freebsd-skq/sys/dev/bwn/if_bwn.c
Mark Johnston c2a5a6c17d Fix a possible mbuf double free in bwn_dma_tx_start().
If bus_dmamap_load_mbuf() fails following a defrag, the caller of
bwn_dma_tx_start() would free the original mbuf after m_defrag() had
already done so.  Fix this by returning the defragged mbuf to the
caller instead.  Update bwn_pio_tx_start() similarly for consistency.

Reported by:	Ilja Van Sprundel <ivansprundel@ioactive.com>
Reviewed by:	landonf
Tested by:	landonf
MFC after:	3 days
admbug:		820
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D18342
2018-12-12 15:49:14 +00:00

7760 lines
196 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2009-2010 Weongyo Jeong <weongyo@freebsd.org>
* Copyright (c) 2016 Landon Fuller <landonf@FreeBSD.org>
* Copyright (c) 2017 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Landon Fuller
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* The Broadcom Wireless LAN controller driver.
*/
#include "opt_bwn.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/gpio.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/firmware.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_phy.h>
#include <net80211/ieee80211_ratectl.h>
#include <dev/bhnd/bhnd.h>
#include <dev/bhnd/bhnd_ids.h>
#include <dev/bhnd/cores/chipc/chipc.h>
#include <dev/bhnd/cores/pmu/bhnd_pmu.h>
#include <dev/bwn/if_bwnreg.h>
#include <dev/bwn/if_bwnvar.h>
#include <dev/bwn/if_bwn_debug.h>
#include <dev/bwn/if_bwn_misc.h>
#include <dev/bwn/if_bwn_util.h>
#include <dev/bwn/if_bwn_phy_common.h>
#include <dev/bwn/if_bwn_phy_g.h>
#include <dev/bwn/if_bwn_phy_lp.h>
#include <dev/bwn/if_bwn_phy_n.h>
#include "bhnd_nvram_map.h"
#include "gpio_if.h"
static SYSCTL_NODE(_hw, OID_AUTO, bwn, CTLFLAG_RD, 0,
"Broadcom driver parameters");
/*
* Tunable & sysctl variables.
*/
#ifdef BWN_DEBUG
static int bwn_debug = 0;
SYSCTL_INT(_hw_bwn, OID_AUTO, debug, CTLFLAG_RWTUN, &bwn_debug, 0,
"Broadcom debugging printfs");
#endif
static int bwn_bfp = 0; /* use "Bad Frames Preemption" */
SYSCTL_INT(_hw_bwn, OID_AUTO, bfp, CTLFLAG_RW, &bwn_bfp, 0,
"uses Bad Frames Preemption");
static int bwn_bluetooth = 1;
SYSCTL_INT(_hw_bwn, OID_AUTO, bluetooth, CTLFLAG_RW, &bwn_bluetooth, 0,
"turns on Bluetooth Coexistence");
static int bwn_hwpctl = 0;
SYSCTL_INT(_hw_bwn, OID_AUTO, hwpctl, CTLFLAG_RW, &bwn_hwpctl, 0,
"uses H/W power control");
static int bwn_usedma = 1;
SYSCTL_INT(_hw_bwn, OID_AUTO, usedma, CTLFLAG_RD, &bwn_usedma, 0,
"uses DMA");
TUNABLE_INT("hw.bwn.usedma", &bwn_usedma);
static int bwn_wme = 1;
SYSCTL_INT(_hw_bwn, OID_AUTO, wme, CTLFLAG_RW, &bwn_wme, 0,
"uses WME support");
static void bwn_attach_pre(struct bwn_softc *);
static int bwn_attach_post(struct bwn_softc *);
static int bwn_retain_bus_providers(struct bwn_softc *sc);
static void bwn_release_bus_providers(struct bwn_softc *sc);
static void bwn_sprom_bugfixes(device_t);
static int bwn_init(struct bwn_softc *);
static void bwn_parent(struct ieee80211com *);
static void bwn_start(struct bwn_softc *);
static int bwn_transmit(struct ieee80211com *, struct mbuf *);
static int bwn_attach_core(struct bwn_mac *);
static int bwn_phy_getinfo(struct bwn_mac *, int);
static int bwn_chiptest(struct bwn_mac *);
static int bwn_setup_channels(struct bwn_mac *, int, int);
static void bwn_shm_ctlword(struct bwn_mac *, uint16_t,
uint16_t);
static void bwn_addchannels(struct ieee80211_channel [], int, int *,
const struct bwn_channelinfo *, const uint8_t []);
static int bwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void bwn_updateslot(struct ieee80211com *);
static void bwn_update_promisc(struct ieee80211com *);
static void bwn_wme_init(struct bwn_mac *);
static int bwn_wme_update(struct ieee80211com *);
static void bwn_wme_clear(struct bwn_softc *);
static void bwn_wme_load(struct bwn_mac *);
static void bwn_wme_loadparams(struct bwn_mac *,
const struct wmeParams *, uint16_t);
static void bwn_scan_start(struct ieee80211com *);
static void bwn_scan_end(struct ieee80211com *);
static void bwn_set_channel(struct ieee80211com *);
static struct ieee80211vap *bwn_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void bwn_vap_delete(struct ieee80211vap *);
static void bwn_stop(struct bwn_softc *);
static int bwn_core_forceclk(struct bwn_mac *, bool);
static int bwn_core_init(struct bwn_mac *);
static void bwn_core_start(struct bwn_mac *);
static void bwn_core_exit(struct bwn_mac *);
static void bwn_bt_disable(struct bwn_mac *);
static int bwn_chip_init(struct bwn_mac *);
static void bwn_set_txretry(struct bwn_mac *, int, int);
static void bwn_rate_init(struct bwn_mac *);
static void bwn_set_phytxctl(struct bwn_mac *);
static void bwn_spu_setdelay(struct bwn_mac *, int);
static void bwn_bt_enable(struct bwn_mac *);
static void bwn_set_macaddr(struct bwn_mac *);
static void bwn_crypt_init(struct bwn_mac *);
static void bwn_chip_exit(struct bwn_mac *);
static int bwn_fw_fillinfo(struct bwn_mac *);
static int bwn_fw_loaducode(struct bwn_mac *);
static int bwn_gpio_init(struct bwn_mac *);
static int bwn_fw_loadinitvals(struct bwn_mac *);
static int bwn_phy_init(struct bwn_mac *);
static void bwn_set_txantenna(struct bwn_mac *, int);
static void bwn_set_opmode(struct bwn_mac *);
static void bwn_rate_write(struct bwn_mac *, uint16_t, int);
static uint8_t bwn_plcp_getcck(const uint8_t);
static uint8_t bwn_plcp_getofdm(const uint8_t);
static void bwn_pio_init(struct bwn_mac *);
static uint16_t bwn_pio_idx2base(struct bwn_mac *, int);
static void bwn_pio_set_txqueue(struct bwn_mac *, struct bwn_pio_txqueue *,
int);
static void bwn_pio_setupqueue_rx(struct bwn_mac *,
struct bwn_pio_rxqueue *, int);
static void bwn_destroy_queue_tx(struct bwn_pio_txqueue *);
static uint16_t bwn_pio_read_2(struct bwn_mac *, struct bwn_pio_txqueue *,
uint16_t);
static void bwn_pio_cancel_tx_packets(struct bwn_pio_txqueue *);
static int bwn_pio_rx(struct bwn_pio_rxqueue *);
static uint8_t bwn_pio_rxeof(struct bwn_pio_rxqueue *);
static void bwn_pio_handle_txeof(struct bwn_mac *,
const struct bwn_txstatus *);
static uint16_t bwn_pio_rx_read_2(struct bwn_pio_rxqueue *, uint16_t);
static uint32_t bwn_pio_rx_read_4(struct bwn_pio_rxqueue *, uint16_t);
static void bwn_pio_rx_write_2(struct bwn_pio_rxqueue *, uint16_t,
uint16_t);
static void bwn_pio_rx_write_4(struct bwn_pio_rxqueue *, uint16_t,
uint32_t);
static int bwn_pio_tx_start(struct bwn_mac *, struct ieee80211_node *,
struct mbuf **);
static struct bwn_pio_txqueue *bwn_pio_select(struct bwn_mac *, uint8_t);
static uint32_t bwn_pio_write_multi_4(struct bwn_mac *,
struct bwn_pio_txqueue *, uint32_t, const void *, int);
static void bwn_pio_write_4(struct bwn_mac *, struct bwn_pio_txqueue *,
uint16_t, uint32_t);
static uint16_t bwn_pio_write_multi_2(struct bwn_mac *,
struct bwn_pio_txqueue *, uint16_t, const void *, int);
static uint16_t bwn_pio_write_mbuf_2(struct bwn_mac *,
struct bwn_pio_txqueue *, uint16_t, struct mbuf *);
static struct bwn_pio_txqueue *bwn_pio_parse_cookie(struct bwn_mac *,
uint16_t, struct bwn_pio_txpkt **);
static void bwn_dma_init(struct bwn_mac *);
static void bwn_dma_rxdirectfifo(struct bwn_mac *, int, uint8_t);
static uint16_t bwn_dma_base(int, int);
static void bwn_dma_ringfree(struct bwn_dma_ring **);
static void bwn_dma_32_getdesc(struct bwn_dma_ring *,
int, struct bwn_dmadesc_generic **,
struct bwn_dmadesc_meta **);
static void bwn_dma_32_setdesc(struct bwn_dma_ring *,
struct bwn_dmadesc_generic *, bus_addr_t, uint16_t, int,
int, int);
static void bwn_dma_32_start_transfer(struct bwn_dma_ring *, int);
static void bwn_dma_32_suspend(struct bwn_dma_ring *);
static void bwn_dma_32_resume(struct bwn_dma_ring *);
static int bwn_dma_32_get_curslot(struct bwn_dma_ring *);
static void bwn_dma_32_set_curslot(struct bwn_dma_ring *, int);
static void bwn_dma_64_getdesc(struct bwn_dma_ring *,
int, struct bwn_dmadesc_generic **,
struct bwn_dmadesc_meta **);
static void bwn_dma_64_setdesc(struct bwn_dma_ring *,
struct bwn_dmadesc_generic *, bus_addr_t, uint16_t, int,
int, int);
static void bwn_dma_64_start_transfer(struct bwn_dma_ring *, int);
static void bwn_dma_64_suspend(struct bwn_dma_ring *);
static void bwn_dma_64_resume(struct bwn_dma_ring *);
static int bwn_dma_64_get_curslot(struct bwn_dma_ring *);
static void bwn_dma_64_set_curslot(struct bwn_dma_ring *, int);
static int bwn_dma_allocringmemory(struct bwn_dma_ring *);
static void bwn_dma_setup(struct bwn_dma_ring *);
static void bwn_dma_free_ringmemory(struct bwn_dma_ring *);
static void bwn_dma_cleanup(struct bwn_dma_ring *);
static void bwn_dma_free_descbufs(struct bwn_dma_ring *);
static int bwn_dma_tx_reset(struct bwn_mac *, uint16_t, int);
static void bwn_dma_rx(struct bwn_dma_ring *);
static int bwn_dma_rx_reset(struct bwn_mac *, uint16_t, int);
static void bwn_dma_free_descbuf(struct bwn_dma_ring *,
struct bwn_dmadesc_meta *);
static void bwn_dma_set_redzone(struct bwn_dma_ring *, struct mbuf *);
static void bwn_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
static int bwn_dma_freeslot(struct bwn_dma_ring *);
static int bwn_dma_nextslot(struct bwn_dma_ring *, int);
static void bwn_dma_rxeof(struct bwn_dma_ring *, int *);
static int bwn_dma_newbuf(struct bwn_dma_ring *,
struct bwn_dmadesc_generic *, struct bwn_dmadesc_meta *,
int);
static void bwn_dma_buf_addr(void *, bus_dma_segment_t *, int,
bus_size_t, int);
static uint8_t bwn_dma_check_redzone(struct bwn_dma_ring *, struct mbuf *);
static void bwn_ratectl_tx_complete(const struct ieee80211_node *,
const struct bwn_txstatus *);
static void bwn_dma_handle_txeof(struct bwn_mac *,
const struct bwn_txstatus *);
static int bwn_dma_tx_start(struct bwn_mac *, struct ieee80211_node *,
struct mbuf **);
static int bwn_dma_getslot(struct bwn_dma_ring *);
static struct bwn_dma_ring *bwn_dma_select(struct bwn_mac *,
uint8_t);
static int bwn_dma_attach(struct bwn_mac *);
static struct bwn_dma_ring *bwn_dma_ringsetup(struct bwn_mac *,
int, int);
static struct bwn_dma_ring *bwn_dma_parse_cookie(struct bwn_mac *,
const struct bwn_txstatus *, uint16_t, int *);
static void bwn_dma_free(struct bwn_mac *);
static int bwn_fw_gets(struct bwn_mac *, enum bwn_fwtype);
static int bwn_fw_get(struct bwn_mac *, enum bwn_fwtype,
const char *, struct bwn_fwfile *);
static void bwn_release_firmware(struct bwn_mac *);
static void bwn_do_release_fw(struct bwn_fwfile *);
static uint16_t bwn_fwcaps_read(struct bwn_mac *);
static int bwn_fwinitvals_write(struct bwn_mac *,
const struct bwn_fwinitvals *, size_t, size_t);
static uint16_t bwn_ant2phy(int);
static void bwn_mac_write_bssid(struct bwn_mac *);
static void bwn_mac_setfilter(struct bwn_mac *, uint16_t,
const uint8_t *);
static void bwn_key_dowrite(struct bwn_mac *, uint8_t, uint8_t,
const uint8_t *, size_t, const uint8_t *);
static void bwn_key_macwrite(struct bwn_mac *, uint8_t,
const uint8_t *);
static void bwn_key_write(struct bwn_mac *, uint8_t, uint8_t,
const uint8_t *);
static void bwn_phy_exit(struct bwn_mac *);
static void bwn_core_stop(struct bwn_mac *);
static int bwn_switch_band(struct bwn_softc *,
struct ieee80211_channel *);
static int bwn_phy_reset(struct bwn_mac *);
static int bwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void bwn_set_pretbtt(struct bwn_mac *);
static int bwn_intr(void *);
static void bwn_intrtask(void *, int);
static void bwn_restart(struct bwn_mac *, const char *);
static void bwn_intr_ucode_debug(struct bwn_mac *);
static void bwn_intr_tbtt_indication(struct bwn_mac *);
static void bwn_intr_atim_end(struct bwn_mac *);
static void bwn_intr_beacon(struct bwn_mac *);
static void bwn_intr_pmq(struct bwn_mac *);
static void bwn_intr_noise(struct bwn_mac *);
static void bwn_intr_txeof(struct bwn_mac *);
static void bwn_hwreset(void *, int);
static void bwn_handle_fwpanic(struct bwn_mac *);
static void bwn_load_beacon0(struct bwn_mac *);
static void bwn_load_beacon1(struct bwn_mac *);
static uint32_t bwn_jssi_read(struct bwn_mac *);
static void bwn_noise_gensample(struct bwn_mac *);
static void bwn_handle_txeof(struct bwn_mac *,
const struct bwn_txstatus *);
static void bwn_rxeof(struct bwn_mac *, struct mbuf *, const void *);
static void bwn_phy_txpower_check(struct bwn_mac *, uint32_t);
static int bwn_tx_start(struct bwn_softc *, struct ieee80211_node *,
struct mbuf *);
static int bwn_tx_isfull(struct bwn_softc *, struct mbuf *);
static int bwn_set_txhdr(struct bwn_mac *,
struct ieee80211_node *, struct mbuf *, struct bwn_txhdr *,
uint16_t);
static void bwn_plcp_genhdr(struct bwn_plcp4 *, const uint16_t,
const uint8_t);
static uint8_t bwn_antenna_sanitize(struct bwn_mac *, uint8_t);
static uint8_t bwn_get_fbrate(uint8_t);
static void bwn_txpwr(void *, int);
static void bwn_tasks(void *);
static void bwn_task_15s(struct bwn_mac *);
static void bwn_task_30s(struct bwn_mac *);
static void bwn_task_60s(struct bwn_mac *);
static int bwn_plcp_get_ofdmrate(struct bwn_mac *, struct bwn_plcp6 *,
uint8_t);
static int bwn_plcp_get_cckrate(struct bwn_mac *, struct bwn_plcp6 *);
static void bwn_rx_radiotap(struct bwn_mac *, struct mbuf *,
const struct bwn_rxhdr4 *, struct bwn_plcp6 *, int,
int, int);
static void bwn_tsf_read(struct bwn_mac *, uint64_t *);
static void bwn_set_slot_time(struct bwn_mac *, uint16_t);
static void bwn_watchdog(void *);
static void bwn_dma_stop(struct bwn_mac *);
static void bwn_pio_stop(struct bwn_mac *);
static void bwn_dma_ringstop(struct bwn_dma_ring **);
static int bwn_led_attach(struct bwn_mac *);
static void bwn_led_newstate(struct bwn_mac *, enum ieee80211_state);
static void bwn_led_event(struct bwn_mac *, int);
static void bwn_led_blink_start(struct bwn_mac *, int, int);
static void bwn_led_blink_next(void *);
static void bwn_led_blink_end(void *);
static void bwn_rfswitch(void *);
static void bwn_rf_turnon(struct bwn_mac *);
static void bwn_rf_turnoff(struct bwn_mac *);
static void bwn_sysctl_node(struct bwn_softc *);
static const struct bwn_channelinfo bwn_chantable_bg = {
.channels = {
{ 2412, 1, 30 }, { 2417, 2, 30 }, { 2422, 3, 30 },
{ 2427, 4, 30 }, { 2432, 5, 30 }, { 2437, 6, 30 },
{ 2442, 7, 30 }, { 2447, 8, 30 }, { 2452, 9, 30 },
{ 2457, 10, 30 }, { 2462, 11, 30 }, { 2467, 12, 30 },
{ 2472, 13, 30 }, { 2484, 14, 30 } },
.nchannels = 14
};
static const struct bwn_channelinfo bwn_chantable_a = {
.channels = {
{ 5170, 34, 30 }, { 5180, 36, 30 }, { 5190, 38, 30 },
{ 5200, 40, 30 }, { 5210, 42, 30 }, { 5220, 44, 30 },
{ 5230, 46, 30 }, { 5240, 48, 30 }, { 5260, 52, 30 },
{ 5280, 56, 30 }, { 5300, 60, 30 }, { 5320, 64, 30 },
{ 5500, 100, 30 }, { 5520, 104, 30 }, { 5540, 108, 30 },
{ 5560, 112, 30 }, { 5580, 116, 30 }, { 5600, 120, 30 },
{ 5620, 124, 30 }, { 5640, 128, 30 }, { 5660, 132, 30 },
{ 5680, 136, 30 }, { 5700, 140, 30 }, { 5745, 149, 30 },
{ 5765, 153, 30 }, { 5785, 157, 30 }, { 5805, 161, 30 },
{ 5825, 165, 30 }, { 5920, 184, 30 }, { 5940, 188, 30 },
{ 5960, 192, 30 }, { 5980, 196, 30 }, { 6000, 200, 30 },
{ 6020, 204, 30 }, { 6040, 208, 30 }, { 6060, 212, 30 },
{ 6080, 216, 30 } },
.nchannels = 37
};
#if 0
static const struct bwn_channelinfo bwn_chantable_n = {
.channels = {
{ 5160, 32, 30 }, { 5170, 34, 30 }, { 5180, 36, 30 },
{ 5190, 38, 30 }, { 5200, 40, 30 }, { 5210, 42, 30 },
{ 5220, 44, 30 }, { 5230, 46, 30 }, { 5240, 48, 30 },
{ 5250, 50, 30 }, { 5260, 52, 30 }, { 5270, 54, 30 },
{ 5280, 56, 30 }, { 5290, 58, 30 }, { 5300, 60, 30 },
{ 5310, 62, 30 }, { 5320, 64, 30 }, { 5330, 66, 30 },
{ 5340, 68, 30 }, { 5350, 70, 30 }, { 5360, 72, 30 },
{ 5370, 74, 30 }, { 5380, 76, 30 }, { 5390, 78, 30 },
{ 5400, 80, 30 }, { 5410, 82, 30 }, { 5420, 84, 30 },
{ 5430, 86, 30 }, { 5440, 88, 30 }, { 5450, 90, 30 },
{ 5460, 92, 30 }, { 5470, 94, 30 }, { 5480, 96, 30 },
{ 5490, 98, 30 }, { 5500, 100, 30 }, { 5510, 102, 30 },
{ 5520, 104, 30 }, { 5530, 106, 30 }, { 5540, 108, 30 },
{ 5550, 110, 30 }, { 5560, 112, 30 }, { 5570, 114, 30 },
{ 5580, 116, 30 }, { 5590, 118, 30 }, { 5600, 120, 30 },
{ 5610, 122, 30 }, { 5620, 124, 30 }, { 5630, 126, 30 },
{ 5640, 128, 30 }, { 5650, 130, 30 }, { 5660, 132, 30 },
{ 5670, 134, 30 }, { 5680, 136, 30 }, { 5690, 138, 30 },
{ 5700, 140, 30 }, { 5710, 142, 30 }, { 5720, 144, 30 },
{ 5725, 145, 30 }, { 5730, 146, 30 }, { 5735, 147, 30 },
{ 5740, 148, 30 }, { 5745, 149, 30 }, { 5750, 150, 30 },
{ 5755, 151, 30 }, { 5760, 152, 30 }, { 5765, 153, 30 },
{ 5770, 154, 30 }, { 5775, 155, 30 }, { 5780, 156, 30 },
{ 5785, 157, 30 }, { 5790, 158, 30 }, { 5795, 159, 30 },
{ 5800, 160, 30 }, { 5805, 161, 30 }, { 5810, 162, 30 },
{ 5815, 163, 30 }, { 5820, 164, 30 }, { 5825, 165, 30 },
{ 5830, 166, 30 }, { 5840, 168, 30 }, { 5850, 170, 30 },
{ 5860, 172, 30 }, { 5870, 174, 30 }, { 5880, 176, 30 },
{ 5890, 178, 30 }, { 5900, 180, 30 }, { 5910, 182, 30 },
{ 5920, 184, 30 }, { 5930, 186, 30 }, { 5940, 188, 30 },
{ 5950, 190, 30 }, { 5960, 192, 30 }, { 5970, 194, 30 },
{ 5980, 196, 30 }, { 5990, 198, 30 }, { 6000, 200, 30 },
{ 6010, 202, 30 }, { 6020, 204, 30 }, { 6030, 206, 30 },
{ 6040, 208, 30 }, { 6050, 210, 30 }, { 6060, 212, 30 },
{ 6070, 214, 30 }, { 6080, 216, 30 }, { 6090, 218, 30 },
{ 6100, 220, 30 }, { 6110, 222, 30 }, { 6120, 224, 30 },
{ 6130, 226, 30 }, { 6140, 228, 30 } },
.nchannels = 110
};
#endif
#define VENDOR_LED_ACT(vendor) \
{ \
.vid = PCI_VENDOR_##vendor, \
.led_act = { BWN_VENDOR_LED_ACT_##vendor } \
}
static const struct {
uint16_t vid;
uint8_t led_act[BWN_LED_MAX];
} bwn_vendor_led_act[] = {
VENDOR_LED_ACT(HP_COMPAQ),
VENDOR_LED_ACT(ASUSTEK)
};
static const uint8_t bwn_default_led_act[BWN_LED_MAX] =
{ BWN_VENDOR_LED_ACT_DEFAULT };
#undef VENDOR_LED_ACT
static const char *bwn_led_vars[] = {
BHND_NVAR_LEDBH0,
BHND_NVAR_LEDBH1,
BHND_NVAR_LEDBH2,
BHND_NVAR_LEDBH3
};
static const struct {
int on_dur;
int off_dur;
} bwn_led_duration[109] = {
[0] = { 400, 100 },
[2] = { 150, 75 },
[4] = { 90, 45 },
[11] = { 66, 34 },
[12] = { 53, 26 },
[18] = { 42, 21 },
[22] = { 35, 17 },
[24] = { 32, 16 },
[36] = { 21, 10 },
[48] = { 16, 8 },
[72] = { 11, 5 },
[96] = { 9, 4 },
[108] = { 7, 3 }
};
static const uint16_t bwn_wme_shm_offsets[] = {
[0] = BWN_WME_BESTEFFORT,
[1] = BWN_WME_BACKGROUND,
[2] = BWN_WME_VOICE,
[3] = BWN_WME_VIDEO,
};
/* Supported D11 core revisions */
#define BWN_DEV(_hwrev) {{ \
BHND_MATCH_CORE(BHND_MFGID_BCM, BHND_COREID_D11), \
BHND_MATCH_CORE_REV(_hwrev), \
}}
static const struct bhnd_device bwn_devices[] = {
BWN_DEV(HWREV_RANGE(5, 16)),
BWN_DEV(HWREV_EQ(23)),
BHND_DEVICE_END
};
/* D11 quirks when bridged via a PCI host bridge core */
static const struct bhnd_device_quirk pci_bridge_quirks[] = {
BHND_CORE_QUIRK (HWREV_LTE(10), BWN_QUIRK_UCODE_SLOWCLOCK_WAR),
BHND_DEVICE_QUIRK_END
};
/* D11 quirks when bridged via a PCMCIA host bridge core */
static const struct bhnd_device_quirk pcmcia_bridge_quirks[] = {
BHND_CORE_QUIRK (HWREV_ANY, BWN_QUIRK_NODMA),
BHND_DEVICE_QUIRK_END
};
/* Host bridge cores for which D11 quirk flags should be applied */
static const struct bhnd_device bridge_devices[] = {
BHND_DEVICE(BCM, PCI, NULL, pci_bridge_quirks),
BHND_DEVICE(BCM, PCMCIA, NULL, pcmcia_bridge_quirks),
BHND_DEVICE_END
};
static int
bwn_probe(device_t dev)
{
const struct bhnd_device *id;
id = bhnd_device_lookup(dev, bwn_devices, sizeof(bwn_devices[0]));
if (id == NULL)
return (ENXIO);
bhnd_set_default_core_desc(dev);
return (BUS_PROBE_DEFAULT);
}
static int
bwn_attach(device_t dev)
{
struct bwn_mac *mac;
struct bwn_softc *sc;
device_t parent, hostb;
char chip_name[BHND_CHIPID_MAX_NAMELEN];
int error;
sc = device_get_softc(dev);
sc->sc_dev = dev;
#ifdef BWN_DEBUG
sc->sc_debug = bwn_debug;
#endif
mac = NULL;
/* Determine the driver quirks applicable to this device, including any
* quirks specific to the bus host bridge core (if any) */
sc->sc_quirks = bhnd_device_quirks(dev, bwn_devices,
sizeof(bwn_devices[0]));
parent = device_get_parent(dev);
if ((hostb = bhnd_bus_find_hostb_device(parent)) != NULL) {
sc->sc_quirks |= bhnd_device_quirks(hostb, bridge_devices,
sizeof(bridge_devices[0]));
}
/* DMA explicitly disabled? */
if (!bwn_usedma)
sc->sc_quirks |= BWN_QUIRK_NODMA;
/* Fetch our chip identification and board info */
sc->sc_cid = *bhnd_get_chipid(dev);
if ((error = bhnd_read_board_info(dev, &sc->sc_board_info))) {
device_printf(sc->sc_dev, "couldn't read board info\n");
return (error);
}
/* Allocate our D11 register block and PMU state */
sc->sc_mem_rid = 0;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_mem_rid, RF_ACTIVE);
if (sc->sc_mem_res == NULL) {
device_printf(sc->sc_dev, "couldn't allocate registers\n");
return (error);
}
if ((error = bhnd_alloc_pmu(sc->sc_dev))) {
bus_release_resource(sc->sc_dev, SYS_RES_MEMORY,
sc->sc_mem_rid, sc->sc_mem_res);
return (error);
}
/* Retain references to all required bus service providers */
if ((error = bwn_retain_bus_providers(sc)))
goto fail;
/* Fetch mask of available antennas */
error = bhnd_nvram_getvar_uint8(sc->sc_dev, BHND_NVAR_AA2G,
&sc->sc_ant2g);
if (error) {
device_printf(sc->sc_dev, "error determining 2GHz antenna "
"availability from NVRAM: %d\n", error);
goto fail;
}
error = bhnd_nvram_getvar_uint8(sc->sc_dev, BHND_NVAR_AA5G,
&sc->sc_ant5g);
if (error) {
device_printf(sc->sc_dev, "error determining 5GHz antenna "
"availability from NVRAM: %d\n", error);
goto fail;
}
if ((sc->sc_flags & BWN_FLAG_ATTACHED) == 0) {
bwn_attach_pre(sc);
bwn_sprom_bugfixes(dev);
sc->sc_flags |= BWN_FLAG_ATTACHED;
}
mac = malloc(sizeof(*mac), M_DEVBUF, M_WAITOK | M_ZERO);
mac->mac_sc = sc;
mac->mac_status = BWN_MAC_STATUS_UNINIT;
if (bwn_bfp != 0)
mac->mac_flags |= BWN_MAC_FLAG_BADFRAME_PREEMP;
TASK_INIT(&mac->mac_hwreset, 0, bwn_hwreset, mac);
TASK_INIT(&mac->mac_intrtask, 0, bwn_intrtask, mac);
TASK_INIT(&mac->mac_txpower, 0, bwn_txpwr, mac);
error = bwn_attach_core(mac);
if (error)
goto fail;
error = bwn_led_attach(mac);
if (error)
goto fail;
bhnd_format_chip_id(chip_name, sizeof(chip_name), sc->sc_cid.chip_id);
device_printf(sc->sc_dev, "WLAN (%s rev %u) "
"PHY (analog %d type %d rev %d) RADIO (manuf %#x ver %#x rev %d)\n",
chip_name, bhnd_get_hwrev(sc->sc_dev), mac->mac_phy.analog,
mac->mac_phy.type, mac->mac_phy.rev, mac->mac_phy.rf_manuf,
mac->mac_phy.rf_ver, mac->mac_phy.rf_rev);
if (mac->mac_flags & BWN_MAC_FLAG_DMA)
device_printf(sc->sc_dev, "DMA (%d bits)\n", mac->mac_dmatype);
else
device_printf(sc->sc_dev, "PIO\n");
#ifdef BWN_GPL_PHY
device_printf(sc->sc_dev,
"Note: compiled with BWN_GPL_PHY; includes GPLv2 code\n");
#endif
mac->mac_rid_irq = 0;
mac->mac_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&mac->mac_rid_irq, RF_ACTIVE | RF_SHAREABLE);
if (mac->mac_res_irq == NULL) {
device_printf(sc->sc_dev, "couldn't allocate IRQ resource\n");
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, mac->mac_res_irq,
INTR_TYPE_NET | INTR_MPSAFE, bwn_intr, NULL, mac,
&mac->mac_intrhand);
if (error != 0) {
device_printf(sc->sc_dev, "couldn't setup interrupt (%d)\n",
error);
goto fail;
}
TAILQ_INSERT_TAIL(&sc->sc_maclist, mac, mac_list);
/*
* calls attach-post routine
*/
if ((sc->sc_flags & BWN_FLAG_ATTACHED) != 0)
bwn_attach_post(sc);
return (0);
fail:
if (mac != NULL && mac->mac_res_irq != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, mac->mac_rid_irq,
mac->mac_res_irq);
}
free(mac, M_DEVBUF);
bhnd_release_pmu(dev);
bwn_release_bus_providers(sc);
if (sc->sc_mem_res != NULL) {
bus_release_resource(sc->sc_dev, SYS_RES_MEMORY,
sc->sc_mem_rid, sc->sc_mem_res);
}
return (error);
}
static int
bwn_retain_bus_providers(struct bwn_softc *sc)
{
struct chipc_caps *ccaps;
sc->sc_chipc = bhnd_retain_provider(sc->sc_dev, BHND_SERVICE_CHIPC);
if (sc->sc_chipc == NULL) {
device_printf(sc->sc_dev, "ChipCommon device not found\n");
goto failed;
}
ccaps = BHND_CHIPC_GET_CAPS(sc->sc_chipc);
sc->sc_gpio = bhnd_retain_provider(sc->sc_dev, BHND_SERVICE_GPIO);
if (sc->sc_gpio == NULL) {
device_printf(sc->sc_dev, "GPIO device not found\n");
goto failed;
}
if (ccaps->pmu) {
sc->sc_pmu = bhnd_retain_provider(sc->sc_dev, BHND_SERVICE_PMU);
if (sc->sc_pmu == NULL) {
device_printf(sc->sc_dev, "PMU device not found\n");
goto failed;
}
}
return (0);
failed:
bwn_release_bus_providers(sc);
return (ENXIO);
}
static void
bwn_release_bus_providers(struct bwn_softc *sc)
{
#define BWN_RELEASE_PROV(_sc, _prov, _service) do { \
if ((_sc)-> _prov != NULL) { \
bhnd_release_provider((_sc)->sc_dev, (_sc)-> _prov, \
(_service)); \
(_sc)-> _prov = NULL; \
} \
} while (0)
BWN_RELEASE_PROV(sc, sc_chipc, BHND_SERVICE_CHIPC);
BWN_RELEASE_PROV(sc, sc_gpio, BHND_SERVICE_GPIO);
BWN_RELEASE_PROV(sc, sc_pmu, BHND_SERVICE_PMU);
#undef BWN_RELEASE_PROV
}
static int
bwn_attach_post(struct bwn_softc *sc)
{
struct ieee80211com *ic;
const char *mac_varname;
u_int core_unit;
int error;
ic = &sc->sc_ic;
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(sc->sc_dev);
/* XXX not right but it's not used anywhere important */
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_AHDEMO /* adhoc demo mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WME /* WME/WMM supported */
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
#if 0
| IEEE80211_C_BGSCAN /* capable of bg scanning */
#endif
| IEEE80211_C_TXPMGT /* capable of txpow mgt */
;
ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; /* s/w bmiss */
/* Determine the NVRAM variable containing our MAC address */
core_unit = bhnd_get_core_unit(sc->sc_dev);
mac_varname = NULL;
if (sc->sc_board_info.board_srom_rev <= 2) {
if (core_unit == 0) {
mac_varname = BHND_NVAR_IL0MACADDR;
} else if (core_unit == 1) {
mac_varname = BHND_NVAR_ET1MACADDR;
}
} else {
if (core_unit == 0) {
mac_varname = BHND_NVAR_MACADDR;
}
}
if (mac_varname == NULL) {
device_printf(sc->sc_dev, "missing MAC address variable for "
"D11 core %u", core_unit);
return (ENXIO);
}
/* Read the MAC address from NVRAM */
error = bhnd_nvram_getvar_array(sc->sc_dev, mac_varname, ic->ic_macaddr,
sizeof(ic->ic_macaddr), BHND_NVRAM_TYPE_UINT8_ARRAY);
if (error) {
device_printf(sc->sc_dev, "error reading %s: %d\n", mac_varname,
error);
return (error);
}
/* call MI attach routine. */
ieee80211_ifattach(ic);
ic->ic_headroom = sizeof(struct bwn_txhdr);
/* override default methods */
ic->ic_raw_xmit = bwn_raw_xmit;
ic->ic_updateslot = bwn_updateslot;
ic->ic_update_promisc = bwn_update_promisc;
ic->ic_wme.wme_update = bwn_wme_update;
ic->ic_scan_start = bwn_scan_start;
ic->ic_scan_end = bwn_scan_end;
ic->ic_set_channel = bwn_set_channel;
ic->ic_vap_create = bwn_vap_create;
ic->ic_vap_delete = bwn_vap_delete;
ic->ic_transmit = bwn_transmit;
ic->ic_parent = bwn_parent;
ieee80211_radiotap_attach(ic,
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
BWN_TX_RADIOTAP_PRESENT,
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
BWN_RX_RADIOTAP_PRESENT);
bwn_sysctl_node(sc);
if (bootverbose)
ieee80211_announce(ic);
return (0);
}
static void
bwn_phy_detach(struct bwn_mac *mac)
{
if (mac->mac_phy.detach != NULL)
mac->mac_phy.detach(mac);
}
static int
bwn_detach(device_t dev)
{
struct bwn_softc *sc = device_get_softc(dev);
struct bwn_mac *mac = sc->sc_curmac;
struct ieee80211com *ic = &sc->sc_ic;
sc->sc_flags |= BWN_FLAG_INVALID;
if (device_is_attached(sc->sc_dev)) {
BWN_LOCK(sc);
bwn_stop(sc);
BWN_UNLOCK(sc);
bwn_dma_free(mac);
callout_drain(&sc->sc_led_blink_ch);
callout_drain(&sc->sc_rfswitch_ch);
callout_drain(&sc->sc_task_ch);
callout_drain(&sc->sc_watchdog_ch);
bwn_phy_detach(mac);
ieee80211_draintask(ic, &mac->mac_hwreset);
ieee80211_draintask(ic, &mac->mac_txpower);
ieee80211_ifdetach(ic);
}
taskqueue_drain(sc->sc_tq, &mac->mac_intrtask);
taskqueue_free(sc->sc_tq);
if (mac->mac_intrhand != NULL) {
bus_teardown_intr(dev, mac->mac_res_irq, mac->mac_intrhand);
mac->mac_intrhand = NULL;
}
bhnd_release_pmu(dev);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
sc->sc_mem_res);
bus_release_resource(dev, SYS_RES_IRQ, mac->mac_rid_irq,
mac->mac_res_irq);
mbufq_drain(&sc->sc_snd);
bwn_release_firmware(mac);
BWN_LOCK_DESTROY(sc);
bwn_release_bus_providers(sc);
return (0);
}
static void
bwn_attach_pre(struct bwn_softc *sc)
{
BWN_LOCK_INIT(sc);
TAILQ_INIT(&sc->sc_maclist);
callout_init_mtx(&sc->sc_rfswitch_ch, &sc->sc_mtx, 0);
callout_init_mtx(&sc->sc_task_ch, &sc->sc_mtx, 0);
callout_init_mtx(&sc->sc_watchdog_ch, &sc->sc_mtx, 0);
mbufq_init(&sc->sc_snd, ifqmaxlen);
sc->sc_tq = taskqueue_create_fast("bwn_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->sc_tq);
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
"%s taskq", device_get_nameunit(sc->sc_dev));
}
static void
bwn_sprom_bugfixes(device_t dev)
{
struct bwn_softc *sc = device_get_softc(dev);
#define BWN_ISDEV(_device, _subvendor, _subdevice) \
((sc->sc_board_info.board_devid == PCI_DEVID_##_device) && \
(sc->sc_board_info.board_vendor == PCI_VENDOR_##_subvendor) && \
(sc->sc_board_info.board_type == _subdevice))
/* A subset of Apple Airport Extreme (BCM4306 rev 2) devices
* were programmed with a missing PACTRL boardflag */
if (sc->sc_board_info.board_vendor == PCI_VENDOR_APPLE &&
sc->sc_board_info.board_type == 0x4e &&
sc->sc_board_info.board_rev > 0x40)
sc->sc_board_info.board_flags |= BHND_BFL_PACTRL;
if (BWN_ISDEV(BCM4318_D11G, ASUSTEK, 0x100f) ||
BWN_ISDEV(BCM4306_D11G, DELL, 0x0003) ||
BWN_ISDEV(BCM4306_D11G, HP, 0x12f8) ||
BWN_ISDEV(BCM4306_D11G, LINKSYS, 0x0013) ||
BWN_ISDEV(BCM4306_D11G, LINKSYS, 0x0014) ||
BWN_ISDEV(BCM4306_D11G, LINKSYS, 0x0015) ||
BWN_ISDEV(BCM4306_D11G, MOTOROLA, 0x7010))
sc->sc_board_info.board_flags &= ~BHND_BFL_BTCOEX;
#undef BWN_ISDEV
}
static void
bwn_parent(struct ieee80211com *ic)
{
struct bwn_softc *sc = ic->ic_softc;
int startall = 0;
BWN_LOCK(sc);
if (ic->ic_nrunning > 0) {
if ((sc->sc_flags & BWN_FLAG_RUNNING) == 0) {
bwn_init(sc);
startall = 1;
} else
bwn_update_promisc(ic);
} else if (sc->sc_flags & BWN_FLAG_RUNNING)
bwn_stop(sc);
BWN_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
}
static int
bwn_transmit(struct ieee80211com *ic, struct mbuf *m)
{
struct bwn_softc *sc = ic->ic_softc;
int error;
BWN_LOCK(sc);
if ((sc->sc_flags & BWN_FLAG_RUNNING) == 0) {
BWN_UNLOCK(sc);
return (ENXIO);
}
error = mbufq_enqueue(&sc->sc_snd, m);
if (error) {
BWN_UNLOCK(sc);
return (error);
}
bwn_start(sc);
BWN_UNLOCK(sc);
return (0);
}
static void
bwn_start(struct bwn_softc *sc)
{
struct bwn_mac *mac = sc->sc_curmac;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct ieee80211_key *k;
struct mbuf *m;
BWN_ASSERT_LOCKED(sc);
if ((sc->sc_flags & BWN_FLAG_RUNNING) == 0 || mac == NULL ||
mac->mac_status < BWN_MAC_STATUS_STARTED)
return;
while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
if (bwn_tx_isfull(sc, m))
break;
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
if (ni == NULL) {
device_printf(sc->sc_dev, "unexpected NULL ni\n");
m_freem(m);
counter_u64_add(sc->sc_ic.ic_oerrors, 1);
continue;
}
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
if_inc_counter(ni->ni_vap->iv_ifp,
IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
m_freem(m);
continue;
}
}
wh = NULL; /* Catch any invalid use */
if (bwn_tx_start(sc, ni, m) != 0) {
if (ni != NULL) {
if_inc_counter(ni->ni_vap->iv_ifp,
IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
}
continue;
}
sc->sc_watchdog_timer = 5;
}
}
static int
bwn_tx_isfull(struct bwn_softc *sc, struct mbuf *m)
{
struct bwn_dma_ring *dr;
struct bwn_mac *mac = sc->sc_curmac;
struct bwn_pio_txqueue *tq;
int pktlen = roundup(m->m_pkthdr.len + BWN_HDRSIZE(mac), 4);
BWN_ASSERT_LOCKED(sc);
if (mac->mac_flags & BWN_MAC_FLAG_DMA) {
dr = bwn_dma_select(mac, M_WME_GETAC(m));
if (dr->dr_stop == 1 ||
bwn_dma_freeslot(dr) < BWN_TX_SLOTS_PER_FRAME) {
dr->dr_stop = 1;
goto full;
}
} else {
tq = bwn_pio_select(mac, M_WME_GETAC(m));
if (tq->tq_free == 0 || pktlen > tq->tq_size ||
pktlen > (tq->tq_size - tq->tq_used))
goto full;
}
return (0);
full:
mbufq_prepend(&sc->sc_snd, m);
return (1);
}
static int
bwn_tx_start(struct bwn_softc *sc, struct ieee80211_node *ni, struct mbuf *m)
{
struct bwn_mac *mac = sc->sc_curmac;
int error;
BWN_ASSERT_LOCKED(sc);
if (m->m_pkthdr.len < IEEE80211_MIN_LEN || mac == NULL) {
m_freem(m);
return (ENXIO);
}
error = (mac->mac_flags & BWN_MAC_FLAG_DMA) ?
bwn_dma_tx_start(mac, ni, &m) : bwn_pio_tx_start(mac, ni, &m);
if (error) {
m_freem(m);
return (error);
}
return (0);
}
static int
bwn_pio_tx_start(struct bwn_mac *mac, struct ieee80211_node *ni,
struct mbuf **mp)
{
struct bwn_pio_txpkt *tp;
struct bwn_pio_txqueue *tq;
struct bwn_softc *sc = mac->mac_sc;
struct bwn_txhdr txhdr;
struct mbuf *m, *m_new;
uint32_t ctl32;
int error;
uint16_t ctl16;
BWN_ASSERT_LOCKED(sc);
/* XXX TODO send packets after DTIM */
m = *mp;
tq = bwn_pio_select(mac, M_WME_GETAC(m));
KASSERT(!TAILQ_EMPTY(&tq->tq_pktlist), ("%s: fail", __func__));
tp = TAILQ_FIRST(&tq->tq_pktlist);
tp->tp_ni = ni;
tp->tp_m = m;
error = bwn_set_txhdr(mac, ni, m, &txhdr, BWN_PIO_COOKIE(tq, tp));
if (error) {
device_printf(sc->sc_dev, "tx fail\n");
return (error);
}
TAILQ_REMOVE(&tq->tq_pktlist, tp, tp_list);
tq->tq_used += roundup(m->m_pkthdr.len + BWN_HDRSIZE(mac), 4);
tq->tq_free--;
if (bhnd_get_hwrev(sc->sc_dev) >= 8) {
/*
* XXX please removes m_defrag(9)
*/
m_new = m_defrag(*mp, M_NOWAIT);
if (m_new == NULL) {
device_printf(sc->sc_dev,
"%s: can't defrag TX buffer\n",
__func__);
return (ENOBUFS);
}
*mp = m_new;
if (m_new->m_next != NULL)
device_printf(sc->sc_dev,
"TODO: fragmented packets for PIO\n");
tp->tp_m = m_new;
/* send HEADER */
ctl32 = bwn_pio_write_multi_4(mac, tq,
(BWN_PIO_READ_4(mac, tq, BWN_PIO8_TXCTL) |
BWN_PIO8_TXCTL_FRAMEREADY) & ~BWN_PIO8_TXCTL_EOF,
(const uint8_t *)&txhdr, BWN_HDRSIZE(mac));
/* send BODY */
ctl32 = bwn_pio_write_multi_4(mac, tq, ctl32,
mtod(m_new, const void *), m_new->m_pkthdr.len);
bwn_pio_write_4(mac, tq, BWN_PIO_TXCTL,
ctl32 | BWN_PIO8_TXCTL_EOF);
} else {
ctl16 = bwn_pio_write_multi_2(mac, tq,
(bwn_pio_read_2(mac, tq, BWN_PIO_TXCTL) |
BWN_PIO_TXCTL_FRAMEREADY) & ~BWN_PIO_TXCTL_EOF,
(const uint8_t *)&txhdr, BWN_HDRSIZE(mac));
ctl16 = bwn_pio_write_mbuf_2(mac, tq, ctl16, m);
BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXCTL,
ctl16 | BWN_PIO_TXCTL_EOF);
}
return (0);
}
static struct bwn_pio_txqueue *
bwn_pio_select(struct bwn_mac *mac, uint8_t prio)
{
if ((mac->mac_flags & BWN_MAC_FLAG_WME) == 0)
return (&mac->mac_method.pio.wme[WME_AC_BE]);
switch (prio) {
case 0:
return (&mac->mac_method.pio.wme[WME_AC_BE]);
case 1:
return (&mac->mac_method.pio.wme[WME_AC_BK]);
case 2:
return (&mac->mac_method.pio.wme[WME_AC_VI]);
case 3:
return (&mac->mac_method.pio.wme[WME_AC_VO]);
}
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
return (NULL);
}
static int
bwn_dma_tx_start(struct bwn_mac *mac, struct ieee80211_node *ni,
struct mbuf **mp)
{
#define BWN_GET_TXHDRCACHE(slot) \
&(txhdr_cache[(slot / BWN_TX_SLOTS_PER_FRAME) * BWN_HDRSIZE(mac)])
struct bwn_dma *dma = &mac->mac_method.dma;
struct bwn_dma_ring *dr = bwn_dma_select(mac, M_WME_GETAC(*mp));
struct bwn_dmadesc_generic *desc;
struct bwn_dmadesc_meta *mt;
struct bwn_softc *sc = mac->mac_sc;
struct mbuf *m;
uint8_t *txhdr_cache = (uint8_t *)dr->dr_txhdr_cache;
int error, slot, backup[2] = { dr->dr_curslot, dr->dr_usedslot };
BWN_ASSERT_LOCKED(sc);
KASSERT(!dr->dr_stop, ("%s:%d: fail", __func__, __LINE__));
/* XXX send after DTIM */
m = *mp;
slot = bwn_dma_getslot(dr);
dr->getdesc(dr, slot, &desc, &mt);
KASSERT(mt->mt_txtype == BWN_DMADESC_METATYPE_HEADER,
("%s:%d: fail", __func__, __LINE__));
error = bwn_set_txhdr(dr->dr_mac, ni, m,
(struct bwn_txhdr *)BWN_GET_TXHDRCACHE(slot),
BWN_DMA_COOKIE(dr, slot));
if (error)
goto fail;
error = bus_dmamap_load(dr->dr_txring_dtag, mt->mt_dmap,
BWN_GET_TXHDRCACHE(slot), BWN_HDRSIZE(mac), bwn_dma_ring_addr,
&mt->mt_paddr, BUS_DMA_NOWAIT);
if (error) {
device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
__func__, error);
goto fail;
}
bus_dmamap_sync(dr->dr_txring_dtag, mt->mt_dmap,
BUS_DMASYNC_PREWRITE);
dr->setdesc(dr, desc, mt->mt_paddr, BWN_HDRSIZE(mac), 1, 0, 0);
bus_dmamap_sync(dr->dr_ring_dtag, dr->dr_ring_dmap,
BUS_DMASYNC_PREWRITE);
slot = bwn_dma_getslot(dr);
dr->getdesc(dr, slot, &desc, &mt);
KASSERT(mt->mt_txtype == BWN_DMADESC_METATYPE_BODY &&
mt->mt_islast == 1, ("%s:%d: fail", __func__, __LINE__));
mt->mt_m = m;
mt->mt_ni = ni;
error = bus_dmamap_load_mbuf(dma->txbuf_dtag, mt->mt_dmap, m,
bwn_dma_buf_addr, &mt->mt_paddr, BUS_DMA_NOWAIT);
if (error && error != EFBIG) {
device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
__func__, error);
goto fail;
}
if (error) { /* error == EFBIG */
struct mbuf *m_new;
m_new = m_defrag(m, M_NOWAIT);
if (m_new == NULL) {
device_printf(sc->sc_dev,
"%s: can't defrag TX buffer\n",
__func__);
error = ENOBUFS;
goto fail;
}
*mp = m = m_new;
mt->mt_m = m;
error = bus_dmamap_load_mbuf(dma->txbuf_dtag, mt->mt_dmap,
m, bwn_dma_buf_addr, &mt->mt_paddr, BUS_DMA_NOWAIT);
if (error) {
device_printf(sc->sc_dev,
"%s: can't load TX buffer (2) %d\n",
__func__, error);
goto fail;
}
}
bus_dmamap_sync(dma->txbuf_dtag, mt->mt_dmap, BUS_DMASYNC_PREWRITE);
dr->setdesc(dr, desc, mt->mt_paddr, m->m_pkthdr.len, 0, 1, 1);
bus_dmamap_sync(dr->dr_ring_dtag, dr->dr_ring_dmap,
BUS_DMASYNC_PREWRITE);
/* XXX send after DTIM */
dr->start_transfer(dr, bwn_dma_nextslot(dr, slot));
return (0);
fail:
dr->dr_curslot = backup[0];
dr->dr_usedslot = backup[1];
return (error);
#undef BWN_GET_TXHDRCACHE
}
static void
bwn_watchdog(void *arg)
{
struct bwn_softc *sc = arg;
if (sc->sc_watchdog_timer != 0 && --sc->sc_watchdog_timer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
counter_u64_add(sc->sc_ic.ic_oerrors, 1);
}
callout_schedule(&sc->sc_watchdog_ch, hz);
}
static int
bwn_attach_core(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
int error, have_bg = 0, have_a = 0;
uint16_t iost;
KASSERT(bhnd_get_hwrev(sc->sc_dev) >= 5,
("unsupported revision %d", bhnd_get_hwrev(sc->sc_dev)));
if ((error = bwn_core_forceclk(mac, true)))
return (error);
if ((error = bhnd_read_iost(sc->sc_dev, &iost))) {
device_printf(sc->sc_dev, "error reading I/O status flags: "
"%d\n", error);
return (error);
}
have_a = (iost & BWN_IOST_HAVE_5GHZ) ? 1 : 0;
have_bg = (iost & BWN_IOST_HAVE_2GHZ) ? 1 : 0;
if (iost & BWN_IOST_DUALPHY) {
have_bg = 1;
have_a = 1;
}
#if 0
device_printf(sc->sc_dev, "%s: iost=0x%04hx, have_a=%d, have_bg=%d,"
" deviceid=0x%04x, siba_deviceid=0x%04x\n",
__func__,
iost,
have_a,
have_bg,
sc->sc_board_info.board_devid,
sc->sc_cid.chip_id);
#endif
/*
* Guess at whether it has A-PHY or G-PHY.
* This is just used for resetting the core to probe things;
* we will re-guess once it's all up and working.
*/
error = bwn_reset_core(mac, have_bg);
if (error)
goto fail;
/*
* Determine the DMA engine type
*/
if (iost & BHND_IOST_DMA64) {
mac->mac_dmatype = BHND_DMA_ADDR_64BIT;
} else {
uint32_t tmp;
uint16_t base;
base = bwn_dma_base(0, 0);
BWN_WRITE_4(mac, base + BWN_DMA32_TXCTL,
BWN_DMA32_TXADDREXT_MASK);
tmp = BWN_READ_4(mac, base + BWN_DMA32_TXCTL);
if (tmp & BWN_DMA32_TXADDREXT_MASK) {
mac->mac_dmatype = BHND_DMA_ADDR_32BIT;
} else {
mac->mac_dmatype = BHND_DMA_ADDR_30BIT;
}
}
/*
* Get the PHY version.
*/
error = bwn_phy_getinfo(mac, have_bg);
if (error)
goto fail;
/*
* This is the whitelist of devices which we "believe"
* the SPROM PHY config from. The rest are "guessed".
*/
if (sc->sc_board_info.board_devid != PCI_DEVID_BCM4311_D11DUAL &&
sc->sc_board_info.board_devid != PCI_DEVID_BCM4328_D11G &&
sc->sc_board_info.board_devid != PCI_DEVID_BCM4318_D11DUAL &&
sc->sc_board_info.board_devid != PCI_DEVID_BCM4306_D11DUAL &&
sc->sc_board_info.board_devid != PCI_DEVID_BCM4321_D11N &&
sc->sc_board_info.board_devid != PCI_DEVID_BCM4322_D11N) {
have_a = have_bg = 0;
if (mac->mac_phy.type == BWN_PHYTYPE_A)
have_a = 1;
else if (mac->mac_phy.type == BWN_PHYTYPE_G ||
mac->mac_phy.type == BWN_PHYTYPE_N ||
mac->mac_phy.type == BWN_PHYTYPE_LP)
have_bg = 1;
else
KASSERT(0 == 1, ("%s: unknown phy type (%d)", __func__,
mac->mac_phy.type));
}
/*
* XXX The PHY-G support doesn't do 5GHz operation.
*/
if (mac->mac_phy.type != BWN_PHYTYPE_LP &&
mac->mac_phy.type != BWN_PHYTYPE_N) {
device_printf(sc->sc_dev,
"%s: forcing 2GHz only; no dual-band support for PHY\n",
__func__);
have_a = 0;
have_bg = 1;
}
mac->mac_phy.phy_n = NULL;
if (mac->mac_phy.type == BWN_PHYTYPE_G) {
mac->mac_phy.attach = bwn_phy_g_attach;
mac->mac_phy.detach = bwn_phy_g_detach;
mac->mac_phy.prepare_hw = bwn_phy_g_prepare_hw;
mac->mac_phy.init_pre = bwn_phy_g_init_pre;
mac->mac_phy.init = bwn_phy_g_init;
mac->mac_phy.exit = bwn_phy_g_exit;
mac->mac_phy.phy_read = bwn_phy_g_read;
mac->mac_phy.phy_write = bwn_phy_g_write;
mac->mac_phy.rf_read = bwn_phy_g_rf_read;
mac->mac_phy.rf_write = bwn_phy_g_rf_write;
mac->mac_phy.use_hwpctl = bwn_phy_g_hwpctl;
mac->mac_phy.rf_onoff = bwn_phy_g_rf_onoff;
mac->mac_phy.switch_analog = bwn_phy_switch_analog;
mac->mac_phy.switch_channel = bwn_phy_g_switch_channel;
mac->mac_phy.get_default_chan = bwn_phy_g_get_default_chan;
mac->mac_phy.set_antenna = bwn_phy_g_set_antenna;
mac->mac_phy.set_im = bwn_phy_g_im;
mac->mac_phy.recalc_txpwr = bwn_phy_g_recalc_txpwr;
mac->mac_phy.set_txpwr = bwn_phy_g_set_txpwr;
mac->mac_phy.task_15s = bwn_phy_g_task_15s;
mac->mac_phy.task_60s = bwn_phy_g_task_60s;
} else if (mac->mac_phy.type == BWN_PHYTYPE_LP) {
mac->mac_phy.init_pre = bwn_phy_lp_init_pre;
mac->mac_phy.init = bwn_phy_lp_init;
mac->mac_phy.phy_read = bwn_phy_lp_read;
mac->mac_phy.phy_write = bwn_phy_lp_write;
mac->mac_phy.phy_maskset = bwn_phy_lp_maskset;
mac->mac_phy.rf_read = bwn_phy_lp_rf_read;
mac->mac_phy.rf_write = bwn_phy_lp_rf_write;
mac->mac_phy.rf_onoff = bwn_phy_lp_rf_onoff;
mac->mac_phy.switch_analog = bwn_phy_lp_switch_analog;
mac->mac_phy.switch_channel = bwn_phy_lp_switch_channel;
mac->mac_phy.get_default_chan = bwn_phy_lp_get_default_chan;
mac->mac_phy.set_antenna = bwn_phy_lp_set_antenna;
mac->mac_phy.task_60s = bwn_phy_lp_task_60s;
} else if (mac->mac_phy.type == BWN_PHYTYPE_N) {
mac->mac_phy.attach = bwn_phy_n_attach;
mac->mac_phy.detach = bwn_phy_n_detach;
mac->mac_phy.prepare_hw = bwn_phy_n_prepare_hw;
mac->mac_phy.init_pre = bwn_phy_n_init_pre;
mac->mac_phy.init = bwn_phy_n_init;
mac->mac_phy.exit = bwn_phy_n_exit;
mac->mac_phy.phy_read = bwn_phy_n_read;
mac->mac_phy.phy_write = bwn_phy_n_write;
mac->mac_phy.rf_read = bwn_phy_n_rf_read;
mac->mac_phy.rf_write = bwn_phy_n_rf_write;
mac->mac_phy.use_hwpctl = bwn_phy_n_hwpctl;
mac->mac_phy.rf_onoff = bwn_phy_n_rf_onoff;
mac->mac_phy.switch_analog = bwn_phy_n_switch_analog;
mac->mac_phy.switch_channel = bwn_phy_n_switch_channel;
mac->mac_phy.get_default_chan = bwn_phy_n_get_default_chan;
mac->mac_phy.set_antenna = bwn_phy_n_set_antenna;
mac->mac_phy.set_im = bwn_phy_n_im;
mac->mac_phy.recalc_txpwr = bwn_phy_n_recalc_txpwr;
mac->mac_phy.set_txpwr = bwn_phy_n_set_txpwr;
mac->mac_phy.task_15s = bwn_phy_n_task_15s;
mac->mac_phy.task_60s = bwn_phy_n_task_60s;
} else {
device_printf(sc->sc_dev, "unsupported PHY type (%d)\n",
mac->mac_phy.type);
error = ENXIO;
goto fail;
}
mac->mac_phy.gmode = have_bg;
if (mac->mac_phy.attach != NULL) {
error = mac->mac_phy.attach(mac);
if (error) {
device_printf(sc->sc_dev, "failed\n");
goto fail;
}
}
error = bwn_reset_core(mac, have_bg);
if (error)
goto fail;
error = bwn_chiptest(mac);
if (error)
goto fail;
error = bwn_setup_channels(mac, have_bg, have_a);
if (error) {
device_printf(sc->sc_dev, "failed to setup channels\n");
goto fail;
}
if (sc->sc_curmac == NULL)
sc->sc_curmac = mac;
error = bwn_dma_attach(mac);
if (error != 0) {
device_printf(sc->sc_dev, "failed to initialize DMA\n");
goto fail;
}
mac->mac_phy.switch_analog(mac, 0);
fail:
bhnd_suspend_hw(sc->sc_dev, 0);
bwn_release_firmware(mac);
return (error);
}
/*
* Reset
*/
int
bwn_reset_core(struct bwn_mac *mac, int g_mode)
{
struct bwn_softc *sc;
uint32_t ctl;
uint16_t ioctl, ioctl_mask;
int error;
sc = mac->mac_sc;
DPRINTF(sc, BWN_DEBUG_RESET, "%s: g_mode=%d\n", __func__, g_mode);
/* Reset core */
ioctl = (BWN_IOCTL_PHYCLOCK_ENABLE | BWN_IOCTL_PHYRESET);
if (g_mode)
ioctl |= BWN_IOCTL_SUPPORT_G;
/* XXX N-PHY only; and hard-code to 20MHz for now */
if (mac->mac_phy.type == BWN_PHYTYPE_N)
ioctl |= BWN_IOCTL_PHY_BANDWIDTH_20MHZ;
if ((error = bhnd_reset_hw(sc->sc_dev, ioctl, ioctl))) {
device_printf(sc->sc_dev, "core reset failed: %d", error);
return (error);
}
DELAY(2000);
/* Take PHY out of reset */
ioctl = BHND_IOCTL_CLK_FORCE;
ioctl_mask = BHND_IOCTL_CLK_FORCE |
BWN_IOCTL_PHYRESET |
BWN_IOCTL_PHYCLOCK_ENABLE;
if ((error = bhnd_write_ioctl(sc->sc_dev, ioctl, ioctl_mask))) {
device_printf(sc->sc_dev, "failed to set core ioctl flags: "
"%d\n", error);
return (error);
}
DELAY(2000);
ioctl = BWN_IOCTL_PHYCLOCK_ENABLE;
if ((error = bhnd_write_ioctl(sc->sc_dev, ioctl, ioctl_mask))) {
device_printf(sc->sc_dev, "failed to set core ioctl flags: "
"%d\n", error);
return (error);
}
DELAY(2000);
if (mac->mac_phy.switch_analog != NULL)
mac->mac_phy.switch_analog(mac, 1);
ctl = BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_GMODE;
if (g_mode)
ctl |= BWN_MACCTL_GMODE;
BWN_WRITE_4(mac, BWN_MACCTL, ctl | BWN_MACCTL_IHR_ON);
return (0);
}
static int
bwn_phy_getinfo(struct bwn_mac *mac, int gmode)
{
struct bwn_phy *phy = &mac->mac_phy;
struct bwn_softc *sc = mac->mac_sc;
uint32_t tmp;
/* PHY */
tmp = BWN_READ_2(mac, BWN_PHYVER);
phy->gmode = gmode;
phy->rf_on = 1;
phy->analog = (tmp & BWN_PHYVER_ANALOG) >> 12;
phy->type = (tmp & BWN_PHYVER_TYPE) >> 8;
phy->rev = (tmp & BWN_PHYVER_VERSION);
if ((phy->type == BWN_PHYTYPE_A && phy->rev >= 4) ||
(phy->type == BWN_PHYTYPE_B && phy->rev != 2 &&
phy->rev != 4 && phy->rev != 6 && phy->rev != 7) ||
(phy->type == BWN_PHYTYPE_G && phy->rev > 9) ||
(phy->type == BWN_PHYTYPE_N && phy->rev > 6) ||
(phy->type == BWN_PHYTYPE_LP && phy->rev > 2))
goto unsupphy;
/* RADIO */
BWN_WRITE_2(mac, BWN_RFCTL, BWN_RFCTL_ID);
tmp = BWN_READ_2(mac, BWN_RFDATALO);
BWN_WRITE_2(mac, BWN_RFCTL, BWN_RFCTL_ID);
tmp |= (uint32_t)BWN_READ_2(mac, BWN_RFDATAHI) << 16;
phy->rf_rev = (tmp & 0xf0000000) >> 28;
phy->rf_ver = (tmp & 0x0ffff000) >> 12;
phy->rf_manuf = (tmp & 0x00000fff);
/*
* For now, just always do full init (ie, what bwn has traditionally
* done)
*/
phy->phy_do_full_init = 1;
if (phy->rf_manuf != 0x17f) /* 0x17f is broadcom */
goto unsupradio;
if ((phy->type == BWN_PHYTYPE_A && (phy->rf_ver != 0x2060 ||
phy->rf_rev != 1 || phy->rf_manuf != 0x17f)) ||
(phy->type == BWN_PHYTYPE_B && (phy->rf_ver & 0xfff0) != 0x2050) ||
(phy->type == BWN_PHYTYPE_G && phy->rf_ver != 0x2050) ||
(phy->type == BWN_PHYTYPE_N &&
phy->rf_ver != 0x2055 && phy->rf_ver != 0x2056) ||
(phy->type == BWN_PHYTYPE_LP &&
phy->rf_ver != 0x2062 && phy->rf_ver != 0x2063))
goto unsupradio;
return (0);
unsupphy:
device_printf(sc->sc_dev, "unsupported PHY (type %#x, rev %#x, "
"analog %#x)\n",
phy->type, phy->rev, phy->analog);
return (ENXIO);
unsupradio:
device_printf(sc->sc_dev, "unsupported radio (manuf %#x, ver %#x, "
"rev %#x)\n",
phy->rf_manuf, phy->rf_ver, phy->rf_rev);
return (ENXIO);
}
static int
bwn_chiptest(struct bwn_mac *mac)
{
#define TESTVAL0 0x55aaaa55
#define TESTVAL1 0xaa5555aa
struct bwn_softc *sc = mac->mac_sc;
uint32_t v, backup;
BWN_LOCK(sc);
backup = bwn_shm_read_4(mac, BWN_SHARED, 0);
bwn_shm_write_4(mac, BWN_SHARED, 0, TESTVAL0);
if (bwn_shm_read_4(mac, BWN_SHARED, 0) != TESTVAL0)
goto error;
bwn_shm_write_4(mac, BWN_SHARED, 0, TESTVAL1);
if (bwn_shm_read_4(mac, BWN_SHARED, 0) != TESTVAL1)
goto error;
bwn_shm_write_4(mac, BWN_SHARED, 0, backup);
if ((bhnd_get_hwrev(sc->sc_dev) >= 3) &&
(bhnd_get_hwrev(sc->sc_dev) <= 10)) {
BWN_WRITE_2(mac, BWN_TSF_CFP_START, 0xaaaa);
BWN_WRITE_4(mac, BWN_TSF_CFP_START, 0xccccbbbb);
if (BWN_READ_2(mac, BWN_TSF_CFP_START_LOW) != 0xbbbb)
goto error;
if (BWN_READ_2(mac, BWN_TSF_CFP_START_HIGH) != 0xcccc)
goto error;
}
BWN_WRITE_4(mac, BWN_TSF_CFP_START, 0);
v = BWN_READ_4(mac, BWN_MACCTL) | BWN_MACCTL_GMODE;
if (v != (BWN_MACCTL_GMODE | BWN_MACCTL_IHR_ON))
goto error;
BWN_UNLOCK(sc);
return (0);
error:
BWN_UNLOCK(sc);
device_printf(sc->sc_dev, "failed to validate the chipaccess\n");
return (ENODEV);
}
static int
bwn_setup_channels(struct bwn_mac *mac, int have_bg, int have_a)
{
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t bands[IEEE80211_MODE_BYTES];
memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
ic->ic_nchans = 0;
DPRINTF(sc, BWN_DEBUG_EEPROM, "%s: called; bg=%d, a=%d\n",
__func__,
have_bg,
have_a);
if (have_bg) {
memset(bands, 0, sizeof(bands));
setbit(bands, IEEE80211_MODE_11B);
setbit(bands, IEEE80211_MODE_11G);
bwn_addchannels(ic->ic_channels, IEEE80211_CHAN_MAX,
&ic->ic_nchans, &bwn_chantable_bg, bands);
}
if (have_a) {
memset(bands, 0, sizeof(bands));
setbit(bands, IEEE80211_MODE_11A);
bwn_addchannels(ic->ic_channels, IEEE80211_CHAN_MAX,
&ic->ic_nchans, &bwn_chantable_a, bands);
}
mac->mac_phy.supports_2ghz = have_bg;
mac->mac_phy.supports_5ghz = have_a;
return (ic->ic_nchans == 0 ? ENXIO : 0);
}
uint32_t
bwn_shm_read_4(struct bwn_mac *mac, uint16_t way, uint16_t offset)
{
uint32_t ret;
BWN_ASSERT_LOCKED(mac->mac_sc);
if (way == BWN_SHARED) {
KASSERT((offset & 0x0001) == 0,
("%s:%d warn", __func__, __LINE__));
if (offset & 0x0003) {
bwn_shm_ctlword(mac, way, offset >> 2);
ret = BWN_READ_2(mac, BWN_SHM_DATA_UNALIGNED);
ret <<= 16;
bwn_shm_ctlword(mac, way, (offset >> 2) + 1);
ret |= BWN_READ_2(mac, BWN_SHM_DATA);
goto out;
}
offset >>= 2;
}
bwn_shm_ctlword(mac, way, offset);
ret = BWN_READ_4(mac, BWN_SHM_DATA);
out:
return (ret);
}
uint16_t
bwn_shm_read_2(struct bwn_mac *mac, uint16_t way, uint16_t offset)
{
uint16_t ret;
BWN_ASSERT_LOCKED(mac->mac_sc);
if (way == BWN_SHARED) {
KASSERT((offset & 0x0001) == 0,
("%s:%d warn", __func__, __LINE__));
if (offset & 0x0003) {
bwn_shm_ctlword(mac, way, offset >> 2);
ret = BWN_READ_2(mac, BWN_SHM_DATA_UNALIGNED);
goto out;
}
offset >>= 2;
}
bwn_shm_ctlword(mac, way, offset);
ret = BWN_READ_2(mac, BWN_SHM_DATA);
out:
return (ret);
}
static void
bwn_shm_ctlword(struct bwn_mac *mac, uint16_t way,
uint16_t offset)
{
uint32_t control;
control = way;
control <<= 16;
control |= offset;
BWN_WRITE_4(mac, BWN_SHM_CONTROL, control);
}
void
bwn_shm_write_4(struct bwn_mac *mac, uint16_t way, uint16_t offset,
uint32_t value)
{
BWN_ASSERT_LOCKED(mac->mac_sc);
if (way == BWN_SHARED) {
KASSERT((offset & 0x0001) == 0,
("%s:%d warn", __func__, __LINE__));
if (offset & 0x0003) {
bwn_shm_ctlword(mac, way, offset >> 2);
BWN_WRITE_2(mac, BWN_SHM_DATA_UNALIGNED,
(value >> 16) & 0xffff);
bwn_shm_ctlword(mac, way, (offset >> 2) + 1);
BWN_WRITE_2(mac, BWN_SHM_DATA, value & 0xffff);
return;
}
offset >>= 2;
}
bwn_shm_ctlword(mac, way, offset);
BWN_WRITE_4(mac, BWN_SHM_DATA, value);
}
void
bwn_shm_write_2(struct bwn_mac *mac, uint16_t way, uint16_t offset,
uint16_t value)
{
BWN_ASSERT_LOCKED(mac->mac_sc);
if (way == BWN_SHARED) {
KASSERT((offset & 0x0001) == 0,
("%s:%d warn", __func__, __LINE__));
if (offset & 0x0003) {
bwn_shm_ctlword(mac, way, offset >> 2);
BWN_WRITE_2(mac, BWN_SHM_DATA_UNALIGNED, value);
return;
}
offset >>= 2;
}
bwn_shm_ctlword(mac, way, offset);
BWN_WRITE_2(mac, BWN_SHM_DATA, value);
}
static void
bwn_addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans,
const struct bwn_channelinfo *ci, const uint8_t bands[])
{
int i, error;
for (i = 0, error = 0; i < ci->nchannels && error == 0; i++) {
const struct bwn_channel *hc = &ci->channels[i];
error = ieee80211_add_channel(chans, maxchans, nchans,
hc->ieee, hc->freq, hc->maxTxPow, 0, bands);
}
}
static int
bwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct bwn_softc *sc = ic->ic_softc;
struct bwn_mac *mac = sc->sc_curmac;
int error;
if ((sc->sc_flags & BWN_FLAG_RUNNING) == 0 ||
mac->mac_status < BWN_MAC_STATUS_STARTED) {
m_freem(m);
return (ENETDOWN);
}
BWN_LOCK(sc);
if (bwn_tx_isfull(sc, m)) {
m_freem(m);
BWN_UNLOCK(sc);
return (ENOBUFS);
}
error = bwn_tx_start(sc, ni, m);
if (error == 0)
sc->sc_watchdog_timer = 5;
BWN_UNLOCK(sc);
return (error);
}
/*
* Callback from the 802.11 layer to update the slot time
* based on the current setting. We use it to notify the
* firmware of ERP changes and the f/w takes care of things
* like slot time and preamble.
*/
static void
bwn_updateslot(struct ieee80211com *ic)
{
struct bwn_softc *sc = ic->ic_softc;
struct bwn_mac *mac;
BWN_LOCK(sc);
if (sc->sc_flags & BWN_FLAG_RUNNING) {
mac = (struct bwn_mac *)sc->sc_curmac;
bwn_set_slot_time(mac, IEEE80211_GET_SLOTTIME(ic));
}
BWN_UNLOCK(sc);
}
/*
* Callback from the 802.11 layer after a promiscuous mode change.
* Note this interface does not check the operating mode as this
* is an internal callback and we are expected to honor the current
* state (e.g. this is used for setting the interface in promiscuous
* mode when operating in hostap mode to do ACS).
*/
static void
bwn_update_promisc(struct ieee80211com *ic)
{
struct bwn_softc *sc = ic->ic_softc;
struct bwn_mac *mac = sc->sc_curmac;
BWN_LOCK(sc);
mac = sc->sc_curmac;
if (mac != NULL && mac->mac_status >= BWN_MAC_STATUS_INITED) {
if (ic->ic_promisc > 0)
sc->sc_filters |= BWN_MACCTL_PROMISC;
else
sc->sc_filters &= ~BWN_MACCTL_PROMISC;
bwn_set_opmode(mac);
}
BWN_UNLOCK(sc);
}
/*
* Callback from the 802.11 layer to update WME parameters.
*/
static int
bwn_wme_update(struct ieee80211com *ic)
{
struct bwn_softc *sc = ic->ic_softc;
struct bwn_mac *mac = sc->sc_curmac;
struct chanAccParams chp;
struct wmeParams *wmep;
int i;
ieee80211_wme_ic_getparams(ic, &chp);
BWN_LOCK(sc);
mac = sc->sc_curmac;
if (mac != NULL && mac->mac_status >= BWN_MAC_STATUS_INITED) {
bwn_mac_suspend(mac);
for (i = 0; i < N(sc->sc_wmeParams); i++) {
wmep = &chp.cap_wmeParams[i];
bwn_wme_loadparams(mac, wmep, bwn_wme_shm_offsets[i]);
}
bwn_mac_enable(mac);
}
BWN_UNLOCK(sc);
return (0);
}
static void
bwn_scan_start(struct ieee80211com *ic)
{
struct bwn_softc *sc = ic->ic_softc;
struct bwn_mac *mac;
BWN_LOCK(sc);
mac = sc->sc_curmac;
if (mac != NULL && mac->mac_status >= BWN_MAC_STATUS_INITED) {
sc->sc_filters |= BWN_MACCTL_BEACON_PROMISC;
bwn_set_opmode(mac);
/* disable CFP update during scan */
bwn_hf_write(mac, bwn_hf_read(mac) | BWN_HF_SKIP_CFP_UPDATE);
}
BWN_UNLOCK(sc);
}
static void
bwn_scan_end(struct ieee80211com *ic)
{
struct bwn_softc *sc = ic->ic_softc;
struct bwn_mac *mac;
BWN_LOCK(sc);
mac = sc->sc_curmac;
if (mac != NULL && mac->mac_status >= BWN_MAC_STATUS_INITED) {
sc->sc_filters &= ~BWN_MACCTL_BEACON_PROMISC;
bwn_set_opmode(mac);
bwn_hf_write(mac, bwn_hf_read(mac) & ~BWN_HF_SKIP_CFP_UPDATE);
}
BWN_UNLOCK(sc);
}
static void
bwn_set_channel(struct ieee80211com *ic)
{
struct bwn_softc *sc = ic->ic_softc;
struct bwn_mac *mac = sc->sc_curmac;
struct bwn_phy *phy = &mac->mac_phy;
int chan, error;
BWN_LOCK(sc);
error = bwn_switch_band(sc, ic->ic_curchan);
if (error)
goto fail;
bwn_mac_suspend(mac);
bwn_set_txretry(mac, BWN_RETRY_SHORT, BWN_RETRY_LONG);
chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
if (chan != phy->chan)
bwn_switch_channel(mac, chan);
/* TX power level */
if (ic->ic_curchan->ic_maxpower != 0 &&
ic->ic_curchan->ic_maxpower != phy->txpower) {
phy->txpower = ic->ic_curchan->ic_maxpower / 2;
bwn_phy_txpower_check(mac, BWN_TXPWR_IGNORE_TIME |
BWN_TXPWR_IGNORE_TSSI);
}
bwn_set_txantenna(mac, BWN_ANT_DEFAULT);
if (phy->set_antenna)
phy->set_antenna(mac, BWN_ANT_DEFAULT);
if (sc->sc_rf_enabled != phy->rf_on) {
if (sc->sc_rf_enabled) {
bwn_rf_turnon(mac);
if (!(mac->mac_flags & BWN_MAC_FLAG_RADIO_ON))
device_printf(sc->sc_dev,
"please turn on the RF switch\n");
} else
bwn_rf_turnoff(mac);
}
bwn_mac_enable(mac);
fail:
/*
* Setup radio tap channel freq and flags
*/
sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
htole16(ic->ic_curchan->ic_freq);
sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
htole16(ic->ic_curchan->ic_flags & 0xffff);
BWN_UNLOCK(sc);
}
static struct ieee80211vap *
bwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ieee80211vap *vap;
struct bwn_vap *bvp;
switch (opmode) {
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
case IEEE80211_M_STA:
case IEEE80211_M_WDS:
case IEEE80211_M_MONITOR:
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
break;
default:
return (NULL);
}
bvp = malloc(sizeof(struct bwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
vap = &bvp->bv_vap;
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
/* override with driver methods */
bvp->bv_newstate = vap->iv_newstate;
vap->iv_newstate = bwn_newstate;
/* override max aid so sta's cannot assoc when we're out of sta id's */
vap->iv_max_aid = BWN_STAID_MAX;
ieee80211_ratectl_init(vap);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change,
ieee80211_media_status, mac);
return (vap);
}
static void
bwn_vap_delete(struct ieee80211vap *vap)
{
struct bwn_vap *bvp = BWN_VAP(vap);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(bvp, M_80211_VAP);
}
static int
bwn_init(struct bwn_softc *sc)
{
struct bwn_mac *mac;
int error;
BWN_ASSERT_LOCKED(sc);
DPRINTF(sc, BWN_DEBUG_RESET, "%s: called\n", __func__);
bzero(sc->sc_bssid, IEEE80211_ADDR_LEN);
sc->sc_flags |= BWN_FLAG_NEED_BEACON_TP;
sc->sc_filters = 0;
bwn_wme_clear(sc);
sc->sc_beacons[0] = sc->sc_beacons[1] = 0;
sc->sc_rf_enabled = 1;
mac = sc->sc_curmac;
if (mac->mac_status == BWN_MAC_STATUS_UNINIT) {
error = bwn_core_init(mac);
if (error != 0)
return (error);
}
if (mac->mac_status == BWN_MAC_STATUS_INITED)
bwn_core_start(mac);
bwn_set_opmode(mac);
bwn_set_pretbtt(mac);
bwn_spu_setdelay(mac, 0);
bwn_set_macaddr(mac);
sc->sc_flags |= BWN_FLAG_RUNNING;
callout_reset(&sc->sc_rfswitch_ch, hz, bwn_rfswitch, sc);
callout_reset(&sc->sc_watchdog_ch, hz, bwn_watchdog, sc);
return (0);
}
static void
bwn_stop(struct bwn_softc *sc)
{
struct bwn_mac *mac = sc->sc_curmac;
BWN_ASSERT_LOCKED(sc);
DPRINTF(sc, BWN_DEBUG_RESET, "%s: called\n", __func__);
if (mac->mac_status >= BWN_MAC_STATUS_INITED) {
/* XXX FIXME opmode not based on VAP */
bwn_set_opmode(mac);
bwn_set_macaddr(mac);
}
if (mac->mac_status >= BWN_MAC_STATUS_STARTED)
bwn_core_stop(mac);
callout_stop(&sc->sc_led_blink_ch);
sc->sc_led_blinking = 0;
bwn_core_exit(mac);
sc->sc_rf_enabled = 0;
sc->sc_flags &= ~BWN_FLAG_RUNNING;
}
static void
bwn_wme_clear(struct bwn_softc *sc)
{
#define MS(_v, _f) (((_v) & _f) >> _f##_S)
struct wmeParams *p;
unsigned int i;
KASSERT(N(bwn_wme_shm_offsets) == N(sc->sc_wmeParams),
("%s:%d: fail", __func__, __LINE__));
for (i = 0; i < N(sc->sc_wmeParams); i++) {
p = &(sc->sc_wmeParams[i]);
switch (bwn_wme_shm_offsets[i]) {
case BWN_WME_VOICE:
p->wmep_txopLimit = 0;
p->wmep_aifsn = 2;
/* XXX FIXME: log2(cwmin) */
p->wmep_logcwmin = MS(0x0001, WME_PARAM_LOGCWMIN);
p->wmep_logcwmax = MS(0x0001, WME_PARAM_LOGCWMAX);
break;
case BWN_WME_VIDEO:
p->wmep_txopLimit = 0;
p->wmep_aifsn = 2;
/* XXX FIXME: log2(cwmin) */
p->wmep_logcwmin = MS(0x0001, WME_PARAM_LOGCWMIN);
p->wmep_logcwmax = MS(0x0001, WME_PARAM_LOGCWMAX);
break;
case BWN_WME_BESTEFFORT:
p->wmep_txopLimit = 0;
p->wmep_aifsn = 3;
/* XXX FIXME: log2(cwmin) */
p->wmep_logcwmin = MS(0x0001, WME_PARAM_LOGCWMIN);
p->wmep_logcwmax = MS(0x03ff, WME_PARAM_LOGCWMAX);
break;
case BWN_WME_BACKGROUND:
p->wmep_txopLimit = 0;
p->wmep_aifsn = 7;
/* XXX FIXME: log2(cwmin) */
p->wmep_logcwmin = MS(0x0001, WME_PARAM_LOGCWMIN);
p->wmep_logcwmax = MS(0x03ff, WME_PARAM_LOGCWMAX);
break;
default:
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
}
}
}
static int
bwn_core_forceclk(struct bwn_mac *mac, bool force)
{
struct bwn_softc *sc;
bhnd_clock clock;
int error;
sc = mac->mac_sc;
/* On PMU equipped devices, we do not need to force the HT clock */
if (sc->sc_pmu != NULL)
return (0);
/* Issue a PMU clock request */
if (force)
clock = BHND_CLOCK_HT;
else
clock = BHND_CLOCK_DYN;
if ((error = bhnd_request_clock(sc->sc_dev, clock))) {
device_printf(sc->sc_dev, "%d clock request failed: %d\n",
clock, error);
return (error);
}
return (0);
}
static int
bwn_core_init(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
uint64_t hf;
int error;
KASSERT(mac->mac_status == BWN_MAC_STATUS_UNINIT,
("%s:%d: fail", __func__, __LINE__));
DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: called\n", __func__);
if ((error = bwn_core_forceclk(mac, true)))
return (error);
if (bhnd_is_hw_suspended(sc->sc_dev)) {
if ((error = bwn_reset_core(mac, mac->mac_phy.gmode)))
goto fail0;
}
mac->mac_flags &= ~BWN_MAC_FLAG_DFQVALID;
mac->mac_flags |= BWN_MAC_FLAG_RADIO_ON;
mac->mac_phy.hwpctl = (bwn_hwpctl) ? 1 : 0;
BWN_GETTIME(mac->mac_phy.nexttime);
mac->mac_phy.txerrors = BWN_TXERROR_MAX;
bzero(&mac->mac_stats, sizeof(mac->mac_stats));
mac->mac_stats.link_noise = -95;
mac->mac_reason_intr = 0;
bzero(mac->mac_reason, sizeof(mac->mac_reason));
mac->mac_intr_mask = BWN_INTR_MASKTEMPLATE;
#ifdef BWN_DEBUG
if (sc->sc_debug & BWN_DEBUG_XMIT)
mac->mac_intr_mask &= ~BWN_INTR_PHY_TXERR;
#endif
mac->mac_suspended = 1;
mac->mac_task_state = 0;
memset(&mac->mac_noise, 0, sizeof(mac->mac_noise));
mac->mac_phy.init_pre(mac);
bwn_bt_disable(mac);
if (mac->mac_phy.prepare_hw) {
error = mac->mac_phy.prepare_hw(mac);
if (error)
goto fail0;
}
DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: chip_init\n", __func__);
error = bwn_chip_init(mac);
if (error)
goto fail0;
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_COREREV,
bhnd_get_hwrev(sc->sc_dev));
hf = bwn_hf_read(mac);
if (mac->mac_phy.type == BWN_PHYTYPE_G) {
hf |= BWN_HF_GPHY_SYM_WORKAROUND;
if (sc->sc_board_info.board_flags & BHND_BFL_PACTRL)
hf |= BWN_HF_PAGAINBOOST_OFDM_ON;
if (mac->mac_phy.rev == 1)
hf |= BWN_HF_GPHY_DC_CANCELFILTER;
}
if (mac->mac_phy.rf_ver == 0x2050) {
if (mac->mac_phy.rf_rev < 6)
hf |= BWN_HF_FORCE_VCO_RECALC;
if (mac->mac_phy.rf_rev == 6)
hf |= BWN_HF_4318_TSSI;
}
if (sc->sc_board_info.board_flags & BHND_BFL_NOPLLDOWN)
hf |= BWN_HF_SLOWCLOCK_REQ_OFF;
if (sc->sc_quirks & BWN_QUIRK_UCODE_SLOWCLOCK_WAR)
hf |= BWN_HF_PCI_SLOWCLOCK_WORKAROUND;
hf &= ~BWN_HF_SKIP_CFP_UPDATE;
bwn_hf_write(mac, hf);
/* Tell the firmware about the MAC capabilities */
if (bhnd_get_hwrev(sc->sc_dev) >= 13) {
uint32_t cap;
cap = BWN_READ_4(mac, BWN_MAC_HW_CAP);
DPRINTF(sc, BWN_DEBUG_RESET,
"%s: hw capabilities: 0x%08x\n",
__func__, cap);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_MACHW_L,
cap & 0xffff);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_MACHW_H,
(cap >> 16) & 0xffff);
}
bwn_set_txretry(mac, BWN_RETRY_SHORT, BWN_RETRY_LONG);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_SHORT_RETRY_FALLBACK, 3);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_LONG_RETRY_FALLBACK, 2);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_PROBE_RESP_MAXTIME, 1);
bwn_rate_init(mac);
bwn_set_phytxctl(mac);
bwn_shm_write_2(mac, BWN_SCRATCH, BWN_SCRATCH_CONT_MIN,
(mac->mac_phy.type == BWN_PHYTYPE_B) ? 0x1f : 0xf);
bwn_shm_write_2(mac, BWN_SCRATCH, BWN_SCRATCH_CONT_MAX, 0x3ff);
if (sc->sc_quirks & BWN_QUIRK_NODMA)
bwn_pio_init(mac);
else
bwn_dma_init(mac);
bwn_wme_init(mac);
bwn_spu_setdelay(mac, 1);
bwn_bt_enable(mac);
DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: powerup\n", __func__);
if (sc->sc_board_info.board_flags & BHND_BFL_NOPLLDOWN)
bwn_core_forceclk(mac, true);
else
bwn_core_forceclk(mac, false);
bwn_set_macaddr(mac);
bwn_crypt_init(mac);
/* XXX LED initializatin */
mac->mac_status = BWN_MAC_STATUS_INITED;
DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: done\n", __func__);
return (error);
fail0:
bhnd_suspend_hw(sc->sc_dev, 0);
KASSERT(mac->mac_status == BWN_MAC_STATUS_UNINIT,
("%s:%d: fail", __func__, __LINE__));
DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: fail\n", __func__);
return (error);
}
static void
bwn_core_start(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
uint32_t tmp;
KASSERT(mac->mac_status == BWN_MAC_STATUS_INITED,
("%s:%d: fail", __func__, __LINE__));
if (bhnd_get_hwrev(sc->sc_dev) < 5)
return;
while (1) {
tmp = BWN_READ_4(mac, BWN_XMITSTAT_0);
if (!(tmp & 0x00000001))
break;
tmp = BWN_READ_4(mac, BWN_XMITSTAT_1);
}
bwn_mac_enable(mac);
BWN_WRITE_4(mac, BWN_INTR_MASK, mac->mac_intr_mask);
callout_reset(&sc->sc_task_ch, hz * 15, bwn_tasks, mac);
mac->mac_status = BWN_MAC_STATUS_STARTED;
}
static void
bwn_core_exit(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
uint32_t macctl;
BWN_ASSERT_LOCKED(mac->mac_sc);
KASSERT(mac->mac_status <= BWN_MAC_STATUS_INITED,
("%s:%d: fail", __func__, __LINE__));
if (mac->mac_status != BWN_MAC_STATUS_INITED)
return;
mac->mac_status = BWN_MAC_STATUS_UNINIT;
macctl = BWN_READ_4(mac, BWN_MACCTL);
macctl &= ~BWN_MACCTL_MCODE_RUN;
macctl |= BWN_MACCTL_MCODE_JMP0;
BWN_WRITE_4(mac, BWN_MACCTL, macctl);
bwn_dma_stop(mac);
bwn_pio_stop(mac);
bwn_chip_exit(mac);
mac->mac_phy.switch_analog(mac, 0);
bhnd_suspend_hw(sc->sc_dev, 0);
}
static void
bwn_bt_disable(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
(void)sc;
/* XXX do nothing yet */
}
static int
bwn_chip_init(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
struct bwn_phy *phy = &mac->mac_phy;
uint32_t macctl;
u_int delay;
int error;
macctl = BWN_MACCTL_IHR_ON | BWN_MACCTL_SHM_ON | BWN_MACCTL_STA;
if (phy->gmode)
macctl |= BWN_MACCTL_GMODE;
BWN_WRITE_4(mac, BWN_MACCTL, macctl);
error = bwn_fw_fillinfo(mac);
if (error)
return (error);
error = bwn_fw_loaducode(mac);
if (error)
return (error);
error = bwn_gpio_init(mac);
if (error)
return (error);
error = bwn_fw_loadinitvals(mac);
if (error)
return (error);
phy->switch_analog(mac, 1);
error = bwn_phy_init(mac);
if (error)
return (error);
if (phy->set_im)
phy->set_im(mac, BWN_IMMODE_NONE);
if (phy->set_antenna)
phy->set_antenna(mac, BWN_ANT_DEFAULT);
bwn_set_txantenna(mac, BWN_ANT_DEFAULT);
if (phy->type == BWN_PHYTYPE_B)
BWN_WRITE_2(mac, 0x005e, BWN_READ_2(mac, 0x005e) | 0x0004);
BWN_WRITE_4(mac, 0x0100, 0x01000000);
if (bhnd_get_hwrev(sc->sc_dev) < 5)
BWN_WRITE_4(mac, 0x010c, 0x01000000);
BWN_WRITE_4(mac, BWN_MACCTL,
BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_STA);
BWN_WRITE_4(mac, BWN_MACCTL,
BWN_READ_4(mac, BWN_MACCTL) | BWN_MACCTL_STA);
bwn_shm_write_2(mac, BWN_SHARED, 0x0074, 0x0000);
bwn_set_opmode(mac);
if (bhnd_get_hwrev(sc->sc_dev) < 3) {
BWN_WRITE_2(mac, 0x060e, 0x0000);
BWN_WRITE_2(mac, 0x0610, 0x8000);
BWN_WRITE_2(mac, 0x0604, 0x0000);
BWN_WRITE_2(mac, 0x0606, 0x0200);
} else {
BWN_WRITE_4(mac, 0x0188, 0x80000000);
BWN_WRITE_4(mac, 0x018c, 0x02000000);
}
BWN_WRITE_4(mac, BWN_INTR_REASON, 0x00004000);
BWN_WRITE_4(mac, BWN_DMA0_INTR_MASK, 0x0001dc00);
BWN_WRITE_4(mac, BWN_DMA1_INTR_MASK, 0x0000dc00);
BWN_WRITE_4(mac, BWN_DMA2_INTR_MASK, 0x0000dc00);
BWN_WRITE_4(mac, BWN_DMA3_INTR_MASK, 0x0001dc00);
BWN_WRITE_4(mac, BWN_DMA4_INTR_MASK, 0x0000dc00);
BWN_WRITE_4(mac, BWN_DMA5_INTR_MASK, 0x0000dc00);
bwn_mac_phy_clock_set(mac, true);
/* Provide the HT clock transition latency to the MAC core */
error = bhnd_get_clock_latency(sc->sc_dev, BHND_CLOCK_HT, &delay);
if (error) {
device_printf(sc->sc_dev, "failed to fetch HT clock latency: "
"%d\n", error);
return (error);
}
if (delay > UINT16_MAX) {
device_printf(sc->sc_dev, "invalid HT clock latency: %u\n",
delay);
return (ENXIO);
}
BWN_WRITE_2(mac, BWN_POWERUP_DELAY, delay);
return (0);
}
/* read hostflags */
uint64_t
bwn_hf_read(struct bwn_mac *mac)
{
uint64_t ret;
ret = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_HFHI);
ret <<= 16;
ret |= bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_HFMI);
ret <<= 16;
ret |= bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_HFLO);
return (ret);
}
void
bwn_hf_write(struct bwn_mac *mac, uint64_t value)
{
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_HFLO,
(value & 0x00000000ffffull));
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_HFMI,
(value & 0x0000ffff0000ull) >> 16);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_HFHI,
(value & 0xffff00000000ULL) >> 32);
}
static void
bwn_set_txretry(struct bwn_mac *mac, int s, int l)
{
bwn_shm_write_2(mac, BWN_SCRATCH, BWN_SCRATCH_SHORT_RETRY, MIN(s, 0xf));
bwn_shm_write_2(mac, BWN_SCRATCH, BWN_SCRATCH_LONG_RETRY, MIN(l, 0xf));
}
static void
bwn_rate_init(struct bwn_mac *mac)
{
switch (mac->mac_phy.type) {
case BWN_PHYTYPE_A:
case BWN_PHYTYPE_G:
case BWN_PHYTYPE_LP:
case BWN_PHYTYPE_N:
bwn_rate_write(mac, BWN_OFDM_RATE_6MB, 1);
bwn_rate_write(mac, BWN_OFDM_RATE_12MB, 1);
bwn_rate_write(mac, BWN_OFDM_RATE_18MB, 1);
bwn_rate_write(mac, BWN_OFDM_RATE_24MB, 1);
bwn_rate_write(mac, BWN_OFDM_RATE_36MB, 1);
bwn_rate_write(mac, BWN_OFDM_RATE_48MB, 1);
bwn_rate_write(mac, BWN_OFDM_RATE_54MB, 1);
if (mac->mac_phy.type == BWN_PHYTYPE_A)
break;
/* FALLTHROUGH */
case BWN_PHYTYPE_B:
bwn_rate_write(mac, BWN_CCK_RATE_1MB, 0);
bwn_rate_write(mac, BWN_CCK_RATE_2MB, 0);
bwn_rate_write(mac, BWN_CCK_RATE_5MB, 0);
bwn_rate_write(mac, BWN_CCK_RATE_11MB, 0);
break;
default:
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
}
}
static void
bwn_rate_write(struct bwn_mac *mac, uint16_t rate, int ofdm)
{
uint16_t offset;
if (ofdm) {
offset = 0x480;
offset += (bwn_plcp_getofdm(rate) & 0x000f) * 2;
} else {
offset = 0x4c0;
offset += (bwn_plcp_getcck(rate) & 0x000f) * 2;
}
bwn_shm_write_2(mac, BWN_SHARED, offset + 0x20,
bwn_shm_read_2(mac, BWN_SHARED, offset));
}
static uint8_t
bwn_plcp_getcck(const uint8_t bitrate)
{
switch (bitrate) {
case BWN_CCK_RATE_1MB:
return (0x0a);
case BWN_CCK_RATE_2MB:
return (0x14);
case BWN_CCK_RATE_5MB:
return (0x37);
case BWN_CCK_RATE_11MB:
return (0x6e);
}
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
return (0);
}
static uint8_t
bwn_plcp_getofdm(const uint8_t bitrate)
{
switch (bitrate) {
case BWN_OFDM_RATE_6MB:
return (0xb);
case BWN_OFDM_RATE_9MB:
return (0xf);
case BWN_OFDM_RATE_12MB:
return (0xa);
case BWN_OFDM_RATE_18MB:
return (0xe);
case BWN_OFDM_RATE_24MB:
return (0x9);
case BWN_OFDM_RATE_36MB:
return (0xd);
case BWN_OFDM_RATE_48MB:
return (0x8);
case BWN_OFDM_RATE_54MB:
return (0xc);
}
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
return (0);
}
static void
bwn_set_phytxctl(struct bwn_mac *mac)
{
uint16_t ctl;
ctl = (BWN_TX_PHY_ENC_CCK | BWN_TX_PHY_ANT01AUTO |
BWN_TX_PHY_TXPWR);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_BEACON_PHYCTL, ctl);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_ACKCTS_PHYCTL, ctl);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_PROBE_RESP_PHYCTL, ctl);
}
static void
bwn_pio_init(struct bwn_mac *mac)
{
struct bwn_pio *pio = &mac->mac_method.pio;
BWN_WRITE_4(mac, BWN_MACCTL, BWN_READ_4(mac, BWN_MACCTL)
& ~BWN_MACCTL_BIGENDIAN);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_RX_PADOFFSET, 0);
bwn_pio_set_txqueue(mac, &pio->wme[WME_AC_BK], 0);
bwn_pio_set_txqueue(mac, &pio->wme[WME_AC_BE], 1);
bwn_pio_set_txqueue(mac, &pio->wme[WME_AC_VI], 2);
bwn_pio_set_txqueue(mac, &pio->wme[WME_AC_VO], 3);
bwn_pio_set_txqueue(mac, &pio->mcast, 4);
bwn_pio_setupqueue_rx(mac, &pio->rx, 0);
}
static void
bwn_pio_set_txqueue(struct bwn_mac *mac, struct bwn_pio_txqueue *tq,
int index)
{
struct bwn_pio_txpkt *tp;
struct bwn_softc *sc = mac->mac_sc;
unsigned int i;
tq->tq_base = bwn_pio_idx2base(mac, index) + BWN_PIO_TXQOFFSET(mac);
tq->tq_index = index;
tq->tq_free = BWN_PIO_MAX_TXPACKETS;
if (bhnd_get_hwrev(sc->sc_dev) >= 8)
tq->tq_size = 1920;
else {
tq->tq_size = bwn_pio_read_2(mac, tq, BWN_PIO_TXQBUFSIZE);
tq->tq_size -= 80;
}
TAILQ_INIT(&tq->tq_pktlist);
for (i = 0; i < N(tq->tq_pkts); i++) {
tp = &(tq->tq_pkts[i]);
tp->tp_index = i;
tp->tp_queue = tq;
TAILQ_INSERT_TAIL(&tq->tq_pktlist, tp, tp_list);
}
}
static uint16_t
bwn_pio_idx2base(struct bwn_mac *mac, int index)
{
struct bwn_softc *sc = mac->mac_sc;
static const uint16_t bases[] = {
BWN_PIO_BASE0,
BWN_PIO_BASE1,
BWN_PIO_BASE2,
BWN_PIO_BASE3,
BWN_PIO_BASE4,
BWN_PIO_BASE5,
BWN_PIO_BASE6,
BWN_PIO_BASE7,
};
static const uint16_t bases_rev11[] = {
BWN_PIO11_BASE0,
BWN_PIO11_BASE1,
BWN_PIO11_BASE2,
BWN_PIO11_BASE3,
BWN_PIO11_BASE4,
BWN_PIO11_BASE5,
};
if (bhnd_get_hwrev(sc->sc_dev) >= 11) {
if (index >= N(bases_rev11))
device_printf(sc->sc_dev, "%s: warning\n", __func__);
return (bases_rev11[index]);
}
if (index >= N(bases))
device_printf(sc->sc_dev, "%s: warning\n", __func__);
return (bases[index]);
}
static void
bwn_pio_setupqueue_rx(struct bwn_mac *mac, struct bwn_pio_rxqueue *prq,
int index)
{
struct bwn_softc *sc = mac->mac_sc;
prq->prq_mac = mac;
prq->prq_rev = bhnd_get_hwrev(sc->sc_dev);
prq->prq_base = bwn_pio_idx2base(mac, index) + BWN_PIO_RXQOFFSET(mac);
bwn_dma_rxdirectfifo(mac, index, 1);
}
static void
bwn_destroy_pioqueue_tx(struct bwn_pio_txqueue *tq)
{
if (tq == NULL)
return;
bwn_pio_cancel_tx_packets(tq);
}
static void
bwn_destroy_queue_tx(struct bwn_pio_txqueue *pio)
{
bwn_destroy_pioqueue_tx(pio);
}
static uint16_t
bwn_pio_read_2(struct bwn_mac *mac, struct bwn_pio_txqueue *tq,
uint16_t offset)
{
return (BWN_READ_2(mac, tq->tq_base + offset));
}
static void
bwn_dma_rxdirectfifo(struct bwn_mac *mac, int idx, uint8_t enable)
{
uint32_t ctl;
uint16_t base;
base = bwn_dma_base(mac->mac_dmatype, idx);
if (mac->mac_dmatype == BHND_DMA_ADDR_64BIT) {
ctl = BWN_READ_4(mac, base + BWN_DMA64_RXCTL);
ctl &= ~BWN_DMA64_RXDIRECTFIFO;
if (enable)
ctl |= BWN_DMA64_RXDIRECTFIFO;
BWN_WRITE_4(mac, base + BWN_DMA64_RXCTL, ctl);
} else {
ctl = BWN_READ_4(mac, base + BWN_DMA32_RXCTL);
ctl &= ~BWN_DMA32_RXDIRECTFIFO;
if (enable)
ctl |= BWN_DMA32_RXDIRECTFIFO;
BWN_WRITE_4(mac, base + BWN_DMA32_RXCTL, ctl);
}
}
static void
bwn_pio_cancel_tx_packets(struct bwn_pio_txqueue *tq)
{
struct bwn_pio_txpkt *tp;
unsigned int i;
for (i = 0; i < N(tq->tq_pkts); i++) {
tp = &(tq->tq_pkts[i]);
if (tp->tp_m) {
m_freem(tp->tp_m);
tp->tp_m = NULL;
}
}
}
static uint16_t
bwn_dma_base(int type, int controller_idx)
{
static const uint16_t map64[] = {
BWN_DMA64_BASE0,
BWN_DMA64_BASE1,
BWN_DMA64_BASE2,
BWN_DMA64_BASE3,
BWN_DMA64_BASE4,
BWN_DMA64_BASE5,
};
static const uint16_t map32[] = {
BWN_DMA32_BASE0,
BWN_DMA32_BASE1,
BWN_DMA32_BASE2,
BWN_DMA32_BASE3,
BWN_DMA32_BASE4,
BWN_DMA32_BASE5,
};
if (type == BHND_DMA_ADDR_64BIT) {
KASSERT(controller_idx >= 0 && controller_idx < N(map64),
("%s:%d: fail", __func__, __LINE__));
return (map64[controller_idx]);
}
KASSERT(controller_idx >= 0 && controller_idx < N(map32),
("%s:%d: fail", __func__, __LINE__));
return (map32[controller_idx]);
}
static void
bwn_dma_init(struct bwn_mac *mac)
{
struct bwn_dma *dma = &mac->mac_method.dma;
/* setup TX DMA channels. */
bwn_dma_setup(dma->wme[WME_AC_BK]);
bwn_dma_setup(dma->wme[WME_AC_BE]);
bwn_dma_setup(dma->wme[WME_AC_VI]);
bwn_dma_setup(dma->wme[WME_AC_VO]);
bwn_dma_setup(dma->mcast);
/* setup RX DMA channel. */
bwn_dma_setup(dma->rx);
}
static struct bwn_dma_ring *
bwn_dma_ringsetup(struct bwn_mac *mac, int controller_index,
int for_tx)
{
struct bwn_dma *dma = &mac->mac_method.dma;
struct bwn_dma_ring *dr;
struct bwn_dmadesc_generic *desc;
struct bwn_dmadesc_meta *mt;
struct bwn_softc *sc = mac->mac_sc;
int error, i;
dr = malloc(sizeof(*dr), M_DEVBUF, M_NOWAIT | M_ZERO);
if (dr == NULL)
goto out;
dr->dr_numslots = BWN_RXRING_SLOTS;
if (for_tx)
dr->dr_numslots = BWN_TXRING_SLOTS;
dr->dr_meta = malloc(dr->dr_numslots * sizeof(struct bwn_dmadesc_meta),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (dr->dr_meta == NULL)
goto fail0;
dr->dr_type = mac->mac_dmatype;
dr->dr_mac = mac;
dr->dr_base = bwn_dma_base(dr->dr_type, controller_index);
dr->dr_index = controller_index;
if (dr->dr_type == BHND_DMA_ADDR_64BIT) {
dr->getdesc = bwn_dma_64_getdesc;
dr->setdesc = bwn_dma_64_setdesc;
dr->start_transfer = bwn_dma_64_start_transfer;
dr->suspend = bwn_dma_64_suspend;
dr->resume = bwn_dma_64_resume;
dr->get_curslot = bwn_dma_64_get_curslot;
dr->set_curslot = bwn_dma_64_set_curslot;
} else {
dr->getdesc = bwn_dma_32_getdesc;
dr->setdesc = bwn_dma_32_setdesc;
dr->start_transfer = bwn_dma_32_start_transfer;
dr->suspend = bwn_dma_32_suspend;
dr->resume = bwn_dma_32_resume;
dr->get_curslot = bwn_dma_32_get_curslot;
dr->set_curslot = bwn_dma_32_set_curslot;
}
if (for_tx) {
dr->dr_tx = 1;
dr->dr_curslot = -1;
} else {
if (dr->dr_index == 0) {
switch (mac->mac_fw.fw_hdr_format) {
case BWN_FW_HDR_351:
case BWN_FW_HDR_410:
dr->dr_rx_bufsize =
BWN_DMA0_RX_BUFFERSIZE_FW351;
dr->dr_frameoffset =
BWN_DMA0_RX_FRAMEOFFSET_FW351;
break;
case BWN_FW_HDR_598:
dr->dr_rx_bufsize =
BWN_DMA0_RX_BUFFERSIZE_FW598;
dr->dr_frameoffset =
BWN_DMA0_RX_FRAMEOFFSET_FW598;
break;
}
} else
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
}
error = bwn_dma_allocringmemory(dr);
if (error)
goto fail2;
if (for_tx) {
/*
* Assumption: BWN_TXRING_SLOTS can be divided by
* BWN_TX_SLOTS_PER_FRAME
*/
KASSERT(BWN_TXRING_SLOTS % BWN_TX_SLOTS_PER_FRAME == 0,
("%s:%d: fail", __func__, __LINE__));
dr->dr_txhdr_cache = contigmalloc(
(dr->dr_numslots / BWN_TX_SLOTS_PER_FRAME) *
BWN_MAXTXHDRSIZE, M_DEVBUF, M_ZERO,
0, BUS_SPACE_MAXADDR, 8, 0);
if (dr->dr_txhdr_cache == NULL) {
device_printf(sc->sc_dev,
"can't allocate TX header DMA memory\n");
goto fail1;
}
/*
* Create TX ring DMA stuffs
*/
error = bus_dma_tag_create(dma->parent_dtag,
BWN_ALIGN, 0,
BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR,
NULL, NULL,
BWN_HDRSIZE(mac),
1,
BUS_SPACE_MAXSIZE_32BIT,
0,
NULL, NULL,
&dr->dr_txring_dtag);
if (error) {
device_printf(sc->sc_dev,
"can't create TX ring DMA tag: TODO frees\n");
goto fail2;
}
for (i = 0; i < dr->dr_numslots; i += 2) {
dr->getdesc(dr, i, &desc, &mt);
mt->mt_txtype = BWN_DMADESC_METATYPE_HEADER;
mt->mt_m = NULL;
mt->mt_ni = NULL;
mt->mt_islast = 0;
error = bus_dmamap_create(dr->dr_txring_dtag, 0,
&mt->mt_dmap);
if (error) {
device_printf(sc->sc_dev,
"can't create RX buf DMA map\n");
goto fail2;
}
dr->getdesc(dr, i + 1, &desc, &mt);
mt->mt_txtype = BWN_DMADESC_METATYPE_BODY;
mt->mt_m = NULL;
mt->mt_ni = NULL;
mt->mt_islast = 1;
error = bus_dmamap_create(dma->txbuf_dtag, 0,
&mt->mt_dmap);
if (error) {
device_printf(sc->sc_dev,
"can't create RX buf DMA map\n");
goto fail2;
}
}
} else {
error = bus_dmamap_create(dma->rxbuf_dtag, 0,
&dr->dr_spare_dmap);
if (error) {
device_printf(sc->sc_dev,
"can't create RX buf DMA map\n");
goto out; /* XXX wrong! */
}
for (i = 0; i < dr->dr_numslots; i++) {
dr->getdesc(dr, i, &desc, &mt);
error = bus_dmamap_create(dma->rxbuf_dtag, 0,
&mt->mt_dmap);
if (error) {
device_printf(sc->sc_dev,
"can't create RX buf DMA map\n");
goto out; /* XXX wrong! */
}
error = bwn_dma_newbuf(dr, desc, mt, 1);
if (error) {
device_printf(sc->sc_dev,
"failed to allocate RX buf\n");
goto out; /* XXX wrong! */
}
}
bus_dmamap_sync(dr->dr_ring_dtag, dr->dr_ring_dmap,
BUS_DMASYNC_PREWRITE);
dr->dr_usedslot = dr->dr_numslots;
}
out:
return (dr);
fail2:
if (dr->dr_txhdr_cache != NULL) {
contigfree(dr->dr_txhdr_cache,
(dr->dr_numslots / BWN_TX_SLOTS_PER_FRAME) *
BWN_MAXTXHDRSIZE, M_DEVBUF);
}
fail1:
free(dr->dr_meta, M_DEVBUF);
fail0:
free(dr, M_DEVBUF);
return (NULL);
}
static void
bwn_dma_ringfree(struct bwn_dma_ring **dr)
{
if (dr == NULL)
return;
bwn_dma_free_descbufs(*dr);
bwn_dma_free_ringmemory(*dr);
if ((*dr)->dr_txhdr_cache != NULL) {
contigfree((*dr)->dr_txhdr_cache,
((*dr)->dr_numslots / BWN_TX_SLOTS_PER_FRAME) *
BWN_MAXTXHDRSIZE, M_DEVBUF);
}
free((*dr)->dr_meta, M_DEVBUF);
free(*dr, M_DEVBUF);
*dr = NULL;
}
static void
bwn_dma_32_getdesc(struct bwn_dma_ring *dr, int slot,
struct bwn_dmadesc_generic **gdesc, struct bwn_dmadesc_meta **meta)
{
struct bwn_dmadesc32 *desc;
*meta = &(dr->dr_meta[slot]);
desc = dr->dr_ring_descbase;
desc = &(desc[slot]);
*gdesc = (struct bwn_dmadesc_generic *)desc;
}
static void
bwn_dma_32_setdesc(struct bwn_dma_ring *dr,
struct bwn_dmadesc_generic *desc, bus_addr_t dmaaddr, uint16_t bufsize,
int start, int end, int irq)
{
struct bwn_dmadesc32 *descbase;
struct bwn_dma *dma;
struct bhnd_dma_translation *dt;
uint32_t addr, addrext, ctl;
int slot;
descbase = dr->dr_ring_descbase;
dma = &dr->dr_mac->mac_method.dma;
dt = &dma->translation;
slot = (int)(&(desc->dma.dma32) - descbase);
KASSERT(slot >= 0 && slot < dr->dr_numslots,
("%s:%d: fail", __func__, __LINE__));
addr = (dmaaddr & dt->addr_mask) | dt->base_addr;
addrext = ((dmaaddr & dt->addrext_mask) >> dma->addrext_shift);
ctl = bufsize & BWN_DMA32_DCTL_BYTECNT;
if (slot == dr->dr_numslots - 1)
ctl |= BWN_DMA32_DCTL_DTABLEEND;
if (start)
ctl |= BWN_DMA32_DCTL_FRAMESTART;
if (end)
ctl |= BWN_DMA32_DCTL_FRAMEEND;
if (irq)
ctl |= BWN_DMA32_DCTL_IRQ;
ctl |= (addrext << BWN_DMA32_DCTL_ADDREXT_SHIFT)
& BWN_DMA32_DCTL_ADDREXT_MASK;
desc->dma.dma32.control = htole32(ctl);
desc->dma.dma32.address = htole32(addr);
}
static void
bwn_dma_32_start_transfer(struct bwn_dma_ring *dr, int slot)
{
BWN_DMA_WRITE(dr, BWN_DMA32_TXINDEX,
(uint32_t)(slot * sizeof(struct bwn_dmadesc32)));
}
static void
bwn_dma_32_suspend(struct bwn_dma_ring *dr)
{
BWN_DMA_WRITE(dr, BWN_DMA32_TXCTL,
BWN_DMA_READ(dr, BWN_DMA32_TXCTL) | BWN_DMA32_TXSUSPEND);
}
static void
bwn_dma_32_resume(struct bwn_dma_ring *dr)
{
BWN_DMA_WRITE(dr, BWN_DMA32_TXCTL,
BWN_DMA_READ(dr, BWN_DMA32_TXCTL) & ~BWN_DMA32_TXSUSPEND);
}
static int
bwn_dma_32_get_curslot(struct bwn_dma_ring *dr)
{
uint32_t val;
val = BWN_DMA_READ(dr, BWN_DMA32_RXSTATUS);
val &= BWN_DMA32_RXDPTR;
return (val / sizeof(struct bwn_dmadesc32));
}
static void
bwn_dma_32_set_curslot(struct bwn_dma_ring *dr, int slot)
{
BWN_DMA_WRITE(dr, BWN_DMA32_RXINDEX,
(uint32_t) (slot * sizeof(struct bwn_dmadesc32)));
}
static void
bwn_dma_64_getdesc(struct bwn_dma_ring *dr, int slot,
struct bwn_dmadesc_generic **gdesc, struct bwn_dmadesc_meta **meta)
{
struct bwn_dmadesc64 *desc;
*meta = &(dr->dr_meta[slot]);
desc = dr->dr_ring_descbase;
desc = &(desc[slot]);
*gdesc = (struct bwn_dmadesc_generic *)desc;
}
static void
bwn_dma_64_setdesc(struct bwn_dma_ring *dr,
struct bwn_dmadesc_generic *desc, bus_addr_t dmaaddr, uint16_t bufsize,
int start, int end, int irq)
{
struct bwn_dmadesc64 *descbase;
struct bwn_dma *dma;
struct bhnd_dma_translation *dt;
bhnd_addr_t addr;
uint32_t addrhi, addrlo;
uint32_t addrext;
uint32_t ctl0, ctl1;
int slot;
descbase = dr->dr_ring_descbase;
dma = &dr->dr_mac->mac_method.dma;
dt = &dma->translation;
slot = (int)(&(desc->dma.dma64) - descbase);
KASSERT(slot >= 0 && slot < dr->dr_numslots,
("%s:%d: fail", __func__, __LINE__));
addr = (dmaaddr & dt->addr_mask) | dt->base_addr;
addrhi = (addr >> 32);
addrlo = (addr & UINT32_MAX);
addrext = ((dmaaddr & dt->addrext_mask) >> dma->addrext_shift);
ctl0 = 0;
if (slot == dr->dr_numslots - 1)
ctl0 |= BWN_DMA64_DCTL0_DTABLEEND;
if (start)
ctl0 |= BWN_DMA64_DCTL0_FRAMESTART;
if (end)
ctl0 |= BWN_DMA64_DCTL0_FRAMEEND;
if (irq)
ctl0 |= BWN_DMA64_DCTL0_IRQ;
ctl1 = 0;
ctl1 |= bufsize & BWN_DMA64_DCTL1_BYTECNT;
ctl1 |= (addrext << BWN_DMA64_DCTL1_ADDREXT_SHIFT)
& BWN_DMA64_DCTL1_ADDREXT_MASK;
desc->dma.dma64.control0 = htole32(ctl0);
desc->dma.dma64.control1 = htole32(ctl1);
desc->dma.dma64.address_low = htole32(addrlo);
desc->dma.dma64.address_high = htole32(addrhi);
}
static void
bwn_dma_64_start_transfer(struct bwn_dma_ring *dr, int slot)
{
BWN_DMA_WRITE(dr, BWN_DMA64_TXINDEX,
(uint32_t)(slot * sizeof(struct bwn_dmadesc64)));
}
static void
bwn_dma_64_suspend(struct bwn_dma_ring *dr)
{
BWN_DMA_WRITE(dr, BWN_DMA64_TXCTL,
BWN_DMA_READ(dr, BWN_DMA64_TXCTL) | BWN_DMA64_TXSUSPEND);
}
static void
bwn_dma_64_resume(struct bwn_dma_ring *dr)
{
BWN_DMA_WRITE(dr, BWN_DMA64_TXCTL,
BWN_DMA_READ(dr, BWN_DMA64_TXCTL) & ~BWN_DMA64_TXSUSPEND);
}
static int
bwn_dma_64_get_curslot(struct bwn_dma_ring *dr)
{
uint32_t val;
val = BWN_DMA_READ(dr, BWN_DMA64_RXSTATUS);
val &= BWN_DMA64_RXSTATDPTR;
return (val / sizeof(struct bwn_dmadesc64));
}
static void
bwn_dma_64_set_curslot(struct bwn_dma_ring *dr, int slot)
{
BWN_DMA_WRITE(dr, BWN_DMA64_RXINDEX,
(uint32_t)(slot * sizeof(struct bwn_dmadesc64)));
}
static int
bwn_dma_allocringmemory(struct bwn_dma_ring *dr)
{
struct bwn_mac *mac = dr->dr_mac;
struct bwn_dma *dma = &mac->mac_method.dma;
struct bwn_softc *sc = mac->mac_sc;
int error;
error = bus_dma_tag_create(dma->parent_dtag,
BWN_ALIGN, 0,
BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR,
NULL, NULL,
BWN_DMA_RINGMEMSIZE,
1,
BUS_SPACE_MAXSIZE_32BIT,
0,
NULL, NULL,
&dr->dr_ring_dtag);
if (error) {
device_printf(sc->sc_dev,
"can't create TX ring DMA tag: TODO frees\n");
return (-1);
}
error = bus_dmamem_alloc(dr->dr_ring_dtag,
&dr->dr_ring_descbase, BUS_DMA_WAITOK | BUS_DMA_ZERO,
&dr->dr_ring_dmap);
if (error) {
device_printf(sc->sc_dev,
"can't allocate DMA mem: TODO frees\n");
return (-1);
}
error = bus_dmamap_load(dr->dr_ring_dtag, dr->dr_ring_dmap,
dr->dr_ring_descbase, BWN_DMA_RINGMEMSIZE,
bwn_dma_ring_addr, &dr->dr_ring_dmabase, BUS_DMA_NOWAIT);
if (error) {
device_printf(sc->sc_dev,
"can't load DMA mem: TODO free\n");
return (-1);
}
return (0);
}
static void
bwn_dma_setup(struct bwn_dma_ring *dr)
{
struct bwn_mac *mac;
struct bwn_dma *dma;
struct bhnd_dma_translation *dt;
bhnd_addr_t addr, paddr;
uint32_t addrhi, addrlo, addrext, value;
mac = dr->dr_mac;
dma = &mac->mac_method.dma;
dt = &dma->translation;
paddr = dr->dr_ring_dmabase;
addr = (paddr & dt->addr_mask) | dt->base_addr;
addrhi = (addr >> 32);
addrlo = (addr & UINT32_MAX);
addrext = ((paddr & dt->addrext_mask) >> dma->addrext_shift);
if (dr->dr_tx) {
dr->dr_curslot = -1;
if (dr->dr_type == BHND_DMA_ADDR_64BIT) {
value = BWN_DMA64_TXENABLE;
value |= BWN_DMA64_TXPARITY_DISABLE;
value |= (addrext << BWN_DMA64_TXADDREXT_SHIFT)
& BWN_DMA64_TXADDREXT_MASK;
BWN_DMA_WRITE(dr, BWN_DMA64_TXCTL, value);
BWN_DMA_WRITE(dr, BWN_DMA64_TXRINGLO, addrlo);
BWN_DMA_WRITE(dr, BWN_DMA64_TXRINGHI, addrhi);
} else {
value = BWN_DMA32_TXENABLE;
value |= BWN_DMA32_TXPARITY_DISABLE;
value |= (addrext << BWN_DMA32_TXADDREXT_SHIFT)
& BWN_DMA32_TXADDREXT_MASK;
BWN_DMA_WRITE(dr, BWN_DMA32_TXCTL, value);
BWN_DMA_WRITE(dr, BWN_DMA32_TXRING, addrlo);
}
return;
}
/*
* set for RX
*/
dr->dr_usedslot = dr->dr_numslots;
if (dr->dr_type == BHND_DMA_ADDR_64BIT) {
value = (dr->dr_frameoffset << BWN_DMA64_RXFROFF_SHIFT);
value |= BWN_DMA64_RXENABLE;
value |= BWN_DMA64_RXPARITY_DISABLE;
value |= (addrext << BWN_DMA64_RXADDREXT_SHIFT)
& BWN_DMA64_RXADDREXT_MASK;
BWN_DMA_WRITE(dr, BWN_DMA64_RXCTL, value);
BWN_DMA_WRITE(dr, BWN_DMA64_RXRINGLO, addrlo);
BWN_DMA_WRITE(dr, BWN_DMA64_RXRINGHI, addrhi);
BWN_DMA_WRITE(dr, BWN_DMA64_RXINDEX, dr->dr_numslots *
sizeof(struct bwn_dmadesc64));
} else {
value = (dr->dr_frameoffset << BWN_DMA32_RXFROFF_SHIFT);
value |= BWN_DMA32_RXENABLE;
value |= BWN_DMA32_RXPARITY_DISABLE;
value |= (addrext << BWN_DMA32_RXADDREXT_SHIFT)
& BWN_DMA32_RXADDREXT_MASK;
BWN_DMA_WRITE(dr, BWN_DMA32_RXCTL, value);
BWN_DMA_WRITE(dr, BWN_DMA32_RXRING, addrlo);
BWN_DMA_WRITE(dr, BWN_DMA32_RXINDEX, dr->dr_numslots *
sizeof(struct bwn_dmadesc32));
}
}
static void
bwn_dma_free_ringmemory(struct bwn_dma_ring *dr)
{
bus_dmamap_unload(dr->dr_ring_dtag, dr->dr_ring_dmap);
bus_dmamem_free(dr->dr_ring_dtag, dr->dr_ring_descbase,
dr->dr_ring_dmap);
}
static void
bwn_dma_cleanup(struct bwn_dma_ring *dr)
{
if (dr->dr_tx) {
bwn_dma_tx_reset(dr->dr_mac, dr->dr_base, dr->dr_type);
if (dr->dr_type == BHND_DMA_ADDR_64BIT) {
BWN_DMA_WRITE(dr, BWN_DMA64_TXRINGLO, 0);
BWN_DMA_WRITE(dr, BWN_DMA64_TXRINGHI, 0);
} else
BWN_DMA_WRITE(dr, BWN_DMA32_TXRING, 0);
} else {
bwn_dma_rx_reset(dr->dr_mac, dr->dr_base, dr->dr_type);
if (dr->dr_type == BHND_DMA_ADDR_64BIT) {
BWN_DMA_WRITE(dr, BWN_DMA64_RXRINGLO, 0);
BWN_DMA_WRITE(dr, BWN_DMA64_RXRINGHI, 0);
} else
BWN_DMA_WRITE(dr, BWN_DMA32_RXRING, 0);
}
}
static void
bwn_dma_free_descbufs(struct bwn_dma_ring *dr)
{
struct bwn_dmadesc_generic *desc;
struct bwn_dmadesc_meta *meta;
struct bwn_mac *mac = dr->dr_mac;
struct bwn_dma *dma = &mac->mac_method.dma;
struct bwn_softc *sc = mac->mac_sc;
int i;
if (!dr->dr_usedslot)
return;
for (i = 0; i < dr->dr_numslots; i++) {
dr->getdesc(dr, i, &desc, &meta);
if (meta->mt_m == NULL) {
if (!dr->dr_tx)
device_printf(sc->sc_dev, "%s: not TX?\n",
__func__);
continue;
}
if (dr->dr_tx) {
if (meta->mt_txtype == BWN_DMADESC_METATYPE_HEADER)
bus_dmamap_unload(dr->dr_txring_dtag,
meta->mt_dmap);
else if (meta->mt_txtype == BWN_DMADESC_METATYPE_BODY)
bus_dmamap_unload(dma->txbuf_dtag,
meta->mt_dmap);
} else
bus_dmamap_unload(dma->rxbuf_dtag, meta->mt_dmap);
bwn_dma_free_descbuf(dr, meta);
}
}
static int
bwn_dma_tx_reset(struct bwn_mac *mac, uint16_t base,
int type)
{
struct bwn_softc *sc = mac->mac_sc;
uint32_t value;
int i;
uint16_t offset;
for (i = 0; i < 10; i++) {
offset = (type == BHND_DMA_ADDR_64BIT) ? BWN_DMA64_TXSTATUS :
BWN_DMA32_TXSTATUS;
value = BWN_READ_4(mac, base + offset);
if (type == BHND_DMA_ADDR_64BIT) {
value &= BWN_DMA64_TXSTAT;
if (value == BWN_DMA64_TXSTAT_DISABLED ||
value == BWN_DMA64_TXSTAT_IDLEWAIT ||
value == BWN_DMA64_TXSTAT_STOPPED)
break;
} else {
value &= BWN_DMA32_TXSTATE;
if (value == BWN_DMA32_TXSTAT_DISABLED ||
value == BWN_DMA32_TXSTAT_IDLEWAIT ||
value == BWN_DMA32_TXSTAT_STOPPED)
break;
}
DELAY(1000);
}
offset = (type == BHND_DMA_ADDR_64BIT) ? BWN_DMA64_TXCTL :
BWN_DMA32_TXCTL;
BWN_WRITE_4(mac, base + offset, 0);
for (i = 0; i < 10; i++) {
offset = (type == BHND_DMA_ADDR_64BIT) ? BWN_DMA64_TXSTATUS :
BWN_DMA32_TXSTATUS;
value = BWN_READ_4(mac, base + offset);
if (type == BHND_DMA_ADDR_64BIT) {
value &= BWN_DMA64_TXSTAT;
if (value == BWN_DMA64_TXSTAT_DISABLED) {
i = -1;
break;
}
} else {
value &= BWN_DMA32_TXSTATE;
if (value == BWN_DMA32_TXSTAT_DISABLED) {
i = -1;
break;
}
}
DELAY(1000);
}
if (i != -1) {
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
return (ENODEV);
}
DELAY(1000);
return (0);
}
static int
bwn_dma_rx_reset(struct bwn_mac *mac, uint16_t base,
int type)
{
struct bwn_softc *sc = mac->mac_sc;
uint32_t value;
int i;
uint16_t offset;
offset = (type == BHND_DMA_ADDR_64BIT) ? BWN_DMA64_RXCTL :
BWN_DMA32_RXCTL;
BWN_WRITE_4(mac, base + offset, 0);
for (i = 0; i < 10; i++) {
offset = (type == BHND_DMA_ADDR_64BIT) ? BWN_DMA64_RXSTATUS :
BWN_DMA32_RXSTATUS;
value = BWN_READ_4(mac, base + offset);
if (type == BHND_DMA_ADDR_64BIT) {
value &= BWN_DMA64_RXSTAT;
if (value == BWN_DMA64_RXSTAT_DISABLED) {
i = -1;
break;
}
} else {
value &= BWN_DMA32_RXSTATE;
if (value == BWN_DMA32_RXSTAT_DISABLED) {
i = -1;
break;
}
}
DELAY(1000);
}
if (i != -1) {
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
return (ENODEV);
}
return (0);
}
static void
bwn_dma_free_descbuf(struct bwn_dma_ring *dr,
struct bwn_dmadesc_meta *meta)
{
if (meta->mt_m != NULL) {
m_freem(meta->mt_m);
meta->mt_m = NULL;
}
if (meta->mt_ni != NULL) {
ieee80211_free_node(meta->mt_ni);
meta->mt_ni = NULL;
}
}
static void
bwn_dma_set_redzone(struct bwn_dma_ring *dr, struct mbuf *m)
{
struct bwn_rxhdr4 *rxhdr;
unsigned char *frame;
rxhdr = mtod(m, struct bwn_rxhdr4 *);
rxhdr->frame_len = 0;
KASSERT(dr->dr_rx_bufsize >= dr->dr_frameoffset +
sizeof(struct bwn_plcp6) + 2,
("%s:%d: fail", __func__, __LINE__));
frame = mtod(m, char *) + dr->dr_frameoffset;
memset(frame, 0xff, sizeof(struct bwn_plcp6) + 2 /* padding */);
}
static uint8_t
bwn_dma_check_redzone(struct bwn_dma_ring *dr, struct mbuf *m)
{
unsigned char *f = mtod(m, char *) + dr->dr_frameoffset;
return ((f[0] & f[1] & f[2] & f[3] & f[4] & f[5] & f[6] & f[7])
== 0xff);
}
static void
bwn_wme_init(struct bwn_mac *mac)
{
bwn_wme_load(mac);
/* enable WME support. */
bwn_hf_write(mac, bwn_hf_read(mac) | BWN_HF_EDCF);
BWN_WRITE_2(mac, BWN_IFSCTL, BWN_READ_2(mac, BWN_IFSCTL) |
BWN_IFSCTL_USE_EDCF);
}
static void
bwn_spu_setdelay(struct bwn_mac *mac, int idle)
{
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t delay; /* microsec */
delay = (mac->mac_phy.type == BWN_PHYTYPE_A) ? 3700 : 1050;
if (ic->ic_opmode == IEEE80211_M_IBSS || idle)
delay = 500;
if ((mac->mac_phy.rf_ver == 0x2050) && (mac->mac_phy.rf_rev == 8))
delay = max(delay, (uint16_t)2400);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_SPU_WAKEUP, delay);
}
static void
bwn_bt_enable(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
uint64_t hf;
if (bwn_bluetooth == 0)
return;
if ((sc->sc_board_info.board_flags & BHND_BFL_BTCOEX) == 0)
return;
if (mac->mac_phy.type != BWN_PHYTYPE_B && !mac->mac_phy.gmode)
return;
hf = bwn_hf_read(mac);
if (sc->sc_board_info.board_flags & BHND_BFL_BTC2WIRE_ALTGPIO)
hf |= BWN_HF_BT_COEXISTALT;
else
hf |= BWN_HF_BT_COEXIST;
bwn_hf_write(mac, hf);
}
static void
bwn_set_macaddr(struct bwn_mac *mac)
{
bwn_mac_write_bssid(mac);
bwn_mac_setfilter(mac, BWN_MACFILTER_SELF,
mac->mac_sc->sc_ic.ic_macaddr);
}
static void
bwn_clear_keys(struct bwn_mac *mac)
{
int i;
for (i = 0; i < mac->mac_max_nr_keys; i++) {
KASSERT(i >= 0 && i < mac->mac_max_nr_keys,
("%s:%d: fail", __func__, __LINE__));
bwn_key_dowrite(mac, i, BWN_SEC_ALGO_NONE,
NULL, BWN_SEC_KEYSIZE, NULL);
if ((i <= 3) && !BWN_SEC_NEWAPI(mac)) {
bwn_key_dowrite(mac, i + 4, BWN_SEC_ALGO_NONE,
NULL, BWN_SEC_KEYSIZE, NULL);
}
mac->mac_key[i].keyconf = NULL;
}
}
static void
bwn_crypt_init(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
mac->mac_max_nr_keys = (bhnd_get_hwrev(sc->sc_dev) >= 5) ? 58 : 20;
KASSERT(mac->mac_max_nr_keys <= N(mac->mac_key),
("%s:%d: fail", __func__, __LINE__));
mac->mac_ktp = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_KEY_TABLEP);
mac->mac_ktp *= 2;
if (bhnd_get_hwrev(sc->sc_dev) >= 5)
BWN_WRITE_2(mac, BWN_RCMTA_COUNT, mac->mac_max_nr_keys - 8);
bwn_clear_keys(mac);
}
static void
bwn_chip_exit(struct bwn_mac *mac)
{
bwn_phy_exit(mac);
}
static int
bwn_fw_fillinfo(struct bwn_mac *mac)
{
int error;
error = bwn_fw_gets(mac, BWN_FWTYPE_DEFAULT);
if (error == 0)
return (0);
error = bwn_fw_gets(mac, BWN_FWTYPE_OPENSOURCE);
if (error == 0)
return (0);
return (error);
}
/**
* Request that the GPIO controller tristate all pins set in @p mask, granting
* the MAC core control over the pins.
*
* @param mac bwn MAC state.
* @param pins If the bit position for a pin number is set to one, tristate the
* pin.
*/
int
bwn_gpio_control(struct bwn_mac *mac, uint32_t pins)
{
struct bwn_softc *sc;
uint32_t flags[32];
int error;
sc = mac->mac_sc;
/* Determine desired pin flags */
for (size_t pin = 0; pin < nitems(flags); pin++) {
uint32_t pinbit = (1 << pin);
if (pins & pinbit) {
/* Tristate output */
flags[pin] = GPIO_PIN_OUTPUT|GPIO_PIN_TRISTATE;
} else {
/* Leave unmodified */
flags[pin] = 0;
}
}
/* Configure all pins */
error = GPIO_PIN_CONFIG_32(sc->sc_gpio, 0, nitems(flags), flags);
if (error) {
device_printf(sc->sc_dev, "error configuring %s pin flags: "
"%d\n", device_get_nameunit(sc->sc_gpio), error);
return (error);
}
return (0);
}
static int
bwn_gpio_init(struct bwn_mac *mac)
{
struct bwn_softc *sc;
uint32_t pins;
sc = mac->mac_sc;
pins = 0xF;
BWN_WRITE_4(mac, BWN_MACCTL,
BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_GPOUT_MASK);
BWN_WRITE_2(mac, BWN_GPIO_MASK,
BWN_READ_2(mac, BWN_GPIO_MASK) | pins);
if (sc->sc_board_info.board_flags & BHND_BFL_PACTRL) {
/* MAC core is responsible for toggling PAREF via gpio9 */
BWN_WRITE_2(mac, BWN_GPIO_MASK,
BWN_READ_2(mac, BWN_GPIO_MASK) | BHND_GPIO_BOARD_PACTRL);
pins |= BHND_GPIO_BOARD_PACTRL;
}
return (bwn_gpio_control(mac, pins));
}
static int
bwn_fw_loadinitvals(struct bwn_mac *mac)
{
#define GETFWOFFSET(fwp, offset) \
((const struct bwn_fwinitvals *)((const char *)fwp.fw->data + offset))
const size_t hdr_len = sizeof(struct bwn_fwhdr);
const struct bwn_fwhdr *hdr;
struct bwn_fw *fw = &mac->mac_fw;
int error;
hdr = (const struct bwn_fwhdr *)(fw->initvals.fw->data);
error = bwn_fwinitvals_write(mac, GETFWOFFSET(fw->initvals, hdr_len),
be32toh(hdr->size), fw->initvals.fw->datasize - hdr_len);
if (error)
return (error);
if (fw->initvals_band.fw) {
hdr = (const struct bwn_fwhdr *)(fw->initvals_band.fw->data);
error = bwn_fwinitvals_write(mac,
GETFWOFFSET(fw->initvals_band, hdr_len),
be32toh(hdr->size),
fw->initvals_band.fw->datasize - hdr_len);
}
return (error);
#undef GETFWOFFSET
}
static int
bwn_phy_init(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
int error;
mac->mac_phy.chan = mac->mac_phy.get_default_chan(mac);
mac->mac_phy.rf_onoff(mac, 1);
error = mac->mac_phy.init(mac);
if (error) {
device_printf(sc->sc_dev, "PHY init failed\n");
goto fail0;
}
error = bwn_switch_channel(mac,
mac->mac_phy.get_default_chan(mac));
if (error) {
device_printf(sc->sc_dev,
"failed to switch default channel\n");
goto fail1;
}
return (0);
fail1:
if (mac->mac_phy.exit)
mac->mac_phy.exit(mac);
fail0:
mac->mac_phy.rf_onoff(mac, 0);
return (error);
}
static void
bwn_set_txantenna(struct bwn_mac *mac, int antenna)
{
uint16_t ant;
uint16_t tmp;
ant = bwn_ant2phy(antenna);
/* For ACK/CTS */
tmp = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_ACKCTS_PHYCTL);
tmp = (tmp & ~BWN_TX_PHY_ANT) | ant;
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_ACKCTS_PHYCTL, tmp);
/* For Probe Resposes */
tmp = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_PROBE_RESP_PHYCTL);
tmp = (tmp & ~BWN_TX_PHY_ANT) | ant;
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_PROBE_RESP_PHYCTL, tmp);
}
static void
bwn_set_opmode(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t ctl;
uint16_t cfp_pretbtt;
ctl = BWN_READ_4(mac, BWN_MACCTL);
ctl &= ~(BWN_MACCTL_HOSTAP | BWN_MACCTL_PASS_CTL |
BWN_MACCTL_PASS_BADPLCP | BWN_MACCTL_PASS_BADFCS |
BWN_MACCTL_PROMISC | BWN_MACCTL_BEACON_PROMISC);
ctl |= BWN_MACCTL_STA;
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_MBSS)
ctl |= BWN_MACCTL_HOSTAP;
else if (ic->ic_opmode == IEEE80211_M_IBSS)
ctl &= ~BWN_MACCTL_STA;
ctl |= sc->sc_filters;
if (bhnd_get_hwrev(sc->sc_dev) <= 4)
ctl |= BWN_MACCTL_PROMISC;
BWN_WRITE_4(mac, BWN_MACCTL, ctl);
cfp_pretbtt = 2;
if ((ctl & BWN_MACCTL_STA) && !(ctl & BWN_MACCTL_HOSTAP)) {
if (sc->sc_cid.chip_id == BHND_CHIPID_BCM4306 &&
sc->sc_cid.chip_rev == 3)
cfp_pretbtt = 100;
else
cfp_pretbtt = 50;
}
BWN_WRITE_2(mac, 0x612, cfp_pretbtt);
}
static void
bwn_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
if (!error) {
KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
*((bus_addr_t *)arg) = seg->ds_addr;
}
}
void
bwn_dummy_transmission(struct bwn_mac *mac, int ofdm, int paon)
{
struct bwn_phy *phy = &mac->mac_phy;
struct bwn_softc *sc = mac->mac_sc;
unsigned int i, max_loop;
uint16_t value;
uint32_t buffer[5] = {
0x00000000, 0x00d40000, 0x00000000, 0x01000000, 0x00000000
};
if (ofdm) {
max_loop = 0x1e;
buffer[0] = 0x000201cc;
} else {
max_loop = 0xfa;
buffer[0] = 0x000b846e;
}
BWN_ASSERT_LOCKED(mac->mac_sc);
for (i = 0; i < 5; i++)
bwn_ram_write(mac, i * 4, buffer[i]);
BWN_WRITE_2(mac, 0x0568, 0x0000);
BWN_WRITE_2(mac, 0x07c0,
(bhnd_get_hwrev(sc->sc_dev) < 11) ? 0x0000 : 0x0100);
value = (ofdm ? 0x41 : 0x40);
BWN_WRITE_2(mac, 0x050c, value);
if (phy->type == BWN_PHYTYPE_N || phy->type == BWN_PHYTYPE_LP ||
phy->type == BWN_PHYTYPE_LCN)
BWN_WRITE_2(mac, 0x0514, 0x1a02);
BWN_WRITE_2(mac, 0x0508, 0x0000);
BWN_WRITE_2(mac, 0x050a, 0x0000);
BWN_WRITE_2(mac, 0x054c, 0x0000);
BWN_WRITE_2(mac, 0x056a, 0x0014);
BWN_WRITE_2(mac, 0x0568, 0x0826);
BWN_WRITE_2(mac, 0x0500, 0x0000);
/* XXX TODO: n phy pa override? */
switch (phy->type) {
case BWN_PHYTYPE_N:
case BWN_PHYTYPE_LCN:
BWN_WRITE_2(mac, 0x0502, 0x00d0);
break;
case BWN_PHYTYPE_LP:
BWN_WRITE_2(mac, 0x0502, 0x0050);
break;
default:
BWN_WRITE_2(mac, 0x0502, 0x0030);
break;
}
/* flush */
BWN_READ_2(mac, 0x0502);
if (phy->rf_ver == 0x2050 && phy->rf_rev <= 0x5)
BWN_RF_WRITE(mac, 0x0051, 0x0017);
for (i = 0x00; i < max_loop; i++) {
value = BWN_READ_2(mac, 0x050e);
if (value & 0x0080)
break;
DELAY(10);
}
for (i = 0x00; i < 0x0a; i++) {
value = BWN_READ_2(mac, 0x050e);
if (value & 0x0400)
break;
DELAY(10);
}
for (i = 0x00; i < 0x19; i++) {
value = BWN_READ_2(mac, 0x0690);
if (!(value & 0x0100))
break;
DELAY(10);
}
if (phy->rf_ver == 0x2050 && phy->rf_rev <= 0x5)
BWN_RF_WRITE(mac, 0x0051, 0x0037);
}
void
bwn_ram_write(struct bwn_mac *mac, uint16_t offset, uint32_t val)
{
uint32_t macctl;
KASSERT(offset % 4 == 0, ("%s:%d: fail", __func__, __LINE__));
macctl = BWN_READ_4(mac, BWN_MACCTL);
if (macctl & BWN_MACCTL_BIGENDIAN)
printf("TODO: need swap\n");
BWN_WRITE_4(mac, BWN_RAM_CONTROL, offset);
BWN_BARRIER(mac, BWN_RAM_CONTROL, 4, BUS_SPACE_BARRIER_WRITE);
BWN_WRITE_4(mac, BWN_RAM_DATA, val);
}
void
bwn_mac_suspend(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
int i;
uint32_t tmp;
KASSERT(mac->mac_suspended >= 0,
("%s:%d: fail", __func__, __LINE__));
DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: suspended=%d\n",
__func__, mac->mac_suspended);
if (mac->mac_suspended == 0) {
bwn_psctl(mac, BWN_PS_AWAKE);
BWN_WRITE_4(mac, BWN_MACCTL,
BWN_READ_4(mac, BWN_MACCTL)
& ~BWN_MACCTL_ON);
BWN_READ_4(mac, BWN_MACCTL);
for (i = 35; i; i--) {
tmp = BWN_READ_4(mac, BWN_INTR_REASON);
if (tmp & BWN_INTR_MAC_SUSPENDED)
goto out;
DELAY(10);
}
for (i = 40; i; i--) {
tmp = BWN_READ_4(mac, BWN_INTR_REASON);
if (tmp & BWN_INTR_MAC_SUSPENDED)
goto out;
DELAY(1000);
}
device_printf(sc->sc_dev, "MAC suspend failed\n");
}
out:
mac->mac_suspended++;
}
void
bwn_mac_enable(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
uint16_t state;
DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: suspended=%d\n",
__func__, mac->mac_suspended);
state = bwn_shm_read_2(mac, BWN_SHARED,
BWN_SHARED_UCODESTAT);
if (state != BWN_SHARED_UCODESTAT_SUSPEND &&
state != BWN_SHARED_UCODESTAT_SLEEP) {
DPRINTF(sc, BWN_DEBUG_FW,
"%s: warn: firmware state (%d)\n",
__func__, state);
}
mac->mac_suspended--;
KASSERT(mac->mac_suspended >= 0,
("%s:%d: fail", __func__, __LINE__));
if (mac->mac_suspended == 0) {
BWN_WRITE_4(mac, BWN_MACCTL,
BWN_READ_4(mac, BWN_MACCTL) | BWN_MACCTL_ON);
BWN_WRITE_4(mac, BWN_INTR_REASON, BWN_INTR_MAC_SUSPENDED);
BWN_READ_4(mac, BWN_MACCTL);
BWN_READ_4(mac, BWN_INTR_REASON);
bwn_psctl(mac, 0);
}
}
void
bwn_psctl(struct bwn_mac *mac, uint32_t flags)
{
struct bwn_softc *sc = mac->mac_sc;
int i;
uint16_t ucstat;
KASSERT(!((flags & BWN_PS_ON) && (flags & BWN_PS_OFF)),
("%s:%d: fail", __func__, __LINE__));
KASSERT(!((flags & BWN_PS_AWAKE) && (flags & BWN_PS_ASLEEP)),
("%s:%d: fail", __func__, __LINE__));
/* XXX forcibly awake and hwps-off */
BWN_WRITE_4(mac, BWN_MACCTL,
(BWN_READ_4(mac, BWN_MACCTL) | BWN_MACCTL_AWAKE) &
~BWN_MACCTL_HWPS);
BWN_READ_4(mac, BWN_MACCTL);
if (bhnd_get_hwrev(sc->sc_dev) >= 5) {
for (i = 0; i < 100; i++) {
ucstat = bwn_shm_read_2(mac, BWN_SHARED,
BWN_SHARED_UCODESTAT);
if (ucstat != BWN_SHARED_UCODESTAT_SLEEP)
break;
DELAY(10);
}
}
DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: ucstat=%d\n", __func__,
ucstat);
}
static int
bwn_fw_gets(struct bwn_mac *mac, enum bwn_fwtype type)
{
struct bwn_softc *sc = mac->mac_sc;
struct bwn_fw *fw = &mac->mac_fw;
const uint8_t rev = bhnd_get_hwrev(sc->sc_dev);
const char *filename;
uint16_t iost;
int error;
/* microcode */
filename = NULL;
switch (rev) {
case 42:
if (mac->mac_phy.type == BWN_PHYTYPE_AC)
filename = "ucode42";
break;
case 40:
if (mac->mac_phy.type == BWN_PHYTYPE_AC)
filename = "ucode40";
break;
case 33:
if (mac->mac_phy.type == BWN_PHYTYPE_LCN40)
filename = "ucode33_lcn40";
break;
case 30:
if (mac->mac_phy.type == BWN_PHYTYPE_N)
filename = "ucode30_mimo";
break;
case 29:
if (mac->mac_phy.type == BWN_PHYTYPE_HT)
filename = "ucode29_mimo";
break;
case 26:
if (mac->mac_phy.type == BWN_PHYTYPE_HT)
filename = "ucode26_mimo";
break;
case 28:
case 25:
if (mac->mac_phy.type == BWN_PHYTYPE_N)
filename = "ucode25_mimo";
else if (mac->mac_phy.type == BWN_PHYTYPE_LCN)
filename = "ucode25_lcn";
break;
case 24:
if (mac->mac_phy.type == BWN_PHYTYPE_LCN)
filename = "ucode24_lcn";
break;
case 23:
if (mac->mac_phy.type == BWN_PHYTYPE_N)
filename = "ucode16_mimo";
break;
case 16:
case 17:
case 18:
case 19:
if (mac->mac_phy.type == BWN_PHYTYPE_N)
filename = "ucode16_mimo";
else if (mac->mac_phy.type == BWN_PHYTYPE_LP)
filename = "ucode16_lp";
break;
case 15:
filename = "ucode15";
break;
case 14:
filename = "ucode14";
break;
case 13:
filename = "ucode13";
break;
case 12:
case 11:
filename = "ucode11";
break;
case 10:
case 9:
case 8:
case 7:
case 6:
case 5:
filename = "ucode5";
break;
default:
device_printf(sc->sc_dev, "no ucode for rev %d\n", rev);
bwn_release_firmware(mac);
return (EOPNOTSUPP);
}
device_printf(sc->sc_dev, "ucode fw: %s\n", filename);
error = bwn_fw_get(mac, type, filename, &fw->ucode);
if (error) {
bwn_release_firmware(mac);
return (error);
}
/* PCM */
KASSERT(fw->no_pcmfile == 0, ("%s:%d fail", __func__, __LINE__));
if (rev >= 5 && rev <= 10) {
error = bwn_fw_get(mac, type, "pcm5", &fw->pcm);
if (error == ENOENT)
fw->no_pcmfile = 1;
else if (error) {
bwn_release_firmware(mac);
return (error);
}
} else if (rev < 11) {
device_printf(sc->sc_dev, "no PCM for rev %d\n", rev);
bwn_release_firmware(mac);
return (EOPNOTSUPP);
}
/* initvals */
error = bhnd_read_iost(sc->sc_dev, &iost);
if (error)
goto fail1;
switch (mac->mac_phy.type) {
case BWN_PHYTYPE_A:
if (rev < 5 || rev > 10)
goto fail1;
if (iost & BWN_IOST_HAVE_2GHZ)
filename = "a0g1initvals5";
else
filename = "a0g0initvals5";
break;
case BWN_PHYTYPE_G:
if (rev >= 5 && rev <= 10)
filename = "b0g0initvals5";
else if (rev >= 13)
filename = "b0g0initvals13";
else
goto fail1;
break;
case BWN_PHYTYPE_LP:
if (rev == 13)
filename = "lp0initvals13";
else if (rev == 14)
filename = "lp0initvals14";
else if (rev >= 15)
filename = "lp0initvals15";
else
goto fail1;
break;
case BWN_PHYTYPE_N:
if (rev == 30)
filename = "n16initvals30";
else if (rev == 28 || rev == 25)
filename = "n0initvals25";
else if (rev == 24)
filename = "n0initvals24";
else if (rev == 23)
filename = "n0initvals16";
else if (rev >= 16 && rev <= 18)
filename = "n0initvals16";
else if (rev >= 11 && rev <= 12)
filename = "n0initvals11";
else
goto fail1;
break;
default:
goto fail1;
}
error = bwn_fw_get(mac, type, filename, &fw->initvals);
if (error) {
bwn_release_firmware(mac);
return (error);
}
/* bandswitch initvals */
switch (mac->mac_phy.type) {
case BWN_PHYTYPE_A:
if (rev >= 5 && rev <= 10) {
if (iost & BWN_IOST_HAVE_2GHZ)
filename = "a0g1bsinitvals5";
else
filename = "a0g0bsinitvals5";
} else if (rev >= 11)
filename = NULL;
else
goto fail1;
break;
case BWN_PHYTYPE_G:
if (rev >= 5 && rev <= 10)
filename = "b0g0bsinitvals5";
else if (rev >= 11)
filename = NULL;
else
goto fail1;
break;
case BWN_PHYTYPE_LP:
if (rev == 13)
filename = "lp0bsinitvals13";
else if (rev == 14)
filename = "lp0bsinitvals14";
else if (rev >= 15)
filename = "lp0bsinitvals15";
else
goto fail1;
break;
case BWN_PHYTYPE_N:
if (rev == 30)
filename = "n16bsinitvals30";
else if (rev == 28 || rev == 25)
filename = "n0bsinitvals25";
else if (rev == 24)
filename = "n0bsinitvals24";
else if (rev == 23)
filename = "n0bsinitvals16";
else if (rev >= 16 && rev <= 18)
filename = "n0bsinitvals16";
else if (rev >= 11 && rev <= 12)
filename = "n0bsinitvals11";
else
goto fail1;
break;
default:
device_printf(sc->sc_dev, "unknown phy (%d)\n",
mac->mac_phy.type);
goto fail1;
}
error = bwn_fw_get(mac, type, filename, &fw->initvals_band);
if (error) {
bwn_release_firmware(mac);
return (error);
}
return (0);
fail1:
device_printf(sc->sc_dev, "no INITVALS for rev %d, phy.type %d\n",
rev, mac->mac_phy.type);
bwn_release_firmware(mac);
return (EOPNOTSUPP);
}
static int
bwn_fw_get(struct bwn_mac *mac, enum bwn_fwtype type,
const char *name, struct bwn_fwfile *bfw)
{
const struct bwn_fwhdr *hdr;
struct bwn_softc *sc = mac->mac_sc;
const struct firmware *fw;
char namebuf[64];
if (name == NULL) {
bwn_do_release_fw(bfw);
return (0);
}
if (bfw->filename != NULL) {
if (bfw->type == type && (strcmp(bfw->filename, name) == 0))
return (0);
bwn_do_release_fw(bfw);
}
snprintf(namebuf, sizeof(namebuf), "bwn%s_v4_%s%s",
(type == BWN_FWTYPE_OPENSOURCE) ? "-open" : "",
(mac->mac_phy.type == BWN_PHYTYPE_LP) ? "lp_" : "", name);
/* XXX Sleeping on "fwload" with the non-sleepable locks held */
fw = firmware_get(namebuf);
if (fw == NULL) {
device_printf(sc->sc_dev, "the fw file(%s) not found\n",
namebuf);
return (ENOENT);
}
if (fw->datasize < sizeof(struct bwn_fwhdr))
goto fail;
hdr = (const struct bwn_fwhdr *)(fw->data);
switch (hdr->type) {
case BWN_FWTYPE_UCODE:
case BWN_FWTYPE_PCM:
if (be32toh(hdr->size) !=
(fw->datasize - sizeof(struct bwn_fwhdr)))
goto fail;
/* FALLTHROUGH */
case BWN_FWTYPE_IV:
if (hdr->ver != 1)
goto fail;
break;
default:
goto fail;
}
bfw->filename = name;
bfw->fw = fw;
bfw->type = type;
return (0);
fail:
device_printf(sc->sc_dev, "the fw file(%s) format error\n", namebuf);
if (fw != NULL)
firmware_put(fw, FIRMWARE_UNLOAD);
return (EPROTO);
}
static void
bwn_release_firmware(struct bwn_mac *mac)
{
bwn_do_release_fw(&mac->mac_fw.ucode);
bwn_do_release_fw(&mac->mac_fw.pcm);
bwn_do_release_fw(&mac->mac_fw.initvals);
bwn_do_release_fw(&mac->mac_fw.initvals_band);
}
static void
bwn_do_release_fw(struct bwn_fwfile *bfw)
{
if (bfw->fw != NULL)
firmware_put(bfw->fw, FIRMWARE_UNLOAD);
bfw->fw = NULL;
bfw->filename = NULL;
}
static int
bwn_fw_loaducode(struct bwn_mac *mac)
{
#define GETFWOFFSET(fwp, offset) \
((const uint32_t *)((const char *)fwp.fw->data + offset))
#define GETFWSIZE(fwp, offset) \
((fwp.fw->datasize - offset) / sizeof(uint32_t))
struct bwn_softc *sc = mac->mac_sc;
const uint32_t *data;
unsigned int i;
uint32_t ctl;
uint16_t date, fwcaps, time;
int error = 0;
ctl = BWN_READ_4(mac, BWN_MACCTL);
ctl |= BWN_MACCTL_MCODE_JMP0;
KASSERT(!(ctl & BWN_MACCTL_MCODE_RUN), ("%s:%d: fail", __func__,
__LINE__));
BWN_WRITE_4(mac, BWN_MACCTL, ctl);
for (i = 0; i < 64; i++)
bwn_shm_write_2(mac, BWN_SCRATCH, i, 0);
for (i = 0; i < 4096; i += 2)
bwn_shm_write_2(mac, BWN_SHARED, i, 0);
data = GETFWOFFSET(mac->mac_fw.ucode, sizeof(struct bwn_fwhdr));
bwn_shm_ctlword(mac, BWN_UCODE | BWN_SHARED_AUTOINC, 0x0000);
for (i = 0; i < GETFWSIZE(mac->mac_fw.ucode, sizeof(struct bwn_fwhdr));
i++) {
BWN_WRITE_4(mac, BWN_SHM_DATA, be32toh(data[i]));
DELAY(10);
}
if (mac->mac_fw.pcm.fw) {
data = GETFWOFFSET(mac->mac_fw.pcm, sizeof(struct bwn_fwhdr));
bwn_shm_ctlword(mac, BWN_HW, 0x01ea);
BWN_WRITE_4(mac, BWN_SHM_DATA, 0x00004000);
bwn_shm_ctlword(mac, BWN_HW, 0x01eb);
for (i = 0; i < GETFWSIZE(mac->mac_fw.pcm,
sizeof(struct bwn_fwhdr)); i++) {
BWN_WRITE_4(mac, BWN_SHM_DATA, be32toh(data[i]));
DELAY(10);
}
}
BWN_WRITE_4(mac, BWN_INTR_REASON, BWN_INTR_ALL);
BWN_WRITE_4(mac, BWN_MACCTL,
(BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_MCODE_JMP0) |
BWN_MACCTL_MCODE_RUN);
for (i = 0; i < 21; i++) {
if (BWN_READ_4(mac, BWN_INTR_REASON) == BWN_INTR_MAC_SUSPENDED)
break;
if (i >= 20) {
device_printf(sc->sc_dev, "ucode timeout\n");
error = ENXIO;
goto error;
}
DELAY(50000);
}
BWN_READ_4(mac, BWN_INTR_REASON);
mac->mac_fw.rev = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_UCODE_REV);
if (mac->mac_fw.rev <= 0x128) {
device_printf(sc->sc_dev, "the firmware is too old\n");
error = EOPNOTSUPP;
goto error;
}
/*
* Determine firmware header version; needed for TX/RX packet
* handling.
*/
if (mac->mac_fw.rev >= 598)
mac->mac_fw.fw_hdr_format = BWN_FW_HDR_598;
else if (mac->mac_fw.rev >= 410)
mac->mac_fw.fw_hdr_format = BWN_FW_HDR_410;
else
mac->mac_fw.fw_hdr_format = BWN_FW_HDR_351;
/*
* We don't support rev 598 or later; that requires
* another round of changes to the TX/RX descriptor
* and status layout.
*
* So, complain this is the case and exit out, rather
* than attaching and then failing.
*/
#if 0
if (mac->mac_fw.fw_hdr_format == BWN_FW_HDR_598) {
device_printf(sc->sc_dev,
"firmware is too new (>=598); not supported\n");
error = EOPNOTSUPP;
goto error;
}
#endif
mac->mac_fw.patch = bwn_shm_read_2(mac, BWN_SHARED,
BWN_SHARED_UCODE_PATCH);
date = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_UCODE_DATE);
mac->mac_fw.opensource = (date == 0xffff);
if (bwn_wme != 0)
mac->mac_flags |= BWN_MAC_FLAG_WME;
mac->mac_flags |= BWN_MAC_FLAG_HWCRYPTO;
time = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_UCODE_TIME);
if (mac->mac_fw.opensource == 0) {
device_printf(sc->sc_dev,
"firmware version (rev %u patch %u date %#x time %#x)\n",
mac->mac_fw.rev, mac->mac_fw.patch, date, time);
if (mac->mac_fw.no_pcmfile)
device_printf(sc->sc_dev,
"no HW crypto acceleration due to pcm5\n");
} else {
mac->mac_fw.patch = time;
fwcaps = bwn_fwcaps_read(mac);
if (!(fwcaps & BWN_FWCAPS_HWCRYPTO) || mac->mac_fw.no_pcmfile) {
device_printf(sc->sc_dev,
"disabling HW crypto acceleration\n");
mac->mac_flags &= ~BWN_MAC_FLAG_HWCRYPTO;
}
if (!(fwcaps & BWN_FWCAPS_WME)) {
device_printf(sc->sc_dev, "disabling WME support\n");
mac->mac_flags &= ~BWN_MAC_FLAG_WME;
}
}
if (BWN_ISOLDFMT(mac))
device_printf(sc->sc_dev, "using old firmware image\n");
return (0);
error:
BWN_WRITE_4(mac, BWN_MACCTL,
(BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_MCODE_RUN) |
BWN_MACCTL_MCODE_JMP0);
return (error);
#undef GETFWSIZE
#undef GETFWOFFSET
}
/* OpenFirmware only */
static uint16_t
bwn_fwcaps_read(struct bwn_mac *mac)
{
KASSERT(mac->mac_fw.opensource == 1,
("%s:%d: fail", __func__, __LINE__));
return (bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_FWCAPS));
}
static int
bwn_fwinitvals_write(struct bwn_mac *mac, const struct bwn_fwinitvals *ivals,
size_t count, size_t array_size)
{
#define GET_NEXTIV16(iv) \
((const struct bwn_fwinitvals *)((const uint8_t *)(iv) + \
sizeof(uint16_t) + sizeof(uint16_t)))
#define GET_NEXTIV32(iv) \
((const struct bwn_fwinitvals *)((const uint8_t *)(iv) + \
sizeof(uint16_t) + sizeof(uint32_t)))
struct bwn_softc *sc = mac->mac_sc;
const struct bwn_fwinitvals *iv;
uint16_t offset;
size_t i;
uint8_t bit32;
KASSERT(sizeof(struct bwn_fwinitvals) == 6,
("%s:%d: fail", __func__, __LINE__));
iv = ivals;
for (i = 0; i < count; i++) {
if (array_size < sizeof(iv->offset_size))
goto fail;
array_size -= sizeof(iv->offset_size);
offset = be16toh(iv->offset_size);
bit32 = (offset & BWN_FWINITVALS_32BIT) ? 1 : 0;
offset &= BWN_FWINITVALS_OFFSET_MASK;
if (offset >= 0x1000)
goto fail;
if (bit32) {
if (array_size < sizeof(iv->data.d32))
goto fail;
array_size -= sizeof(iv->data.d32);
BWN_WRITE_4(mac, offset, be32toh(iv->data.d32));
iv = GET_NEXTIV32(iv);
} else {
if (array_size < sizeof(iv->data.d16))
goto fail;
array_size -= sizeof(iv->data.d16);
BWN_WRITE_2(mac, offset, be16toh(iv->data.d16));
iv = GET_NEXTIV16(iv);
}
}
if (array_size != 0)
goto fail;
return (0);
fail:
device_printf(sc->sc_dev, "initvals: invalid format\n");
return (EPROTO);
#undef GET_NEXTIV16
#undef GET_NEXTIV32
}
int
bwn_switch_channel(struct bwn_mac *mac, int chan)
{
struct bwn_phy *phy = &(mac->mac_phy);
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t channelcookie, savedcookie;
int error;
if (chan == 0xffff)
chan = phy->get_default_chan(mac);
channelcookie = chan;
if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
channelcookie |= 0x100;
savedcookie = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_CHAN);
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_CHAN, channelcookie);
error = phy->switch_channel(mac, chan);
if (error)
goto fail;
mac->mac_phy.chan = chan;
DELAY(8000);
return (0);
fail:
device_printf(sc->sc_dev, "failed to switch channel\n");
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_CHAN, savedcookie);
return (error);
}
static uint16_t
bwn_ant2phy(int antenna)
{
switch (antenna) {
case BWN_ANT0:
return (BWN_TX_PHY_ANT0);
case BWN_ANT1:
return (BWN_TX_PHY_ANT1);
case BWN_ANT2:
return (BWN_TX_PHY_ANT2);
case BWN_ANT3:
return (BWN_TX_PHY_ANT3);
case BWN_ANTAUTO:
return (BWN_TX_PHY_ANT01AUTO);
}
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
return (0);
}
static void
bwn_wme_load(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
int i;
KASSERT(N(bwn_wme_shm_offsets) == N(sc->sc_wmeParams),
("%s:%d: fail", __func__, __LINE__));
bwn_mac_suspend(mac);
for (i = 0; i < N(sc->sc_wmeParams); i++)
bwn_wme_loadparams(mac, &(sc->sc_wmeParams[i]),
bwn_wme_shm_offsets[i]);
bwn_mac_enable(mac);
}
static void
bwn_wme_loadparams(struct bwn_mac *mac,
const struct wmeParams *p, uint16_t shm_offset)
{
#define SM(_v, _f) (((_v) << _f##_S) & _f)
struct bwn_softc *sc = mac->mac_sc;
uint16_t params[BWN_NR_WMEPARAMS];
int slot, tmp;
unsigned int i;
slot = BWN_READ_2(mac, BWN_RNG) &
SM(p->wmep_logcwmin, WME_PARAM_LOGCWMIN);
memset(&params, 0, sizeof(params));
DPRINTF(sc, BWN_DEBUG_WME, "wmep_txopLimit %d wmep_logcwmin %d "
"wmep_logcwmax %d wmep_aifsn %d\n", p->wmep_txopLimit,
p->wmep_logcwmin, p->wmep_logcwmax, p->wmep_aifsn);
params[BWN_WMEPARAM_TXOP] = p->wmep_txopLimit * 32;
params[BWN_WMEPARAM_CWMIN] = SM(p->wmep_logcwmin, WME_PARAM_LOGCWMIN);
params[BWN_WMEPARAM_CWMAX] = SM(p->wmep_logcwmax, WME_PARAM_LOGCWMAX);
params[BWN_WMEPARAM_CWCUR] = SM(p->wmep_logcwmin, WME_PARAM_LOGCWMIN);
params[BWN_WMEPARAM_AIFS] = p->wmep_aifsn;
params[BWN_WMEPARAM_BSLOTS] = slot;
params[BWN_WMEPARAM_REGGAP] = slot + p->wmep_aifsn;
for (i = 0; i < N(params); i++) {
if (i == BWN_WMEPARAM_STATUS) {
tmp = bwn_shm_read_2(mac, BWN_SHARED,
shm_offset + (i * 2));
tmp |= 0x100;
bwn_shm_write_2(mac, BWN_SHARED, shm_offset + (i * 2),
tmp);
} else {
bwn_shm_write_2(mac, BWN_SHARED, shm_offset + (i * 2),
params[i]);
}
}
}
static void
bwn_mac_write_bssid(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
uint32_t tmp;
int i;
uint8_t mac_bssid[IEEE80211_ADDR_LEN * 2];
bwn_mac_setfilter(mac, BWN_MACFILTER_BSSID, sc->sc_bssid);
memcpy(mac_bssid, sc->sc_ic.ic_macaddr, IEEE80211_ADDR_LEN);
memcpy(mac_bssid + IEEE80211_ADDR_LEN, sc->sc_bssid,
IEEE80211_ADDR_LEN);
for (i = 0; i < N(mac_bssid); i += sizeof(uint32_t)) {
tmp = (uint32_t) (mac_bssid[i + 0]);
tmp |= (uint32_t) (mac_bssid[i + 1]) << 8;
tmp |= (uint32_t) (mac_bssid[i + 2]) << 16;
tmp |= (uint32_t) (mac_bssid[i + 3]) << 24;
bwn_ram_write(mac, 0x20 + i, tmp);
}
}
static void
bwn_mac_setfilter(struct bwn_mac *mac, uint16_t offset,
const uint8_t *macaddr)
{
static const uint8_t zero[IEEE80211_ADDR_LEN] = { 0 };
uint16_t data;
if (!mac)
macaddr = zero;
offset |= 0x0020;
BWN_WRITE_2(mac, BWN_MACFILTER_CONTROL, offset);
data = macaddr[0];
data |= macaddr[1] << 8;
BWN_WRITE_2(mac, BWN_MACFILTER_DATA, data);
data = macaddr[2];
data |= macaddr[3] << 8;
BWN_WRITE_2(mac, BWN_MACFILTER_DATA, data);
data = macaddr[4];
data |= macaddr[5] << 8;
BWN_WRITE_2(mac, BWN_MACFILTER_DATA, data);
}
static void
bwn_key_dowrite(struct bwn_mac *mac, uint8_t index, uint8_t algorithm,
const uint8_t *key, size_t key_len, const uint8_t *mac_addr)
{
uint8_t buf[BWN_SEC_KEYSIZE] = { 0, };
uint8_t per_sta_keys_start = 8;
if (BWN_SEC_NEWAPI(mac))
per_sta_keys_start = 4;
KASSERT(index < mac->mac_max_nr_keys,
("%s:%d: fail", __func__, __LINE__));
KASSERT(key_len <= BWN_SEC_KEYSIZE,
("%s:%d: fail", __func__, __LINE__));
if (index >= per_sta_keys_start)
bwn_key_macwrite(mac, index, NULL);
if (key)
memcpy(buf, key, key_len);
bwn_key_write(mac, index, algorithm, buf);
if (index >= per_sta_keys_start)
bwn_key_macwrite(mac, index, mac_addr);
mac->mac_key[index].algorithm = algorithm;
}
static void
bwn_key_macwrite(struct bwn_mac *mac, uint8_t index, const uint8_t *addr)
{
struct bwn_softc *sc = mac->mac_sc;
uint32_t addrtmp[2] = { 0, 0 };
uint8_t start = 8;
if (BWN_SEC_NEWAPI(mac))
start = 4;
KASSERT(index >= start,
("%s:%d: fail", __func__, __LINE__));
index -= start;
if (addr) {
addrtmp[0] = addr[0];
addrtmp[0] |= ((uint32_t) (addr[1]) << 8);
addrtmp[0] |= ((uint32_t) (addr[2]) << 16);
addrtmp[0] |= ((uint32_t) (addr[3]) << 24);
addrtmp[1] = addr[4];
addrtmp[1] |= ((uint32_t) (addr[5]) << 8);
}
if (bhnd_get_hwrev(sc->sc_dev) >= 5) {
bwn_shm_write_4(mac, BWN_RCMTA, (index * 2) + 0, addrtmp[0]);
bwn_shm_write_2(mac, BWN_RCMTA, (index * 2) + 1, addrtmp[1]);
} else {
if (index >= 8) {
bwn_shm_write_4(mac, BWN_SHARED,
BWN_SHARED_PSM + (index * 6) + 0, addrtmp[0]);
bwn_shm_write_2(mac, BWN_SHARED,
BWN_SHARED_PSM + (index * 6) + 4, addrtmp[1]);
}
}
}
static void
bwn_key_write(struct bwn_mac *mac, uint8_t index, uint8_t algorithm,
const uint8_t *key)
{
unsigned int i;
uint32_t offset;
uint16_t kidx, value;
kidx = BWN_SEC_KEY2FW(mac, index);
bwn_shm_write_2(mac, BWN_SHARED,
BWN_SHARED_KEYIDX_BLOCK + (kidx * 2), (kidx << 4) | algorithm);
offset = mac->mac_ktp + (index * BWN_SEC_KEYSIZE);
for (i = 0; i < BWN_SEC_KEYSIZE; i += 2) {
value = key[i];
value |= (uint16_t)(key[i + 1]) << 8;
bwn_shm_write_2(mac, BWN_SHARED, offset + i, value);
}
}
static void
bwn_phy_exit(struct bwn_mac *mac)
{
mac->mac_phy.rf_onoff(mac, 0);
if (mac->mac_phy.exit != NULL)
mac->mac_phy.exit(mac);
}
static void
bwn_dma_free(struct bwn_mac *mac)
{
struct bwn_dma *dma;
if ((mac->mac_flags & BWN_MAC_FLAG_DMA) == 0)
return;
dma = &mac->mac_method.dma;
bwn_dma_ringfree(&dma->rx);
bwn_dma_ringfree(&dma->wme[WME_AC_BK]);
bwn_dma_ringfree(&dma->wme[WME_AC_BE]);
bwn_dma_ringfree(&dma->wme[WME_AC_VI]);
bwn_dma_ringfree(&dma->wme[WME_AC_VO]);
bwn_dma_ringfree(&dma->mcast);
}
static void
bwn_core_stop(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
BWN_ASSERT_LOCKED(sc);
if (mac->mac_status < BWN_MAC_STATUS_STARTED)
return;
callout_stop(&sc->sc_rfswitch_ch);
callout_stop(&sc->sc_task_ch);
callout_stop(&sc->sc_watchdog_ch);
sc->sc_watchdog_timer = 0;
BWN_WRITE_4(mac, BWN_INTR_MASK, 0);
BWN_READ_4(mac, BWN_INTR_MASK);
bwn_mac_suspend(mac);
mac->mac_status = BWN_MAC_STATUS_INITED;
}
static int
bwn_switch_band(struct bwn_softc *sc, struct ieee80211_channel *chan)
{
struct bwn_mac *up_dev = NULL;
struct bwn_mac *down_dev;
struct bwn_mac *mac;
int err, status;
uint8_t gmode;
BWN_ASSERT_LOCKED(sc);
TAILQ_FOREACH(mac, &sc->sc_maclist, mac_list) {
if (IEEE80211_IS_CHAN_2GHZ(chan) &&
mac->mac_phy.supports_2ghz) {
up_dev = mac;
gmode = 1;
} else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
mac->mac_phy.supports_5ghz) {
up_dev = mac;
gmode = 0;
} else {
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
return (EINVAL);
}
if (up_dev != NULL)
break;
}
if (up_dev == NULL) {
device_printf(sc->sc_dev, "Could not find a device\n");
return (ENODEV);
}
if (up_dev == sc->sc_curmac && sc->sc_curmac->mac_phy.gmode == gmode)
return (0);
DPRINTF(sc, BWN_DEBUG_RF | BWN_DEBUG_PHY | BWN_DEBUG_RESET,
"switching to %s-GHz band\n",
IEEE80211_IS_CHAN_2GHZ(chan) ? "2" : "5");
down_dev = sc->sc_curmac;
status = down_dev->mac_status;
if (status >= BWN_MAC_STATUS_STARTED)
bwn_core_stop(down_dev);
if (status >= BWN_MAC_STATUS_INITED)
bwn_core_exit(down_dev);
if (down_dev != up_dev) {
err = bwn_phy_reset(down_dev);
if (err)
goto fail;
}
up_dev->mac_phy.gmode = gmode;
if (status >= BWN_MAC_STATUS_INITED) {
err = bwn_core_init(up_dev);
if (err) {
device_printf(sc->sc_dev,
"fatal: failed to initialize for %s-GHz\n",
IEEE80211_IS_CHAN_2GHZ(chan) ? "2" : "5");
goto fail;
}
}
if (status >= BWN_MAC_STATUS_STARTED)
bwn_core_start(up_dev);
KASSERT(up_dev->mac_status == status, ("%s: fail", __func__));
sc->sc_curmac = up_dev;
return (0);
fail:
sc->sc_curmac = NULL;
return (err);
}
static void
bwn_rf_turnon(struct bwn_mac *mac)
{
DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: called\n", __func__);
bwn_mac_suspend(mac);
mac->mac_phy.rf_onoff(mac, 1);
mac->mac_phy.rf_on = 1;
bwn_mac_enable(mac);
}
static void
bwn_rf_turnoff(struct bwn_mac *mac)
{
DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: called\n", __func__);
bwn_mac_suspend(mac);
mac->mac_phy.rf_onoff(mac, 0);
mac->mac_phy.rf_on = 0;
bwn_mac_enable(mac);
}
/*
* PHY reset.
*/
static int
bwn_phy_reset(struct bwn_mac *mac)
{
struct bwn_softc *sc;
uint16_t iost, mask;
int error;
sc = mac->mac_sc;
iost = BWN_IOCTL_PHYRESET | BHND_IOCTL_CLK_FORCE;
mask = iost | BWN_IOCTL_SUPPORT_G;
if ((error = bhnd_write_ioctl(sc->sc_dev, iost, mask)))
return (error);
DELAY(1000);
iost &= ~BHND_IOCTL_CLK_FORCE;
if ((error = bhnd_write_ioctl(sc->sc_dev, iost, mask)))
return (error);
DELAY(1000);
return (0);
}
static int
bwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct bwn_vap *bvp = BWN_VAP(vap);
struct ieee80211com *ic= vap->iv_ic;
enum ieee80211_state ostate = vap->iv_state;
struct bwn_softc *sc = ic->ic_softc;
struct bwn_mac *mac = sc->sc_curmac;
int error;
DPRINTF(sc, BWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate]);
error = bvp->bv_newstate(vap, nstate, arg);
if (error != 0)
return (error);
BWN_LOCK(sc);
bwn_led_newstate(mac, nstate);
/*
* Clear the BSSID when we stop a STA
*/
if (vap->iv_opmode == IEEE80211_M_STA) {
if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
/*
* Clear out the BSSID. If we reassociate to
* the same AP, this will reinialize things
* correctly...
*/
if (ic->ic_opmode == IEEE80211_M_STA &&
(sc->sc_flags & BWN_FLAG_INVALID) == 0) {
memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
bwn_set_macaddr(mac);
}
}
}
if (vap->iv_opmode == IEEE80211_M_MONITOR ||
vap->iv_opmode == IEEE80211_M_AHDEMO) {
/* XXX nothing to do? */
} else if (nstate == IEEE80211_S_RUN) {
memcpy(sc->sc_bssid, vap->iv_bss->ni_bssid, IEEE80211_ADDR_LEN);
bwn_set_opmode(mac);
bwn_set_pretbtt(mac);
bwn_spu_setdelay(mac, 0);
bwn_set_macaddr(mac);
}
BWN_UNLOCK(sc);
return (error);
}
static void
bwn_set_pretbtt(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t pretbtt;
if (ic->ic_opmode == IEEE80211_M_IBSS)
pretbtt = 2;
else
pretbtt = (mac->mac_phy.type == BWN_PHYTYPE_A) ? 120 : 250;
bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_PRETBTT, pretbtt);
BWN_WRITE_2(mac, BWN_TSF_CFP_PRETBTT, pretbtt);
}
static int
bwn_intr(void *arg)
{
struct bwn_mac *mac = arg;
struct bwn_softc *sc = mac->mac_sc;
uint32_t reason;
if (mac->mac_status < BWN_MAC_STATUS_STARTED ||
(sc->sc_flags & BWN_FLAG_INVALID))
return (FILTER_STRAY);
DPRINTF(sc, BWN_DEBUG_INTR, "%s: called\n", __func__);
reason = BWN_READ_4(mac, BWN_INTR_REASON);
if (reason == 0xffffffff) /* shared IRQ */
return (FILTER_STRAY);
reason &= mac->mac_intr_mask;
if (reason == 0)
return (FILTER_HANDLED);
DPRINTF(sc, BWN_DEBUG_INTR, "%s: reason=0x%08x\n", __func__, reason);
mac->mac_reason[0] = BWN_READ_4(mac, BWN_DMA0_REASON) & 0x0001dc00;
mac->mac_reason[1] = BWN_READ_4(mac, BWN_DMA1_REASON) & 0x0000dc00;
mac->mac_reason[2] = BWN_READ_4(mac, BWN_DMA2_REASON) & 0x0000dc00;
mac->mac_reason[3] = BWN_READ_4(mac, BWN_DMA3_REASON) & 0x0001dc00;
mac->mac_reason[4] = BWN_READ_4(mac, BWN_DMA4_REASON) & 0x0000dc00;
BWN_WRITE_4(mac, BWN_INTR_REASON, reason);
BWN_WRITE_4(mac, BWN_DMA0_REASON, mac->mac_reason[0]);
BWN_WRITE_4(mac, BWN_DMA1_REASON, mac->mac_reason[1]);
BWN_WRITE_4(mac, BWN_DMA2_REASON, mac->mac_reason[2]);
BWN_WRITE_4(mac, BWN_DMA3_REASON, mac->mac_reason[3]);
BWN_WRITE_4(mac, BWN_DMA4_REASON, mac->mac_reason[4]);
/* Disable interrupts. */
BWN_WRITE_4(mac, BWN_INTR_MASK, 0);
mac->mac_reason_intr = reason;
BWN_BARRIER(mac, 0, 0, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE);
taskqueue_enqueue(sc->sc_tq, &mac->mac_intrtask);
return (FILTER_HANDLED);
}
static void
bwn_intrtask(void *arg, int npending)
{
struct bwn_mac *mac = arg;
struct bwn_softc *sc = mac->mac_sc;
uint32_t merged = 0;
int i, tx = 0, rx = 0;
BWN_LOCK(sc);
if (mac->mac_status < BWN_MAC_STATUS_STARTED ||
(sc->sc_flags & BWN_FLAG_INVALID)) {
BWN_UNLOCK(sc);
return;
}
for (i = 0; i < N(mac->mac_reason); i++)
merged |= mac->mac_reason[i];
if (mac->mac_reason_intr & BWN_INTR_MAC_TXERR)
device_printf(sc->sc_dev, "MAC trans error\n");
if (mac->mac_reason_intr & BWN_INTR_PHY_TXERR) {
DPRINTF(sc, BWN_DEBUG_INTR, "%s: PHY trans error\n", __func__);
mac->mac_phy.txerrors--;
if (mac->mac_phy.txerrors == 0) {
mac->mac_phy.txerrors = BWN_TXERROR_MAX;
bwn_restart(mac, "PHY TX errors");
}
}
if (merged & (BWN_DMAINTR_FATALMASK | BWN_DMAINTR_NONFATALMASK)) {
if (merged & BWN_DMAINTR_FATALMASK) {
device_printf(sc->sc_dev,
"Fatal DMA error: %#x %#x %#x %#x %#x %#x\n",
mac->mac_reason[0], mac->mac_reason[1],
mac->mac_reason[2], mac->mac_reason[3],
mac->mac_reason[4], mac->mac_reason[5]);
bwn_restart(mac, "DMA error");
BWN_UNLOCK(sc);
return;
}
if (merged & BWN_DMAINTR_NONFATALMASK) {
device_printf(sc->sc_dev,
"DMA error: %#x %#x %#x %#x %#x %#x\n",
mac->mac_reason[0], mac->mac_reason[1],
mac->mac_reason[2], mac->mac_reason[3],
mac->mac_reason[4], mac->mac_reason[5]);
}
}
if (mac->mac_reason_intr & BWN_INTR_UCODE_DEBUG)
bwn_intr_ucode_debug(mac);
if (mac->mac_reason_intr & BWN_INTR_TBTT_INDI)
bwn_intr_tbtt_indication(mac);
if (mac->mac_reason_intr & BWN_INTR_ATIM_END)
bwn_intr_atim_end(mac);
if (mac->mac_reason_intr & BWN_INTR_BEACON)
bwn_intr_beacon(mac);
if (mac->mac_reason_intr & BWN_INTR_PMQ)
bwn_intr_pmq(mac);
if (mac->mac_reason_intr & BWN_INTR_NOISESAMPLE_OK)
bwn_intr_noise(mac);
if (mac->mac_flags & BWN_MAC_FLAG_DMA) {
if (mac->mac_reason[0] & BWN_DMAINTR_RX_DONE) {
bwn_dma_rx(mac->mac_method.dma.rx);
rx = 1;
}
} else
rx = bwn_pio_rx(&mac->mac_method.pio.rx);
KASSERT(!(mac->mac_reason[1] & BWN_DMAINTR_RX_DONE), ("%s", __func__));
KASSERT(!(mac->mac_reason[2] & BWN_DMAINTR_RX_DONE), ("%s", __func__));
KASSERT(!(mac->mac_reason[3] & BWN_DMAINTR_RX_DONE), ("%s", __func__));
KASSERT(!(mac->mac_reason[4] & BWN_DMAINTR_RX_DONE), ("%s", __func__));
KASSERT(!(mac->mac_reason[5] & BWN_DMAINTR_RX_DONE), ("%s", __func__));
if (mac->mac_reason_intr & BWN_INTR_TX_OK) {
bwn_intr_txeof(mac);
tx = 1;
}
BWN_WRITE_4(mac, BWN_INTR_MASK, mac->mac_intr_mask);
if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
int evt = BWN_LED_EVENT_NONE;
if (tx && rx) {
if (sc->sc_rx_rate > sc->sc_tx_rate)
evt = BWN_LED_EVENT_RX;
else
evt = BWN_LED_EVENT_TX;
} else if (tx) {
evt = BWN_LED_EVENT_TX;
} else if (rx) {
evt = BWN_LED_EVENT_RX;
} else if (rx == 0) {
evt = BWN_LED_EVENT_POLL;
}
if (evt != BWN_LED_EVENT_NONE)
bwn_led_event(mac, evt);
}
if (mbufq_first(&sc->sc_snd) != NULL)
bwn_start(sc);
BWN_BARRIER(mac, 0, 0, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE);
BWN_UNLOCK(sc);
}
static void
bwn_restart(struct bwn_mac *mac, const char *msg)
{
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211com *ic = &sc->sc_ic;
if (mac->mac_status < BWN_MAC_STATUS_INITED)
return;
device_printf(sc->sc_dev, "HW reset: %s\n", msg);
ieee80211_runtask(ic, &mac->mac_hwreset);
}
static void
bwn_intr_ucode_debug(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
uint16_t reason;
if (mac->mac_fw.opensource == 0)
return;
reason = bwn_shm_read_2(mac, BWN_SCRATCH, BWN_DEBUGINTR_REASON_REG);
switch (reason) {
case BWN_DEBUGINTR_PANIC:
bwn_handle_fwpanic(mac);
break;
case BWN_DEBUGINTR_DUMP_SHM:
device_printf(sc->sc_dev, "BWN_DEBUGINTR_DUMP_SHM\n");
break;
case BWN_DEBUGINTR_DUMP_REGS:
device_printf(sc->sc_dev, "BWN_DEBUGINTR_DUMP_REGS\n");
break;
case BWN_DEBUGINTR_MARKER:
device_printf(sc->sc_dev, "BWN_DEBUGINTR_MARKER\n");
break;
default:
device_printf(sc->sc_dev,
"ucode debug unknown reason: %#x\n", reason);
}
bwn_shm_write_2(mac, BWN_SCRATCH, BWN_DEBUGINTR_REASON_REG,
BWN_DEBUGINTR_ACK);
}
static void
bwn_intr_tbtt_indication(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
bwn_psctl(mac, 0);
if (ic->ic_opmode == IEEE80211_M_IBSS)
mac->mac_flags |= BWN_MAC_FLAG_DFQVALID;
}
static void
bwn_intr_atim_end(struct bwn_mac *mac)
{
if (mac->mac_flags & BWN_MAC_FLAG_DFQVALID) {
BWN_WRITE_4(mac, BWN_MACCMD,
BWN_READ_4(mac, BWN_MACCMD) | BWN_MACCMD_DFQ_VALID);
mac->mac_flags &= ~BWN_MAC_FLAG_DFQVALID;
}
}
static void
bwn_intr_beacon(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t cmd, beacon0, beacon1;
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_MBSS)
return;
mac->mac_intr_mask &= ~BWN_INTR_BEACON;
cmd = BWN_READ_4(mac, BWN_MACCMD);
beacon0 = (cmd & BWN_MACCMD_BEACON0_VALID);
beacon1 = (cmd & BWN_MACCMD_BEACON1_VALID);
if (beacon0 && beacon1) {
BWN_WRITE_4(mac, BWN_INTR_REASON, BWN_INTR_BEACON);
mac->mac_intr_mask |= BWN_INTR_BEACON;
return;
}
if (sc->sc_flags & BWN_FLAG_NEED_BEACON_TP) {
sc->sc_flags &= ~BWN_FLAG_NEED_BEACON_TP;
bwn_load_beacon0(mac);
bwn_load_beacon1(mac);
cmd = BWN_READ_4(mac, BWN_MACCMD);
cmd |= BWN_MACCMD_BEACON0_VALID;
BWN_WRITE_4(mac, BWN_MACCMD, cmd);
} else {
if (!beacon0) {
bwn_load_beacon0(mac);
cmd = BWN_READ_4(mac, BWN_MACCMD);
cmd |= BWN_MACCMD_BEACON0_VALID;
BWN_WRITE_4(mac, BWN_MACCMD, cmd);
} else if (!beacon1) {
bwn_load_beacon1(mac);
cmd = BWN_READ_4(mac, BWN_MACCMD);
cmd |= BWN_MACCMD_BEACON1_VALID;
BWN_WRITE_4(mac, BWN_MACCMD, cmd);
}
}
}
static void
bwn_intr_pmq(struct bwn_mac *mac)
{
uint32_t tmp;
while (1) {
tmp = BWN_READ_4(mac, BWN_PS_STATUS);
if (!(tmp & 0x00000008))
break;
}
BWN_WRITE_2(mac, BWN_PS_STATUS, 0x0002);
}
static void
bwn_intr_noise(struct bwn_mac *mac)
{
struct bwn_phy_g *pg = &mac->mac_phy.phy_g;
uint16_t tmp;
uint8_t noise[4];
uint8_t i, j;
int32_t average;
if (mac->mac_phy.type != BWN_PHYTYPE_G)
return;
KASSERT(mac->mac_noise.noi_running, ("%s: fail", __func__));
*((uint32_t *)noise) = htole32(bwn_jssi_read(mac));
if (noise[0] == 0x7f || noise[1] == 0x7f || noise[2] == 0x7f ||
noise[3] == 0x7f)
goto new;
KASSERT(mac->mac_noise.noi_nsamples < 8,
("%s:%d: fail", __func__, __LINE__));
i = mac->mac_noise.noi_nsamples;
noise[0] = MIN(MAX(noise[0], 0), N(pg->pg_nrssi_lt) - 1);
noise[1] = MIN(MAX(noise[1], 0), N(pg->pg_nrssi_lt) - 1);
noise[2] = MIN(MAX(noise[2], 0), N(pg->pg_nrssi_lt) - 1);
noise[3] = MIN(MAX(noise[3], 0), N(pg->pg_nrssi_lt) - 1);
mac->mac_noise.noi_samples[i][0] = pg->pg_nrssi_lt[noise[0]];
mac->mac_noise.noi_samples[i][1] = pg->pg_nrssi_lt[noise[1]];
mac->mac_noise.noi_samples[i][2] = pg->pg_nrssi_lt[noise[2]];
mac->mac_noise.noi_samples[i][3] = pg->pg_nrssi_lt[noise[3]];
mac->mac_noise.noi_nsamples++;
if (mac->mac_noise.noi_nsamples == 8) {
average = 0;
for (i = 0; i < 8; i++) {
for (j = 0; j < 4; j++)
average += mac->mac_noise.noi_samples[i][j];
}
average = (((average / 32) * 125) + 64) / 128;
tmp = (bwn_shm_read_2(mac, BWN_SHARED, 0x40c) / 128) & 0x1f;
if (tmp >= 8)
average += 2;
else
average -= 25;
average -= (tmp == 8) ? 72 : 48;
mac->mac_stats.link_noise = average;
mac->mac_noise.noi_running = 0;
return;
}
new:
bwn_noise_gensample(mac);
}
static int
bwn_pio_rx(struct bwn_pio_rxqueue *prq)
{
struct bwn_mac *mac = prq->prq_mac;
struct bwn_softc *sc = mac->mac_sc;
unsigned int i;
BWN_ASSERT_LOCKED(sc);
if (mac->mac_status < BWN_MAC_STATUS_STARTED)
return (0);
for (i = 0; i < 5000; i++) {
if (bwn_pio_rxeof(prq) == 0)
break;
}
if (i >= 5000)
device_printf(sc->sc_dev, "too many RX frames in PIO mode\n");
return ((i > 0) ? 1 : 0);
}
static void
bwn_dma_rx(struct bwn_dma_ring *dr)
{
int slot, curslot;
KASSERT(!dr->dr_tx, ("%s:%d: fail", __func__, __LINE__));
curslot = dr->get_curslot(dr);
KASSERT(curslot >= 0 && curslot < dr->dr_numslots,
("%s:%d: fail", __func__, __LINE__));
slot = dr->dr_curslot;
for (; slot != curslot; slot = bwn_dma_nextslot(dr, slot))
bwn_dma_rxeof(dr, &slot);
bus_dmamap_sync(dr->dr_ring_dtag, dr->dr_ring_dmap,
BUS_DMASYNC_PREWRITE);
dr->set_curslot(dr, slot);
dr->dr_curslot = slot;
}
static void
bwn_intr_txeof(struct bwn_mac *mac)
{
struct bwn_txstatus stat;
uint32_t stat0, stat1;
uint16_t tmp;
BWN_ASSERT_LOCKED(mac->mac_sc);
while (1) {
stat0 = BWN_READ_4(mac, BWN_XMITSTAT_0);
if (!(stat0 & 0x00000001))
break;
stat1 = BWN_READ_4(mac, BWN_XMITSTAT_1);
DPRINTF(mac->mac_sc, BWN_DEBUG_XMIT,
"%s: stat0=0x%08x, stat1=0x%08x\n",
__func__,
stat0,
stat1);
stat.cookie = (stat0 >> 16);
stat.seq = (stat1 & 0x0000ffff);
stat.phy_stat = ((stat1 & 0x00ff0000) >> 16);
tmp = (stat0 & 0x0000ffff);
stat.framecnt = ((tmp & 0xf000) >> 12);
stat.rtscnt = ((tmp & 0x0f00) >> 8);
stat.sreason = ((tmp & 0x001c) >> 2);
stat.pm = (tmp & 0x0080) ? 1 : 0;
stat.im = (tmp & 0x0040) ? 1 : 0;
stat.ampdu = (tmp & 0x0020) ? 1 : 0;
stat.ack = (tmp & 0x0002) ? 1 : 0;
DPRINTF(mac->mac_sc, BWN_DEBUG_XMIT,
"%s: cookie=%d, seq=%d, phystat=0x%02x, framecnt=%d, "
"rtscnt=%d, sreason=%d, pm=%d, im=%d, ampdu=%d, ack=%d\n",
__func__,
stat.cookie,
stat.seq,
stat.phy_stat,
stat.framecnt,
stat.rtscnt,
stat.sreason,
stat.pm,
stat.im,
stat.ampdu,
stat.ack);
bwn_handle_txeof(mac, &stat);
}
}
static void
bwn_hwreset(void *arg, int npending)
{
struct bwn_mac *mac = arg;
struct bwn_softc *sc = mac->mac_sc;
int error = 0;
int prev_status;
BWN_LOCK(sc);
prev_status = mac->mac_status;
if (prev_status >= BWN_MAC_STATUS_STARTED)
bwn_core_stop(mac);
if (prev_status >= BWN_MAC_STATUS_INITED)
bwn_core_exit(mac);
if (prev_status >= BWN_MAC_STATUS_INITED) {
error = bwn_core_init(mac);
if (error)
goto out;
}
if (prev_status >= BWN_MAC_STATUS_STARTED)
bwn_core_start(mac);
out:
if (error) {
device_printf(sc->sc_dev, "%s: failed (%d)\n", __func__, error);
sc->sc_curmac = NULL;
}
BWN_UNLOCK(sc);
}
static void
bwn_handle_fwpanic(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
uint16_t reason;
reason = bwn_shm_read_2(mac, BWN_SCRATCH, BWN_FWPANIC_REASON_REG);
device_printf(sc->sc_dev,"fw panic (%u)\n", reason);
if (reason == BWN_FWPANIC_RESTART)
bwn_restart(mac, "ucode panic");
}
static void
bwn_load_beacon0(struct bwn_mac *mac)
{
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
}
static void
bwn_load_beacon1(struct bwn_mac *mac)
{
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
}
static uint32_t
bwn_jssi_read(struct bwn_mac *mac)
{
uint32_t val = 0;
val = bwn_shm_read_2(mac, BWN_SHARED, 0x08a);
val <<= 16;
val |= bwn_shm_read_2(mac, BWN_SHARED, 0x088);
return (val);
}
static void
bwn_noise_gensample(struct bwn_mac *mac)
{
uint32_t jssi = 0x7f7f7f7f;
bwn_shm_write_2(mac, BWN_SHARED, 0x088, (jssi & 0x0000ffff));
bwn_shm_write_2(mac, BWN_SHARED, 0x08a, (jssi & 0xffff0000) >> 16);
BWN_WRITE_4(mac, BWN_MACCMD,
BWN_READ_4(mac, BWN_MACCMD) | BWN_MACCMD_BGNOISE);
}
static int
bwn_dma_freeslot(struct bwn_dma_ring *dr)
{
BWN_ASSERT_LOCKED(dr->dr_mac->mac_sc);
return (dr->dr_numslots - dr->dr_usedslot);
}
static int
bwn_dma_nextslot(struct bwn_dma_ring *dr, int slot)
{
BWN_ASSERT_LOCKED(dr->dr_mac->mac_sc);
KASSERT(slot >= -1 && slot <= dr->dr_numslots - 1,
("%s:%d: fail", __func__, __LINE__));
if (slot == dr->dr_numslots - 1)
return (0);
return (slot + 1);
}
static void
bwn_dma_rxeof(struct bwn_dma_ring *dr, int *slot)
{
struct bwn_mac *mac = dr->dr_mac;
struct bwn_softc *sc = mac->mac_sc;
struct bwn_dma *dma = &mac->mac_method.dma;
struct bwn_dmadesc_generic *desc;
struct bwn_dmadesc_meta *meta;
struct bwn_rxhdr4 *rxhdr;
struct mbuf *m;
uint32_t macstat;
int32_t tmp;
int cnt = 0;
uint16_t len;
dr->getdesc(dr, *slot, &desc, &meta);
bus_dmamap_sync(dma->rxbuf_dtag, meta->mt_dmap, BUS_DMASYNC_POSTREAD);
m = meta->mt_m;
if (bwn_dma_newbuf(dr, desc, meta, 0)) {
counter_u64_add(sc->sc_ic.ic_ierrors, 1);
return;
}
rxhdr = mtod(m, struct bwn_rxhdr4 *);
len = le16toh(rxhdr->frame_len);
if (len <= 0) {
counter_u64_add(sc->sc_ic.ic_ierrors, 1);
return;
}
if (bwn_dma_check_redzone(dr, m)) {
device_printf(sc->sc_dev, "redzone error.\n");
bwn_dma_set_redzone(dr, m);
bus_dmamap_sync(dma->rxbuf_dtag, meta->mt_dmap,
BUS_DMASYNC_PREWRITE);
return;
}
if (len > dr->dr_rx_bufsize) {
tmp = len;
while (1) {
dr->getdesc(dr, *slot, &desc, &meta);
bwn_dma_set_redzone(dr, meta->mt_m);
bus_dmamap_sync(dma->rxbuf_dtag, meta->mt_dmap,
BUS_DMASYNC_PREWRITE);
*slot = bwn_dma_nextslot(dr, *slot);
cnt++;
tmp -= dr->dr_rx_bufsize;
if (tmp <= 0)
break;
}
device_printf(sc->sc_dev, "too small buffer "
"(len %u buffer %u dropped %d)\n",
len, dr->dr_rx_bufsize, cnt);
return;
}
switch (mac->mac_fw.fw_hdr_format) {
case BWN_FW_HDR_351:
case BWN_FW_HDR_410:
macstat = le32toh(rxhdr->ps4.r351.mac_status);
break;
case BWN_FW_HDR_598:
macstat = le32toh(rxhdr->ps4.r598.mac_status);
break;
}
if (macstat & BWN_RX_MAC_FCSERR) {
if (!(mac->mac_sc->sc_filters & BWN_MACCTL_PASS_BADFCS)) {
device_printf(sc->sc_dev, "RX drop\n");
return;
}
}
m->m_len = m->m_pkthdr.len = len + dr->dr_frameoffset;
m_adj(m, dr->dr_frameoffset);
bwn_rxeof(dr->dr_mac, m, rxhdr);
}
static void
bwn_handle_txeof(struct bwn_mac *mac, const struct bwn_txstatus *status)
{
struct bwn_softc *sc = mac->mac_sc;
struct bwn_stats *stats = &mac->mac_stats;
BWN_ASSERT_LOCKED(mac->mac_sc);
if (status->im)
device_printf(sc->sc_dev, "TODO: STATUS IM\n");
if (status->ampdu)
device_printf(sc->sc_dev, "TODO: STATUS AMPDU\n");
if (status->rtscnt) {
if (status->rtscnt == 0xf)
stats->rtsfail++;
else
stats->rts++;
}
if (mac->mac_flags & BWN_MAC_FLAG_DMA) {
bwn_dma_handle_txeof(mac, status);
} else {
bwn_pio_handle_txeof(mac, status);
}
bwn_phy_txpower_check(mac, 0);
}
static uint8_t
bwn_pio_rxeof(struct bwn_pio_rxqueue *prq)
{
struct bwn_mac *mac = prq->prq_mac;
struct bwn_softc *sc = mac->mac_sc;
struct bwn_rxhdr4 rxhdr;
struct mbuf *m;
uint32_t ctl32, macstat, v32;
unsigned int i, padding;
uint16_t ctl16, len, totlen, v16;
unsigned char *mp;
char *data;
memset(&rxhdr, 0, sizeof(rxhdr));
if (prq->prq_rev >= 8) {
ctl32 = bwn_pio_rx_read_4(prq, BWN_PIO8_RXCTL);
if (!(ctl32 & BWN_PIO8_RXCTL_FRAMEREADY))
return (0);
bwn_pio_rx_write_4(prq, BWN_PIO8_RXCTL,
BWN_PIO8_RXCTL_FRAMEREADY);
for (i = 0; i < 10; i++) {
ctl32 = bwn_pio_rx_read_4(prq, BWN_PIO8_RXCTL);
if (ctl32 & BWN_PIO8_RXCTL_DATAREADY)
goto ready;
DELAY(10);
}
} else {
ctl16 = bwn_pio_rx_read_2(prq, BWN_PIO_RXCTL);
if (!(ctl16 & BWN_PIO_RXCTL_FRAMEREADY))
return (0);
bwn_pio_rx_write_2(prq, BWN_PIO_RXCTL,
BWN_PIO_RXCTL_FRAMEREADY);
for (i = 0; i < 10; i++) {
ctl16 = bwn_pio_rx_read_2(prq, BWN_PIO_RXCTL);
if (ctl16 & BWN_PIO_RXCTL_DATAREADY)
goto ready;
DELAY(10);
}
}
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
return (1);
ready:
if (prq->prq_rev >= 8) {
bus_read_multi_4(sc->sc_mem_res,
prq->prq_base + BWN_PIO8_RXDATA, (void *)&rxhdr,
sizeof(rxhdr));
} else {
bus_read_multi_2(sc->sc_mem_res,
prq->prq_base + BWN_PIO_RXDATA, (void *)&rxhdr,
sizeof(rxhdr));
}
len = le16toh(rxhdr.frame_len);
if (len > 0x700) {
device_printf(sc->sc_dev, "%s: len is too big\n", __func__);
goto error;
}
if (len == 0) {
device_printf(sc->sc_dev, "%s: len is 0\n", __func__);
goto error;
}
switch (mac->mac_fw.fw_hdr_format) {
case BWN_FW_HDR_351:
case BWN_FW_HDR_410:
macstat = le32toh(rxhdr.ps4.r351.mac_status);
break;
case BWN_FW_HDR_598:
macstat = le32toh(rxhdr.ps4.r598.mac_status);
break;
}
if (macstat & BWN_RX_MAC_FCSERR) {
if (!(mac->mac_sc->sc_filters & BWN_MACCTL_PASS_BADFCS)) {
device_printf(sc->sc_dev, "%s: FCS error", __func__);
goto error;
}
}
padding = (macstat & BWN_RX_MAC_PADDING) ? 2 : 0;
totlen = len + padding;
KASSERT(totlen <= MCLBYTES, ("too big..\n"));
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
device_printf(sc->sc_dev, "%s: out of memory", __func__);
goto error;
}
mp = mtod(m, unsigned char *);
if (prq->prq_rev >= 8) {
bus_read_multi_4(sc->sc_mem_res,
prq->prq_base + BWN_PIO8_RXDATA, (void *)mp, (totlen & ~3));
if (totlen & 3) {
v32 = bwn_pio_rx_read_4(prq, BWN_PIO8_RXDATA);
data = &(mp[totlen - 1]);
switch (totlen & 3) {
case 3:
*data = (v32 >> 16);
data--;
case 2:
*data = (v32 >> 8);
data--;
case 1:
*data = v32;
}
}
} else {
bus_read_multi_2(sc->sc_mem_res,
prq->prq_base + BWN_PIO_RXDATA, (void *)mp, (totlen & ~1));
if (totlen & 1) {
v16 = bwn_pio_rx_read_2(prq, BWN_PIO_RXDATA);
mp[totlen - 1] = v16;
}
}
m->m_len = m->m_pkthdr.len = totlen;
bwn_rxeof(prq->prq_mac, m, &rxhdr);
return (1);
error:
if (prq->prq_rev >= 8)
bwn_pio_rx_write_4(prq, BWN_PIO8_RXCTL,
BWN_PIO8_RXCTL_DATAREADY);
else
bwn_pio_rx_write_2(prq, BWN_PIO_RXCTL, BWN_PIO_RXCTL_DATAREADY);
return (1);
}
static int
bwn_dma_newbuf(struct bwn_dma_ring *dr, struct bwn_dmadesc_generic *desc,
struct bwn_dmadesc_meta *meta, int init)
{
struct bwn_mac *mac = dr->dr_mac;
struct bwn_dma *dma = &mac->mac_method.dma;
struct bwn_rxhdr4 *hdr;
bus_dmamap_t map;
bus_addr_t paddr;
struct mbuf *m;
int error;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
error = ENOBUFS;
/*
* If the NIC is up and running, we need to:
* - Clear RX buffer's header.
* - Restore RX descriptor settings.
*/
if (init)
return (error);
else
goto back;
}
m->m_len = m->m_pkthdr.len = MCLBYTES;
bwn_dma_set_redzone(dr, m);
/*
* Try to load RX buf into temporary DMA map
*/
error = bus_dmamap_load_mbuf(dma->rxbuf_dtag, dr->dr_spare_dmap, m,
bwn_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
/*
* See the comment above
*/
if (init)
return (error);
else
goto back;
}
if (!init)
bus_dmamap_unload(dma->rxbuf_dtag, meta->mt_dmap);
meta->mt_m = m;
meta->mt_paddr = paddr;
/*
* Swap RX buf's DMA map with the loaded temporary one
*/
map = meta->mt_dmap;
meta->mt_dmap = dr->dr_spare_dmap;
dr->dr_spare_dmap = map;
back:
/*
* Clear RX buf header
*/
hdr = mtod(meta->mt_m, struct bwn_rxhdr4 *);
bzero(hdr, sizeof(*hdr));
bus_dmamap_sync(dma->rxbuf_dtag, meta->mt_dmap,
BUS_DMASYNC_PREWRITE);
/*
* Setup RX buf descriptor
*/
dr->setdesc(dr, desc, meta->mt_paddr, meta->mt_m->m_len -
sizeof(*hdr), 0, 0, 0);
return (error);
}
static void
bwn_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
bus_size_t mapsz __unused, int error)
{
if (!error) {
KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
*((bus_addr_t *)arg) = seg->ds_addr;
}
}
static int
bwn_hwrate2ieeerate(int rate)
{
switch (rate) {
case BWN_CCK_RATE_1MB:
return (2);
case BWN_CCK_RATE_2MB:
return (4);
case BWN_CCK_RATE_5MB:
return (11);
case BWN_CCK_RATE_11MB:
return (22);
case BWN_OFDM_RATE_6MB:
return (12);
case BWN_OFDM_RATE_9MB:
return (18);
case BWN_OFDM_RATE_12MB:
return (24);
case BWN_OFDM_RATE_18MB:
return (36);
case BWN_OFDM_RATE_24MB:
return (48);
case BWN_OFDM_RATE_36MB:
return (72);
case BWN_OFDM_RATE_48MB:
return (96);
case BWN_OFDM_RATE_54MB:
return (108);
default:
printf("Ooops\n");
return (0);
}
}
/*
* Post process the RX provided RSSI.
*
* Valid for A, B, G, LP PHYs.
*/
static int8_t
bwn_rx_rssi_calc(struct bwn_mac *mac, uint8_t in_rssi,
int ofdm, int adjust_2053, int adjust_2050)
{
struct bwn_phy *phy = &mac->mac_phy;
struct bwn_phy_g *gphy = &phy->phy_g;
int tmp;
switch (phy->rf_ver) {
case 0x2050:
if (ofdm) {
tmp = in_rssi;
if (tmp > 127)
tmp -= 256;
tmp = tmp * 73 / 64;
if (adjust_2050)
tmp += 25;
else
tmp -= 3;
} else {
if (mac->mac_sc->sc_board_info.board_flags
& BHND_BFL_ADCDIV) {
if (in_rssi > 63)
in_rssi = 63;
tmp = gphy->pg_nrssi_lt[in_rssi];
tmp = (31 - tmp) * -131 / 128 - 57;
} else {
tmp = in_rssi;
tmp = (31 - tmp) * -149 / 128 - 68;
}
if (phy->type == BWN_PHYTYPE_G && adjust_2050)
tmp += 25;
}
break;
case 0x2060:
if (in_rssi > 127)
tmp = in_rssi - 256;
else
tmp = in_rssi;
break;
default:
tmp = in_rssi;
tmp = (tmp - 11) * 103 / 64;
if (adjust_2053)
tmp -= 109;
else
tmp -= 83;
}
return (tmp);
}
static void
bwn_rxeof(struct bwn_mac *mac, struct mbuf *m, const void *_rxhdr)
{
const struct bwn_rxhdr4 *rxhdr = _rxhdr;
struct bwn_plcp6 *plcp;
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211_frame_min *wh;
struct ieee80211_node *ni;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t macstat;
int padding, rate, rssi = 0, noise = 0, type;
uint16_t phytype, phystat0, phystat3, chanstat;
unsigned char *mp = mtod(m, unsigned char *);
BWN_ASSERT_LOCKED(sc);
phystat0 = le16toh(rxhdr->phy_status0);
/*
* XXX Note: phy_status3 doesn't exist for HT-PHY; it's only
* used for LP-PHY.
*/
phystat3 = le16toh(rxhdr->ps3.lp.phy_status3);
switch (mac->mac_fw.fw_hdr_format) {
case BWN_FW_HDR_351:
case BWN_FW_HDR_410:
macstat = le32toh(rxhdr->ps4.r351.mac_status);
chanstat = le16toh(rxhdr->ps4.r351.channel);
break;
case BWN_FW_HDR_598:
macstat = le32toh(rxhdr->ps4.r598.mac_status);
chanstat = le16toh(rxhdr->ps4.r598.channel);
break;
}
phytype = chanstat & BWN_RX_CHAN_PHYTYPE;
if (macstat & BWN_RX_MAC_FCSERR)
device_printf(sc->sc_dev, "TODO RX: RX_FLAG_FAILED_FCS_CRC\n");
if (phystat0 & (BWN_RX_PHYST0_PLCPHCF | BWN_RX_PHYST0_PLCPFV))
device_printf(sc->sc_dev, "TODO RX: RX_FLAG_FAILED_PLCP_CRC\n");
if (macstat & BWN_RX_MAC_DECERR)
goto drop;
padding = (macstat & BWN_RX_MAC_PADDING) ? 2 : 0;
if (m->m_pkthdr.len < (sizeof(struct bwn_plcp6) + padding)) {
device_printf(sc->sc_dev, "frame too short (length=%d)\n",
m->m_pkthdr.len);
goto drop;
}
plcp = (struct bwn_plcp6 *)(mp + padding);
m_adj(m, sizeof(struct bwn_plcp6) + padding);
if (m->m_pkthdr.len < IEEE80211_MIN_LEN) {
device_printf(sc->sc_dev, "frame too short (length=%d)\n",
m->m_pkthdr.len);
goto drop;
}
wh = mtod(m, struct ieee80211_frame_min *);
if (macstat & BWN_RX_MAC_DEC) {
DPRINTF(sc, BWN_DEBUG_HWCRYPTO,
"RX decryption attempted (old %d keyidx %#x)\n",
BWN_ISOLDFMT(mac),
(macstat & BWN_RX_MAC_KEYIDX) >> BWN_RX_MAC_KEYIDX_SHIFT);
}
if (phystat0 & BWN_RX_PHYST0_OFDM)
rate = bwn_plcp_get_ofdmrate(mac, plcp,
phytype == BWN_PHYTYPE_A);
else
rate = bwn_plcp_get_cckrate(mac, plcp);
if (rate == -1) {
if (!(mac->mac_sc->sc_filters & BWN_MACCTL_PASS_BADPLCP))
goto drop;
}
sc->sc_rx_rate = bwn_hwrate2ieeerate(rate);
/* rssi/noise */
switch (phytype) {
case BWN_PHYTYPE_A:
case BWN_PHYTYPE_B:
case BWN_PHYTYPE_G:
case BWN_PHYTYPE_LP:
rssi = bwn_rx_rssi_calc(mac, rxhdr->phy.abg.rssi,
!! (phystat0 & BWN_RX_PHYST0_OFDM),
!! (phystat0 & BWN_RX_PHYST0_GAINCTL),
!! (phystat3 & BWN_RX_PHYST3_TRSTATE));
break;
case BWN_PHYTYPE_N:
/* Broadcom has code for min/avg, but always used max */
if (rxhdr->phy.n.power0 == 16 || rxhdr->phy.n.power0 == 32)
rssi = max(rxhdr->phy.n.power1, rxhdr->ps2.n.power2);
else
rssi = max(rxhdr->phy.n.power0, rxhdr->phy.n.power1);
#if 0
DPRINTF(mac->mac_sc, BWN_DEBUG_RECV,
"%s: power0=%d, power1=%d, power2=%d\n",
__func__,
rxhdr->phy.n.power0,
rxhdr->phy.n.power1,
rxhdr->ps2.n.power2);
#endif
break;
default:
/* XXX TODO: implement rssi for other PHYs */
break;
}
/*
* RSSI here is absolute, not relative to the noise floor.
*/
noise = mac->mac_stats.link_noise;
rssi = rssi - noise;
/* RX radio tap */
if (ieee80211_radiotap_active(ic))
bwn_rx_radiotap(mac, m, rxhdr, plcp, rate, rssi, noise);
m_adj(m, -IEEE80211_CRC_LEN);
BWN_UNLOCK(sc);
ni = ieee80211_find_rxnode(ic, wh);
if (ni != NULL) {
type = ieee80211_input(ni, m, rssi, noise);
ieee80211_free_node(ni);
} else
type = ieee80211_input_all(ic, m, rssi, noise);
BWN_LOCK(sc);
return;
drop:
device_printf(sc->sc_dev, "%s: dropped\n", __func__);
}
static void
bwn_ratectl_tx_complete(const struct ieee80211_node *ni,
const struct bwn_txstatus *status)
{
struct ieee80211_ratectl_tx_status txs;
int retrycnt = 0;
/*
* If we don't get an ACK, then we should log the
* full framecnt. That may be 0 if it's a PHY
* failure, so ensure that gets logged as some
* retry attempt.
*/
txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY;
if (status->ack) {
txs.status = IEEE80211_RATECTL_TX_SUCCESS;
retrycnt = status->framecnt - 1;
} else {
txs.status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
retrycnt = status->framecnt;
if (retrycnt == 0)
retrycnt = 1;
}
txs.long_retries = retrycnt;
ieee80211_ratectl_tx_complete(ni, &txs);
}
static void
bwn_dma_handle_txeof(struct bwn_mac *mac,
const struct bwn_txstatus *status)
{
struct bwn_dma *dma = &mac->mac_method.dma;
struct bwn_dma_ring *dr;
struct bwn_dmadesc_generic *desc;
struct bwn_dmadesc_meta *meta;
struct bwn_softc *sc = mac->mac_sc;
int slot;
BWN_ASSERT_LOCKED(sc);
dr = bwn_dma_parse_cookie(mac, status, status->cookie, &slot);
if (dr == NULL) {
device_printf(sc->sc_dev, "failed to parse cookie\n");
return;
}
KASSERT(dr->dr_tx, ("%s:%d: fail", __func__, __LINE__));
while (1) {
KASSERT(slot >= 0 && slot < dr->dr_numslots,
("%s:%d: fail", __func__, __LINE__));
dr->getdesc(dr, slot, &desc, &meta);
if (meta->mt_txtype == BWN_DMADESC_METATYPE_HEADER)
bus_dmamap_unload(dr->dr_txring_dtag, meta->mt_dmap);
else if (meta->mt_txtype == BWN_DMADESC_METATYPE_BODY)
bus_dmamap_unload(dma->txbuf_dtag, meta->mt_dmap);
if (meta->mt_islast) {
KASSERT(meta->mt_m != NULL,
("%s:%d: fail", __func__, __LINE__));
bwn_ratectl_tx_complete(meta->mt_ni, status);
ieee80211_tx_complete(meta->mt_ni, meta->mt_m, 0);
meta->mt_ni = NULL;
meta->mt_m = NULL;
} else
KASSERT(meta->mt_m == NULL,
("%s:%d: fail", __func__, __LINE__));
dr->dr_usedslot--;
if (meta->mt_islast)
break;
slot = bwn_dma_nextslot(dr, slot);
}
sc->sc_watchdog_timer = 0;
if (dr->dr_stop) {
KASSERT(bwn_dma_freeslot(dr) >= BWN_TX_SLOTS_PER_FRAME,
("%s:%d: fail", __func__, __LINE__));
dr->dr_stop = 0;
}
}
static void
bwn_pio_handle_txeof(struct bwn_mac *mac,
const struct bwn_txstatus *status)
{
struct bwn_pio_txqueue *tq;
struct bwn_pio_txpkt *tp = NULL;
struct bwn_softc *sc = mac->mac_sc;
BWN_ASSERT_LOCKED(sc);
tq = bwn_pio_parse_cookie(mac, status->cookie, &tp);
if (tq == NULL)
return;
tq->tq_used -= roundup(tp->tp_m->m_pkthdr.len + BWN_HDRSIZE(mac), 4);
tq->tq_free++;
/* XXX ieee80211_tx_complete()? */
if (tp->tp_ni != NULL) {
/*
* Do any tx complete callback. Note this must
* be done before releasing the node reference.
*/
bwn_ratectl_tx_complete(tp->tp_ni, status);
if (tp->tp_m->m_flags & M_TXCB)
ieee80211_process_callback(tp->tp_ni, tp->tp_m, 0);
ieee80211_free_node(tp->tp_ni);
tp->tp_ni = NULL;
}
m_freem(tp->tp_m);
tp->tp_m = NULL;
TAILQ_INSERT_TAIL(&tq->tq_pktlist, tp, tp_list);
sc->sc_watchdog_timer = 0;
}
static void
bwn_phy_txpower_check(struct bwn_mac *mac, uint32_t flags)
{
struct bwn_softc *sc = mac->mac_sc;
struct bwn_phy *phy = &mac->mac_phy;
struct ieee80211com *ic = &sc->sc_ic;
unsigned long now;
bwn_txpwr_result_t result;
BWN_GETTIME(now);
if (!(flags & BWN_TXPWR_IGNORE_TIME) && ieee80211_time_before(now, phy->nexttime))
return;
phy->nexttime = now + 2 * 1000;
if (sc->sc_board_info.board_vendor == PCI_VENDOR_BROADCOM &&
sc->sc_board_info.board_type == BHND_BOARD_BU4306)
return;
if (phy->recalc_txpwr != NULL) {
result = phy->recalc_txpwr(mac,
(flags & BWN_TXPWR_IGNORE_TSSI) ? 1 : 0);
if (result == BWN_TXPWR_RES_DONE)
return;
KASSERT(result == BWN_TXPWR_RES_NEED_ADJUST,
("%s: fail", __func__));
KASSERT(phy->set_txpwr != NULL, ("%s: fail", __func__));
ieee80211_runtask(ic, &mac->mac_txpower);
}
}
static uint16_t
bwn_pio_rx_read_2(struct bwn_pio_rxqueue *prq, uint16_t offset)
{
return (BWN_READ_2(prq->prq_mac, prq->prq_base + offset));
}
static uint32_t
bwn_pio_rx_read_4(struct bwn_pio_rxqueue *prq, uint16_t offset)
{
return (BWN_READ_4(prq->prq_mac, prq->prq_base + offset));
}
static void
bwn_pio_rx_write_2(struct bwn_pio_rxqueue *prq, uint16_t offset, uint16_t value)
{
BWN_WRITE_2(prq->prq_mac, prq->prq_base + offset, value);
}
static void
bwn_pio_rx_write_4(struct bwn_pio_rxqueue *prq, uint16_t offset, uint32_t value)
{
BWN_WRITE_4(prq->prq_mac, prq->prq_base + offset, value);
}
static int
bwn_ieeerate2hwrate(struct bwn_softc *sc, int rate)
{
switch (rate) {
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12:
return (BWN_OFDM_RATE_6MB);
case 18:
return (BWN_OFDM_RATE_9MB);
case 24:
return (BWN_OFDM_RATE_12MB);
case 36:
return (BWN_OFDM_RATE_18MB);
case 48:
return (BWN_OFDM_RATE_24MB);
case 72:
return (BWN_OFDM_RATE_36MB);
case 96:
return (BWN_OFDM_RATE_48MB);
case 108:
return (BWN_OFDM_RATE_54MB);
/* CCK rates (NB: not IEEE std, device-specific) */
case 2:
return (BWN_CCK_RATE_1MB);
case 4:
return (BWN_CCK_RATE_2MB);
case 11:
return (BWN_CCK_RATE_5MB);
case 22:
return (BWN_CCK_RATE_11MB);
}
device_printf(sc->sc_dev, "unsupported rate %d\n", rate);
return (BWN_CCK_RATE_1MB);
}
static uint16_t
bwn_set_txhdr_phyctl1(struct bwn_mac *mac, uint8_t bitrate)
{
struct bwn_phy *phy = &mac->mac_phy;
uint16_t control = 0;
uint16_t bw;
/* XXX TODO: this is for LP phy, what about N-PHY, etc? */
bw = BWN_TXH_PHY1_BW_20;
if (BWN_ISCCKRATE(bitrate) && phy->type != BWN_PHYTYPE_LP) {
control = bw;
} else {
control = bw;
/* Figure out coding rate and modulation */
/* XXX TODO: table-ize, for MCS transmit */
/* Note: this is BWN_*_RATE values */
switch (bitrate) {
case BWN_CCK_RATE_1MB:
control |= 0;
break;
case BWN_CCK_RATE_2MB:
control |= 1;
break;
case BWN_CCK_RATE_5MB:
control |= 2;
break;
case BWN_CCK_RATE_11MB:
control |= 3;
break;
case BWN_OFDM_RATE_6MB:
control |= BWN_TXH_PHY1_CRATE_1_2;
control |= BWN_TXH_PHY1_MODUL_BPSK;
break;
case BWN_OFDM_RATE_9MB:
control |= BWN_TXH_PHY1_CRATE_3_4;
control |= BWN_TXH_PHY1_MODUL_BPSK;
break;
case BWN_OFDM_RATE_12MB:
control |= BWN_TXH_PHY1_CRATE_1_2;
control |= BWN_TXH_PHY1_MODUL_QPSK;
break;
case BWN_OFDM_RATE_18MB:
control |= BWN_TXH_PHY1_CRATE_3_4;
control |= BWN_TXH_PHY1_MODUL_QPSK;
break;
case BWN_OFDM_RATE_24MB:
control |= BWN_TXH_PHY1_CRATE_1_2;
control |= BWN_TXH_PHY1_MODUL_QAM16;
break;
case BWN_OFDM_RATE_36MB:
control |= BWN_TXH_PHY1_CRATE_3_4;
control |= BWN_TXH_PHY1_MODUL_QAM16;
break;
case BWN_OFDM_RATE_48MB:
control |= BWN_TXH_PHY1_CRATE_1_2;
control |= BWN_TXH_PHY1_MODUL_QAM64;
break;
case BWN_OFDM_RATE_54MB:
control |= BWN_TXH_PHY1_CRATE_3_4;
control |= BWN_TXH_PHY1_MODUL_QAM64;
break;
default:
break;
}
control |= BWN_TXH_PHY1_MODE_SISO;
}
return control;
}
static int
bwn_set_txhdr(struct bwn_mac *mac, struct ieee80211_node *ni,
struct mbuf *m, struct bwn_txhdr *txhdr, uint16_t cookie)
{
const struct bwn_phy *phy = &mac->mac_phy;
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211_frame *wh;
struct ieee80211_frame *protwh;
const struct ieee80211_txparam *tp = ni->ni_txparms;
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *mprot;
uint8_t *prot_ptr;
unsigned int len;
uint32_t macctl = 0;
int rts_rate, rts_rate_fb, ismcast, isshort, rix, type;
uint16_t phyctl = 0;
uint8_t rate, rate_fb;
int fill_phy_ctl1 = 0;
wh = mtod(m, struct ieee80211_frame *);
memset(txhdr, 0, sizeof(*txhdr));
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
if ((phy->type == BWN_PHYTYPE_N) || (phy->type == BWN_PHYTYPE_LP)
|| (phy->type == BWN_PHYTYPE_HT))
fill_phy_ctl1 = 1;
/*
* Find TX rate
*/
if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL))
rate = rate_fb = tp->mgmtrate;
else if (ismcast)
rate = rate_fb = tp->mcastrate;
else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
rate = rate_fb = tp->ucastrate;
else {
rix = ieee80211_ratectl_rate(ni, NULL, 0);
rate = ni->ni_txrate;
if (rix > 0)
rate_fb = ni->ni_rates.rs_rates[rix - 1] &
IEEE80211_RATE_VAL;
else
rate_fb = rate;
}
sc->sc_tx_rate = rate;
/* Note: this maps the select ieee80211 rate to hardware rate */
rate = bwn_ieeerate2hwrate(sc, rate);
rate_fb = bwn_ieeerate2hwrate(sc, rate_fb);
txhdr->phyrate = (BWN_ISOFDMRATE(rate)) ? bwn_plcp_getofdm(rate) :
bwn_plcp_getcck(rate);
bcopy(wh->i_fc, txhdr->macfc, sizeof(txhdr->macfc));
bcopy(wh->i_addr1, txhdr->addr1, IEEE80211_ADDR_LEN);
/* XXX rate/rate_fb is the hardware rate */
if ((rate_fb == rate) ||
(*(u_int16_t *)wh->i_dur & htole16(0x8000)) ||
(*(u_int16_t *)wh->i_dur == htole16(0)))
txhdr->dur_fb = *(u_int16_t *)wh->i_dur;
else
txhdr->dur_fb = ieee80211_compute_duration(ic->ic_rt,
m->m_pkthdr.len, rate, isshort);
/* XXX TX encryption */
switch (mac->mac_fw.fw_hdr_format) {
case BWN_FW_HDR_351:
bwn_plcp_genhdr((struct bwn_plcp4 *)(&txhdr->body.r351.plcp),
m->m_pkthdr.len + IEEE80211_CRC_LEN, rate);
break;
case BWN_FW_HDR_410:
bwn_plcp_genhdr((struct bwn_plcp4 *)(&txhdr->body.r410.plcp),
m->m_pkthdr.len + IEEE80211_CRC_LEN, rate);
break;
case BWN_FW_HDR_598:
bwn_plcp_genhdr((struct bwn_plcp4 *)(&txhdr->body.r598.plcp),
m->m_pkthdr.len + IEEE80211_CRC_LEN, rate);
break;
}
bwn_plcp_genhdr((struct bwn_plcp4 *)(&txhdr->plcp_fb),
m->m_pkthdr.len + IEEE80211_CRC_LEN, rate_fb);
txhdr->eftypes |= (BWN_ISOFDMRATE(rate_fb)) ? BWN_TX_EFT_FB_OFDM :
BWN_TX_EFT_FB_CCK;
txhdr->chan = phy->chan;
phyctl |= (BWN_ISOFDMRATE(rate)) ? BWN_TX_PHY_ENC_OFDM :
BWN_TX_PHY_ENC_CCK;
/* XXX preamble? obey net80211 */
if (isshort && (rate == BWN_CCK_RATE_2MB || rate == BWN_CCK_RATE_5MB ||
rate == BWN_CCK_RATE_11MB))
phyctl |= BWN_TX_PHY_SHORTPRMBL;
if (! phy->gmode)
macctl |= BWN_TX_MAC_5GHZ;
/* XXX TX antenna selection */
switch (bwn_antenna_sanitize(mac, 0)) {
case 0:
phyctl |= BWN_TX_PHY_ANT01AUTO;
break;
case 1:
phyctl |= BWN_TX_PHY_ANT0;
break;
case 2:
phyctl |= BWN_TX_PHY_ANT1;
break;
case 3:
phyctl |= BWN_TX_PHY_ANT2;
break;
case 4:
phyctl |= BWN_TX_PHY_ANT3;
break;
default:
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
}
if (!ismcast)
macctl |= BWN_TX_MAC_ACK;
macctl |= (BWN_TX_MAC_HWSEQ | BWN_TX_MAC_START_MSDU);
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
macctl |= BWN_TX_MAC_LONGFRAME;
if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ic->ic_protmode != IEEE80211_PROT_NONE) {
/* Note: don't fall back to CCK rates for 5G */
if (phy->gmode)
rts_rate = BWN_CCK_RATE_1MB;
else
rts_rate = BWN_OFDM_RATE_6MB;
rts_rate_fb = bwn_get_fbrate(rts_rate);
/* XXX 'rate' here is hardware rate now, not the net80211 rate */
mprot = ieee80211_alloc_prot(ni, m, rate, ic->ic_protmode);
if (mprot == NULL) {
if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
device_printf(sc->sc_dev,
"could not allocate mbuf for protection mode %d\n",
ic->ic_protmode);
return (ENOBUFS);
}
switch (mac->mac_fw.fw_hdr_format) {
case BWN_FW_HDR_351:
prot_ptr = txhdr->body.r351.rts_frame;
break;
case BWN_FW_HDR_410:
prot_ptr = txhdr->body.r410.rts_frame;
break;
case BWN_FW_HDR_598:
prot_ptr = txhdr->body.r598.rts_frame;
break;
}
bcopy(mtod(mprot, uint8_t *), prot_ptr, mprot->m_pkthdr.len);
m_freem(mprot);
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
macctl |= BWN_TX_MAC_SEND_CTSTOSELF;
len = sizeof(struct ieee80211_frame_cts);
} else {
macctl |= BWN_TX_MAC_SEND_RTSCTS;
len = sizeof(struct ieee80211_frame_rts);
}
len += IEEE80211_CRC_LEN;
switch (mac->mac_fw.fw_hdr_format) {
case BWN_FW_HDR_351:
bwn_plcp_genhdr((struct bwn_plcp4 *)
&txhdr->body.r351.rts_plcp, len, rts_rate);
break;
case BWN_FW_HDR_410:
bwn_plcp_genhdr((struct bwn_plcp4 *)
&txhdr->body.r410.rts_plcp, len, rts_rate);
break;
case BWN_FW_HDR_598:
bwn_plcp_genhdr((struct bwn_plcp4 *)
&txhdr->body.r598.rts_plcp, len, rts_rate);
break;
}
bwn_plcp_genhdr((struct bwn_plcp4 *)&txhdr->rts_plcp_fb, len,
rts_rate_fb);
switch (mac->mac_fw.fw_hdr_format) {
case BWN_FW_HDR_351:
protwh = (struct ieee80211_frame *)
&txhdr->body.r351.rts_frame;
break;
case BWN_FW_HDR_410:
protwh = (struct ieee80211_frame *)
&txhdr->body.r410.rts_frame;
break;
case BWN_FW_HDR_598:
protwh = (struct ieee80211_frame *)
&txhdr->body.r598.rts_frame;
break;
}
txhdr->rts_dur_fb = *(u_int16_t *)protwh->i_dur;
if (BWN_ISOFDMRATE(rts_rate)) {
txhdr->eftypes |= BWN_TX_EFT_RTS_OFDM;
txhdr->phyrate_rts = bwn_plcp_getofdm(rts_rate);
} else {
txhdr->eftypes |= BWN_TX_EFT_RTS_CCK;
txhdr->phyrate_rts = bwn_plcp_getcck(rts_rate);
}
txhdr->eftypes |= (BWN_ISOFDMRATE(rts_rate_fb)) ?
BWN_TX_EFT_RTS_FBOFDM : BWN_TX_EFT_RTS_FBCCK;
if (fill_phy_ctl1) {
txhdr->phyctl_1rts = htole16(bwn_set_txhdr_phyctl1(mac, rts_rate));
txhdr->phyctl_1rtsfb = htole16(bwn_set_txhdr_phyctl1(mac, rts_rate_fb));
}
}
if (fill_phy_ctl1) {
txhdr->phyctl_1 = htole16(bwn_set_txhdr_phyctl1(mac, rate));
txhdr->phyctl_1fb = htole16(bwn_set_txhdr_phyctl1(mac, rate_fb));
}
switch (mac->mac_fw.fw_hdr_format) {
case BWN_FW_HDR_351:
txhdr->body.r351.cookie = htole16(cookie);
break;
case BWN_FW_HDR_410:
txhdr->body.r410.cookie = htole16(cookie);
break;
case BWN_FW_HDR_598:
txhdr->body.r598.cookie = htole16(cookie);
break;
}
txhdr->macctl = htole32(macctl);
txhdr->phyctl = htole16(phyctl);
/*
* TX radio tap
*/
if (ieee80211_radiotap_active_vap(vap)) {
sc->sc_tx_th.wt_flags = 0;
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
if (isshort &&
(rate == BWN_CCK_RATE_2MB || rate == BWN_CCK_RATE_5MB ||
rate == BWN_CCK_RATE_11MB))
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
sc->sc_tx_th.wt_rate = rate;
ieee80211_radiotap_tx(vap, m);
}
return (0);
}
static void
bwn_plcp_genhdr(struct bwn_plcp4 *plcp, const uint16_t octets,
const uint8_t rate)
{
uint32_t d, plen;
uint8_t *raw = plcp->o.raw;
if (BWN_ISOFDMRATE(rate)) {
d = bwn_plcp_getofdm(rate);
KASSERT(!(octets & 0xf000),
("%s:%d: fail", __func__, __LINE__));
d |= (octets << 5);
plcp->o.data = htole32(d);
} else {
plen = octets * 16 / rate;
if ((octets * 16 % rate) > 0) {
plen++;
if ((rate == BWN_CCK_RATE_11MB)
&& ((octets * 8 % 11) < 4)) {
raw[1] = 0x84;
} else
raw[1] = 0x04;
} else
raw[1] = 0x04;
plcp->o.data |= htole32(plen << 16);
raw[0] = bwn_plcp_getcck(rate);
}
}
static uint8_t
bwn_antenna_sanitize(struct bwn_mac *mac, uint8_t n)
{
struct bwn_softc *sc = mac->mac_sc;
uint8_t mask;
if (n == 0)
return (0);
if (mac->mac_phy.gmode)
mask = sc->sc_ant2g;
else
mask = sc->sc_ant5g;
if (!(mask & (1 << (n - 1))))
return (0);
return (n);
}
/*
* Return a fallback rate for the given rate.
*
* Note: Don't fall back from OFDM to CCK.
*/
static uint8_t
bwn_get_fbrate(uint8_t bitrate)
{
switch (bitrate) {
/* CCK */
case BWN_CCK_RATE_1MB:
return (BWN_CCK_RATE_1MB);
case BWN_CCK_RATE_2MB:
return (BWN_CCK_RATE_1MB);
case BWN_CCK_RATE_5MB:
return (BWN_CCK_RATE_2MB);
case BWN_CCK_RATE_11MB:
return (BWN_CCK_RATE_5MB);
/* OFDM */
case BWN_OFDM_RATE_6MB:
return (BWN_OFDM_RATE_6MB);
case BWN_OFDM_RATE_9MB:
return (BWN_OFDM_RATE_6MB);
case BWN_OFDM_RATE_12MB:
return (BWN_OFDM_RATE_9MB);
case BWN_OFDM_RATE_18MB:
return (BWN_OFDM_RATE_12MB);
case BWN_OFDM_RATE_24MB:
return (BWN_OFDM_RATE_18MB);
case BWN_OFDM_RATE_36MB:
return (BWN_OFDM_RATE_24MB);
case BWN_OFDM_RATE_48MB:
return (BWN_OFDM_RATE_36MB);
case BWN_OFDM_RATE_54MB:
return (BWN_OFDM_RATE_48MB);
}
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
return (0);
}
static uint32_t
bwn_pio_write_multi_4(struct bwn_mac *mac, struct bwn_pio_txqueue *tq,
uint32_t ctl, const void *_data, int len)
{
struct bwn_softc *sc = mac->mac_sc;
uint32_t value = 0;
const uint8_t *data = _data;
ctl |= BWN_PIO8_TXCTL_0_7 | BWN_PIO8_TXCTL_8_15 |
BWN_PIO8_TXCTL_16_23 | BWN_PIO8_TXCTL_24_31;
bwn_pio_write_4(mac, tq, BWN_PIO8_TXCTL, ctl);
bus_write_multi_4(sc->sc_mem_res, tq->tq_base + BWN_PIO8_TXDATA,
__DECONST(void *, data), (len & ~3));
if (len & 3) {
ctl &= ~(BWN_PIO8_TXCTL_8_15 | BWN_PIO8_TXCTL_16_23 |
BWN_PIO8_TXCTL_24_31);
data = &(data[len - 1]);
switch (len & 3) {
case 3:
ctl |= BWN_PIO8_TXCTL_16_23;
value |= (uint32_t)(*data) << 16;
data--;
case 2:
ctl |= BWN_PIO8_TXCTL_8_15;
value |= (uint32_t)(*data) << 8;
data--;
case 1:
value |= (uint32_t)(*data);
}
bwn_pio_write_4(mac, tq, BWN_PIO8_TXCTL, ctl);
bwn_pio_write_4(mac, tq, BWN_PIO8_TXDATA, value);
}
return (ctl);
}
static void
bwn_pio_write_4(struct bwn_mac *mac, struct bwn_pio_txqueue *tq,
uint16_t offset, uint32_t value)
{
BWN_WRITE_4(mac, tq->tq_base + offset, value);
}
static uint16_t
bwn_pio_write_multi_2(struct bwn_mac *mac, struct bwn_pio_txqueue *tq,
uint16_t ctl, const void *_data, int len)
{
struct bwn_softc *sc = mac->mac_sc;
const uint8_t *data = _data;
ctl |= BWN_PIO_TXCTL_WRITELO | BWN_PIO_TXCTL_WRITEHI;
BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXCTL, ctl);
bus_write_multi_2(sc->sc_mem_res, tq->tq_base + BWN_PIO_TXDATA,
__DECONST(void *, data), (len & ~1));
if (len & 1) {
ctl &= ~BWN_PIO_TXCTL_WRITEHI;
BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXCTL, ctl);
BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXDATA, data[len - 1]);
}
return (ctl);
}
static uint16_t
bwn_pio_write_mbuf_2(struct bwn_mac *mac, struct bwn_pio_txqueue *tq,
uint16_t ctl, struct mbuf *m0)
{
int i, j = 0;
uint16_t data = 0;
const uint8_t *buf;
struct mbuf *m = m0;
ctl |= BWN_PIO_TXCTL_WRITELO | BWN_PIO_TXCTL_WRITEHI;
BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXCTL, ctl);
for (; m != NULL; m = m->m_next) {
buf = mtod(m, const uint8_t *);
for (i = 0; i < m->m_len; i++) {
if (!((j++) % 2))
data |= buf[i];
else {
data |= (buf[i] << 8);
BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXDATA, data);
data = 0;
}
}
}
if (m0->m_pkthdr.len % 2) {
ctl &= ~BWN_PIO_TXCTL_WRITEHI;
BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXCTL, ctl);
BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXDATA, data);
}
return (ctl);
}
static void
bwn_set_slot_time(struct bwn_mac *mac, uint16_t time)
{
/* XXX should exit if 5GHz band .. */
if (mac->mac_phy.type != BWN_PHYTYPE_G)
return;
BWN_WRITE_2(mac, 0x684, 510 + time);
/* Disabled in Linux b43, can adversely effect performance */
#if 0
bwn_shm_write_2(mac, BWN_SHARED, 0x0010, time);
#endif
}
static struct bwn_dma_ring *
bwn_dma_select(struct bwn_mac *mac, uint8_t prio)
{
if ((mac->mac_flags & BWN_MAC_FLAG_WME) == 0)
return (mac->mac_method.dma.wme[WME_AC_BE]);
switch (prio) {
case 3:
return (mac->mac_method.dma.wme[WME_AC_VO]);
case 2:
return (mac->mac_method.dma.wme[WME_AC_VI]);
case 0:
return (mac->mac_method.dma.wme[WME_AC_BE]);
case 1:
return (mac->mac_method.dma.wme[WME_AC_BK]);
}
KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__));
return (NULL);
}
static int
bwn_dma_getslot(struct bwn_dma_ring *dr)
{
int slot;
BWN_ASSERT_LOCKED(dr->dr_mac->mac_sc);
KASSERT(dr->dr_tx, ("%s:%d: fail", __func__, __LINE__));
KASSERT(!(dr->dr_stop), ("%s:%d: fail", __func__, __LINE__));
KASSERT(bwn_dma_freeslot(dr) != 0, ("%s:%d: fail", __func__, __LINE__));
slot = bwn_dma_nextslot(dr, dr->dr_curslot);
KASSERT(!(slot & ~0x0fff), ("%s:%d: fail", __func__, __LINE__));
dr->dr_curslot = slot;
dr->dr_usedslot++;
return (slot);
}
static struct bwn_pio_txqueue *
bwn_pio_parse_cookie(struct bwn_mac *mac, uint16_t cookie,
struct bwn_pio_txpkt **pack)
{
struct bwn_pio *pio = &mac->mac_method.pio;
struct bwn_pio_txqueue *tq = NULL;
unsigned int index;
switch (cookie & 0xf000) {
case 0x1000:
tq = &pio->wme[WME_AC_BK];
break;
case 0x2000:
tq = &pio->wme[WME_AC_BE];
break;
case 0x3000:
tq = &pio->wme[WME_AC_VI];
break;
case 0x4000:
tq = &pio->wme[WME_AC_VO];
break;
case 0x5000:
tq = &pio->mcast;
break;
}
KASSERT(tq != NULL, ("%s:%d: fail", __func__, __LINE__));
if (tq == NULL)
return (NULL);
index = (cookie & 0x0fff);
KASSERT(index < N(tq->tq_pkts), ("%s:%d: fail", __func__, __LINE__));
if (index >= N(tq->tq_pkts))
return (NULL);
*pack = &tq->tq_pkts[index];
KASSERT(*pack != NULL, ("%s:%d: fail", __func__, __LINE__));
return (tq);
}
static void
bwn_txpwr(void *arg, int npending)
{
struct bwn_mac *mac = arg;
struct bwn_softc *sc;
if (mac == NULL)
return;
sc = mac->mac_sc;
BWN_LOCK(sc);
if (mac->mac_status >= BWN_MAC_STATUS_STARTED &&
mac->mac_phy.set_txpwr != NULL)
mac->mac_phy.set_txpwr(mac);
BWN_UNLOCK(sc);
}
static void
bwn_task_15s(struct bwn_mac *mac)
{
uint16_t reg;
if (mac->mac_fw.opensource) {
reg = bwn_shm_read_2(mac, BWN_SCRATCH, BWN_WATCHDOG_REG);
if (reg) {
bwn_restart(mac, "fw watchdog");
return;
}
bwn_shm_write_2(mac, BWN_SCRATCH, BWN_WATCHDOG_REG, 1);
}
if (mac->mac_phy.task_15s)
mac->mac_phy.task_15s(mac);
mac->mac_phy.txerrors = BWN_TXERROR_MAX;
}
static void
bwn_task_30s(struct bwn_mac *mac)
{
if (mac->mac_phy.type != BWN_PHYTYPE_G || mac->mac_noise.noi_running)
return;
mac->mac_noise.noi_running = 1;
mac->mac_noise.noi_nsamples = 0;
bwn_noise_gensample(mac);
}
static void
bwn_task_60s(struct bwn_mac *mac)
{
if (mac->mac_phy.task_60s)
mac->mac_phy.task_60s(mac);
bwn_phy_txpower_check(mac, BWN_TXPWR_IGNORE_TIME);
}
static void
bwn_tasks(void *arg)
{
struct bwn_mac *mac = arg;
struct bwn_softc *sc = mac->mac_sc;
BWN_ASSERT_LOCKED(sc);
if (mac->mac_status != BWN_MAC_STATUS_STARTED)
return;
if (mac->mac_task_state % 4 == 0)
bwn_task_60s(mac);
if (mac->mac_task_state % 2 == 0)
bwn_task_30s(mac);
bwn_task_15s(mac);
mac->mac_task_state++;
callout_reset(&sc->sc_task_ch, hz * 15, bwn_tasks, mac);
}
static int
bwn_plcp_get_ofdmrate(struct bwn_mac *mac, struct bwn_plcp6 *plcp, uint8_t a)
{
struct bwn_softc *sc = mac->mac_sc;
KASSERT(a == 0, ("not support APHY\n"));
switch (plcp->o.raw[0] & 0xf) {
case 0xb:
return (BWN_OFDM_RATE_6MB);
case 0xf:
return (BWN_OFDM_RATE_9MB);
case 0xa:
return (BWN_OFDM_RATE_12MB);
case 0xe:
return (BWN_OFDM_RATE_18MB);
case 0x9:
return (BWN_OFDM_RATE_24MB);
case 0xd:
return (BWN_OFDM_RATE_36MB);
case 0x8:
return (BWN_OFDM_RATE_48MB);
case 0xc:
return (BWN_OFDM_RATE_54MB);
}
device_printf(sc->sc_dev, "incorrect OFDM rate %d\n",
plcp->o.raw[0] & 0xf);
return (-1);
}
static int
bwn_plcp_get_cckrate(struct bwn_mac *mac, struct bwn_plcp6 *plcp)
{
struct bwn_softc *sc = mac->mac_sc;
switch (plcp->o.raw[0]) {
case 0x0a:
return (BWN_CCK_RATE_1MB);
case 0x14:
return (BWN_CCK_RATE_2MB);
case 0x37:
return (BWN_CCK_RATE_5MB);
case 0x6e:
return (BWN_CCK_RATE_11MB);
}
device_printf(sc->sc_dev, "incorrect CCK rate %d\n", plcp->o.raw[0]);
return (-1);
}
static void
bwn_rx_radiotap(struct bwn_mac *mac, struct mbuf *m,
const struct bwn_rxhdr4 *rxhdr, struct bwn_plcp6 *plcp, int rate,
int rssi, int noise)
{
struct bwn_softc *sc = mac->mac_sc;
const struct ieee80211_frame_min *wh;
uint64_t tsf;
uint16_t low_mactime_now;
uint16_t mt;
if (htole16(rxhdr->phy_status0) & BWN_RX_PHYST0_SHORTPRMBL)
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
wh = mtod(m, const struct ieee80211_frame_min *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
bwn_tsf_read(mac, &tsf);
low_mactime_now = tsf;
tsf = tsf & ~0xffffULL;
switch (mac->mac_fw.fw_hdr_format) {
case BWN_FW_HDR_351:
case BWN_FW_HDR_410:
mt = le16toh(rxhdr->ps4.r351.mac_time);
break;
case BWN_FW_HDR_598:
mt = le16toh(rxhdr->ps4.r598.mac_time);
break;
}
tsf += mt;
if (low_mactime_now < mt)
tsf -= 0x10000;
sc->sc_rx_th.wr_tsf = tsf;
sc->sc_rx_th.wr_rate = rate;
sc->sc_rx_th.wr_antsignal = rssi;
sc->sc_rx_th.wr_antnoise = noise;
}
static void
bwn_tsf_read(struct bwn_mac *mac, uint64_t *tsf)
{
uint32_t low, high;
KASSERT(bhnd_get_hwrev(mac->mac_sc->sc_dev) >= 3,
("%s:%d: fail", __func__, __LINE__));
low = BWN_READ_4(mac, BWN_REV3PLUS_TSF_LOW);
high = BWN_READ_4(mac, BWN_REV3PLUS_TSF_HIGH);
*tsf = high;
*tsf <<= 32;
*tsf |= low;
}
static int
bwn_dma_attach(struct bwn_mac *mac)
{
struct bwn_dma *dma;
struct bwn_softc *sc;
struct bhnd_dma_translation *dt, dma_translation;
bhnd_addr_t addrext_req;
bus_dma_tag_t dmat;
bus_addr_t lowaddr;
u_int addrext_shift, addr_width;
int error;
dma = &mac->mac_method.dma;
sc = mac->mac_sc;
dt = NULL;
if (sc->sc_quirks & BWN_QUIRK_NODMA)
return (0);
KASSERT(bhnd_get_hwrev(sc->sc_dev) >= 5, ("%s: fail", __func__));
/* Use the DMA engine's maximum host address width to determine the
* addrext constraints, and supported device address width. */
switch (mac->mac_dmatype) {
case BHND_DMA_ADDR_30BIT:
/* 32-bit engine without addrext support */
addrext_req = 0x0;
addrext_shift = 0;
/* We can address the full 32-bit device address space */
addr_width = BHND_DMA_ADDR_32BIT;
break;
case BHND_DMA_ADDR_32BIT:
/* 32-bit engine with addrext support */
addrext_req = BWN_DMA32_ADDREXT_MASK;
addrext_shift = BWN_DMA32_ADDREXT_SHIFT;
addr_width = BHND_DMA_ADDR_32BIT;
break;
case BHND_DMA_ADDR_64BIT:
/* 64-bit engine with addrext support */
addrext_req = BWN_DMA64_ADDREXT_MASK;
addrext_shift = BWN_DMA64_ADDREXT_SHIFT;
addr_width = BHND_DMA_ADDR_64BIT;
break;
default:
device_printf(sc->sc_dev, "unsupported DMA address width: %d\n",
mac->mac_dmatype);
return (ENXIO);
}
/* Fetch our device->host DMA translation and tag */
error = bhnd_get_dma_translation(sc->sc_dev, addr_width, 0, &dmat,
&dma_translation);
if (error) {
device_printf(sc->sc_dev, "error fetching DMA translation: "
"%d\n", error);
return (error);
}
/* Verify that our DMA engine's addrext constraints are compatible with
* our DMA translation */
if (addrext_req != 0x0 &&
(dma_translation.addrext_mask & addrext_req) != addrext_req)
{
device_printf(sc->sc_dev, "bus addrext mask %#jx incompatible "
"with device addrext mask %#jx, disabling extended address "
"support\n", (uintmax_t)dma_translation.addrext_mask,
(uintmax_t)addrext_req);
addrext_req = 0x0;
addrext_shift = 0;
}
/* Apply our addrext translation constraint */
dma_translation.addrext_mask = addrext_req;
/* Initialize our DMA engine configuration */
mac->mac_flags |= BWN_MAC_FLAG_DMA;
dma->addrext_shift = addrext_shift;
dma->translation = dma_translation;
dt = &dma->translation;
/* Dermine our translation's maximum supported address */
lowaddr = MIN((dt->addr_mask | dt->addrext_mask), BUS_SPACE_MAXADDR);
/*
* Create top level DMA tag
*/
error = bus_dma_tag_create(dmat, /* parent */
BWN_ALIGN, 0, /* alignment, bounds */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE, /* maxsize */
BUS_SPACE_UNRESTRICTED, /* nsegments */
BUS_SPACE_MAXSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&dma->parent_dtag);
if (error) {
device_printf(sc->sc_dev, "can't create parent DMA tag\n");
return (error);
}
/*
* Create TX/RX mbuf DMA tag
*/
error = bus_dma_tag_create(dma->parent_dtag,
1,
0,
BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR,
NULL, NULL,
MCLBYTES,
1,
BUS_SPACE_MAXSIZE_32BIT,
0,
NULL, NULL,
&dma->rxbuf_dtag);
if (error) {
device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
goto fail0;
}
error = bus_dma_tag_create(dma->parent_dtag,
1,
0,
BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR,
NULL, NULL,
MCLBYTES,
1,
BUS_SPACE_MAXSIZE_32BIT,
0,
NULL, NULL,
&dma->txbuf_dtag);
if (error) {
device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
goto fail1;
}
dma->wme[WME_AC_BK] = bwn_dma_ringsetup(mac, 0, 1);
if (!dma->wme[WME_AC_BK])
goto fail2;
dma->wme[WME_AC_BE] = bwn_dma_ringsetup(mac, 1, 1);
if (!dma->wme[WME_AC_BE])
goto fail3;
dma->wme[WME_AC_VI] = bwn_dma_ringsetup(mac, 2, 1);
if (!dma->wme[WME_AC_VI])
goto fail4;
dma->wme[WME_AC_VO] = bwn_dma_ringsetup(mac, 3, 1);
if (!dma->wme[WME_AC_VO])
goto fail5;
dma->mcast = bwn_dma_ringsetup(mac, 4, 1);
if (!dma->mcast)
goto fail6;
dma->rx = bwn_dma_ringsetup(mac, 0, 0);
if (!dma->rx)
goto fail7;
return (error);
fail7: bwn_dma_ringfree(&dma->mcast);
fail6: bwn_dma_ringfree(&dma->wme[WME_AC_VO]);
fail5: bwn_dma_ringfree(&dma->wme[WME_AC_VI]);
fail4: bwn_dma_ringfree(&dma->wme[WME_AC_BE]);
fail3: bwn_dma_ringfree(&dma->wme[WME_AC_BK]);
fail2: bus_dma_tag_destroy(dma->txbuf_dtag);
fail1: bus_dma_tag_destroy(dma->rxbuf_dtag);
fail0: bus_dma_tag_destroy(dma->parent_dtag);
return (error);
}
static struct bwn_dma_ring *
bwn_dma_parse_cookie(struct bwn_mac *mac, const struct bwn_txstatus *status,
uint16_t cookie, int *slot)
{
struct bwn_dma *dma = &mac->mac_method.dma;
struct bwn_dma_ring *dr;
struct bwn_softc *sc = mac->mac_sc;
BWN_ASSERT_LOCKED(mac->mac_sc);
switch (cookie & 0xf000) {
case 0x1000:
dr = dma->wme[WME_AC_BK];
break;
case 0x2000:
dr = dma->wme[WME_AC_BE];
break;
case 0x3000:
dr = dma->wme[WME_AC_VI];
break;
case 0x4000:
dr = dma->wme[WME_AC_VO];
break;
case 0x5000:
dr = dma->mcast;
break;
default:
dr = NULL;
KASSERT(0 == 1,
("invalid cookie value %d", cookie & 0xf000));
}
*slot = (cookie & 0x0fff);
if (*slot < 0 || *slot >= dr->dr_numslots) {
/*
* XXX FIXME: sometimes H/W returns TX DONE events duplicately
* that it occurs events which have same H/W sequence numbers.
* When it's occurred just prints a WARNING msgs and ignores.
*/
KASSERT(status->seq == dma->lastseq,
("%s:%d: fail", __func__, __LINE__));
device_printf(sc->sc_dev,
"out of slot ranges (0 < %d < %d)\n", *slot,
dr->dr_numslots);
return (NULL);
}
dma->lastseq = status->seq;
return (dr);
}
static void
bwn_dma_stop(struct bwn_mac *mac)
{
struct bwn_dma *dma;
if ((mac->mac_flags & BWN_MAC_FLAG_DMA) == 0)
return;
dma = &mac->mac_method.dma;
bwn_dma_ringstop(&dma->rx);
bwn_dma_ringstop(&dma->wme[WME_AC_BK]);
bwn_dma_ringstop(&dma->wme[WME_AC_BE]);
bwn_dma_ringstop(&dma->wme[WME_AC_VI]);
bwn_dma_ringstop(&dma->wme[WME_AC_VO]);
bwn_dma_ringstop(&dma->mcast);
}
static void
bwn_dma_ringstop(struct bwn_dma_ring **dr)
{
if (dr == NULL)
return;
bwn_dma_cleanup(*dr);
}
static void
bwn_pio_stop(struct bwn_mac *mac)
{
struct bwn_pio *pio;
if (mac->mac_flags & BWN_MAC_FLAG_DMA)
return;
pio = &mac->mac_method.pio;
bwn_destroy_queue_tx(&pio->mcast);
bwn_destroy_queue_tx(&pio->wme[WME_AC_VO]);
bwn_destroy_queue_tx(&pio->wme[WME_AC_VI]);
bwn_destroy_queue_tx(&pio->wme[WME_AC_BE]);
bwn_destroy_queue_tx(&pio->wme[WME_AC_BK]);
}
static int
bwn_led_attach(struct bwn_mac *mac)
{
struct bwn_softc *sc = mac->mac_sc;
const uint8_t *led_act = NULL;
int error;
int i;
sc->sc_led_idle = (2350 * hz) / 1000;
sc->sc_led_blink = 1;
for (i = 0; i < N(bwn_vendor_led_act); ++i) {
if (sc->sc_board_info.board_vendor ==
bwn_vendor_led_act[i].vid) {
led_act = bwn_vendor_led_act[i].led_act;
break;
}
}
if (led_act == NULL)
led_act = bwn_default_led_act;
_Static_assert(nitems(bwn_led_vars) == BWN_LED_MAX,
"invalid NVRAM variable name array");
for (i = 0; i < BWN_LED_MAX; ++i) {
struct bwn_led *led;
uint8_t val;
led = &sc->sc_leds[i];
KASSERT(i < nitems(bwn_led_vars), ("unknown LED index"));
error = bhnd_nvram_getvar_uint8(sc->sc_dev, bwn_led_vars[i],
&val);
if (error) {
if (error != ENOENT) {
device_printf(sc->sc_dev, "NVRAM variable %s "
"unreadable: %d", bwn_led_vars[i], error);
return (error);
}
/* Not found; use default */
led->led_act = led_act[i];
} else {
if (val & BWN_LED_ACT_LOW)
led->led_flags |= BWN_LED_F_ACTLOW;
led->led_act = val & BWN_LED_ACT_MASK;
}
led->led_mask = (1 << i);
if (led->led_act == BWN_LED_ACT_BLINK_SLOW ||
led->led_act == BWN_LED_ACT_BLINK_POLL ||
led->led_act == BWN_LED_ACT_BLINK) {
led->led_flags |= BWN_LED_F_BLINK;
if (led->led_act == BWN_LED_ACT_BLINK_POLL)
led->led_flags |= BWN_LED_F_POLLABLE;
else if (led->led_act == BWN_LED_ACT_BLINK_SLOW)
led->led_flags |= BWN_LED_F_SLOW;
if (sc->sc_blink_led == NULL) {
sc->sc_blink_led = led;
if (led->led_flags & BWN_LED_F_SLOW)
BWN_LED_SLOWDOWN(sc->sc_led_idle);
}
}
DPRINTF(sc, BWN_DEBUG_LED,
"%dth led, act %d, lowact %d\n", i,
led->led_act, led->led_flags & BWN_LED_F_ACTLOW);
}
callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
return (0);
}
static __inline uint16_t
bwn_led_onoff(const struct bwn_led *led, uint16_t val, int on)
{
if (led->led_flags & BWN_LED_F_ACTLOW)
on = !on;
if (on)
val |= led->led_mask;
else
val &= ~led->led_mask;
return val;
}
static void
bwn_led_newstate(struct bwn_mac *mac, enum ieee80211_state nstate)
{
struct bwn_softc *sc = mac->mac_sc;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int i;
if (nstate == IEEE80211_S_INIT) {
callout_stop(&sc->sc_led_blink_ch);
sc->sc_led_blinking = 0;
}
if ((sc->sc_flags & BWN_FLAG_RUNNING) == 0)
return;
val = BWN_READ_2(mac, BWN_GPIO_CONTROL);
for (i = 0; i < BWN_LED_MAX; ++i) {
struct bwn_led *led = &sc->sc_leds[i];
int on;
if (led->led_act == BWN_LED_ACT_UNKN ||
led->led_act == BWN_LED_ACT_NULL)
continue;
if ((led->led_flags & BWN_LED_F_BLINK) &&
nstate != IEEE80211_S_INIT)
continue;
switch (led->led_act) {
case BWN_LED_ACT_ON: /* Always on */
on = 1;
break;
case BWN_LED_ACT_OFF: /* Always off */
case BWN_LED_ACT_5GHZ: /* TODO: 11A */
on = 0;
break;
default:
on = 1;
switch (nstate) {
case IEEE80211_S_INIT:
on = 0;
break;
case IEEE80211_S_RUN:
if (led->led_act == BWN_LED_ACT_11G &&
ic->ic_curmode != IEEE80211_MODE_11G)
on = 0;
break;
default:
if (led->led_act == BWN_LED_ACT_ASSOC)
on = 0;
break;
}
break;
}
val = bwn_led_onoff(led, val, on);
}
BWN_WRITE_2(mac, BWN_GPIO_CONTROL, val);
}
static void
bwn_led_event(struct bwn_mac *mac, int event)
{
struct bwn_softc *sc = mac->mac_sc;
struct bwn_led *led = sc->sc_blink_led;
int rate;
if (event == BWN_LED_EVENT_POLL) {
if ((led->led_flags & BWN_LED_F_POLLABLE) == 0)
return;
if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
return;
}
sc->sc_led_ticks = ticks;
if (sc->sc_led_blinking)
return;
switch (event) {
case BWN_LED_EVENT_RX:
rate = sc->sc_rx_rate;
break;
case BWN_LED_EVENT_TX:
rate = sc->sc_tx_rate;
break;
case BWN_LED_EVENT_POLL:
rate = 0;
break;
default:
panic("unknown LED event %d\n", event);
break;
}
bwn_led_blink_start(mac, bwn_led_duration[rate].on_dur,
bwn_led_duration[rate].off_dur);
}
static void
bwn_led_blink_start(struct bwn_mac *mac, int on_dur, int off_dur)
{
struct bwn_softc *sc = mac->mac_sc;
struct bwn_led *led = sc->sc_blink_led;
uint16_t val;
val = BWN_READ_2(mac, BWN_GPIO_CONTROL);
val = bwn_led_onoff(led, val, 1);
BWN_WRITE_2(mac, BWN_GPIO_CONTROL, val);
if (led->led_flags & BWN_LED_F_SLOW) {
BWN_LED_SLOWDOWN(on_dur);
BWN_LED_SLOWDOWN(off_dur);
}
sc->sc_led_blinking = 1;
sc->sc_led_blink_offdur = off_dur;
callout_reset(&sc->sc_led_blink_ch, on_dur, bwn_led_blink_next, mac);
}
static void
bwn_led_blink_next(void *arg)
{
struct bwn_mac *mac = arg;
struct bwn_softc *sc = mac->mac_sc;
uint16_t val;
val = BWN_READ_2(mac, BWN_GPIO_CONTROL);
val = bwn_led_onoff(sc->sc_blink_led, val, 0);
BWN_WRITE_2(mac, BWN_GPIO_CONTROL, val);
callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
bwn_led_blink_end, mac);
}
static void
bwn_led_blink_end(void *arg)
{
struct bwn_mac *mac = arg;
struct bwn_softc *sc = mac->mac_sc;
sc->sc_led_blinking = 0;
}
static int
bwn_suspend(device_t dev)
{
struct bwn_softc *sc = device_get_softc(dev);
BWN_LOCK(sc);
bwn_stop(sc);
BWN_UNLOCK(sc);
return (0);
}
static int
bwn_resume(device_t dev)
{
struct bwn_softc *sc = device_get_softc(dev);
int error = EDOOFUS;
BWN_LOCK(sc);
if (sc->sc_ic.ic_nrunning > 0)
error = bwn_init(sc);
BWN_UNLOCK(sc);
if (error == 0)
ieee80211_start_all(&sc->sc_ic);
return (0);
}
static void
bwn_rfswitch(void *arg)
{
struct bwn_softc *sc = arg;
struct bwn_mac *mac = sc->sc_curmac;
int cur = 0, prev = 0;
KASSERT(mac->mac_status >= BWN_MAC_STATUS_STARTED,
("%s: invalid MAC status %d", __func__, mac->mac_status));
if (mac->mac_phy.rev >= 3 || mac->mac_phy.type == BWN_PHYTYPE_LP
|| mac->mac_phy.type == BWN_PHYTYPE_N) {
if (!(BWN_READ_4(mac, BWN_RF_HWENABLED_HI)
& BWN_RF_HWENABLED_HI_MASK))
cur = 1;
} else {
if (BWN_READ_2(mac, BWN_RF_HWENABLED_LO)
& BWN_RF_HWENABLED_LO_MASK)
cur = 1;
}
if (mac->mac_flags & BWN_MAC_FLAG_RADIO_ON)
prev = 1;
DPRINTF(sc, BWN_DEBUG_RESET, "%s: called; cur=%d, prev=%d\n",
__func__, cur, prev);
if (cur != prev) {
if (cur)
mac->mac_flags |= BWN_MAC_FLAG_RADIO_ON;
else
mac->mac_flags &= ~BWN_MAC_FLAG_RADIO_ON;
device_printf(sc->sc_dev,
"status of RF switch is changed to %s\n",
cur ? "ON" : "OFF");
if (cur != mac->mac_phy.rf_on) {
if (cur)
bwn_rf_turnon(mac);
else
bwn_rf_turnoff(mac);
}
}
callout_schedule(&sc->sc_rfswitch_ch, hz);
}
static void
bwn_sysctl_node(struct bwn_softc *sc)
{
device_t dev = sc->sc_dev;
struct bwn_mac *mac;
struct bwn_stats *stats;
/* XXX assume that count of MAC is only 1. */
if ((mac = sc->sc_curmac) == NULL)
return;
stats = &mac->mac_stats;
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"linknoise", CTLFLAG_RW, &stats->rts, 0, "Noise level");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"rts", CTLFLAG_RW, &stats->rts, 0, "RTS");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"rtsfail", CTLFLAG_RW, &stats->rtsfail, 0, "RTS failed to send");
#ifdef BWN_DEBUG
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
#endif
}
static device_method_t bwn_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bwn_probe),
DEVMETHOD(device_attach, bwn_attach),
DEVMETHOD(device_detach, bwn_detach),
DEVMETHOD(device_suspend, bwn_suspend),
DEVMETHOD(device_resume, bwn_resume),
DEVMETHOD_END
};
static driver_t bwn_driver = {
"bwn",
bwn_methods,
sizeof(struct bwn_softc)
};
static devclass_t bwn_devclass;
DRIVER_MODULE(bwn, bhnd, bwn_driver, bwn_devclass, 0, 0);
MODULE_DEPEND(bwn, bhnd, 1, 1, 1);
MODULE_DEPEND(bwn, gpiobus, 1, 1, 1);
MODULE_DEPEND(bwn, wlan, 1, 1, 1); /* 802.11 media layer */
MODULE_DEPEND(bwn, firmware, 1, 1, 1); /* firmware support */
MODULE_DEPEND(bwn, wlan_amrr, 1, 1, 1);
MODULE_VERSION(bwn, 1);