- All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
91 lines
2.9 KiB
C
91 lines
2.9 KiB
C
/*
|
|
* Copyright (c) 1994, Henrik Vestergaard Draboel
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by (name).
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#ifndef _SYS_RTPRIO_H_
|
|
#define _SYS_RTPRIO_H_
|
|
|
|
#include <sys/priority.h>
|
|
|
|
/*
|
|
* Process realtime-priority specifications to rtprio.
|
|
*/
|
|
|
|
/* priority types. Start at 1 to catch uninitialized fields. */
|
|
|
|
#define RTP_PRIO_REALTIME PRI_REALTIME /* real time process */
|
|
#define RTP_PRIO_NORMAL PRI_TIMESHARE /* time sharing process */
|
|
#define RTP_PRIO_IDLE PRI_IDLE /* idle process */
|
|
|
|
/* RTP_PRIO_FIFO is POSIX.1B SCHED_FIFO.
|
|
*/
|
|
|
|
#define RTP_PRIO_FIFO_BIT PRI_FIFO_BIT
|
|
#define RTP_PRIO_FIFO PRI_FIFO
|
|
#define RTP_PRIO_BASE(P) PRI_BASE(P)
|
|
#define RTP_PRIO_IS_REALTIME(P) PRI_IS_REALTIME(P)
|
|
#define RTP_PRIO_NEED_RR(P) PRI_NEED_RR(P)
|
|
|
|
/* priority range */
|
|
#define RTP_PRIO_MIN 0 /* Highest priority */
|
|
#define RTP_PRIO_MAX 31 /* Lowest priority */
|
|
|
|
/*
|
|
* rtprio() syscall functions
|
|
*/
|
|
#define RTP_LOOKUP 0
|
|
#define RTP_SET 1
|
|
|
|
#ifndef LOCORE
|
|
/*
|
|
* Scheduling class information.
|
|
*/
|
|
struct rtprio {
|
|
u_short type; /* scheduling class */
|
|
u_short prio;
|
|
};
|
|
|
|
#ifdef _KERNEL
|
|
int rtp_to_pri(struct rtprio *, struct priority *);
|
|
void pri_to_rtp(struct priority *, struct rtprio *);
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef _KERNEL
|
|
#include <sys/cdefs.h>
|
|
|
|
__BEGIN_DECLS
|
|
int rtprio __P((int, pid_t, struct rtprio *));
|
|
__END_DECLS
|
|
#endif /* !_KERNEL */
|
|
#endif /* !_SYS_RTPRIO_H_ */
|