freebsd-skq/sys/net/if.c
phk 1048fa7301 Add a new interface ioctl, to return "aux status".
This is inteded for to allow ifconfig to print various unstructured
information from an interface.

The data is returned from the kernel in ASCII form, see the comment in
if.h for some technicalities.

Canonical cut&paste example to be found in if_tun.c

Initial use:
        Now tun* interfaces tell the PID of the process which opened them.

Future uses could be (volounteers welcome!):
        Have ppp/slip interfaces tell which tty they use.
        Make sync interfaces return their media state: red/yellow/blue
        alarm, timeslot assignment and so on.
        Make ethernets warn about missing heartbeats and/or cables
1999-06-19 18:42:31 +00:00

1141 lines
27 KiB
C

/*
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if.c 8.3 (Berkeley) 1/4/94
* $Id: if.c,v 1.72 1999/06/06 09:28:01 phk Exp $
*/
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/radix.h>
/*
* System initialization
*/
static int ifconf __P((u_long, caddr_t));
static void ifinit __P((void *));
static void if_qflush __P((struct ifqueue *));
static void if_slowtimo __P((void *));
static void link_rtrequest __P((int, struct rtentry *, struct sockaddr *));
SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
int ifqmaxlen = IFQ_MAXLEN;
struct ifnethead ifnet; /* depend on static init XXX */
/*
* Network interface utility routines.
*
* Routines with ifa_ifwith* names take sockaddr *'s as
* parameters.
*/
/* ARGSUSED*/
void
ifinit(dummy)
void *dummy;
{
struct ifnet *ifp;
int s;
s = splimp();
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next)
if (ifp->if_snd.ifq_maxlen == 0) {
printf("%s%d XXX: driver didn't set ifq_maxlen\n",
ifp->if_name, ifp->if_unit);
ifp->if_snd.ifq_maxlen = ifqmaxlen;
}
splx(s);
if_slowtimo(0);
}
int if_index = 0;
struct ifaddr **ifnet_addrs;
/*
* Attach an interface to the
* list of "active" interfaces.
*/
void
if_attach(ifp)
struct ifnet *ifp;
{
unsigned socksize, ifasize;
int namelen, masklen;
char workbuf[64];
register struct sockaddr_dl *sdl;
register struct ifaddr *ifa;
static int if_indexlim = 8;
static int inited;
if (!inited) {
TAILQ_INIT(&ifnet);
inited = 1;
}
TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
ifp->if_index = ++if_index;
/*
* XXX -
* The old code would work if the interface passed a pre-existing
* chain of ifaddrs to this code. We don't trust our callers to
* properly initialize the tailq, however, so we no longer allow
* this unlikely case.
*/
TAILQ_INIT(&ifp->if_addrhead);
LIST_INIT(&ifp->if_multiaddrs);
getmicrotime(&ifp->if_lastchange);
if (ifnet_addrs == 0 || if_index >= if_indexlim) {
unsigned n = (if_indexlim <<= 1) * sizeof(ifa);
struct ifaddr **q = (struct ifaddr **)
malloc(n, M_IFADDR, M_WAITOK);
bzero((caddr_t)q, n);
if (ifnet_addrs) {
bcopy((caddr_t)ifnet_addrs, (caddr_t)q, n/2);
free((caddr_t)ifnet_addrs, M_IFADDR);
}
ifnet_addrs = q;
}
/*
* create a Link Level name for this device
*/
namelen = snprintf(workbuf, sizeof(workbuf),
"%s%d", ifp->if_name, ifp->if_unit);
#define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
socksize = masklen + ifp->if_addrlen;
#define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
if (socksize < sizeof(*sdl))
socksize = sizeof(*sdl);
socksize = ROUNDUP(socksize);
ifasize = sizeof(*ifa) + 2 * socksize;
ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK);
if (ifa) {
bzero((caddr_t)ifa, ifasize);
sdl = (struct sockaddr_dl *)(ifa + 1);
sdl->sdl_len = socksize;
sdl->sdl_family = AF_LINK;
bcopy(workbuf, sdl->sdl_data, namelen);
sdl->sdl_nlen = namelen;
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = ifp->if_type;
ifnet_addrs[if_index - 1] = ifa;
ifa->ifa_ifp = ifp;
ifa->ifa_rtrequest = link_rtrequest;
ifa->ifa_addr = (struct sockaddr *)sdl;
sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
ifa->ifa_netmask = (struct sockaddr *)sdl;
sdl->sdl_len = masklen;
while (namelen != 0)
sdl->sdl_data[--namelen] = 0xff;
TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
}
}
/*
* Detach an interface, removing it from the
* list of "active" interfaces.
*/
void
if_detach(ifp)
struct ifnet *ifp;
{
struct ifaddr *ifa;
/*
* Remove routes and flush queues.
*/
if_down(ifp);
/*
* Remove address from ifnet_addrs[] and maybe decrement if_index.
* Clean up all addresses.
*/
ifnet_addrs[ifp->if_index] = 0;
while (ifnet_addrs[if_index] == 0)
if_index--;
for (ifa = TAILQ_FIRST(&ifp->if_addrhead); ifa;
ifa = TAILQ_FIRST(&ifp->if_addrhead)) {
TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
IFAFREE(ifa);
}
TAILQ_REMOVE(&ifnet, ifp, if_link);
}
/*
* Locate an interface based on a complete address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithaddr(addr)
register struct sockaddr *addr;
{
register struct ifnet *ifp;
register struct ifaddr *ifa;
#define equal(a1, a2) \
(bcmp((caddr_t)(a1), (caddr_t)(a2), ((struct sockaddr *)(a1))->sa_len) == 0)
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next)
for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (equal(addr, ifa->ifa_addr))
return (ifa);
if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr &&
equal(ifa->ifa_broadaddr, addr))
return (ifa);
}
return ((struct ifaddr *)0);
}
/*
* Locate the point to point interface with a given destination address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithdstaddr(addr)
register struct sockaddr *addr;
{
register struct ifnet *ifp;
register struct ifaddr *ifa;
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next)
if (ifp->if_flags & IFF_POINTOPOINT)
for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr))
return (ifa);
}
return ((struct ifaddr *)0);
}
/*
* Find an interface on a specific network. If many, choice
* is most specific found.
*/
struct ifaddr *
ifa_ifwithnet(addr)
struct sockaddr *addr;
{
register struct ifnet *ifp;
register struct ifaddr *ifa;
struct ifaddr *ifa_maybe = (struct ifaddr *) 0;
u_int af = addr->sa_family;
char *addr_data = addr->sa_data, *cplim;
/*
* AF_LINK addresses can be looked up directly by their index number,
* so do that if we can.
*/
if (af == AF_LINK) {
register struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
if (sdl->sdl_index && sdl->sdl_index <= if_index)
return (ifnet_addrs[sdl->sdl_index - 1]);
}
/*
* Scan though each interface, looking for ones that have
* addresses in this address family.
*/
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) {
for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next) {
register char *cp, *cp2, *cp3;
if (ifa->ifa_addr->sa_family != af)
next: continue;
if (ifp->if_flags & IFF_POINTOPOINT) {
/*
* This is a bit broken as it doesn't
* take into account that the remote end may
* be a single node in the network we are
* looking for.
* The trouble is that we don't know the
* netmask for the remote end.
*/
if (ifa->ifa_dstaddr != 0
&& equal(addr, ifa->ifa_dstaddr))
return (ifa);
} else {
/*
* if we have a special address handler,
* then use it instead of the generic one.
*/
if (ifa->ifa_claim_addr) {
if ((*ifa->ifa_claim_addr)(ifa, addr)) {
return (ifa);
} else {
continue;
}
}
/*
* Scan all the bits in the ifa's address.
* If a bit dissagrees with what we are
* looking for, mask it with the netmask
* to see if it really matters.
* (A byte at a time)
*/
if (ifa->ifa_netmask == 0)
continue;
cp = addr_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len
+ (char *)ifa->ifa_netmask;
while (cp3 < cplim)
if ((*cp++ ^ *cp2++) & *cp3++)
goto next; /* next address! */
/*
* If the netmask of what we just found
* is more specific than what we had before
* (if we had one) then remember the new one
* before continuing to search
* for an even better one.
*/
if (ifa_maybe == 0 ||
rn_refines((caddr_t)ifa->ifa_netmask,
(caddr_t)ifa_maybe->ifa_netmask))
ifa_maybe = ifa;
}
}
}
return (ifa_maybe);
}
/*
* Find an interface address specific to an interface best matching
* a given address.
*/
struct ifaddr *
ifaof_ifpforaddr(addr, ifp)
struct sockaddr *addr;
register struct ifnet *ifp;
{
register struct ifaddr *ifa;
register char *cp, *cp2, *cp3;
register char *cplim;
struct ifaddr *ifa_maybe = 0;
u_int af = addr->sa_family;
if (af >= AF_MAX)
return (0);
for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next) {
if (ifa->ifa_addr->sa_family != af)
continue;
if (ifa_maybe == 0)
ifa_maybe = ifa;
if (ifa->ifa_netmask == 0) {
if (equal(addr, ifa->ifa_addr) ||
(ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr)))
return (ifa);
continue;
}
if (ifp->if_flags & IFF_POINTOPOINT) {
if (equal(addr, ifa->ifa_dstaddr))
return (ifa);
} else {
cp = addr->sa_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
for (; cp3 < cplim; cp3++)
if ((*cp++ ^ *cp2++) & *cp3)
break;
if (cp3 == cplim)
return (ifa);
}
}
return (ifa_maybe);
}
#include <net/route.h>
/*
* Default action when installing a route with a Link Level gateway.
* Lookup an appropriate real ifa to point to.
* This should be moved to /sys/net/link.c eventually.
*/
static void
link_rtrequest(cmd, rt, sa)
int cmd;
register struct rtentry *rt;
struct sockaddr *sa;
{
register struct ifaddr *ifa;
struct sockaddr *dst;
struct ifnet *ifp;
if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) ||
((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0))
return;
ifa = ifaof_ifpforaddr(dst, ifp);
if (ifa) {
IFAFREE(rt->rt_ifa);
rt->rt_ifa = ifa;
ifa->ifa_refcnt++;
if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
ifa->ifa_rtrequest(cmd, rt, sa);
}
}
/*
* Mark an interface down and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_unroute(ifp, flag, fam)
register struct ifnet *ifp;
int flag, fam;
{
register struct ifaddr *ifa;
ifp->if_flags &= ~flag;
getmicrotime(&ifp->if_lastchange);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
if_qflush(&ifp->if_snd);
rt_ifmsg(ifp);
}
/*
* Mark an interface up and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_route(ifp, flag, fam)
register struct ifnet *ifp;
int flag, fam;
{
register struct ifaddr *ifa;
ifp->if_flags |= flag;
getmicrotime(&ifp->if_lastchange);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
pfctlinput(PRC_IFUP, ifa->ifa_addr);
rt_ifmsg(ifp);
}
/*
* Mark an interface down and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_down(ifp)
register struct ifnet *ifp;
{
if_unroute(ifp, IFF_UP, AF_UNSPEC);
}
/*
* Mark an interface up and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_up(ifp)
register struct ifnet *ifp;
{
if_route(ifp, IFF_UP, AF_UNSPEC);
}
/*
* Flush an interface queue.
*/
static void
if_qflush(ifq)
register struct ifqueue *ifq;
{
register struct mbuf *m, *n;
n = ifq->ifq_head;
while ((m = n) != 0) {
n = m->m_act;
m_freem(m);
}
ifq->ifq_head = 0;
ifq->ifq_tail = 0;
ifq->ifq_len = 0;
}
/*
* Handle interface watchdog timer routines. Called
* from softclock, we decrement timers (if set) and
* call the appropriate interface routine on expiration.
*/
static void
if_slowtimo(arg)
void *arg;
{
register struct ifnet *ifp;
int s = splimp();
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) {
if (ifp->if_timer == 0 || --ifp->if_timer)
continue;
if (ifp->if_watchdog)
(*ifp->if_watchdog)(ifp);
}
splx(s);
timeout(if_slowtimo, (void *)0, hz / IFNET_SLOWHZ);
}
/*
* Map interface name to
* interface structure pointer.
*/
struct ifnet *
ifunit(name)
register char *name;
{
char namebuf[IFNAMSIZ + 1];
register char *cp, *cp2;
char *end;
register struct ifnet *ifp;
int unit;
unsigned len;
register char c = '\0';
/*
* Look for a non numeric part
*/
end = name + IFNAMSIZ;
cp2 = namebuf;
cp = name;
while ((cp < end) && (c = *cp)) {
if (c >= '0' && c <= '9')
break;
*cp2++ = c;
cp++;
}
if ((cp == end) || (c == '\0') || (cp == name))
return ((struct ifnet *)0);
*cp2 = '\0';
/*
* check we have a legal number (limit to 7 digits?)
*/
len = cp - name + 1;
for (unit = 0;
((c = *cp) >= '0') && (c <= '9') && (unit < 1000000); cp++ )
unit = (unit * 10) + (c - '0');
if (*cp != '\0')
return 0; /* no trailing garbage allowed */
/*
* Now search all the interfaces for this name/number
*/
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) {
if (bcmp(ifp->if_name, namebuf, len))
continue;
if (unit == ifp->if_unit)
break;
}
return (ifp);
}
/*
* Interface ioctls.
*/
int
ifioctl(so, cmd, data, p)
struct socket *so;
u_long cmd;
caddr_t data;
struct proc *p;
{
register struct ifnet *ifp;
register struct ifreq *ifr;
struct ifstat *ifs;
int error;
switch (cmd) {
case SIOCGIFCONF:
case OSIOCGIFCONF:
return (ifconf(cmd, data));
}
ifr = (struct ifreq *)data;
ifp = ifunit(ifr->ifr_name);
if (ifp == 0)
return (ENXIO);
switch (cmd) {
case SIOCGIFFLAGS:
ifr->ifr_flags = ifp->if_flags;
break;
case SIOCGIFMETRIC:
ifr->ifr_metric = ifp->if_metric;
break;
case SIOCGIFMTU:
ifr->ifr_mtu = ifp->if_mtu;
break;
case SIOCGIFPHYS:
ifr->ifr_phys = ifp->if_physical;
break;
case SIOCSIFFLAGS:
error = suser(p);
if (error)
return (error);
ifr->ifr_prevflags = ifp->if_flags;
if (ifp->if_flags & IFF_SMART) {
/* Smart drivers twiddle their own routes */
} else if (ifp->if_flags & IFF_UP &&
(ifr->ifr_flags & IFF_UP) == 0) {
int s = splimp();
if_down(ifp);
splx(s);
} else if (ifr->ifr_flags & IFF_UP &&
(ifp->if_flags & IFF_UP) == 0) {
int s = splimp();
if_up(ifp);
splx(s);
}
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
(ifr->ifr_flags &~ IFF_CANTCHANGE);
if (ifp->if_ioctl)
(void) (*ifp->if_ioctl)(ifp, cmd, data);
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFMETRIC:
error = suser(p);
if (error)
return (error);
ifp->if_metric = ifr->ifr_metric;
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFPHYS:
error = suser(p);
if (error)
return error;
if (!ifp->if_ioctl)
return EOPNOTSUPP;
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
return(error);
case SIOCSIFMTU:
error = suser(p);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
/*
* 72 was chosen below because it is the size of a TCP/IP
* header (40) + the minimum mss (32).
*/
if (ifr->ifr_mtu < 72 || ifr->ifr_mtu > 65535)
return (EINVAL);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
return(error);
case SIOCADDMULTI:
case SIOCDELMULTI:
error = suser(p);
if (error)
return (error);
/* Don't allow group membership on non-multicast interfaces. */
if ((ifp->if_flags & IFF_MULTICAST) == 0)
return EOPNOTSUPP;
/* Don't let users screw up protocols' entries. */
if (ifr->ifr_addr.sa_family != AF_LINK)
return EINVAL;
if (cmd == SIOCADDMULTI) {
struct ifmultiaddr *ifma;
error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
} else {
error = if_delmulti(ifp, &ifr->ifr_addr);
}
if (error == 0)
getmicrotime(&ifp->if_lastchange);
return error;
case SIOCSIFMEDIA:
case SIOCSIFGENERIC:
error = suser(p);
if (error)
return (error);
if (ifp->if_ioctl == 0)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
return error;
case SIOCGIFSTATUS:
ifs = (struct ifstat *)data;
ifs->ascii[0] = '\0';
case SIOCGIFMEDIA:
case SIOCGIFGENERIC:
if (ifp->if_ioctl == 0)
return (EOPNOTSUPP);
return ((*ifp->if_ioctl)(ifp, cmd, data));
default:
if (so->so_proto == 0)
return (EOPNOTSUPP);
#ifndef COMPAT_43
return ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd,
data,
ifp, p));
#else
{
int ocmd = cmd;
switch (cmd) {
case SIOCSIFDSTADDR:
case SIOCSIFADDR:
case SIOCSIFBRDADDR:
case SIOCSIFNETMASK:
#if BYTE_ORDER != BIG_ENDIAN
if (ifr->ifr_addr.sa_family == 0 &&
ifr->ifr_addr.sa_len < 16) {
ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
ifr->ifr_addr.sa_len = 16;
}
#else
if (ifr->ifr_addr.sa_len == 0)
ifr->ifr_addr.sa_len = 16;
#endif
break;
case OSIOCGIFADDR:
cmd = SIOCGIFADDR;
break;
case OSIOCGIFDSTADDR:
cmd = SIOCGIFDSTADDR;
break;
case OSIOCGIFBRDADDR:
cmd = SIOCGIFBRDADDR;
break;
case OSIOCGIFNETMASK:
cmd = SIOCGIFNETMASK;
}
error = ((*so->so_proto->pr_usrreqs->pru_control)(so,
cmd,
data,
ifp, p));
switch (ocmd) {
case OSIOCGIFADDR:
case OSIOCGIFDSTADDR:
case OSIOCGIFBRDADDR:
case OSIOCGIFNETMASK:
*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
}
return (error);
}
#endif
}
return (0);
}
/*
* Set/clear promiscuous mode on interface ifp based on the truth value
* of pswitch. The calls are reference counted so that only the first
* "on" request actually has an effect, as does the final "off" request.
* Results are undefined if the "off" and "on" requests are not matched.
*/
int
ifpromisc(ifp, pswitch)
struct ifnet *ifp;
int pswitch;
{
struct ifreq ifr;
int error;
if (pswitch) {
/*
* If the device is not configured up, we cannot put it in
* promiscuous mode.
*/
if ((ifp->if_flags & IFF_UP) == 0)
return (ENETDOWN);
if (ifp->if_pcount++ != 0)
return (0);
ifp->if_flags |= IFF_PROMISC;
log(LOG_INFO, "%s%d: promiscuous mode enabled\n",
ifp->if_name, ifp->if_unit);
} else {
if (--ifp->if_pcount > 0)
return (0);
ifp->if_flags &= ~IFF_PROMISC;
}
ifr.ifr_flags = ifp->if_flags;
error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
if (error == 0)
rt_ifmsg(ifp);
return error;
}
/*
* Return interface configuration
* of system. List may be used
* in later ioctl's (above) to get
* other information.
*/
/*ARGSUSED*/
static int
ifconf(cmd, data)
u_long cmd;
caddr_t data;
{
register struct ifconf *ifc = (struct ifconf *)data;
register struct ifnet *ifp = ifnet.tqh_first;
register struct ifaddr *ifa;
struct ifreq ifr, *ifrp;
int space = ifc->ifc_len, error = 0;
ifrp = ifc->ifc_req;
for (; space > sizeof (ifr) && ifp; ifp = ifp->if_link.tqe_next) {
char workbuf[64];
int ifnlen, addrs;
ifnlen = snprintf(workbuf, sizeof(workbuf),
"%s%d", ifp->if_name, ifp->if_unit);
if(ifnlen + 1 > sizeof ifr.ifr_name) {
error = ENAMETOOLONG;
} else {
strcpy(ifr.ifr_name, workbuf);
}
addrs = 0;
ifa = ifp->if_addrhead.tqh_first;
for ( ; space > sizeof (ifr) && ifa;
ifa = ifa->ifa_link.tqe_next) {
register struct sockaddr *sa = ifa->ifa_addr;
if (curproc->p_prison && prison_if(curproc, sa))
continue;
addrs++;
#ifdef COMPAT_43
if (cmd == OSIOCGIFCONF) {
struct osockaddr *osa =
(struct osockaddr *)&ifr.ifr_addr;
ifr.ifr_addr = *sa;
osa->sa_family = sa->sa_family;
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr));
ifrp++;
} else
#endif
if (sa->sa_len <= sizeof(*sa)) {
ifr.ifr_addr = *sa;
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr));
ifrp++;
} else {
space -= sa->sa_len - sizeof(*sa);
if (space < sizeof (ifr))
break;
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr.ifr_name));
if (error == 0)
error = copyout((caddr_t)sa,
(caddr_t)&ifrp->ifr_addr, sa->sa_len);
ifrp = (struct ifreq *)
(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
}
if (error)
break;
space -= sizeof (ifr);
}
if (!addrs) {
bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr));
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr));
if (error)
break;
space -= sizeof (ifr), ifrp++;
}
}
ifc->ifc_len -= space;
return (error);
}
/*
* Just like if_promisc(), but for all-multicast-reception mode.
*/
int
if_allmulti(ifp, onswitch)
struct ifnet *ifp;
int onswitch;
{
int error = 0;
int s = splimp();
if (onswitch) {
if (ifp->if_amcount++ == 0) {
ifp->if_flags |= IFF_ALLMULTI;
error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, 0);
}
} else {
if (ifp->if_amcount > 1) {
ifp->if_amcount--;
} else {
ifp->if_amcount = 0;
ifp->if_flags &= ~IFF_ALLMULTI;
error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, 0);
}
}
splx(s);
if (error == 0)
rt_ifmsg(ifp);
return error;
}
/*
* Add a multicast listenership to the interface in question.
* The link layer provides a routine which converts
*/
int
if_addmulti(ifp, sa, retifma)
struct ifnet *ifp; /* interface to manipulate */
struct sockaddr *sa; /* address to add */
struct ifmultiaddr **retifma;
{
struct sockaddr *llsa, *dupsa;
int error, s;
struct ifmultiaddr *ifma;
/*
* If the matching multicast address already exists
* then don't add a new one, just add a reference
*/
for (ifma = ifp->if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next) {
if (equal(sa, ifma->ifma_addr)) {
ifma->ifma_refcount++;
if (retifma)
*retifma = ifma;
return 0;
}
}
/*
* Give the link layer a chance to accept/reject it, and also
* find out which AF_LINK address this maps to, if it isn't one
* already.
*/
if (ifp->if_resolvemulti) {
error = ifp->if_resolvemulti(ifp, &llsa, sa);
if (error) return error;
} else {
llsa = 0;
}
MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
bcopy(sa, dupsa, sa->sa_len);
ifma->ifma_addr = dupsa;
ifma->ifma_lladdr = llsa;
ifma->ifma_ifp = ifp;
ifma->ifma_refcount = 1;
ifma->ifma_protospec = 0;
rt_newmaddrmsg(RTM_NEWMADDR, ifma);
/*
* Some network interfaces can scan the address list at
* interrupt time; lock them out.
*/
s = splimp();
LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
splx(s);
*retifma = ifma;
if (llsa != 0) {
for (ifma = ifp->if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next) {
if (equal(ifma->ifma_addr, llsa))
break;
}
if (ifma) {
ifma->ifma_refcount++;
} else {
MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
M_IFMADDR, M_WAITOK);
MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
M_IFMADDR, M_WAITOK);
bcopy(llsa, dupsa, llsa->sa_len);
ifma->ifma_addr = dupsa;
ifma->ifma_ifp = ifp;
ifma->ifma_refcount = 1;
s = splimp();
LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
splx(s);
}
}
/*
* We are certain we have added something, so call down to the
* interface to let them know about it.
*/
s = splimp();
ifp->if_ioctl(ifp, SIOCADDMULTI, 0);
splx(s);
return 0;
}
/*
* Remove a reference to a multicast address on this interface. Yell
* if the request does not match an existing membership.
*/
int
if_delmulti(ifp, sa)
struct ifnet *ifp;
struct sockaddr *sa;
{
struct ifmultiaddr *ifma;
int s;
for (ifma = ifp->if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next)
if (equal(sa, ifma->ifma_addr))
break;
if (ifma == 0)
return ENOENT;
if (ifma->ifma_refcount > 1) {
ifma->ifma_refcount--;
return 0;
}
rt_newmaddrmsg(RTM_DELMADDR, ifma);
sa = ifma->ifma_lladdr;
s = splimp();
LIST_REMOVE(ifma, ifma_link);
splx(s);
free(ifma->ifma_addr, M_IFMADDR);
free(ifma, M_IFMADDR);
if (sa == 0)
return 0;
/*
* Now look for the link-layer address which corresponds to
* this network address. It had been squirreled away in
* ifma->ifma_lladdr for this purpose (so we don't have
* to call ifp->if_resolvemulti() again), and we saved that
* value in sa above. If some nasty deleted the
* link-layer address out from underneath us, we can deal because
* the address we stored was is not the same as the one which was
* in the record for the link-layer address. (So we don't complain
* in that case.)
*/
for (ifma = ifp->if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next)
if (equal(sa, ifma->ifma_addr))
break;
if (ifma == 0)
return 0;
if (ifma->ifma_refcount > 1) {
ifma->ifma_refcount--;
return 0;
}
s = splimp();
LIST_REMOVE(ifma, ifma_link);
ifp->if_ioctl(ifp, SIOCDELMULTI, 0);
splx(s);
free(ifma->ifma_addr, M_IFMADDR);
free(sa, M_IFMADDR);
free(ifma, M_IFMADDR);
return 0;
}
struct ifmultiaddr *
ifmaof_ifpforaddr(sa, ifp)
struct sockaddr *sa;
struct ifnet *ifp;
{
struct ifmultiaddr *ifma;
for (ifma = ifp->if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next)
if (equal(ifma->ifma_addr, sa))
break;
return ifma;
}
SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");