Christian S.J. Peron
b244c8ad14
Over the past couple of years, there have been a number of reports relating
the use of divert sockets to dead locks. A number of LORs have been reported between divert and a number of other network subsystems including: IPSEC, Pfil, multicast, ipfw and others. Other dead locks could occur because of recursive entry into the IP stack. This change should take care of most if not all of these issues. A summary of the changes follow: - We disallow multicast operations on divert sockets. It really doesn't make semantic sense to allow this, since typically you would set multicast parameters on multicast end points. NOTE: As a part of this change, we actually dis-allow multicast options on any socket that IS a divert socket OR IS NOT a SOCK_RAW or SOCK_DGRAM family - We check to see if there are any socket options that have been specified on the socket, and if there was (which is very un-common and also probably doesnt make sense to support) we duplicate the mbuf carrying the options. - We then drop the INP/INFO locks over the call to ip_output(). It should be noted that since we no longer support multicast operations on divert sockets and we have duplicated any socket options, we no longer need the reference to the pcb to be coherent. - Finally, we replaced the call to ip_input() to use netisr queuing. This should remove the recursive entry into the IP stack from divert. By dropping the locks over the call to ip_output() we eliminate all the lock ordering issues above. By switching over to netisr on the inbound path, we can no longer recursively enter the ip_input() code via divert. I have tested this change by using the following command: ipfwpcap -r 8000 - | tcpdump -r - -nn -v This should exercise the input and re-injection (outbound) path, which is very similar to the work load performed by natd(8). Additionally, I have run some ospf daemons which have a heavy reliance on raw sockets and multicast. Approved by: re@ (kensmith) MFC after: 1 month LOR: 163 LOR: 181 LOR: 202 LOR: 203 Discussed with: julian, andre et al (on freebsd-net) In collaboration with: bms [1], rwatson [2] [1] bms helped out with the multicast decisions [2] rwatson submitted the original netisr patches and came up with some of the original ideas on how to combat this issue.
This is the top level of the FreeBSD source directory. This file was last revised on: $FreeBSD$ For copyright information, please see the file COPYRIGHT in this directory (additional copyright information also exists for some sources in this tree - please see the specific source directories for more information). The Makefile in this directory supports a number of targets for building components (or all) of the FreeBSD source tree, the most commonly used one being ``world'', which rebuilds and installs everything in the FreeBSD system from the source tree except the kernel, the kernel-modules and the contents of /etc. The ``world'' target should only be used in cases where the source tree has not changed from the currently running version. See: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html for more information, including setting make(1) variables. The ``buildkernel'' and ``installkernel'' targets build and install the kernel and the modules (see below). Please see the top of the Makefile in this directory for more information on the standard build targets and compile-time flags. Building a kernel is a somewhat more involved process, documentation for which can be found at: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html And in the config(8) man page. Note: If you want to build and install the kernel with the ``buildkernel'' and ``installkernel'' targets, you might need to build world before. More information is available in the handbook. The sample kernel configuration files reside in the sys/<arch>/conf sub-directory (assuming that you've installed the kernel sources), the file named GENERIC being the one used to build your initial installation kernel. The file NOTES contains entries and documentation for all possible devices, not just those commonly used. It is the successor of the ancient LINT file, but in contrast to LINT, it is not buildable as a kernel but a pure reference and documentation file. Source Roadmap: --------------- bin System/user commands. contrib Packages contributed by 3rd parties. crypto Cryptography stuff (see crypto/README). etc Template files for /etc. games Amusements. gnu Various commands and libraries under the GNU Public License. Please see gnu/COPYING* for more information. include System include files. kerberos5 Kerberos5 (Heimdal) package. lib System libraries. libexec System daemons. release Release building Makefile & associated tools. rescue Build system for statically linked /rescue utilities. sbin System commands. secure Cryptographic libraries and commands. share Shared resources. sys Kernel sources. tools Utilities for regression testing and miscellaneous tasks. usr.bin User commands. usr.sbin System administration commands. For information on synchronizing your source tree with one or more of the FreeBSD Project's development branches, please see: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html
Description
Languages
C
63.3%
C++
23.3%
Roff
5.1%
Shell
2.9%
Makefile
1.5%
Other
3.4%