void sppp_ipv6cp_open(struct sppp *sp)
{
}
static void sppp_ipv6cp_close(struct sppp *sp)
{
}
static void sppp_ipv6cp_TO(void *sp)
{
}
static int sppp_ipv6cp_RCR(struct sppp *sp, struct lcp_header *h, int len)
{
return 0;
}
static void sppp_ipv6cp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len)
{
}
static void sppp_ipv6cp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len)
{
}
static void sppp_ipv6cp_tlu(struct sppp *sp)
{
}
static void sppp_ipv6cp_tld(struct sppp *sp)
{
}
static void sppp_ipv6cp_tls(struct sppp *sp)
{
}
static void sppp_ipv6cp_tlf(struct sppp *sp)
{
}
static void sppp_ipv6cp_scr(struct sppp *sp)
{
}
#endif /*INET6*/
/*
*--------------------------------------------------------------------------*
* *
* The CHAP implementation. *
* *
*--------------------------------------------------------------------------*
*/
/*
* The authentication protocols don't employ a full-fledged state machine as
* the control protocols do, since they do have Open and Close events, but
* not Up and Down, nor are they explicitly terminated. Also, use of the
* authentication protocols may be different in both directions (this makes
* sense, think of a machine that never accepts incoming calls but only
* calls out, it doesn't require the called party to authenticate itself).
*
* Our state machine for the local authentication protocol (we are requesting
* the peer to authenticate) looks like:
*
* RCA-
* +--------------------------------------------+
* V scn,tld|
* +--------+ Close +---------+ RCA+
* | |<----------------------------------| |------+
* +--->| Closed | TO* | Opened | sca |
* | | |-----+ +-------| |<-----+
* | +--------+ irc | | +---------+
* | ^ | | ^
* | | | | |
* | | | | |
* | TO-| | | |
* | |tld TO+ V | |
* | | +------->+ | |
* | | | | | |
* | +--------+ V | |
* | | |<----+<--------------------+ |
* | | Req- | scr |
* | | Sent | |
* | | | |
* | +--------+ |
* | RCA- | | RCA+ |
* +------+ +------------------------------------------+
* scn,tld sca,irc,ict,tlu
*
*
* with:
*
* Open: LCP reached authentication phase
* Close: LCP reached terminate phase
*
* RCA+: received reply (pap-req, chap-response), acceptable
* RCN: received reply (pap-req, chap-response), not acceptable
* TO+: timeout with restart counter >= 0
* TO-: timeout with restart counter < 0
* TO*: reschedule timeout for CHAP
*
* scr: send request packet (none for PAP, chap-challenge)
* sca: send ack packet (pap-ack, chap-success)
* scn: send nak packet (pap-nak, chap-failure)
* ict: initialize re-challenge timer (CHAP only)
*
* tlu: this-layer-up, LCP reaches network phase
* tld: this-layer-down, LCP enters terminate phase
*
* Note that in CHAP mode, after sending a new challenge, while the state
* automaton falls back into Req-Sent state, it doesn't signal a tld
* event to LCP, so LCP remains in network phase. Only after not getting
* any response (or after getting an unacceptable response), CHAP closes,
* causing LCP to enter terminate phase.
*
* With PAP, there is no initial request that can be sent. The peer is
* expected to send one based on the successful negotiation of PAP as
* the authentication protocol during the LCP option negotiation.
*
* Incoming authentication protocol requests (remote requests
* authentication, we are peer) don't employ a state machine at all,
* they are simply answered. Some peers [Ascend P50 firmware rev
* 4.50] react allergically when sending IPCP requests while they are
* still in authentication phase (thereby violating the standard that
* demands that these NCP packets are to be discarded), so we keep
* track of the peer demanding us to authenticate, and only proceed to
* phase network once we've seen a positive acknowledge for the
* authentication.
*/
/*
* Handle incoming CHAP packets.
*/
static void
sppp_chap_input(struct sppp *sp, struct mbuf *m)
{
STDDCL;
struct lcp_header *h;
int len, x;
u_char *value, *name, digest[AUTHKEYLEN], dsize;
int value_len, name_len;
MD5_CTX ctx;
len = m->m_pkthdr.len;
if (len < 4) {
if (debug)
log(LOG_DEBUG,
SPP_FMT "chap invalid packet length: %d bytes\n",
SPP_ARGS(ifp), len);
return;
}
h = mtod (m, struct lcp_header*);
if (len > ntohs (h->len))
len = ntohs (h->len);
switch (h->type) {
/* challenge, failure and success are his authproto */
case CHAP_CHALLENGE:
value = 1 + (u_char*)(h+1);
value_len = value[-1];
name = value + value_len;
name_len = len - value_len - 5;
if (name_len < 0) {
if (debug) {
log(LOG_DEBUG,
SPP_FMT "chap corrupted challenge "
"<%s id=0x%x len=%d",
SPP_ARGS(ifp),
sppp_auth_type_name(PPP_CHAP, h->type),
h->ident, ntohs(h->len));
sppp_print_bytes((u_char*) (h+1), len-4);
log(-1, ">\n");
}
break;
}
if (debug) {
log(LOG_DEBUG,
SPP_FMT "chap input <%s id=0x%x len=%d name=",
SPP_ARGS(ifp),
sppp_auth_type_name(PPP_CHAP, h->type), h->ident,
ntohs(h->len));
sppp_print_string((char*) name, name_len);
log(-1, " value-size=%d value=", value_len);
sppp_print_bytes(value, value_len);
log(-1, ">\n");
}
/* Compute reply value. */
MD5Init(&ctx);
MD5Update(&ctx, &h->ident, 1);
MD5Update(&ctx, sp->myauth.secret,
sppp_strnlen(sp->myauth.secret, AUTHKEYLEN));
MD5Update(&ctx, value, value_len);
MD5Final(digest, &ctx);
dsize = sizeof digest;
sppp_auth_send(&chap, sp, CHAP_RESPONSE, h->ident,
sizeof dsize, (const char *)&dsize,
sizeof digest, digest,
(size_t)sppp_strnlen(sp->myauth.name, AUTHNAMELEN),
sp->myauth.name,
0);
break;
case CHAP_SUCCESS:
if (debug) {
log(LOG_DEBUG, SPP_FMT "chap success",
SPP_ARGS(ifp));
if (len > 4) {
log(-1, ": ");
sppp_print_string((char*)(h + 1), len - 4);
}
log(-1, "\n");
}
x = splimp();
SPPP_LOCK(sp);
sp->pp_flags &= ~PP_NEEDAUTH;
if (sp->myauth.proto == PPP_CHAP &&
(sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) &&
(sp->lcp.protos & (1 << IDX_CHAP)) == 0) {
/*
* We are authenticator for CHAP but didn't
* complete yet. Leave it to tlu to proceed
* to network phase.
*/
SPPP_UNLOCK(sp);
splx(x);
break;
}
SPPP_UNLOCK(sp);
splx(x);
sppp_phase_network(sp);
break;
case CHAP_FAILURE:
if (debug) {
log(LOG_INFO, SPP_FMT "chap failure",
SPP_ARGS(ifp));
if (len > 4) {
log(-1, ": ");
sppp_print_string((char*)(h + 1), len - 4);
}
log(-1, "\n");
} else
log(LOG_INFO, SPP_FMT "chap failure\n",
SPP_ARGS(ifp));
/* await LCP shutdown by authenticator */
break;
/* response is my authproto */
case CHAP_RESPONSE:
value = 1 + (u_char*)(h+1);
value_len = value[-1];
name = value + value_len;
name_len = len - value_len - 5;
if (name_len < 0) {
if (debug) {
log(LOG_DEBUG,
SPP_FMT "chap corrupted response "
"<%s id=0x%x len=%d",
SPP_ARGS(ifp),
sppp_auth_type_name(PPP_CHAP, h->type),
h->ident, ntohs(h->len));
sppp_print_bytes((u_char*)(h+1), len-4);
log(-1, ">\n");
}
break;
}
if (h->ident != sp->confid[IDX_CHAP]) {
if (debug)
log(LOG_DEBUG,
SPP_FMT "chap dropping response for old ID "
"(got %d, expected %d)\n",
SPP_ARGS(ifp),
h->ident, sp->confid[IDX_CHAP]);
break;
}
if (name_len != sppp_strnlen(sp->hisauth.name, AUTHNAMELEN)
|| bcmp(name, sp->hisauth.name, name_len) != 0) {
log(LOG_INFO, SPP_FMT "chap response, his name ",
SPP_ARGS(ifp));
sppp_print_string(name, name_len);
log(-1, " != expected ");
sppp_print_string(sp->hisauth.name,
sppp_strnlen(sp->hisauth.name, AUTHNAMELEN));
log(-1, "\n");
}
if (debug) {
log(LOG_DEBUG, SPP_FMT "chap input(%s) "
"<%s id=0x%x len=%d name=",
SPP_ARGS(ifp),
sppp_state_name(sp->state[IDX_CHAP]),
sppp_auth_type_name(PPP_CHAP, h->type),
h->ident, ntohs (h->len));
sppp_print_string((char*)name, name_len);
log(-1, " value-size=%d value=", value_len);
sppp_print_bytes(value, value_len);
log(-1, ">\n");
}
if (value_len != AUTHKEYLEN) {
if (debug)
log(LOG_DEBUG,
SPP_FMT "chap bad hash value length: "
"%d bytes, should be %d\n",
SPP_ARGS(ifp), value_len,
AUTHKEYLEN);
break;
}
MD5Init(&ctx);
MD5Update(&ctx, &h->ident, 1);
MD5Update(&ctx, sp->hisauth.secret,
sppp_strnlen(sp->hisauth.secret, AUTHKEYLEN));
MD5Update(&ctx, sp->myauth.challenge, AUTHKEYLEN);
MD5Final(digest, &ctx);
#define FAILMSG "Failed..."
#define SUCCMSG "Welcome!"
if (value_len != sizeof digest ||
bcmp(digest, value, value_len) != 0) {
/* action scn, tld */
sppp_auth_send(&chap, sp, CHAP_FAILURE, h->ident,
sizeof(FAILMSG) - 1, (u_char *)FAILMSG,
0);
chap.tld(sp);
break;
}
/* action sca, perhaps tlu */
if (sp->state[IDX_CHAP] == STATE_REQ_SENT ||
sp->state[IDX_CHAP] == STATE_OPENED)
sppp_auth_send(&chap, sp, CHAP_SUCCESS, h->ident,
sizeof(SUCCMSG) - 1, (u_char *)SUCCMSG,
0);
if (sp->state[IDX_CHAP] == STATE_REQ_SENT) {
sppp_cp_change_state(&chap, sp, STATE_OPENED);
chap.tlu(sp);
}
break;
default:
/* Unknown CHAP packet type -- ignore. */
if (debug) {
log(LOG_DEBUG, SPP_FMT "chap unknown input(%s) "
"<0x%x id=0x%xh len=%d",
SPP_ARGS(ifp),
sppp_state_name(sp->state[IDX_CHAP]),
h->type, h->ident, ntohs(h->len));
sppp_print_bytes((u_char*)(h+1), len-4);
log(-1, ">\n");
}
break;
}
}
static void
sppp_chap_init(struct sppp *sp)
{
/* Chap doesn't have STATE_INITIAL at all. */
sp->state[IDX_CHAP] = STATE_CLOSED;
sp->fail_counter[IDX_CHAP] = 0;
sp->pp_seq[IDX_CHAP] = 0;
sp->pp_rseq[IDX_CHAP] = 0;
callout_init(&sp->ch[IDX_CHAP],
(sp->pp_if.if_flags & IFF_NEEDSGIANT) ? 0 : CALLOUT_MPSAFE);
}
static void
sppp_chap_open(struct sppp *sp)
{
if (sp->myauth.proto == PPP_CHAP &&
(sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) != 0) {
/* we are authenticator for CHAP, start it */
chap.scr(sp);
sp->rst_counter[IDX_CHAP] = sp->lcp.max_configure;
sppp_cp_change_state(&chap, sp, STATE_REQ_SENT);
}
/* nothing to be done if we are peer, await a challenge */
}
static void
sppp_chap_close(struct sppp *sp)
{
if (sp->state[IDX_CHAP] != STATE_CLOSED)
sppp_cp_change_state(&chap, sp, STATE_CLOSED);
}
static void
sppp_chap_TO(void *cookie)
{
struct sppp *sp = (struct sppp *)cookie;
STDDCL;
int s;
s = splimp();
SPPP_LOCK(sp);
if (debug)
log(LOG_DEBUG, SPP_FMT "chap TO(%s) rst_counter = %d\n",
SPP_ARGS(ifp),
sppp_state_name(sp->state[IDX_CHAP]),
sp->rst_counter[IDX_CHAP]);
if (--sp->rst_counter[IDX_CHAP] < 0)
/* TO- event */
switch (sp->state[IDX_CHAP]) {
case STATE_REQ_SENT:
chap.tld(sp);
sppp_cp_change_state(&chap, sp, STATE_CLOSED);
break;
}
else
/* TO+ (or TO*) event */
switch (sp->state[IDX_CHAP]) {
case STATE_OPENED:
/* TO* event */
sp->rst_counter[IDX_CHAP] = sp->lcp.max_configure;
/* FALLTHROUGH */
case STATE_REQ_SENT:
chap.scr(sp);
/* sppp_cp_change_state() will restart the timer */
sppp_cp_change_state(&chap, sp, STATE_REQ_SENT);
break;
}
SPPP_UNLOCK(sp);
splx(s);
}
static void
sppp_chap_tlu(struct sppp *sp)
{
STDDCL;
int i, x;
i = 0;
sp->rst_counter[IDX_CHAP] = sp->lcp.max_configure;
/*
* Some broken CHAP implementations (Conware CoNet, firmware
* 4.0.?) don't want to re-authenticate their CHAP once the
* initial challenge-response exchange has taken place.
* Provide for an option to avoid rechallenges.
*/
if ((sp->hisauth.flags & AUTHFLAG_NORECHALLENGE) == 0) {
/*
* Compute the re-challenge timeout. This will yield
* a number between 300 and 810 seconds.
*/
i = 300 + ((unsigned)(random() & 0xff00) >> 7);
callout_reset(&sp->ch[IDX_CHAP], i * hz, chap.TO, (void *)sp);
}
if (debug) {
log(LOG_DEBUG,
SPP_FMT "chap %s, ",
SPP_ARGS(ifp),
sp->pp_phase == PHASE_NETWORK? "reconfirmed": "tlu");
if ((sp->hisauth.flags & AUTHFLAG_NORECHALLENGE) == 0)
log(-1, "next re-challenge in %d seconds\n", i);
else
log(-1, "re-challenging supressed\n");
}
x = splimp();
SPPP_LOCK(sp);
/* indicate to LCP that we need to be closed down */
sp->lcp.protos |= (1 << IDX_CHAP);
if (sp->pp_flags & PP_NEEDAUTH) {
/*
* Remote is authenticator, but his auth proto didn't
* complete yet. Defer the transition to network
* phase.
*/
SPPP_UNLOCK(sp);
splx(x);
return;
}
SPPP_UNLOCK(sp);
splx(x);
/*
* If we are already in phase network, we are done here. This
* is the case if this is a dummy tlu event after a re-challenge.
*/
if (sp->pp_phase != PHASE_NETWORK)
sppp_phase_network(sp);
}
static void
sppp_chap_tld(struct sppp *sp)
{
STDDCL;
if (debug)
log(LOG_DEBUG, SPP_FMT "chap tld\n", SPP_ARGS(ifp));
callout_stop(&sp->ch[IDX_CHAP]);
sp->lcp.protos &= ~(1 << IDX_CHAP);
lcp.Close(sp);
}
static void
sppp_chap_scr(struct sppp *sp)
{
u_long *ch, seed;
u_char clen;
/* Compute random challenge. */
ch = (u_long *)sp->myauth.challenge;
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
read_random(&seed, sizeof seed);
#else
{
struct timeval tv;
microtime(&tv);
seed = tv.tv_sec ^ tv.tv_usec;
}
#endif
ch[0] = seed ^ random();
ch[1] = seed ^ random();
ch[2] = seed ^ random();
ch[3] = seed ^ random();
clen = AUTHKEYLEN;
sp->confid[IDX_CHAP] = ++sp->pp_seq[IDX_CHAP];
sppp_auth_send(&chap, sp, CHAP_CHALLENGE, sp->confid[IDX_CHAP],
sizeof clen, (const char *)&clen,
(size_t)AUTHKEYLEN, sp->myauth.challenge,
(size_t)sppp_strnlen(sp->myauth.name, AUTHNAMELEN),
sp->myauth.name,
0);
}
/*
*--------------------------------------------------------------------------*
* *
* The PAP implementation. *
* *
*--------------------------------------------------------------------------*
*/
/*
* For PAP, we need to keep a little state also if we are the peer, not the
* authenticator. This is since we don't get a request to authenticate, but
* have to repeatedly authenticate ourself until we got a response (or the
* retry counter is expired).
*/
/*
* Handle incoming PAP packets. */
static void
sppp_pap_input(struct sppp *sp, struct mbuf *m)
{
STDDCL;
struct lcp_header *h;
int len, x;
u_char *name, *passwd, mlen;
int name_len, passwd_len;
len = m->m_pkthdr.len;
if (len < 5) {
if (debug)
log(LOG_DEBUG,
SPP_FMT "pap invalid packet length: %d bytes\n",
SPP_ARGS(ifp), len);
return;
}
h = mtod (m, struct lcp_header*);
if (len > ntohs (h->len))
len = ntohs (h->len);
switch (h->type) {
/* PAP request is my authproto */
case PAP_REQ:
name = 1 + (u_char*)(h+1);
name_len = name[-1];
passwd = name + name_len + 1;
if (name_len > len - 6 ||
(passwd_len = passwd[-1]) > len - 6 - name_len) {
if (debug) {
log(LOG_DEBUG, SPP_FMT "pap corrupted input "
"<%s id=0x%x len=%d",
SPP_ARGS(ifp),
sppp_auth_type_name(PPP_PAP, h->type),
h->ident, ntohs(h->len));
sppp_print_bytes((u_char*)(h+1), len-4);
log(-1, ">\n");
}
break;
}
if (debug) {
log(LOG_DEBUG, SPP_FMT "pap input(%s) "
"<%s id=0x%x len=%d name=",
SPP_ARGS(ifp),
sppp_state_name(sp->state[IDX_PAP]),
sppp_auth_type_name(PPP_PAP, h->type),
h->ident, ntohs(h->len));
sppp_print_string((char*)name, name_len);
log(-1, " passwd=");
sppp_print_string((char*)passwd, passwd_len);
log(-1, ">\n");
}
if (name_len != sppp_strnlen(sp->hisauth.name, AUTHNAMELEN) ||
passwd_len != sppp_strnlen(sp->hisauth.secret, AUTHKEYLEN) ||
bcmp(name, sp->hisauth.name, name_len) != 0 ||
bcmp(passwd, sp->hisauth.secret, passwd_len) != 0) {
/* action scn, tld */
mlen = sizeof(FAILMSG) - 1;
sppp_auth_send(&pap, sp, PAP_NAK, h->ident,
sizeof mlen, (const char *)&mlen,
sizeof(FAILMSG) - 1, (u_char *)FAILMSG,
0);
pap.tld(sp);
break;
}
/* action sca, perhaps tlu */
if (sp->state[IDX_PAP] == STATE_REQ_SENT ||
sp->state[IDX_PAP] == STATE_OPENED) {
mlen = sizeof(SUCCMSG) - 1;
sppp_auth_send(&pap, sp, PAP_ACK, h->ident,
sizeof mlen, (const char *)&mlen,
sizeof(SUCCMSG) - 1, (u_char *)SUCCMSG,
0);
}
if (sp->state[IDX_PAP] == STATE_REQ_SENT) {
sppp_cp_change_state(&pap, sp, STATE_OPENED);
pap.tlu(sp);
}
break;
/* ack and nak are his authproto */
case PAP_ACK:
callout_stop(&sp->pap_my_to_ch);
if (debug) {
log(LOG_DEBUG, SPP_FMT "pap success",
SPP_ARGS(ifp));
name_len = *((char *)h);
if (len > 5 && name_len) {
log(-1, ": ");
sppp_print_string((char*)(h+1), name_len);
}
log(-1, "\n");
}
x = splimp();
SPPP_LOCK(sp);
sp->pp_flags &= ~PP_NEEDAUTH;
if (sp->myauth.proto == PPP_PAP &&
(sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) &&
(sp->lcp.protos & (1 << IDX_PAP)) == 0) {
/*
* We are authenticator for PAP but didn't
* complete yet. Leave it to tlu to proceed
* to network phase.
*/
SPPP_UNLOCK(sp);
splx(x);
break;
}
SPPP_UNLOCK(sp);
splx(x);
sppp_phase_network(sp);
break;
case PAP_NAK:
callout_stop (&sp->pap_my_to_ch);
if (debug) {
log(LOG_INFO, SPP_FMT "pap failure",
SPP_ARGS(ifp));
name_len = *((char *)h);
if (len > 5 && name_len) {
log(-1, ": ");
sppp_print_string((char*)(h+1), name_len);
}
log(-1, "\n");
} else
log(LOG_INFO, SPP_FMT "pap failure\n",
SPP_ARGS(ifp));
/* await LCP shutdown by authenticator */
break;
default:
/* Unknown PAP packet type -- ignore. */
if (debug) {
log(LOG_DEBUG, SPP_FMT "pap corrupted input "
"<0x%x id=0x%x len=%d",
SPP_ARGS(ifp),
h->type, h->ident, ntohs(h->len));
sppp_print_bytes((u_char*)(h+1), len-4);
log(-1, ">\n");
}
break;
}
}
static void
sppp_pap_init(struct sppp *sp)
{
/* PAP doesn't have STATE_INITIAL at all. */
sp->state[IDX_PAP] = STATE_CLOSED;
sp->fail_counter[IDX_PAP] = 0;
sp->pp_seq[IDX_PAP] = 0;
sp->pp_rseq[IDX_PAP] = 0;
callout_init(&sp->ch[IDX_PAP],
(sp->pp_if.if_flags & IFF_NEEDSGIANT) ? 0 : CALLOUT_MPSAFE);
callout_init(&sp->pap_my_to_ch,
(sp->pp_if.if_flags & IFF_NEEDSGIANT) ? 0 : CALLOUT_MPSAFE);
}
static void
sppp_pap_open(struct sppp *sp)
{
if (sp->hisauth.proto == PPP_PAP &&
(sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) != 0) {
/* we are authenticator for PAP, start our timer */
sp->rst_counter[IDX_PAP] = sp->lcp.max_configure;
sppp_cp_change_state(&pap, sp, STATE_REQ_SENT);
}
if (sp->myauth.proto == PPP_PAP) {
/* we are peer, send a request, and start a timer */
pap.scr(sp);
callout_reset(&sp->pap_my_to_ch, sp->lcp.timeout,
sppp_pap_my_TO, (void *)sp);
}
}
static void
sppp_pap_close(struct sppp *sp)
{
if (sp->state[IDX_PAP] != STATE_CLOSED)
sppp_cp_change_state(&pap, sp, STATE_CLOSED);
}
/*
* That's the timeout routine if we are authenticator. Since the
* authenticator is basically passive in PAP, we can't do much here.
*/
static void
sppp_pap_TO(void *cookie)
{
struct sppp *sp = (struct sppp *)cookie;
STDDCL;
int s;
s = splimp();
SPPP_LOCK(sp);
if (debug)
log(LOG_DEBUG, SPP_FMT "pap TO(%s) rst_counter = %d\n",
SPP_ARGS(ifp),
sppp_state_name(sp->state[IDX_PAP]),
sp->rst_counter[IDX_PAP]);
if (--sp->rst_counter[IDX_PAP] < 0)
/* TO- event */
switch (sp->state[IDX_PAP]) {
case STATE_REQ_SENT:
pap.tld(sp);
sppp_cp_change_state(&pap, sp, STATE_CLOSED);
break;
}
else
/* TO+ event, not very much we could do */
switch (sp->state[IDX_PAP]) {
case STATE_REQ_SENT:
/* sppp_cp_change_state() will restart the timer */
sppp_cp_change_state(&pap, sp, STATE_REQ_SENT);
break;
}
SPPP_UNLOCK(sp);
splx(s);
}
/*
* That's the timeout handler if we are peer. Since the peer is active,
* we need to retransmit our PAP request since it is apparently lost.
* XXX We should impose a max counter.
*/
static void
sppp_pap_my_TO(void *cookie)
{
struct sppp *sp = (struct sppp *)cookie;
STDDCL;
if (debug)
log(LOG_DEBUG, SPP_FMT "pap peer TO\n",
SPP_ARGS(ifp));
SPPP_LOCK(sp);
pap.scr(sp);
SPPP_UNLOCK(sp);
}
static void
sppp_pap_tlu(struct sppp *sp)
{
STDDCL;
int x;
sp->rst_counter[IDX_PAP] = sp->lcp.max_configure;
if (debug)
log(LOG_DEBUG, SPP_FMT "%s tlu\n",
SPP_ARGS(ifp), pap.name);
x = splimp();
SPPP_LOCK(sp);
/* indicate to LCP that we need to be closed down */
sp->lcp.protos |= (1 << IDX_PAP);
if (sp->pp_flags & PP_NEEDAUTH) {
/*
* Remote is authenticator, but his auth proto didn't
* complete yet. Defer the transition to network
* phase.
*/
SPPP_UNLOCK(sp);
splx(x);
return;
}
SPPP_UNLOCK(sp);
splx(x);
sppp_phase_network(sp);
}
static void
sppp_pap_tld(struct sppp *sp)
{
STDDCL;
if (debug)
log(LOG_DEBUG, SPP_FMT "pap tld\n", SPP_ARGS(ifp));
callout_stop (&sp->ch[IDX_PAP]);
callout_stop (&sp->pap_my_to_ch);
sp->lcp.protos &= ~(1 << IDX_PAP);
lcp.Close(sp);
}
static void
sppp_pap_scr(struct sppp *sp)
{
u_char idlen, pwdlen;
sp->confid[IDX_PAP] = ++sp->pp_seq[IDX_PAP];
pwdlen = sppp_strnlen(sp->myauth.secret, AUTHKEYLEN);
idlen = sppp_strnlen(sp->myauth.name, AUTHNAMELEN);
sppp_auth_send(&pap, sp, PAP_REQ, sp->confid[IDX_PAP],
sizeof idlen, (const char *)&idlen,
(size_t)idlen, sp->myauth.name,
sizeof pwdlen, (const char *)&pwdlen,
(size_t)pwdlen, sp->myauth.secret,
0);
}
/*
* Random miscellaneous functions.
*/
/*
* Send a PAP or CHAP proto packet.
*
* Varadic function, each of the elements for the ellipsis is of type
* ``size_t mlen, const u_char *msg''. Processing will stop iff
* mlen == 0.
* NOTE: never declare variadic functions with types subject to type
* promotion (i.e. u_char). This is asking for big trouble depending
* on the architecture you are on...
*/
static void
sppp_auth_send(const struct cp *cp, struct sppp *sp,
unsigned int type, unsigned int id,
...)
{
STDDCL;
struct ppp_header *h;
struct lcp_header *lh;
struct mbuf *m;
u_char *p;
int len;
unsigned int mlen;
const char *msg;
va_list ap;
MGETHDR (m, M_DONTWAIT, MT_DATA);
if (! m)
return;
m->m_pkthdr.rcvif = 0;
h = mtod (m, struct ppp_header*);
h->address = PPP_ALLSTATIONS; /* broadcast address */
h->control = PPP_UI; /* Unnumbered Info */
h->protocol = htons(cp->proto);
lh = (struct lcp_header*)(h + 1);
lh->type = type;
lh->ident = id;
p = (u_char*) (lh+1);
va_start(ap, id);
len = 0;
while ((mlen = (unsigned int)va_arg(ap, size_t)) != 0) {
msg = va_arg(ap, const char *);
len += mlen;
if (len > MHLEN - PPP_HEADER_LEN - LCP_HEADER_LEN) {
va_end(ap);
m_freem(m);
return;
}
bcopy(msg, p, mlen);
p += mlen;
}
va_end(ap);
m->m_pkthdr.len = m->m_len = PPP_HEADER_LEN + LCP_HEADER_LEN + len;
lh->len = htons (LCP_HEADER_LEN + len);
if (debug) {
log(LOG_DEBUG, SPP_FMT "%s output <%s id=0x%x len=%d",
SPP_ARGS(ifp), cp->name,
sppp_auth_type_name(cp->proto, lh->type),
lh->ident, ntohs(lh->len));
sppp_print_bytes((u_char*) (lh+1), len);
log(-1, ">\n");
}
if (! IF_HANDOFF_ADJ(&sp->pp_cpq, m, ifp, 3))
ifp->if_oerrors++;
}
/*
* Flush interface queue.
*/
static void
sppp_qflush(struct ifqueue *ifq)
{
struct mbuf *m, *n;
n = ifq->ifq_head;
while ((m = n)) {
n = m->m_act;
m_freem (m);
}
ifq->ifq_head = 0;
ifq->ifq_tail = 0;
ifq->ifq_len = 0;
}
/*
* Send keepalive packets, every 10 seconds.
*/
static void
sppp_keepalive(void *dummy)
{
struct sppp *sp = (struct sppp*)dummy;
struct ifnet *ifp = &sp->pp_if;
int s;
s = splimp();
SPPP_LOCK(sp);
/* Keepalive mode disabled or channel down? */
if (! (sp->pp_flags & PP_KEEPALIVE) ||
! (ifp->if_flags & IFF_RUNNING))
goto out;
if (sp->pp_mode == PP_FR) {
sppp_fr_keepalive (sp);
goto out;
}
/* No keepalive in PPP mode if LCP not opened yet. */
if (sp->pp_mode != IFF_CISCO &&
sp->pp_phase < PHASE_AUTHENTICATE)
goto out;
if (sp->pp_alivecnt == MAXALIVECNT) {
/* No keepalive packets got. Stop the interface. */
printf (SPP_FMT "down\n", SPP_ARGS(ifp));
if_down (ifp);
sppp_qflush (&sp->pp_cpq);
if (sp->pp_mode != IFF_CISCO) {
/* XXX */
/* Shut down the PPP link. */
lcp.Down(sp);
/* Initiate negotiation. XXX */
lcp.Up(sp);
}
}
if (sp->pp_alivecnt <= MAXALIVECNT)
++sp->pp_alivecnt;
if (sp->pp_mode == IFF_CISCO)
sppp_cisco_send (sp, CISCO_KEEPALIVE_REQ,
++sp->pp_seq[IDX_LCP], sp->pp_rseq[IDX_LCP]);
else if (sp->pp_phase >= PHASE_AUTHENTICATE) {
long nmagic = htonl (sp->lcp.magic);
sp->lcp.echoid = ++sp->pp_seq[IDX_LCP];
sppp_cp_send (sp, PPP_LCP, ECHO_REQ,
sp->lcp.echoid, 4, &nmagic);
}
out:
SPPP_UNLOCK(sp);
splx(s);
callout_reset(&sp->keepalive_callout, hz * 10, sppp_keepalive,
(void *)sp);
}
/*
* Get both IP addresses.
*/
void
sppp_get_ip_addrs(struct sppp *sp, u_long *src, u_long *dst, u_long *srcmask)
{
struct ifnet *ifp = &sp->pp_if;
struct ifaddr *ifa;
struct sockaddr_in *si, *sm;
u_long ssrc, ddst;
sm = NULL;
ssrc = ddst = 0L;
/*
* Pick the first AF_INET address from the list,
* aliases don't make any sense on a p2p link anyway.
*/
si = 0;
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
#elif defined(__NetBSD__) || defined (__OpenBSD__)
for (ifa = TAILQ_FIRST(&ifp->if_addrlist);
ifa;
ifa = TAILQ_NEXT(ifa, ifa_list))
#else
for (ifa = ifp->if_addrlist;
ifa;
ifa = ifa->ifa_next)
#endif
if (ifa->ifa_addr->sa_family == AF_INET) {
si = (struct sockaddr_in *)ifa->ifa_addr;
sm = (struct sockaddr_in *)ifa->ifa_netmask;
if (si)
break;
}
if (ifa) {
if (si && si->sin_addr.s_addr) {
ssrc = si->sin_addr.s_addr;
if (srcmask)
*srcmask = ntohl(sm->sin_addr.s_addr);
}
si = (struct sockaddr_in *)ifa->ifa_dstaddr;
if (si && si->sin_addr.s_addr)
ddst = si->sin_addr.s_addr;
}
if (dst) *dst = ntohl(ddst);
if (src) *src = ntohl(ssrc);
}
/*
* Set my IP address. Must be called at splimp.
*/
static void
sppp_set_ip_addr(struct sppp *sp, u_long src)
{
STDDCL;
struct ifaddr *ifa;
struct sockaddr_in *si;
struct in_ifaddr *ia;
/*
* Pick the first AF_INET address from the list,
* aliases don't make any sense on a p2p link anyway.
*/
si = 0;
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
#elif defined(__NetBSD__) || defined (__OpenBSD__)
for (ifa = TAILQ_FIRST(&ifp->if_addrlist);
ifa;
ifa = TAILQ_NEXT(ifa, ifa_list))
#else
for (ifa = ifp->if_addrlist;
ifa;
ifa = ifa->ifa_next)
#endif
{
if (ifa->ifa_addr->sa_family == AF_INET)
{
si = (struct sockaddr_in *)ifa->ifa_addr;
if (si)
break;
}
}
if (ifa && si)
{
int error;
#if __NetBSD_Version__ >= 103080000
struct sockaddr_in new_sin = *si;
new_sin.sin_addr.s_addr = htonl(src);
error = in_ifinit(ifp, ifatoia(ifa), &new_sin, 1);
if(debug && error)
{
log(LOG_DEBUG, SPP_FMT "sppp_set_ip_addr: in_ifinit "
" failed, error=%d\n", SPP_ARGS(ifp), error);
}
#else
/* delete old route */
error = rtinit(ifa, (int)RTM_DELETE, RTF_HOST);
if(debug && error)
{
log(LOG_DEBUG, SPP_FMT "sppp_set_ip_addr: rtinit DEL failed, error=%d\n",
SPP_ARGS(ifp), error);
}
/* set new address */
si->sin_addr.s_addr = htonl(src);
ia = ifatoia(ifa);
LIST_REMOVE(ia, ia_hash);
LIST_INSERT_HEAD(INADDR_HASH(si->sin_addr.s_addr), ia, ia_hash);
/* add new route */
error = rtinit(ifa, (int)RTM_ADD, RTF_HOST);
if (debug && error)
{
log(LOG_DEBUG, SPP_FMT "sppp_set_ip_addr: rtinit ADD failed, error=%d",
SPP_ARGS(ifp), error);
}
#endif
}
}
#ifdef INET6
/*
* Get both IPv6 addresses.
*/
static void
sppp_get_ip6_addrs(struct sppp *sp, struct in6_addr *src, struct in6_addr *dst,
struct in6_addr *srcmask)
{
struct ifnet *ifp = &sp->pp_if;
struct ifaddr *ifa;
struct sockaddr_in6 *si, *sm;
struct in6_addr ssrc, ddst;
sm = NULL;
bzero(&ssrc, sizeof(ssrc));
bzero(&ddst, sizeof(ddst));
/*
* Pick the first link-local AF_INET6 address from the list,
* aliases don't make any sense on a p2p link anyway.
*/
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
for (ifa = ifp->if_addrhead.tqh_first, si = 0;
ifa;
ifa = ifa->ifa_link.tqe_next)
#elif defined(__NetBSD__) || defined (__OpenBSD__)
for (ifa = ifp->if_addrlist.tqh_first, si = 0;
ifa;
ifa = ifa->ifa_list.tqe_next)
#else
for (ifa = ifp->if_addrlist, si = 0;
ifa;
ifa = ifa->ifa_next)
#endif
if (ifa->ifa_addr->sa_family == AF_INET6) {
si = (struct sockaddr_in6 *)ifa->ifa_addr;
sm = (struct sockaddr_in6 *)ifa->ifa_netmask;
if (si && IN6_IS_ADDR_LINKLOCAL(&si->sin6_addr))
break;
}
if (ifa) {
if (si && !IN6_IS_ADDR_UNSPECIFIED(&si->sin6_addr)) {
bcopy(&si->sin6_addr, &ssrc, sizeof(ssrc));
if (srcmask) {
bcopy(&sm->sin6_addr, srcmask,
sizeof(*srcmask));
}
}
si = (struct sockaddr_in6 *)ifa->ifa_dstaddr;
if (si && !IN6_IS_ADDR_UNSPECIFIED(&si->sin6_addr))
bcopy(&si->sin6_addr, &ddst, sizeof(ddst));
}
if (dst)
bcopy(&ddst, dst, sizeof(*dst));
if (src)
bcopy(&ssrc, src, sizeof(*src));
}
#ifdef IPV6CP_MYIFID_DYN
/*
* Generate random ifid.
*/
static void
sppp_gen_ip6_addr(struct sppp *sp, struct in6_addr *addr)
{
/* TBD */
}
/*
* Set my IPv6 address. Must be called at splimp.
*/
static void
sppp_set_ip6_addr(struct sppp *sp, const struct in6_addr *src)
{
STDDCL;
struct ifaddr *ifa;
struct sockaddr_in6 *sin6;
/*
* Pick the first link-local AF_INET6 address from the list,
* aliases don't make any sense on a p2p link anyway.
*/
sin6 = NULL;
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
for (ifa = ifp->if_addrhead.tqh_first;
ifa;
ifa = ifa->ifa_link.tqe_next)
#elif defined(__NetBSD__) || defined (__OpenBSD__)
for (ifa = ifp->if_addrlist.tqh_first;
ifa;
ifa = ifa->ifa_list.tqe_next)
#else
for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next)
#endif
{
if (ifa->ifa_addr->sa_family == AF_INET6)
{
sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
if (sin6 && IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr))
break;
}
}
if (ifa && sin6)
{
int error;
struct sockaddr_in6 new_sin6 = *sin6;
bcopy(src, &new_sin6.sin6_addr, sizeof(new_sin6.sin6_addr));
error = in6_ifinit(ifp, ifatoia6(ifa), &new_sin6, 1);
if (debug && error)
{
log(LOG_DEBUG, SPP_FMT "sppp_set_ip6_addr: in6_ifinit "
" failed, error=%d\n", SPP_ARGS(ifp), error);
}
}
}
#endif
/*
* Suggest a candidate address to be used by peer.
*/
static void
sppp_suggest_ip6_addr(struct sppp *sp, struct in6_addr *suggest)
{
struct in6_addr myaddr;
struct timeval tv;
sppp_get_ip6_addrs(sp, &myaddr, 0, 0);
myaddr.s6_addr[8] &= ~0x02; /* u bit to "local" */
microtime(&tv);
if ((tv.tv_usec & 0xff) == 0 && (tv.tv_sec & 0xff) == 0) {
myaddr.s6_addr[14] ^= 0xff;
myaddr.s6_addr[15] ^= 0xff;
} else {
myaddr.s6_addr[14] ^= (tv.tv_usec & 0xff);
myaddr.s6_addr[15] ^= (tv.tv_sec & 0xff);
}
if (suggest)
bcopy(&myaddr, suggest, sizeof(myaddr));
}
#endif /*INET6*/
static int
sppp_params(struct sppp *sp, u_long cmd, void *data)
{
u_long subcmd;
struct ifreq *ifr = (struct ifreq *)data;
struct spppreq *spr;
int rv = 0;
if ((spr = malloc(sizeof(struct spppreq), M_TEMP, M_NOWAIT)) == 0)
return (EAGAIN);
/*
* ifr->ifr_data is supposed to point to a struct spppreq.
* Check the cmd word first before attempting to fetch all the
* data.
*/
if ((subcmd = fuword(ifr->ifr_data)) == -1) {
rv = EFAULT;
goto quit;
}
if (copyin((caddr_t)ifr->ifr_data, spr, sizeof(struct spppreq)) != 0) {
rv = EFAULT;
goto quit;
}
switch (subcmd) {
case (int)SPPPIOGDEFS:
if (cmd != SIOCGIFGENERIC) {
rv = EINVAL;
break;
}
/*
* We copy over the entire current state, but clean
* out some of the stuff we don't wanna pass up.
* Remember, SIOCGIFGENERIC is unprotected, and can be
* called by any user. No need to ever get PAP or
* CHAP secrets back to userland anyway.
*/
spr->defs.pp_phase = sp->pp_phase;
spr->defs.enable_vj = (sp->confflags & CONF_ENABLE_VJ) != 0;
spr->defs.enable_ipv6 = (sp->confflags & CONF_ENABLE_IPV6) != 0;
spr->defs.lcp = sp->lcp;
spr->defs.ipcp = sp->ipcp;
spr->defs.ipv6cp = sp->ipv6cp;
spr->defs.myauth = sp->myauth;
spr->defs.hisauth = sp->hisauth;
bzero(spr->defs.myauth.secret, AUTHKEYLEN);
bzero(spr->defs.myauth.challenge, AUTHKEYLEN);
bzero(spr->defs.hisauth.secret, AUTHKEYLEN);
bzero(spr->defs.hisauth.challenge, AUTHKEYLEN);
/*
* Fixup the LCP timeout value to milliseconds so
* spppcontrol doesn't need to bother about the value
* of "hz". We do the reverse calculation below when
* setting it.
*/
spr->defs.lcp.timeout = sp->lcp.timeout * 1000 / hz;
rv = copyout(spr, (caddr_t)ifr->ifr_data,
sizeof(struct spppreq));
break;
case (int)SPPPIOSDEFS:
if (cmd != SIOCSIFGENERIC) {
rv = EINVAL;
break;
}
/*
* We have a very specific idea of which fields we
* allow being passed back from userland, so to not
* clobber our current state. For one, we only allow
* setting anything if LCP is in dead or establish
* phase. Once the authentication negotiations
* started, the authentication settings must not be
* changed again. (The administrator can force an
* ifconfig down in order to get LCP back into dead
* phase.)
*
* Also, we only allow for authentication parameters to be
* specified.
*
* XXX Should allow to set or clear pp_flags.
*
* Finally, if the respective authentication protocol to
* be used is set differently than 0, but the secret is
* passed as all zeros, we don't trash the existing secret.
* This allows an administrator to change the system name
* only without clobbering the secret (which he didn't get
* back in a previous SPPPIOGDEFS call). However, the
* secrets are cleared if the authentication protocol is
* reset to 0. */
if (sp->pp_phase != PHASE_DEAD &&
sp->pp_phase != PHASE_ESTABLISH) {
rv = EBUSY;
break;
}
if ((spr->defs.myauth.proto != 0 && spr->defs.myauth.proto != PPP_PAP &&
spr->defs.myauth.proto != PPP_CHAP) ||
(spr->defs.hisauth.proto != 0 && spr->defs.hisauth.proto != PPP_PAP &&
spr->defs.hisauth.proto != PPP_CHAP)) {
rv = EINVAL;
break;
}
if (spr->defs.myauth.proto == 0)
/* resetting myauth */
bzero(&sp->myauth, sizeof sp->myauth);
else {
/* setting/changing myauth */
sp->myauth.proto = spr->defs.myauth.proto;
bcopy(spr->defs.myauth.name, sp->myauth.name, AUTHNAMELEN);
if (spr->defs.myauth.secret[0] != '\0')
bcopy(spr->defs.myauth.secret, sp->myauth.secret,
AUTHKEYLEN);
}
if (spr->defs.hisauth.proto == 0)
/* resetting hisauth */
bzero(&sp->hisauth, sizeof sp->hisauth);
else {
/* setting/changing hisauth */
sp->hisauth.proto = spr->defs.hisauth.proto;
sp->hisauth.flags = spr->defs.hisauth.flags;
bcopy(spr->defs.hisauth.name, sp->hisauth.name, AUTHNAMELEN);
if (spr->defs.hisauth.secret[0] != '\0')
bcopy(spr->defs.hisauth.secret, sp->hisauth.secret,
AUTHKEYLEN);
}
/* set LCP restart timer timeout */
if (spr->defs.lcp.timeout != 0)
sp->lcp.timeout = spr->defs.lcp.timeout * hz / 1000;
/* set VJ enable and IPv6 disable flags */
#ifdef INET
if (spr->defs.enable_vj)
sp->confflags |= CONF_ENABLE_VJ;
else
sp->confflags &= ~CONF_ENABLE_VJ;
#endif
#ifdef INET6
if (spr->defs.enable_ipv6)
sp->confflags |= CONF_ENABLE_IPV6;
else
sp->confflags &= ~CONF_ENABLE_IPV6;
#endif
break;
default:
rv = EINVAL;
}
quit:
free(spr, M_TEMP);
return (rv);
}
static void
sppp_phase_network(struct sppp *sp)
{
STDDCL;
int i;
u_long mask;
sp->pp_phase = PHASE_NETWORK;
if (debug)
log(LOG_DEBUG, SPP_FMT "phase %s\n", SPP_ARGS(ifp),
sppp_phase_name(sp->pp_phase));
/* Notify NCPs now. */
for (i = 0; i < IDX_COUNT; i++)
if ((cps[i])->flags & CP_NCP)
(cps[i])->Open(sp);
/* Send Up events to all NCPs. */
for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1)
if ((sp->lcp.protos & mask) && ((cps[i])->flags & CP_NCP))
(cps[i])->Up(sp);
/* if no NCP is starting, all this was in vain, close down */
sppp_lcp_check_and_close(sp);
}
static const char *
sppp_cp_type_name(u_char type)
{
static char buf[12];
switch (type) {
case CONF_REQ: return "conf-req";
case CONF_ACK: return "conf-ack";
case CONF_NAK: return "conf-nak";
case CONF_REJ: return "conf-rej";
case TERM_REQ: return "term-req";
case TERM_ACK: return "term-ack";
case CODE_REJ: return "code-rej";
case PROTO_REJ: return "proto-rej";
case ECHO_REQ: return "echo-req";
case ECHO_REPLY: return "echo-reply";
case DISC_REQ: return "discard-req";
}
snprintf (buf, sizeof(buf), "cp/0x%x", type);
return buf;
}
static const char *
sppp_auth_type_name(u_short proto, u_char type)
{
static char buf[12];
switch (proto) {
case PPP_CHAP:
switch (type) {
case CHAP_CHALLENGE: return "challenge";
case CHAP_RESPONSE: return "response";
case CHAP_SUCCESS: return "success";
case CHAP_FAILURE: return "failure";
}
case PPP_PAP:
switch (type) {
case PAP_REQ: return "req";
case PAP_ACK: return "ack";
case PAP_NAK: return "nak";
}
}
snprintf (buf, sizeof(buf), "auth/0x%x", type);
return buf;
}
static const char *
sppp_lcp_opt_name(u_char opt)
{
static char buf[12];
switch (opt) {
case LCP_OPT_MRU: return "mru";
case LCP_OPT_ASYNC_MAP: return "async-map";
case LCP_OPT_AUTH_PROTO: return "auth-proto";
case LCP_OPT_QUAL_PROTO: return "qual-proto";
case LCP_OPT_MAGIC: return "magic";
case LCP_OPT_PROTO_COMP: return "proto-comp";
case LCP_OPT_ADDR_COMP: return "addr-comp";
}
snprintf (buf, sizeof(buf), "lcp/0x%x", opt);
return buf;
}
static const char *
sppp_ipcp_opt_name(u_char opt)
{
static char buf[12];
switch (opt) {
case IPCP_OPT_ADDRESSES: return "addresses";
case IPCP_OPT_COMPRESSION: return "compression";
case IPCP_OPT_ADDRESS: return "address";
}
snprintf (buf, sizeof(buf), "ipcp/0x%x", opt);
return buf;
}
#ifdef INET6
static const char *
sppp_ipv6cp_opt_name(u_char opt)
{
static char buf[12];
switch (opt) {
case IPV6CP_OPT_IFID: return "ifid";
case IPV6CP_OPT_COMPRESSION: return "compression";
}
sprintf (buf, "0x%x", opt);
return buf;
}
#endif
static const char *
sppp_state_name(int state)
{
switch (state) {
case STATE_INITIAL: return "initial";
case STATE_STARTING: return "starting";
case STATE_CLOSED: return "closed";
case STATE_STOPPED: return "stopped";
case STATE_CLOSING: return "closing";
case STATE_STOPPING: return "stopping";
case STATE_REQ_SENT: return "req-sent";
case STATE_ACK_RCVD: return "ack-rcvd";
case STATE_ACK_SENT: return "ack-sent";
case STATE_OPENED: return "opened";
}
return "illegal";
}
static const char *
sppp_phase_name(enum ppp_phase phase)
{
switch (phase) {
case PHASE_DEAD: return "dead";
case PHASE_ESTABLISH: return "establish";
case PHASE_TERMINATE: return "terminate";
case PHASE_AUTHENTICATE: return "authenticate";
case PHASE_NETWORK: return "network";
}
return "illegal";
}
static const char *
sppp_proto_name(u_short proto)
{
static char buf[12];
switch (proto) {
case PPP_LCP: return "lcp";
case PPP_IPCP: return "ipcp";
case PPP_PAP: return "pap";
case PPP_CHAP: return "chap";
case PPP_IPV6CP: return "ipv6cp";
}
snprintf(buf, sizeof(buf), "proto/0x%x", (unsigned)proto);
return buf;
}
static void
sppp_print_bytes(const u_char *p, u_short len)
{
if (len)
log(-1, " %*D", len, p, "-");
}
static void
sppp_print_string(const char *p, u_short len)
{
u_char c;
while (len-- > 0) {
c = *p++;
/*
* Print only ASCII chars directly. RFC 1994 recommends
* using only them, but we don't rely on it. */
if (c < ' ' || c > '~')
log(-1, "\\x%x", c);
else
log(-1, "%c", c);
}
}
static const char *
sppp_dotted_quad(u_long addr)
{
static char s[16];
sprintf(s, "%d.%d.%d.%d",
(int)((addr >> 24) & 0xff),
(int)((addr >> 16) & 0xff),
(int)((addr >> 8) & 0xff),
(int)(addr & 0xff));
return s;
}
static int
sppp_strnlen(u_char *p, int max)
{
int len;
for (len = 0; len < max && *p; ++p)
++len;
return len;
}
/* a dummy, used to drop uninteresting events */
static void
sppp_null(struct sppp *unused)
{
/* do just nothing */
}