freebsd-skq/sys/dev/iwi/if_iwi.c
avos 80646d8a6d urtw(4), otus(4), iwi(4): allow to set non-default MAC address via ifconfig(8)
Tested with Netgear WG111 v3 (RTL8187B, urtw(4)), STA mode.

MFC after:	1 week
2019-04-10 08:17:56 +00:00

3622 lines
94 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2004, 2005
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
* Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
* Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
* http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_input.h>
#include <net80211/ieee80211_regdomain.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/iwi/if_iwireg.h>
#include <dev/iwi/if_iwivar.h>
#include <dev/iwi/if_iwi_ioctl.h>
#define IWI_DEBUG
#ifdef IWI_DEBUG
#define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0)
int iwi_debug = 0;
SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
static const char *iwi_fw_states[] = {
"IDLE", /* IWI_FW_IDLE */
"LOADING", /* IWI_FW_LOADING */
"ASSOCIATING", /* IWI_FW_ASSOCIATING */
"DISASSOCIATING", /* IWI_FW_DISASSOCIATING */
"SCANNING", /* IWI_FW_SCANNING */
};
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
MODULE_DEPEND(iwi, pci, 1, 1, 1);
MODULE_DEPEND(iwi, wlan, 1, 1, 1);
MODULE_DEPEND(iwi, firmware, 1, 1, 1);
enum {
IWI_LED_TX,
IWI_LED_RX,
IWI_LED_POLL,
};
struct iwi_ident {
uint16_t vendor;
uint16_t device;
const char *name;
};
static const struct iwi_ident iwi_ident_table[] = {
{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
{ 0, 0, NULL }
};
static const uint8_t def_chan_5ghz_band1[] =
{ 36, 40, 44, 48, 52, 56, 60, 64 };
static const uint8_t def_chan_5ghz_band2[] =
{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 };
static const uint8_t def_chan_5ghz_band3[] =
{ 149, 153, 157, 161, 165 };
static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void iwi_vap_delete(struct ieee80211vap *);
static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
int);
static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
int, bus_addr_t, bus_addr_t);
static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
int);
static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
const uint8_t [IEEE80211_ADDR_LEN]);
static void iwi_node_free(struct ieee80211_node *);
static void iwi_media_status(struct ifnet *, struct ifmediareq *);
static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void iwi_wme_init(struct iwi_softc *);
static int iwi_wme_setparams(struct iwi_softc *);
static int iwi_wme_update(struct ieee80211com *);
static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t);
static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
struct iwi_frame *);
static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
static void iwi_rx_intr(struct iwi_softc *);
static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
static void iwi_intr(void *);
static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
static int iwi_tx_start(struct iwi_softc *, struct mbuf *,
struct ieee80211_node *, int);
static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void iwi_start(struct iwi_softc *);
static int iwi_transmit(struct ieee80211com *, struct mbuf *);
static void iwi_watchdog(void *);
static int iwi_ioctl(struct ieee80211com *, u_long, void *);
static void iwi_parent(struct ieee80211com *);
static void iwi_stop_master(struct iwi_softc *);
static int iwi_reset(struct iwi_softc *);
static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
static void iwi_release_fw_dma(struct iwi_softc *sc);
static int iwi_config(struct iwi_softc *);
static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
static void iwi_put_firmware(struct iwi_softc *);
static void iwi_monitor_scan(void *, int);
static int iwi_scanchan(struct iwi_softc *, unsigned long, int);
static void iwi_scan_start(struct ieee80211com *);
static void iwi_scan_end(struct ieee80211com *);
static void iwi_set_channel(struct ieee80211com *);
static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
static void iwi_scan_mindwell(struct ieee80211_scan_state *);
static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
static void iwi_disassoc(void *, int);
static int iwi_disassociate(struct iwi_softc *, int quiet);
static void iwi_init_locked(struct iwi_softc *);
static void iwi_init(void *);
static int iwi_init_fw_dma(struct iwi_softc *, int);
static void iwi_stop_locked(void *);
static void iwi_stop(struct iwi_softc *);
static void iwi_restart(void *, int);
static int iwi_getrfkill(struct iwi_softc *);
static void iwi_radio_on(void *, int);
static void iwi_radio_off(void *, int);
static void iwi_sysctlattach(struct iwi_softc *);
static void iwi_led_event(struct iwi_softc *, int);
static void iwi_ledattach(struct iwi_softc *);
static void iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t);
static void iwi_getradiocaps(struct ieee80211com *, int, int *,
struct ieee80211_channel []);
static int iwi_probe(device_t);
static int iwi_attach(device_t);
static int iwi_detach(device_t);
static int iwi_shutdown(device_t);
static int iwi_suspend(device_t);
static int iwi_resume(device_t);
static device_method_t iwi_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, iwi_probe),
DEVMETHOD(device_attach, iwi_attach),
DEVMETHOD(device_detach, iwi_detach),
DEVMETHOD(device_shutdown, iwi_shutdown),
DEVMETHOD(device_suspend, iwi_suspend),
DEVMETHOD(device_resume, iwi_resume),
DEVMETHOD_END
};
static driver_t iwi_driver = {
"iwi",
iwi_methods,
sizeof (struct iwi_softc)
};
static devclass_t iwi_devclass;
DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
MODULE_VERSION(iwi, 1);
static __inline uint8_t
MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
}
static __inline uint32_t
MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
}
static int
iwi_probe(device_t dev)
{
const struct iwi_ident *ident;
for (ident = iwi_ident_table; ident->name != NULL; ident++) {
if (pci_get_vendor(dev) == ident->vendor &&
pci_get_device(dev) == ident->device) {
device_set_desc(dev, ident->name);
return (BUS_PROBE_DEFAULT);
}
}
return ENXIO;
}
static int
iwi_attach(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int i, error;
sc->sc_dev = dev;
sc->sc_ledevent = ticks;
IWI_LOCK_INIT(sc);
mbufq_init(&sc->sc_snd, ifqmaxlen);
sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
pci_write_config(dev, 0x41, 0, 1);
/* enable bus-mastering */
pci_enable_busmaster(dev);
i = PCIR_BAR(0);
sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
if (sc->mem == NULL) {
device_printf(dev, "could not allocate memory resource\n");
goto fail;
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
i = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq == NULL) {
device_printf(dev, "could not allocate interrupt resource\n");
goto fail;
}
if (iwi_reset(sc) != 0) {
device_printf(dev, "could not reset adapter\n");
goto fail;
}
/*
* Allocate rings.
*/
if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
device_printf(dev, "could not allocate Cmd ring\n");
goto fail;
}
for (i = 0; i < 4; i++) {
error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
IWI_CSR_TX1_RIDX + i * 4,
IWI_CSR_TX1_WIDX + i * 4);
if (error != 0) {
device_printf(dev, "could not allocate Tx ring %d\n",
i+i);
goto fail;
}
}
if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
device_printf(dev, "could not allocate Rx ring\n");
goto fail;
}
iwi_wme_init(sc);
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(dev);
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_IBSS /* IBSS mode supported */
| IEEE80211_C_MONITOR /* monitor mode supported */
| IEEE80211_C_PMGT /* power save supported */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_WPA /* 802.11i */
| IEEE80211_C_WME /* 802.11e */
#if 0
| IEEE80211_C_BGSCAN /* capable of bg scanning */
#endif
;
/* read MAC address from EEPROM */
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
ic->ic_macaddr[0] = val & 0xff;
ic->ic_macaddr[1] = val >> 8;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
ic->ic_macaddr[2] = val & 0xff;
ic->ic_macaddr[3] = val >> 8;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
ic->ic_macaddr[4] = val & 0xff;
ic->ic_macaddr[5] = val >> 8;
iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
ic->ic_channels);
ieee80211_ifattach(ic);
/* override default methods */
ic->ic_node_alloc = iwi_node_alloc;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = iwi_node_free;
ic->ic_raw_xmit = iwi_raw_xmit;
ic->ic_scan_start = iwi_scan_start;
ic->ic_scan_end = iwi_scan_end;
ic->ic_set_channel = iwi_set_channel;
ic->ic_scan_curchan = iwi_scan_curchan;
ic->ic_scan_mindwell = iwi_scan_mindwell;
ic->ic_wme.wme_update = iwi_wme_update;
ic->ic_vap_create = iwi_vap_create;
ic->ic_vap_delete = iwi_vap_delete;
ic->ic_ioctl = iwi_ioctl;
ic->ic_transmit = iwi_transmit;
ic->ic_parent = iwi_parent;
ic->ic_getradiocaps = iwi_getradiocaps;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
IWI_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
IWI_RX_RADIOTAP_PRESENT);
iwi_sysctlattach(sc);
iwi_ledattach(sc);
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, iwi_intr, sc, &sc->sc_ih);
if (error != 0) {
device_printf(dev, "could not set up interrupt\n");
goto fail;
}
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail:
/* XXX fix */
iwi_detach(dev);
return ENXIO;
}
static int
iwi_detach(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
/* NB: do early to drain any pending tasks */
ieee80211_draintask(ic, &sc->sc_radiontask);
ieee80211_draintask(ic, &sc->sc_radiofftask);
ieee80211_draintask(ic, &sc->sc_restarttask);
ieee80211_draintask(ic, &sc->sc_disassoctask);
ieee80211_draintask(ic, &sc->sc_monitortask);
iwi_stop(sc);
ieee80211_ifdetach(ic);
iwi_put_firmware(sc);
iwi_release_fw_dma(sc);
iwi_free_cmd_ring(sc, &sc->cmdq);
iwi_free_tx_ring(sc, &sc->txq[0]);
iwi_free_tx_ring(sc, &sc->txq[1]);
iwi_free_tx_ring(sc, &sc->txq[2]);
iwi_free_tx_ring(sc, &sc->txq[3]);
iwi_free_rx_ring(sc, &sc->rxq);
bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
sc->mem);
delete_unrhdr(sc->sc_unr);
mbufq_drain(&sc->sc_snd);
IWI_LOCK_DESTROY(sc);
return 0;
}
static struct ieee80211vap *
iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct iwi_softc *sc = ic->ic_softc;
struct iwi_vap *ivp;
struct ieee80211vap *vap;
int i;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
/*
* Get firmware image (and possibly dma memory) on mode change.
*/
if (iwi_get_firmware(sc, opmode))
return NULL;
/* allocate DMA memory for mapping firmware image */
i = sc->fw_fw.size;
if (sc->fw_boot.size > i)
i = sc->fw_boot.size;
/* XXX do we dma the ucode as well ? */
if (sc->fw_uc.size > i)
i = sc->fw_uc.size;
if (iwi_init_fw_dma(sc, i))
return NULL;
ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
vap = &ivp->iwi_vap;
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
/* override the default, the setting comes from the linux driver */
vap->iv_bmissthreshold = 24;
/* override with driver methods */
ivp->iwi_newstate = vap->iv_newstate;
vap->iv_newstate = iwi_newstate;
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status,
mac);
ic->ic_opmode = opmode;
return vap;
}
static void
iwi_vap_delete(struct ieee80211vap *vap)
{
struct iwi_vap *ivp = IWI_VAP(vap);
ieee80211_vap_detach(vap);
free(ivp, M_80211_VAP);
}
static void
iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
{
int error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
return 0;
fail: iwi_free_cmd_ring(sc, ring);
return error;
}
static void
iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
ring->queued = 0;
ring->cur = ring->next = 0;
}
static void
iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
}
static int
iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
bus_addr_t csr_ridx, bus_addr_t csr_widx)
{
int i, error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
ring->csr_ridx = csr_ridx;
ring->csr_widx = csr_widx;
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
error = bus_dmamap_create(ring->data_dmat, 0,
&ring->data[i].map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
}
return 0;
fail: iwi_free_tx_ring(sc, ring);
return error;
}
static void
iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
{
struct iwi_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
ring->queued = 0;
ring->cur = ring->next = 0;
}
static void
iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
{
struct iwi_tx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->ni != NULL)
ieee80211_free_node(data->ni);
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
{
struct iwi_rx_data *data;
int i, error;
ring->count = count;
ring->cur = 0;
ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
data = &ring->data[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
&data->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load rx buf DMA map");
goto fail;
}
data->reg = IWI_CSR_RX_BASE + i * 4;
}
return 0;
fail: iwi_free_rx_ring(sc, ring);
return error;
}
static void
iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
ring->cur = 0;
}
static void
iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
struct iwi_rx_data *data;
int i;
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
iwi_shutdown(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
iwi_stop(sc);
iwi_put_firmware(sc); /* ??? XXX */
return 0;
}
static int
iwi_suspend(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
ieee80211_suspend_all(ic);
return 0;
}
static int
iwi_resume(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
pci_write_config(dev, 0x41, 0, 1);
ieee80211_resume_all(ic);
return 0;
}
static struct ieee80211_node *
iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct iwi_node *in;
in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
if (in == NULL)
return NULL;
/* XXX assign sta table entry for adhoc */
in->in_station = -1;
return &in->in_node;
}
static void
iwi_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct iwi_softc *sc = ic->ic_softc;
struct iwi_node *in = (struct iwi_node *)ni;
if (in->in_station != -1) {
DPRINTF(("%s mac %6D station %u\n", __func__,
ni->ni_macaddr, ":", in->in_station));
free_unr(sc->sc_unr, in->in_station);
}
sc->sc_node_free(ni);
}
/*
* Convert h/w rate code to IEEE rate code.
*/
static int
iwi_cvtrate(int iwirate)
{
switch (iwirate) {
case IWI_RATE_DS1: return 2;
case IWI_RATE_DS2: return 4;
case IWI_RATE_DS5: return 11;
case IWI_RATE_DS11: return 22;
case IWI_RATE_OFDM6: return 12;
case IWI_RATE_OFDM9: return 18;
case IWI_RATE_OFDM12: return 24;
case IWI_RATE_OFDM18: return 36;
case IWI_RATE_OFDM24: return 48;
case IWI_RATE_OFDM36: return 72;
case IWI_RATE_OFDM48: return 96;
case IWI_RATE_OFDM54: return 108;
}
return 0;
}
/*
* The firmware automatically adapts the transmit speed. We report its current
* value here.
*/
static void
iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ieee80211com *ic = vap->iv_ic;
struct iwi_softc *sc = ic->ic_softc;
struct ieee80211_node *ni;
/* read current transmission rate from adapter */
ni = ieee80211_ref_node(vap->iv_bss);
ni->ni_txrate =
iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
ieee80211_free_node(ni);
ieee80211_media_status(ifp, imr);
}
static int
iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct iwi_vap *ivp = IWI_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct iwi_softc *sc = ic->ic_softc;
IWI_LOCK_DECL;
DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate], sc->flags));
IEEE80211_UNLOCK(ic);
IWI_LOCK(sc);
switch (nstate) {
case IEEE80211_S_INIT:
/*
* NB: don't try to do this if iwi_stop_master has
* shutdown the firmware and disabled interrupts.
*/
if (vap->iv_state == IEEE80211_S_RUN &&
(sc->flags & IWI_FLAG_FW_INITED))
iwi_disassociate(sc, 0);
break;
case IEEE80211_S_AUTH:
iwi_auth_and_assoc(sc, vap);
break;
case IEEE80211_S_RUN:
if (vap->iv_opmode == IEEE80211_M_IBSS &&
vap->iv_state == IEEE80211_S_SCAN) {
/*
* XXX when joining an ibss network we are called
* with a SCAN -> RUN transition on scan complete.
* Use that to call iwi_auth_and_assoc. On completing
* the join we are then called again with an
* AUTH -> RUN transition and we want to do nothing.
* This is all totally bogus and needs to be redone.
*/
iwi_auth_and_assoc(sc, vap);
} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
ieee80211_runtask(ic, &sc->sc_monitortask);
break;
case IEEE80211_S_ASSOC:
/*
* If we are transitioning from AUTH then just wait
* for the ASSOC status to come back from the firmware.
* Otherwise we need to issue the association request.
*/
if (vap->iv_state == IEEE80211_S_AUTH)
break;
iwi_auth_and_assoc(sc, vap);
break;
default:
break;
}
IWI_UNLOCK(sc);
IEEE80211_LOCK(ic);
return ivp->iwi_newstate(vap, nstate, arg);
}
/*
* WME parameters coming from IEEE 802.11e specification. These values are
* already declared in ieee80211_proto.c, but they are static so they can't
* be reused here.
*/
static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
{ 0, 3, 5, 7, 0 }, /* WME_AC_BE */
{ 0, 3, 5, 10, 0 }, /* WME_AC_BK */
{ 0, 2, 4, 5, 188 }, /* WME_AC_VI */
{ 0, 2, 3, 4, 102 } /* WME_AC_VO */
};
static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
{ 0, 3, 4, 6, 0 }, /* WME_AC_BE */
{ 0, 3, 4, 10, 0 }, /* WME_AC_BK */
{ 0, 2, 3, 4, 94 }, /* WME_AC_VI */
{ 0, 2, 2, 3, 47 } /* WME_AC_VO */
};
#define IWI_EXP2(v) htole16((1 << (v)) - 1)
#define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
static void
iwi_wme_init(struct iwi_softc *sc)
{
const struct wmeParams *wmep;
int ac;
memset(sc->wme, 0, sizeof sc->wme);
for (ac = 0; ac < WME_NUM_AC; ac++) {
/* set WME values for CCK modulation */
wmep = &iwi_wme_cck_params[ac];
sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
sc->wme[1].acm[ac] = wmep->wmep_acm;
/* set WME values for OFDM modulation */
wmep = &iwi_wme_ofdm_params[ac];
sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
sc->wme[2].acm[ac] = wmep->wmep_acm;
}
}
static int
iwi_wme_setparams(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct chanAccParams chp;
const struct wmeParams *wmep;
int ac;
ieee80211_wme_ic_getparams(ic, &chp);
for (ac = 0; ac < WME_NUM_AC; ac++) {
/* set WME values for current operating mode */
wmep = &chp.cap_wmeParams[ac];
sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
sc->wme[0].acm[ac] = wmep->wmep_acm;
}
DPRINTF(("Setting WME parameters\n"));
return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
}
#undef IWI_USEC
#undef IWI_EXP2
static int
iwi_wme_update(struct ieee80211com *ic)
{
struct iwi_softc *sc = ic->ic_softc;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
IWI_LOCK_DECL;
/*
* We may be called to update the WME parameters in
* the adapter at various places. If we're already
* associated then initiate the request immediately;
* otherwise we assume the params will get sent down
* to the adapter as part of the work iwi_auth_and_assoc
* does.
*/
if (vap->iv_state == IEEE80211_S_RUN) {
IWI_LOCK(sc);
iwi_wme_setparams(sc);
IWI_UNLOCK(sc);
}
return (0);
}
static int
iwi_wme_setie(struct iwi_softc *sc)
{
struct ieee80211_wme_info wme;
memset(&wme, 0, sizeof wme);
wme.wme_id = IEEE80211_ELEMID_VENDOR;
wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
wme.wme_oui[0] = 0x00;
wme.wme_oui[1] = 0x50;
wme.wme_oui[2] = 0xf2;
wme.wme_type = WME_OUI_TYPE;
wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
wme.wme_version = WME_VERSION;
wme.wme_info = 0;
DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM.
*/
static uint16_t
iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* write start bit (1) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
/* write READ opcode (10) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
/* write address A7-A0 */
for (n = 7; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
}
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
}
IWI_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
return val;
}
static void
iwi_setcurchan(struct iwi_softc *sc, int chan)
{
struct ieee80211com *ic = &sc->sc_ic;
sc->curchan = chan;
ieee80211_radiotap_chan_change(ic);
}
static void
iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
struct iwi_frame *frame)
{
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *mnew, *m;
struct ieee80211_node *ni;
int type, error, framelen;
int8_t rssi, nf;
IWI_LOCK_DECL;
framelen = le16toh(frame->len);
if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
/*
* XXX >MCLBYTES is bogus as it means the h/w dma'd
* out of bounds; need to figure out how to limit
* frame size in the firmware
*/
/* XXX stat */
DPRINTFN(1,
("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
le16toh(frame->len), frame->chan, frame->rssi,
frame->rssi_dbm));
return;
}
DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
if (frame->chan != sc->curchan)
iwi_setcurchan(sc, frame->chan);
/*
* Try to allocate a new mbuf for this ring element and load it before
* processing the current mbuf. If the ring element cannot be loaded,
* drop the received packet and reuse the old mbuf. In the unlikely
* case that the old mbuf can't be reloaded either, explicitly panic.
*/
mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (mnew == NULL) {
counter_u64_add(ic->ic_ierrors, 1);
return;
}
bus_dmamap_unload(sc->rxq.data_dmat, data->map);
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
0);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
&data->physaddr, 0);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
device_get_name(sc->sc_dev));
}
counter_u64_add(ic->ic_ierrors, 1);
return;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = mnew;
CSR_WRITE_4(sc, data->reg, data->physaddr);
/* finalize mbuf */
m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
sizeof (struct iwi_frame) + framelen;
m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
rssi = frame->rssi_dbm;
nf = -95;
if (ieee80211_radiotap_active(ic)) {
struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_antsignal = rssi;
tap->wr_antnoise = nf;
tap->wr_rate = iwi_cvtrate(frame->rate);
tap->wr_antenna = frame->antenna;
}
IWI_UNLOCK(sc);
ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
if (ni != NULL) {
type = ieee80211_input(ni, m, rssi, nf);
ieee80211_free_node(ni);
} else
type = ieee80211_input_all(ic, m, rssi, nf);
IWI_LOCK(sc);
if (sc->sc_softled) {
/*
* Blink for any data frame. Otherwise do a
* heartbeat-style blink when idle. The latter
* is mainly for station mode where we depend on
* periodic beacon frames to trigger the poll event.
*/
if (type == IEEE80211_FC0_TYPE_DATA) {
sc->sc_rxrate = frame->rate;
iwi_led_event(sc, IWI_LED_RX);
} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
iwi_led_event(sc, IWI_LED_POLL);
}
}
/*
* Check for an association response frame to see if QoS
* has been negotiated. We parse just enough to figure
* out if we're supposed to use QoS. The proper solution
* is to pass the frame up so ieee80211_input can do the
* work but that's made hard by how things currently are
* done in the driver.
*/
static void
iwi_checkforqos(struct ieee80211vap *vap,
const struct ieee80211_frame *wh, int len)
{
#define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
const uint8_t *frm, *efrm, *wme;
struct ieee80211_node *ni;
uint16_t capinfo, status, associd;
/* NB: +8 for capinfo, status, associd, and first ie */
if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
return;
/*
* asresp frame format
* [2] capability information
* [2] status
* [2] association ID
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] WME
*/
frm = (const uint8_t *)&wh[1];
efrm = ((const uint8_t *) wh) + len;
capinfo = le16toh(*(const uint16_t *)frm);
frm += 2;
status = le16toh(*(const uint16_t *)frm);
frm += 2;
associd = le16toh(*(const uint16_t *)frm);
frm += 2;
wme = NULL;
while (efrm - frm > 1) {
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
switch (*frm) {
case IEEE80211_ELEMID_VENDOR:
if (iswmeoui(frm))
wme = frm;
break;
}
frm += frm[1] + 2;
}
ni = ieee80211_ref_node(vap->iv_bss);
ni->ni_capinfo = capinfo;
ni->ni_associd = associd & 0x3fff;
if (wme != NULL)
ni->ni_flags |= IEEE80211_NODE_QOS;
else
ni->ni_flags &= ~IEEE80211_NODE_QOS;
ieee80211_free_node(ni);
#undef SUBTYPE
}
static void
iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif)
{
struct iwi_notif_link_quality *lq;
int len;
len = le16toh(notif->len);
DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n",
notif->type,
len,
sizeof(struct iwi_notif_link_quality)
));
/* enforce length */
if (len != sizeof(struct iwi_notif_link_quality)) {
DPRINTFN(5, ("Notification: (%u) too short (%d)\n",
notif->type,
len));
return;
}
lq = (struct iwi_notif_link_quality *)(notif + 1);
memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual));
sc->sc_linkqual_valid = 1;
}
/*
* Task queue callbacks for iwi_notification_intr used to avoid LOR's.
*/
static void
iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct iwi_notif_scan_channel *chan;
struct iwi_notif_scan_complete *scan;
struct iwi_notif_authentication *auth;
struct iwi_notif_association *assoc;
struct iwi_notif_beacon_state *beacon;
switch (notif->type) {
case IWI_NOTIF_TYPE_SCAN_CHANNEL:
chan = (struct iwi_notif_scan_channel *)(notif + 1);
DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
/* Reset the timer, the scan is still going */
sc->sc_state_timer = 3;
break;
case IWI_NOTIF_TYPE_SCAN_COMPLETE:
scan = (struct iwi_notif_scan_complete *)(notif + 1);
DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
scan->status));
IWI_STATE_END(sc, IWI_FW_SCANNING);
/*
* Monitor mode works by doing a passive scan to set
* the channel and enable rx. Because we don't want
* to abort a scan lest the firmware crash we scan
* for a short period of time and automatically restart
* the scan when notified the sweep has completed.
*/
if (vap->iv_opmode == IEEE80211_M_MONITOR) {
ieee80211_runtask(ic, &sc->sc_monitortask);
break;
}
if (scan->status == IWI_SCAN_COMPLETED) {
/* NB: don't need to defer, net80211 does it for us */
ieee80211_scan_next(vap);
}
break;
case IWI_NOTIF_TYPE_AUTHENTICATION:
auth = (struct iwi_notif_authentication *)(notif + 1);
switch (auth->state) {
case IWI_AUTH_SUCCESS:
DPRINTFN(2, ("Authentication succeeeded\n"));
ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
break;
case IWI_AUTH_FAIL:
/*
* These are delivered as an unsolicited deauth
* (e.g. due to inactivity) or in response to an
* associate request.
*/
sc->flags &= ~IWI_FLAG_ASSOCIATED;
if (vap->iv_state != IEEE80211_S_RUN) {
DPRINTFN(2, ("Authentication failed\n"));
vap->iv_stats.is_rx_auth_fail++;
IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
} else {
DPRINTFN(2, ("Deauthenticated\n"));
vap->iv_stats.is_rx_deauth++;
}
ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
break;
case IWI_AUTH_SENT_1:
case IWI_AUTH_RECV_2:
case IWI_AUTH_SEQ1_PASS:
break;
case IWI_AUTH_SEQ1_FAIL:
DPRINTFN(2, ("Initial authentication handshake failed; "
"you probably need shared key\n"));
vap->iv_stats.is_rx_auth_fail++;
IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
/* XXX retry shared key when in auto */
break;
default:
device_printf(sc->sc_dev,
"unknown authentication state %u\n", auth->state);
break;
}
break;
case IWI_NOTIF_TYPE_ASSOCIATION:
assoc = (struct iwi_notif_association *)(notif + 1);
switch (assoc->state) {
case IWI_AUTH_SUCCESS:
/* re-association, do nothing */
break;
case IWI_ASSOC_SUCCESS:
DPRINTFN(2, ("Association succeeded\n"));
sc->flags |= IWI_FLAG_ASSOCIATED;
IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
iwi_checkforqos(vap,
(const struct ieee80211_frame *)(assoc+1),
le16toh(notif->len) - sizeof(*assoc) - 1);
ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
break;
case IWI_ASSOC_INIT:
sc->flags &= ~IWI_FLAG_ASSOCIATED;
switch (sc->fw_state) {
case IWI_FW_ASSOCIATING:
DPRINTFN(2, ("Association failed\n"));
IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
break;
case IWI_FW_DISASSOCIATING:
DPRINTFN(2, ("Dissassociated\n"));
IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
vap->iv_stats.is_rx_disassoc++;
ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
break;
}
break;
default:
device_printf(sc->sc_dev,
"unknown association state %u\n", assoc->state);
break;
}
break;
case IWI_NOTIF_TYPE_BEACON:
/* XXX check struct length */
beacon = (struct iwi_notif_beacon_state *)(notif + 1);
DPRINTFN(5, ("Beacon state (%u, %u)\n",
beacon->state, le32toh(beacon->number)));
if (beacon->state == IWI_BEACON_MISS) {
/*
* The firmware notifies us of every beacon miss
* so we need to track the count against the
* configured threshold before notifying the
* 802.11 layer.
* XXX try to roam, drop assoc only on much higher count
*/
if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
DPRINTF(("Beacon miss: %u >= %u\n",
le32toh(beacon->number),
vap->iv_bmissthreshold));
vap->iv_stats.is_beacon_miss++;
/*
* It's pointless to notify the 802.11 layer
* as it'll try to send a probe request (which
* we'll discard) and then timeout and drop us
* into scan state. Instead tell the firmware
* to disassociate and then on completion we'll
* kick the state machine to scan.
*/
ieee80211_runtask(ic, &sc->sc_disassoctask);
}
}
break;
case IWI_NOTIF_TYPE_CALIBRATION:
case IWI_NOTIF_TYPE_NOISE:
/* XXX handle? */
DPRINTFN(5, ("Notification (%u)\n", notif->type));
break;
case IWI_NOTIF_TYPE_LINK_QUALITY:
iwi_notif_link_quality(sc, notif);
break;
default:
DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
notif->type, notif->flags, le16toh(notif->len)));
break;
}
}
static void
iwi_rx_intr(struct iwi_softc *sc)
{
struct iwi_rx_data *data;
struct iwi_hdr *hdr;
uint32_t hw;
hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
for (; sc->rxq.cur != hw;) {
data = &sc->rxq.data[sc->rxq.cur];
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
hdr = mtod(data->m, struct iwi_hdr *);
switch (hdr->type) {
case IWI_HDR_TYPE_FRAME:
iwi_frame_intr(sc, data, sc->rxq.cur,
(struct iwi_frame *)(hdr + 1));
break;
case IWI_HDR_TYPE_NOTIF:
iwi_notification_intr(sc,
(struct iwi_notif *)(hdr + 1));
break;
default:
device_printf(sc->sc_dev, "unknown hdr type %u\n",
hdr->type);
}
DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
}
/* tell the firmware what we have processed */
hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
}
static void
iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
{
struct iwi_tx_data *data;
uint32_t hw;
hw = CSR_READ_4(sc, txq->csr_ridx);
while (txq->next != hw) {
data = &txq->data[txq->next];
DPRINTFN(15, ("tx done idx=%u\n", txq->next));
bus_dmamap_sync(txq->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->data_dmat, data->map);
ieee80211_tx_complete(data->ni, data->m, 0);
data->ni = NULL;
data->m = NULL;
txq->queued--;
txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
}
sc->sc_tx_timer = 0;
if (sc->sc_softled)
iwi_led_event(sc, IWI_LED_TX);
iwi_start(sc);
}
static void
iwi_fatal_error_intr(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
device_printf(sc->sc_dev, "firmware error\n");
if (vap != NULL)
ieee80211_cancel_scan(vap);
ieee80211_runtask(ic, &sc->sc_restarttask);
sc->flags &= ~IWI_FLAG_BUSY;
sc->sc_busy_timer = 0;
wakeup(sc);
}
static void
iwi_radio_off_intr(struct iwi_softc *sc)
{
ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask);
}
static void
iwi_intr(void *arg)
{
struct iwi_softc *sc = arg;
uint32_t r;
IWI_LOCK_DECL;
IWI_LOCK(sc);
if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
IWI_UNLOCK(sc);
return;
}
/* acknowledge interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR, r);
if (r & IWI_INTR_FATAL_ERROR) {
iwi_fatal_error_intr(sc);
goto done;
}
if (r & IWI_INTR_FW_INITED) {
if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
wakeup(sc);
}
if (r & IWI_INTR_RADIO_OFF)
iwi_radio_off_intr(sc);
if (r & IWI_INTR_CMD_DONE) {
sc->flags &= ~IWI_FLAG_BUSY;
sc->sc_busy_timer = 0;
wakeup(sc);
}
if (r & IWI_INTR_TX1_DONE)
iwi_tx_intr(sc, &sc->txq[0]);
if (r & IWI_INTR_TX2_DONE)
iwi_tx_intr(sc, &sc->txq[1]);
if (r & IWI_INTR_TX3_DONE)
iwi_tx_intr(sc, &sc->txq[2]);
if (r & IWI_INTR_TX4_DONE)
iwi_tx_intr(sc, &sc->txq[3]);
if (r & IWI_INTR_RX_DONE)
iwi_rx_intr(sc);
if (r & IWI_INTR_PARITY_ERROR) {
/* XXX rate-limit */
device_printf(sc->sc_dev, "parity error\n");
}
done:
IWI_UNLOCK(sc);
}
static int
iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
{
struct iwi_cmd_desc *desc;
IWI_LOCK_ASSERT(sc);
if (sc->flags & IWI_FLAG_BUSY) {
device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
__func__, type);
return EAGAIN;
}
sc->flags |= IWI_FLAG_BUSY;
sc->sc_busy_timer = 2;
desc = &sc->cmdq.desc[sc->cmdq.cur];
desc->hdr.type = IWI_HDR_TYPE_COMMAND;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->type = type;
desc->len = len;
memcpy(desc->data, data, len);
bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
type, len));
sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
}
static void
iwi_write_ibssnode(struct iwi_softc *sc,
const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
{
struct iwi_ibssnode node;
/* write node information into NIC memory */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.bssid, addr);
DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
CSR_WRITE_REGION_1(sc,
IWI_CSR_NODE_BASE + entry * sizeof node,
(uint8_t *)&node, sizeof node);
}
static int
iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
int ac)
{
struct ieee80211vap *vap = ni->ni_vap;
struct iwi_node *in = (struct iwi_node *)ni;
const struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct iwi_tx_ring *txq = &sc->txq[ac];
struct iwi_tx_data *data;
struct iwi_tx_desc *desc;
struct mbuf *mnew;
bus_dma_segment_t segs[IWI_MAX_NSEG];
int error, nsegs, hdrlen, i;
int ismcast, flags, xflags, staid;
IWI_LOCK_ASSERT(sc);
wh = mtod(m0, const struct ieee80211_frame *);
/* NB: only data frames use this path */
hdrlen = ieee80211_hdrsize(wh);
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
flags = xflags = 0;
if (!ismcast)
flags |= IWI_DATA_FLAG_NEED_ACK;
if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
flags |= IWI_DATA_FLAG_SHPREAMBLE;
if (IEEE80211_QOS_HAS_SEQ(wh)) {
xflags |= IWI_DATA_XFLAG_QOS;
if (ieee80211_wme_vap_ac_is_noack(vap, ac))
flags &= ~IWI_DATA_FLAG_NEED_ACK;
}
/*
* This is only used in IBSS mode where the firmware expect an index
* in a h/w table instead of a destination address.
*/
if (vap->iv_opmode == IEEE80211_M_IBSS) {
if (!ismcast) {
if (in->in_station == -1) {
in->in_station = alloc_unr(sc->sc_unr);
if (in->in_station == -1) {
/* h/w table is full */
if_inc_counter(ni->ni_vap->iv_ifp,
IFCOUNTER_OERRORS, 1);
m_freem(m0);
ieee80211_free_node(ni);
return 0;
}
iwi_write_ibssnode(sc,
ni->ni_macaddr, in->in_station);
}
staid = in->in_station;
} else {
/*
* Multicast addresses have no associated node
* so there will be no station entry. We reserve
* entry 0 for one mcast address and use that.
* If there are many being used this will be
* expensive and we'll need to do a better job
* but for now this handles the broadcast case.
*/
if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
iwi_write_ibssnode(sc, sc->sc_mcast, 0);
}
staid = 0;
}
} else
staid = 0;
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (ieee80211_radiotap_active_vap(vap)) {
struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
ieee80211_radiotap_tx(vap, m0);
}
data = &txq->data[txq->cur];
desc = &txq->desc[txq->cur];
/* save and trim IEEE802.11 header */
m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
m_adj(m0, hdrlen);
error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
&nsegs, 0);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
mnew = m_defrag(m0, M_NOWAIT);
if (mnew == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
m0, segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
}
data->m = m0;
data->ni = ni;
desc->hdr.type = IWI_HDR_TYPE_DATA;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->station = staid;
desc->cmd = IWI_DATA_CMD_TX;
desc->len = htole16(m0->m_pkthdr.len);
desc->flags = flags;
desc->xflags = xflags;
#if 0
if (vap->iv_flags & IEEE80211_F_PRIVACY)
desc->wep_txkey = vap->iv_def_txkey;
else
#endif
desc->flags |= IWI_DATA_FLAG_NO_WEP;
desc->nseg = htole32(nsegs);
for (i = 0; i < nsegs; i++) {
desc->seg_addr[i] = htole32(segs[i].ds_addr);
desc->seg_len[i] = htole16(segs[i].ds_len);
}
bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
ac, txq->cur, le16toh(desc->len), nsegs));
txq->queued++;
txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
return 0;
}
static int
iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
/* no support; just discard */
m_freem(m);
ieee80211_free_node(ni);
return 0;
}
static int
iwi_transmit(struct ieee80211com *ic, struct mbuf *m)
{
struct iwi_softc *sc = ic->ic_softc;
int error;
IWI_LOCK_DECL;
IWI_LOCK(sc);
if (!sc->sc_running) {
IWI_UNLOCK(sc);
return (ENXIO);
}
error = mbufq_enqueue(&sc->sc_snd, m);
if (error) {
IWI_UNLOCK(sc);
return (error);
}
iwi_start(sc);
IWI_UNLOCK(sc);
return (0);
}
static void
iwi_start(struct iwi_softc *sc)
{
struct mbuf *m;
struct ieee80211_node *ni;
int ac;
IWI_LOCK_ASSERT(sc);
while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
ac = M_WME_GETAC(m);
if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
/* there is no place left in this ring; tail drop */
/* XXX tail drop */
mbufq_prepend(&sc->sc_snd, m);
break;
}
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
if (iwi_tx_start(sc, m, ni, ac) != 0) {
if_inc_counter(ni->ni_vap->iv_ifp,
IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
break;
}
sc->sc_tx_timer = 5;
}
}
static void
iwi_watchdog(void *arg)
{
struct iwi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
IWI_LOCK_ASSERT(sc);
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
counter_u64_add(ic->ic_oerrors, 1);
ieee80211_runtask(ic, &sc->sc_restarttask);
}
}
if (sc->sc_state_timer > 0) {
if (--sc->sc_state_timer == 0) {
device_printf(sc->sc_dev,
"firmware stuck in state %d, resetting\n",
sc->fw_state);
if (sc->fw_state == IWI_FW_SCANNING)
ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
ieee80211_runtask(ic, &sc->sc_restarttask);
sc->sc_state_timer = 3;
}
}
if (sc->sc_busy_timer > 0) {
if (--sc->sc_busy_timer == 0) {
device_printf(sc->sc_dev,
"firmware command timeout, resetting\n");
ieee80211_runtask(ic, &sc->sc_restarttask);
}
}
callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
}
static void
iwi_parent(struct ieee80211com *ic)
{
struct iwi_softc *sc = ic->ic_softc;
int startall = 0;
IWI_LOCK_DECL;
IWI_LOCK(sc);
if (ic->ic_nrunning > 0) {
if (!sc->sc_running) {
iwi_init_locked(sc);
startall = 1;
}
} else if (sc->sc_running)
iwi_stop_locked(sc);
IWI_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
}
static int
iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
{
struct ifreq *ifr = data;
struct iwi_softc *sc = ic->ic_softc;
int error;
IWI_LOCK_DECL;
IWI_LOCK(sc);
switch (cmd) {
case SIOCGIWISTATS:
/* XXX validate permissions/memory/etc? */
error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr),
sizeof(struct iwi_notif_link_quality));
break;
case SIOCZIWISTATS:
memset(&sc->sc_linkqual, 0,
sizeof(struct iwi_notif_link_quality));
error = 0;
break;
default:
error = ENOTTY;
break;
}
IWI_UNLOCK(sc);
return (error);
}
static void
iwi_stop_master(struct iwi_softc *sc)
{
uint32_t tmp;
int ntries;
/* disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5)
device_printf(sc->sc_dev, "timeout waiting for master\n");
tmp = CSR_READ_4(sc, IWI_CSR_RST);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
sc->flags &= ~IWI_FLAG_FW_INITED;
}
static int
iwi_reset(struct iwi_softc *sc)
{
uint32_t tmp;
int i, ntries;
iwi_stop_master(sc);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for clock stabilization\n");
return EIO;
}
tmp = CSR_READ_4(sc, IWI_CSR_RST);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
DELAY(10);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
/* clear NIC memory */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
for (i = 0; i < 0xc000; i++)
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
return 0;
}
static const struct iwi_firmware_ohdr *
iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
{
const struct firmware *fp = fw->fp;
const struct iwi_firmware_ohdr *hdr;
if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
return NULL;
}
hdr = (const struct iwi_firmware_ohdr *)fp->data;
if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
(IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
IWI_FW_REQ_MINOR);
return NULL;
}
fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
fw->name = fp->name;
return hdr;
}
static const struct iwi_firmware_ohdr *
iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
{
const struct iwi_firmware_ohdr *hdr;
hdr = iwi_setup_ofw(sc, fw);
if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
device_printf(sc->sc_dev, "%s is not a ucode image\n",
fw->name);
hdr = NULL;
}
return hdr;
}
static void
iwi_getfw(struct iwi_fw *fw, const char *fwname,
struct iwi_fw *uc, const char *ucname)
{
if (fw->fp == NULL)
fw->fp = firmware_get(fwname);
/* NB: pre-3.0 ucode is packaged separately */
if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
uc->fp = firmware_get(ucname);
}
/*
* Get the required firmware images if not already loaded.
* Note that we hold firmware images so long as the device
* is marked up in case we need to reload them on device init.
* This is necessary because we re-init the device sometimes
* from a context where we cannot read from the filesystem
* (e.g. from the taskqueue thread when rfkill is re-enabled).
* XXX return 0 on success, 1 on error.
*
* NB: the order of get'ing and put'ing images here is
* intentional to support handling firmware images bundled
* by operating mode and/or all together in one file with
* the boot firmware as "master".
*/
static int
iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
{
const struct iwi_firmware_hdr *hdr;
const struct firmware *fp;
/* invalidate cached firmware on mode change */
if (sc->fw_mode != opmode)
iwi_put_firmware(sc);
switch (opmode) {
case IEEE80211_M_STA:
iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
break;
case IEEE80211_M_IBSS:
iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
break;
case IEEE80211_M_MONITOR:
iwi_getfw(&sc->fw_fw, "iwi_monitor",
&sc->fw_uc, "iwi_ucode_monitor");
break;
default:
device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
return EINVAL;
}
fp = sc->fw_fw.fp;
if (fp == NULL) {
device_printf(sc->sc_dev, "could not load firmware\n");
goto bad;
}
if (fp->version < 300) {
/*
* Firmware prior to 3.0 was packaged as separate
* boot, firmware, and ucode images. Verify the
* ucode image was read in, retrieve the boot image
* if needed, and check version stamps for consistency.
* The version stamps in the data are also checked
* above; this is a bit paranoid but is a cheap
* safeguard against mis-packaging.
*/
if (sc->fw_uc.fp == NULL) {
device_printf(sc->sc_dev, "could not load ucode\n");
goto bad;
}
if (sc->fw_boot.fp == NULL) {
sc->fw_boot.fp = firmware_get("iwi_boot");
if (sc->fw_boot.fp == NULL) {
device_printf(sc->sc_dev,
"could not load boot firmware\n");
goto bad;
}
}
if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
device_printf(sc->sc_dev,
"firmware version mismatch: "
"'%s' is %d, '%s' is %d, '%s' is %d\n",
sc->fw_boot.fp->name, sc->fw_boot.fp->version,
sc->fw_uc.fp->name, sc->fw_uc.fp->version,
sc->fw_fw.fp->name, sc->fw_fw.fp->version
);
goto bad;
}
/*
* Check and setup each image.
*/
if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
goto bad;
} else {
/*
* Check and setup combined image.
*/
if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
device_printf(sc->sc_dev, "image '%s' too small\n",
fp->name);
goto bad;
}
hdr = (const struct iwi_firmware_hdr *)fp->data;
if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
+ le32toh(hdr->fsize)) {
device_printf(sc->sc_dev, "image '%s' too small (2)\n",
fp->name);
goto bad;
}
sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
sc->fw_boot.size = le32toh(hdr->bsize);
sc->fw_boot.name = fp->name;
sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
sc->fw_uc.size = le32toh(hdr->usize);
sc->fw_uc.name = fp->name;
sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
sc->fw_fw.size = le32toh(hdr->fsize);
sc->fw_fw.name = fp->name;
}
#if 0
device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
#endif
sc->fw_mode = opmode;
return 0;
bad:
iwi_put_firmware(sc);
return 1;
}
static void
iwi_put_fw(struct iwi_fw *fw)
{
if (fw->fp != NULL) {
firmware_put(fw->fp, FIRMWARE_UNLOAD);
fw->fp = NULL;
}
fw->data = NULL;
fw->size = 0;
fw->name = NULL;
}
/*
* Release any cached firmware images.
*/
static void
iwi_put_firmware(struct iwi_softc *sc)
{
iwi_put_fw(&sc->fw_uc);
iwi_put_fw(&sc->fw_fw);
iwi_put_fw(&sc->fw_boot);
}
static int
iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
{
uint32_t tmp;
const uint16_t *w;
const char *uc = fw->data;
size_t size = fw->size;
int i, ntries, error;
IWI_LOCK_ASSERT(sc);
error = 0;
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5) {
device_printf(sc->sc_dev, "timeout waiting for master\n");
error = EIO;
goto fail;
}
MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
DELAY(5000);
tmp = CSR_READ_4(sc, IWI_CSR_RST);
tmp &= ~IWI_RST_PRINCETON_RESET;
CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
DELAY(5000);
MEM_WRITE_4(sc, 0x3000e0, 0);
DELAY(1000);
MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
DELAY(1000);
MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
DELAY(1000);
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x40);
DELAY(1000);
/* write microcode into adapter memory */
for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
MEM_WRITE_2(sc, 0x200010, htole16(*w));
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x80);
/* wait until we get an answer */
for (ntries = 0; ntries < 100; ntries++) {
if (MEM_READ_1(sc, 0x200000) & 1)
break;
DELAY(100);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"timeout waiting for ucode to initialize\n");
error = EIO;
goto fail;
}
/* read the answer or the firmware will not initialize properly */
for (i = 0; i < 7; i++)
MEM_READ_4(sc, 0x200004);
MEM_WRITE_1(sc, 0x200000, 0x00);
fail:
return error;
}
/* macro to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
static int
iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
{
u_char *p, *end;
uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
int ntries, error;
IWI_LOCK_ASSERT(sc);
/* copy firmware image to DMA memory */
memcpy(sc->fw_virtaddr, fw->data, fw->size);
/* make sure the adapter will get up-to-date values */
bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
/* tell the adapter where the command blocks are stored */
MEM_WRITE_4(sc, 0x3000a0, 0x27000);
/*
* Store command blocks into adapter's internal memory using register
* indirections. The adapter will read the firmware image through DMA
* using information stored in command blocks.
*/
src = sc->fw_physaddr;
p = sc->fw_virtaddr;
end = p + fw->size;
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
while (p < end) {
dst = GETLE32(p); p += 4; src += 4;
len = GETLE32(p); p += 4; src += 4;
p += len;
while (len > 0) {
mlen = min(len, IWI_CB_MAXDATALEN);
ctl = IWI_CB_DEFAULT_CTL | mlen;
sum = ctl ^ src ^ dst;
/* write a command block */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
src += mlen;
dst += mlen;
len -= mlen;
}
}
/* write a fictive final command block (sentinel) */
sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
tmp = CSR_READ_4(sc, IWI_CSR_RST);
tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
/* tell the adapter to start processing command blocks */
MEM_WRITE_4(sc, 0x3000a4, 0x540100);
/* wait until the adapter reaches the sentinel */
for (ntries = 0; ntries < 400; ntries++) {
if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
break;
DELAY(100);
}
/* sync dma, just in case */
bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
if (ntries == 400) {
device_printf(sc->sc_dev,
"timeout processing command blocks for %s firmware\n",
fw->name);
return EIO;
}
/* we're done with command blocks processing */
MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
/* allow interrupts so we know when the firmware is ready */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
/* tell the adapter to initialize the firmware */
CSR_WRITE_4(sc, IWI_CSR_RST, 0);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
/* wait at most one second for firmware initialization to complete */
if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
device_printf(sc->sc_dev, "timeout waiting for %s firmware "
"initialization to complete\n", fw->name);
}
return error;
}
static int
iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
{
uint32_t data;
if (vap->iv_flags & IEEE80211_F_PMGTON) {
/* XXX set more fine-grained operation */
data = htole32(IWI_POWER_MODE_MAX);
} else
data = htole32(IWI_POWER_MODE_CAM);
DPRINTF(("Setting power mode to %u\n", le32toh(data)));
return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
}
static int
iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
{
struct iwi_wep_key wepkey;
struct ieee80211_key *wk;
int error, i;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
wk = &vap->iv_nw_keys[i];
wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
wepkey.idx = i;
wepkey.len = wk->wk_keylen;
memset(wepkey.key, 0, sizeof wepkey.key);
memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
wepkey.len));
error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
sizeof wepkey);
if (error != 0)
return error;
}
return 0;
}
static int
iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs,
int mode, int type)
{
struct iwi_rateset rs;
memset(&rs, 0, sizeof(rs));
rs.mode = mode;
rs.type = type;
rs.nrates = net_rs->rs_nrates;
if (rs.nrates > nitems(rs.rates)) {
DPRINTF(("Truncating negotiated rate set from %u\n",
rs.nrates));
rs.nrates = nitems(rs.rates);
}
memcpy(rs.rates, net_rs->rs_rates, rs.nrates);
DPRINTF(("Setting .11%c%s %s rates (%u)\n",
mode == IWI_MODE_11A ? 'a' : 'b',
mode == IWI_MODE_11G ? "g" : "",
type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated",
rs.nrates));
return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs)));
}
static int
iwi_config(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct iwi_configuration config;
struct iwi_txpower power;
uint8_t *macaddr;
uint32_t data;
int error, i;
IWI_LOCK_ASSERT(sc);
macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
DPRINTF(("Setting MAC address to %6D\n", macaddr, ":"));
error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, macaddr,
IEEE80211_ADDR_LEN);
if (error != 0)
return error;
memset(&config, 0, sizeof config);
config.bluetooth_coexistence = sc->bluetooth;
config.silence_threshold = 0x1e;
config.antenna = sc->antenna;
config.multicast_enabled = 1;
config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
config.disable_unicast_decryption = 1;
config.disable_multicast_decryption = 1;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
config.allow_invalid_frames = 1;
config.allow_beacon_and_probe_resp = 1;
config.allow_mgt = 1;
}
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
power.mode = IWI_MODE_11B;
power.nchan = 11;
for (i = 0; i < 11; i++) {
power.chan[i].chan = i + 1;
power.chan[i].power = IWI_TXPOWER_MAX;
}
DPRINTF(("Setting .11b channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
if (error != 0)
return error;
power.mode = IWI_MODE_11G;
DPRINTF(("Setting .11g channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
if (error != 0)
return error;
}
error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G],
IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED);
if (error != 0)
return error;
error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A],
IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED);
if (error != 0)
return error;
data = htole32(arc4random());
DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
if (error != 0)
return error;
/* enable adapter */
DPRINTF(("Enabling adapter\n"));
return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
}
static __inline void
set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
{
uint8_t *st = &scan->scan_type[ix / 2];
if (ix % 2)
*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
else
*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
}
static int
scan_type(const struct ieee80211_scan_state *ss,
const struct ieee80211_channel *chan)
{
/* We can only set one essid for a directed scan */
if (ss->ss_nssid != 0)
return IWI_SCAN_TYPE_BDIRECTED;
if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
(chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
return IWI_SCAN_TYPE_BROADCAST;
return IWI_SCAN_TYPE_PASSIVE;
}
static __inline int
scan_band(const struct ieee80211_channel *c)
{
return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
}
static void
iwi_monitor_scan(void *arg, int npending)
{
struct iwi_softc *sc = arg;
IWI_LOCK_DECL;
IWI_LOCK(sc);
(void) iwi_scanchan(sc, 2000, 0);
IWI_UNLOCK(sc);
}
/*
* Start a scan on the current channel or all channels.
*/
static int
iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *chan;
struct ieee80211_scan_state *ss;
struct iwi_scan_ext scan;
int error = 0;
IWI_LOCK_ASSERT(sc);
if (sc->fw_state == IWI_FW_SCANNING) {
/*
* This should not happen as we only trigger scan_next after
* completion
*/
DPRINTF(("%s: called too early - still scanning\n", __func__));
return (EBUSY);
}
IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
ss = ic->ic_scan;
memset(&scan, 0, sizeof scan);
scan.full_scan_index = htole32(++sc->sc_scangen);
scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
/*
* Use very short dwell times for when we send probe request
* frames. Without this bg scans hang. Ideally this should
* be handled with early-termination as done by net80211 but
* that's not feasible (aborting a scan is problematic).
*/
scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
} else {
scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
}
/* We can only set one essid for a directed scan */
if (ss->ss_nssid != 0) {
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
ss->ss_ssid[0].len);
if (error)
return (error);
}
if (allchan) {
int i, next, band, b, bstart;
/*
* Convert scan list to run-length encoded channel list
* the firmware requires (preserving the order setup by
* net80211). The first entry in each run specifies the
* band and the count of items in the run.
*/
next = 0; /* next open slot */
bstart = 0; /* NB: not needed, silence compiler */
band = -1; /* NB: impossible value */
KASSERT(ss->ss_last > 0, ("no channels"));
for (i = 0; i < ss->ss_last; i++) {
chan = ss->ss_chans[i];
b = scan_band(chan);
if (b != band) {
if (band != -1)
scan.channels[bstart] =
(next - bstart) | band;
/* NB: this allocates a slot for the run-len */
band = b, bstart = next++;
}
if (next >= IWI_SCAN_CHANNELS) {
DPRINTF(("truncating scan list\n"));
break;
}
scan.channels[next] = ieee80211_chan2ieee(ic, chan);
set_scan_type(&scan, next, scan_type(ss, chan));
next++;
}
scan.channels[bstart] = (next - bstart) | band;
} else {
/* Scan the current channel only */
chan = ic->ic_curchan;
scan.channels[0] = 1 | scan_band(chan);
scan.channels[1] = ieee80211_chan2ieee(ic, chan);
set_scan_type(&scan, 1, scan_type(ss, chan));
}
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
static const char *scantype[8] =
{ "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
int i;
printf("Scan request: index %u dwell %d/%d/%d\n"
, le32toh(scan.full_scan_index)
, le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
, le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
, le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
);
i = 0;
do {
int run = scan.channels[i];
if (run == 0)
break;
printf("Scan %d %s channels:", run & 0x3f,
run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
for (run &= 0x3f, i++; run > 0; run--, i++) {
uint8_t type = scan.scan_type[i/2];
printf(" %u/%s", scan.channels[i],
scantype[(i & 1 ? type : type>>4) & 7]);
}
printf("\n");
} while (i < IWI_SCAN_CHANNELS);
}
#endif
return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
}
static int
iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
{
struct iwi_sensitivity sens;
DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
memset(&sens, 0, sizeof sens);
sens.rssi = htole16(rssi_dbm);
return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
}
static int
iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211_node *ni;
struct iwi_configuration config;
struct iwi_associate *assoc = &sc->assoc;
uint16_t capinfo;
uint32_t data;
int error, mode;
IWI_LOCK_ASSERT(sc);
if (sc->flags & IWI_FLAG_ASSOCIATED) {
DPRINTF(("Already associated\n"));
return (-1);
}
ni = ieee80211_ref_node(vap->iv_bss);
IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
error = 0;
mode = 0;
if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
mode = IWI_MODE_11A;
else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
mode = IWI_MODE_11G;
if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
mode = IWI_MODE_11B;
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
memset(&config, 0, sizeof config);
config.bluetooth_coexistence = sc->bluetooth;
config.antenna = sc->antenna;
config.multicast_enabled = 1;
if (mode == IWI_MODE_11G)
config.use_protection = 1;
config.answer_pbreq =
(vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
config.disable_unicast_decryption = 1;
config.disable_multicast_decryption = 1;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
if (error != 0)
goto done;
}
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
printf("Setting ESSID to ");
ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
printf("\n");
}
#endif
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
if (error != 0)
goto done;
error = iwi_setpowermode(sc, vap);
if (error != 0)
goto done;
data = htole32(vap->iv_rtsthreshold);
DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
if (error != 0)
goto done;
data = htole32(vap->iv_fragthreshold);
DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
if (error != 0)
goto done;
/* the rate set has already been "negotiated" */
error = iwi_set_rateset(sc, &ni->ni_rates, mode,
IWI_RATESET_TYPE_NEGOTIATED);
if (error != 0)
goto done;
memset(assoc, 0, sizeof *assoc);
if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
/* NB: don't treat WME setup as failure */
if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0)
assoc->policy |= htole16(IWI_POLICY_WME);
/* XXX complain on failure? */
}
if (vap->iv_appie_wpa != NULL) {
struct ieee80211_appie *ie = vap->iv_appie_wpa;
DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
if (error != 0)
goto done;
}
error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
if (error != 0)
goto done;
assoc->mode = mode;
assoc->chan = ic->ic_curchan->ic_ieee;
/*
* NB: do not arrange for shared key auth w/o privacy
* (i.e. a wep key); it causes a firmware error.
*/
if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
ni->ni_authmode == IEEE80211_AUTH_SHARED) {
assoc->auth = IWI_AUTH_SHARED;
/*
* It's possible to have privacy marked but no default
* key setup. This typically is due to a user app bug
* but if we blindly grab the key the firmware will
* barf so avoid it for now.
*/
if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
assoc->auth |= vap->iv_def_txkey << 4;
error = iwi_setwepkeys(sc, vap);
if (error != 0)
goto done;
}
if (vap->iv_flags & IEEE80211_F_WPA)
assoc->policy |= htole16(IWI_POLICY_WPA);
if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
assoc->type = IWI_HC_IBSS_START;
else
assoc->type = IWI_HC_ASSOC;
memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
if (vap->iv_opmode == IEEE80211_M_IBSS)
capinfo = IEEE80211_CAPINFO_IBSS;
else
capinfo = IEEE80211_CAPINFO_ESS;
if (vap->iv_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
assoc->capinfo = htole16(capinfo);
assoc->lintval = htole16(ic->ic_lintval);
assoc->intval = htole16(ni->ni_intval);
IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
if (vap->iv_opmode == IEEE80211_M_IBSS)
IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
else
IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
"auth %u capinfo 0x%x lintval %u bintval %u\n",
assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
assoc->bssid, ":", assoc->dst, ":",
assoc->chan, le16toh(assoc->policy), assoc->auth,
le16toh(assoc->capinfo), le16toh(assoc->lintval),
le16toh(assoc->intval)));
error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
done:
ieee80211_free_node(ni);
if (error)
IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
return (error);
}
static void
iwi_disassoc(void *arg, int pending)
{
struct iwi_softc *sc = arg;
IWI_LOCK_DECL;
IWI_LOCK(sc);
iwi_disassociate(sc, 0);
IWI_UNLOCK(sc);
}
static int
iwi_disassociate(struct iwi_softc *sc, int quiet)
{
struct iwi_associate *assoc = &sc->assoc;
if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
DPRINTF(("Not associated\n"));
return (-1);
}
IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
if (quiet)
assoc->type = IWI_HC_DISASSOC_QUIET;
else
assoc->type = IWI_HC_DISASSOC;
DPRINTF(("Trying to disassociate from %6D channel %u\n",
assoc->bssid, ":", assoc->chan));
return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
}
/*
* release dma resources for the firmware
*/
static void
iwi_release_fw_dma(struct iwi_softc *sc)
{
if (sc->fw_flags & IWI_FW_HAVE_PHY)
bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
if (sc->fw_flags & IWI_FW_HAVE_MAP)
bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
if (sc->fw_flags & IWI_FW_HAVE_DMAT)
bus_dma_tag_destroy(sc->fw_dmat);
sc->fw_flags = 0;
sc->fw_dma_size = 0;
sc->fw_dmat = NULL;
sc->fw_map = NULL;
sc->fw_physaddr = 0;
sc->fw_virtaddr = NULL;
}
/*
* allocate the dma descriptor for the firmware.
* Return 0 on success, 1 on error.
* Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
*/
static int
iwi_init_fw_dma(struct iwi_softc *sc, int size)
{
if (sc->fw_dma_size >= size)
return 0;
if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
device_printf(sc->sc_dev,
"could not create firmware DMA tag\n");
goto error;
}
sc->fw_flags |= IWI_FW_HAVE_DMAT;
if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
&sc->fw_map) != 0) {
device_printf(sc->sc_dev,
"could not allocate firmware DMA memory\n");
goto error;
}
sc->fw_flags |= IWI_FW_HAVE_MAP;
if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
device_printf(sc->sc_dev, "could not load firmware DMA map\n");
goto error;
}
sc->fw_flags |= IWI_FW_HAVE_PHY;
sc->fw_dma_size = size;
return 0;
error:
iwi_release_fw_dma(sc);
return 1;
}
static void
iwi_init_locked(struct iwi_softc *sc)
{
struct iwi_rx_data *data;
int i;
IWI_LOCK_ASSERT(sc);
if (sc->fw_state == IWI_FW_LOADING) {
device_printf(sc->sc_dev, "%s: already loading\n", __func__);
return; /* XXX: condvar? */
}
iwi_stop_locked(sc);
IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
if (iwi_reset(sc) != 0) {
device_printf(sc->sc_dev, "could not reset adapter\n");
goto fail;
}
if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
device_printf(sc->sc_dev,
"could not load boot firmware %s\n", sc->fw_boot.name);
goto fail;
}
if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
device_printf(sc->sc_dev,
"could not load microcode %s\n", sc->fw_uc.name);
goto fail;
}
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
for (i = 0; i < sc->rxq.count; i++) {
data = &sc->rxq.data[i];
CSR_WRITE_4(sc, data->reg, data->physaddr);
}
CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
device_printf(sc->sc_dev,
"could not load main firmware %s\n", sc->fw_fw.name);
goto fail;
}
sc->flags |= IWI_FLAG_FW_INITED;
IWI_STATE_END(sc, IWI_FW_LOADING);
if (iwi_config(sc) != 0) {
device_printf(sc->sc_dev, "unable to enable adapter\n");
goto fail2;
}
callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
sc->sc_running = 1;
return;
fail:
IWI_STATE_END(sc, IWI_FW_LOADING);
fail2:
iwi_stop_locked(sc);
}
static void
iwi_init(void *priv)
{
struct iwi_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
IWI_LOCK_DECL;
IWI_LOCK(sc);
iwi_init_locked(sc);
IWI_UNLOCK(sc);
if (sc->sc_running)
ieee80211_start_all(ic);
}
static void
iwi_stop_locked(void *priv)
{
struct iwi_softc *sc = priv;
IWI_LOCK_ASSERT(sc);
sc->sc_running = 0;
if (sc->sc_softled) {
callout_stop(&sc->sc_ledtimer);
sc->sc_blinking = 0;
}
callout_stop(&sc->sc_wdtimer);
callout_stop(&sc->sc_rftimer);
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
/* reset rings */
iwi_reset_cmd_ring(sc, &sc->cmdq);
iwi_reset_tx_ring(sc, &sc->txq[0]);
iwi_reset_tx_ring(sc, &sc->txq[1]);
iwi_reset_tx_ring(sc, &sc->txq[2]);
iwi_reset_tx_ring(sc, &sc->txq[3]);
iwi_reset_rx_ring(sc, &sc->rxq);
sc->sc_tx_timer = 0;
sc->sc_state_timer = 0;
sc->sc_busy_timer = 0;
sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
sc->fw_state = IWI_FW_IDLE;
wakeup(sc);
}
static void
iwi_stop(struct iwi_softc *sc)
{
IWI_LOCK_DECL;
IWI_LOCK(sc);
iwi_stop_locked(sc);
IWI_UNLOCK(sc);
}
static void
iwi_restart(void *arg, int npending)
{
struct iwi_softc *sc = arg;
iwi_init(sc);
}
/*
* Return whether or not the radio is enabled in hardware
* (i.e. the rfkill switch is "off").
*/
static int
iwi_getrfkill(struct iwi_softc *sc)
{
return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
}
static void
iwi_radio_on(void *arg, int pending)
{
struct iwi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
device_printf(sc->sc_dev, "radio turned on\n");
iwi_init(sc);
ieee80211_notify_radio(ic, 1);
}
static void
iwi_rfkill_poll(void *arg)
{
struct iwi_softc *sc = arg;
IWI_LOCK_ASSERT(sc);
/*
* Check for a change in rfkill state. We get an
* interrupt when a radio is disabled but not when
* it is enabled so we must poll for the latter.
*/
if (!iwi_getrfkill(sc)) {
ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask);
return;
}
callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
}
static void
iwi_radio_off(void *arg, int pending)
{
struct iwi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
IWI_LOCK_DECL;
device_printf(sc->sc_dev, "radio turned off\n");
ieee80211_notify_radio(ic, 0);
IWI_LOCK(sc);
iwi_stop_locked(sc);
iwi_rfkill_poll(sc);
IWI_UNLOCK(sc);
}
static int
iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct iwi_softc *sc = arg1;
uint32_t size, buf[128];
memset(buf, 0, sizeof buf);
if (!(sc->flags & IWI_FLAG_FW_INITED))
return SYSCTL_OUT(req, buf, sizeof buf);
size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
return SYSCTL_OUT(req, buf, size);
}
static int
iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
{
struct iwi_softc *sc = arg1;
int val = !iwi_getrfkill(sc);
return SYSCTL_OUT(req, &val, sizeof val);
}
/*
* Add sysctl knobs.
*/
static void
iwi_sysctlattach(struct iwi_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
"radio transmitter switch state (0=off, 1=on)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
"statistics");
sc->bluetooth = 0;
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
sc->antenna = IWI_ANTENNA_AUTO;
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
}
/*
* LED support.
*
* Different cards have different capabilities. Some have three
* led's while others have only one. The linux ipw driver defines
* led's for link state (associated or not), band (11a, 11g, 11b),
* and for link activity. We use one led and vary the blink rate
* according to the tx/rx traffic a la the ath driver.
*/
static __inline uint32_t
iwi_toggle_event(uint32_t r)
{
return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
}
static uint32_t
iwi_read_event(struct iwi_softc *sc)
{
return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
}
static void
iwi_write_event(struct iwi_softc *sc, uint32_t v)
{
MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
}
static void
iwi_led_done(void *arg)
{
struct iwi_softc *sc = arg;
sc->sc_blinking = 0;
}
/*
* Turn the activity LED off: flip the pin and then set a timer so no
* update will happen for the specified duration.
*/
static void
iwi_led_off(void *arg)
{
struct iwi_softc *sc = arg;
uint32_t v;
v = iwi_read_event(sc);
v &= ~sc->sc_ledpin;
iwi_write_event(sc, iwi_toggle_event(v));
callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
}
/*
* Blink the LED according to the specified on/off times.
*/
static void
iwi_led_blink(struct iwi_softc *sc, int on, int off)
{
uint32_t v;
v = iwi_read_event(sc);
v |= sc->sc_ledpin;
iwi_write_event(sc, iwi_toggle_event(v));
sc->sc_blinking = 1;
sc->sc_ledoff = off;
callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
}
static void
iwi_led_event(struct iwi_softc *sc, int event)
{
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
static const struct {
u_int rate; /* tx/rx iwi rate */
u_int16_t timeOn; /* LED on time (ms) */
u_int16_t timeOff; /* LED off time (ms) */
} blinkrates[] = {
{ IWI_RATE_OFDM54, 40, 10 },
{ IWI_RATE_OFDM48, 44, 11 },
{ IWI_RATE_OFDM36, 50, 13 },
{ IWI_RATE_OFDM24, 57, 14 },
{ IWI_RATE_OFDM18, 67, 16 },
{ IWI_RATE_OFDM12, 80, 20 },
{ IWI_RATE_DS11, 100, 25 },
{ IWI_RATE_OFDM9, 133, 34 },
{ IWI_RATE_OFDM6, 160, 40 },
{ IWI_RATE_DS5, 200, 50 },
{ 6, 240, 58 }, /* XXX 3Mb/s if it existed */
{ IWI_RATE_DS2, 267, 66 },
{ IWI_RATE_DS1, 400, 100 },
{ 0, 500, 130 }, /* unknown rate/polling */
};
uint32_t txrate;
int j = 0; /* XXX silence compiler */
sc->sc_ledevent = ticks; /* time of last event */
if (sc->sc_blinking) /* don't interrupt active blink */
return;
switch (event) {
case IWI_LED_POLL:
j = nitems(blinkrates)-1;
break;
case IWI_LED_TX:
/* read current transmission rate from adapter */
txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
if (blinkrates[sc->sc_txrix].rate != txrate) {
for (j = 0; j < nitems(blinkrates)-1; j++)
if (blinkrates[j].rate == txrate)
break;
sc->sc_txrix = j;
} else
j = sc->sc_txrix;
break;
case IWI_LED_RX:
if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
for (j = 0; j < nitems(blinkrates)-1; j++)
if (blinkrates[j].rate == sc->sc_rxrate)
break;
sc->sc_rxrix = j;
} else
j = sc->sc_rxrix;
break;
}
/* XXX beware of overflow */
iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
(blinkrates[j].timeOff * hz) / 1000);
}
static int
iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
{
struct iwi_softc *sc = arg1;
int softled = sc->sc_softled;
int error;
error = sysctl_handle_int(oidp, &softled, 0, req);
if (error || !req->newptr)
return error;
softled = (softled != 0);
if (softled != sc->sc_softled) {
if (softled) {
uint32_t v = iwi_read_event(sc);
v &= ~sc->sc_ledpin;
iwi_write_event(sc, iwi_toggle_event(v));
}
sc->sc_softled = softled;
}
return 0;
}
static void
iwi_ledattach(struct iwi_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
sc->sc_blinking = 0;
sc->sc_ledstate = 1;
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
iwi_sysctl_softled, "I", "enable/disable software LED support");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
"pin setting to turn activity LED on");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
"idle time for inactivity LED (ticks)");
/* XXX for debugging */
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
"NIC type from EEPROM");
sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
sc->sc_softled = 1;
sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
if (sc->sc_nictype == 1) {
/*
* NB: led's are reversed.
*/
sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
}
}
static void
iwi_scan_start(struct ieee80211com *ic)
{
/* ignore */
}
static void
iwi_set_channel(struct ieee80211com *ic)
{
struct iwi_softc *sc = ic->ic_softc;
if (sc->fw_state == IWI_FW_IDLE)
iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
}
static void
iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
{
struct ieee80211vap *vap = ss->ss_vap;
struct iwi_softc *sc = vap->iv_ic->ic_softc;
IWI_LOCK_DECL;
IWI_LOCK(sc);
if (iwi_scanchan(sc, maxdwell, 0))
ieee80211_cancel_scan(vap);
IWI_UNLOCK(sc);
}
static void
iwi_scan_mindwell(struct ieee80211_scan_state *ss)
{
/* NB: don't try to abort scan; wait for firmware to finish */
}
static void
iwi_scan_end(struct ieee80211com *ic)
{
struct iwi_softc *sc = ic->ic_softc;
IWI_LOCK_DECL;
IWI_LOCK(sc);
sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
/* NB: make sure we're still scanning */
if (sc->fw_state == IWI_FW_SCANNING)
iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
IWI_UNLOCK(sc);
}
static void
iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz)
{
struct iwi_softc *sc = ic->ic_softc;
device_t dev = sc->sc_dev;
memset(bands, 0, bands_sz);
setbit(bands, IEEE80211_MODE_11B);
setbit(bands, IEEE80211_MODE_11G);
if (pci_get_device(dev) >= 0x4223)
setbit(bands, IEEE80211_MODE_11A);
}
static void
iwi_getradiocaps(struct ieee80211com *ic,
int maxchans, int *nchans, struct ieee80211_channel chans[])
{
uint8_t bands[IEEE80211_MODE_BYTES];
iwi_collect_bands(ic, bands, sizeof(bands));
*nchans = 0;
if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G))
ieee80211_add_channels_default_2ghz(chans, maxchans, nchans,
bands, 0);
if (isset(bands, IEEE80211_MODE_11A)) {
ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
def_chan_5ghz_band1, nitems(def_chan_5ghz_band1),
bands, 0);
ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
def_chan_5ghz_band2, nitems(def_chan_5ghz_band2),
bands, 0);
ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
def_chan_5ghz_band3, nitems(def_chan_5ghz_band3),
bands, 0);
}
}