3868 lines
92 KiB
C
3868 lines
92 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
|
|
* Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
|
|
* Copyright (c) 2009 Apple, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ktrace.h"
|
|
#include "opt_kqueue.h"
|
|
|
|
#ifdef COMPAT_FREEBSD11
|
|
#define _WANT_FREEBSD11_KEVENT
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/capsicum.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/filio.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/event.h>
|
|
#include <sys/eventvar.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sigio.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/user.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/smp.h>
|
|
#ifdef KTRACE
|
|
#include <sys/ktrace.h>
|
|
#endif
|
|
#include <machine/atomic.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
|
|
|
|
/*
|
|
* This lock is used if multiple kq locks are required. This possibly
|
|
* should be made into a per proc lock.
|
|
*/
|
|
static struct mtx kq_global;
|
|
MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
|
|
#define KQ_GLOBAL_LOCK(lck, haslck) do { \
|
|
if (!haslck) \
|
|
mtx_lock(lck); \
|
|
haslck = 1; \
|
|
} while (0)
|
|
#define KQ_GLOBAL_UNLOCK(lck, haslck) do { \
|
|
if (haslck) \
|
|
mtx_unlock(lck); \
|
|
haslck = 0; \
|
|
} while (0)
|
|
|
|
TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
|
|
|
|
// TODO: only use it in SMP
|
|
extern struct cpu_group *cpu_top;
|
|
#define AVG_WEIGHT_FACTOR_OLD (4)
|
|
#define AVG_WEIGHT_FACTOR_NEW (1)
|
|
#define TIMESPEC_DIV(org, val, out) do { \
|
|
(out)->tv_nsec = ((org)->tv_sec * 1000000000L + (org)->tv_nsec) / (val); \
|
|
(out)->tv_sec = 0; \
|
|
while((out)->tv_nsec >= 1000000000L) { \
|
|
(out)->tv_nsec -= 1000000000L; \
|
|
(out)->tv_sec++; \
|
|
} \
|
|
} while(0)
|
|
|
|
/* no need to handle overflow as long as the existing org/cur doesn't overflow */
|
|
#define CALC_OVERTIME_AVG(org, cur, out) do { \
|
|
(out)->tv_sec = (org)->tv_sec * AVG_WEIGHT_FACTOR_OLD + (cur)->tv_nsec * AVG_WEIGHT_FACTOR_NEW; \
|
|
(out)->tv_nsec = (org)->tv_nsec * AVG_WEIGHT_FACTOR_OLD + (cur)->tv_nsec * AVG_WEIGHT_FACTOR_NEW; \
|
|
TIMESPEC_DIV((out), (AVG_WEIGHT_FACTOR_OLD + AVG_WEIGHT_FACTOR_NEW), (out)); \
|
|
} while(0)
|
|
|
|
#define KEVQ_NEXT_AVAIL_LOCKED(out, head, element, member) do { \
|
|
(out) = (element); \
|
|
while(1) { \
|
|
(out) = (out) == NULL ? LIST_FIRST((head)) : LIST_NEXT((out), member); \
|
|
if ((out) != NULL) { \
|
|
KEVQ_LOCK((out)); \
|
|
if (KEVQ_AVAIL((out))) { \
|
|
break; \
|
|
} \
|
|
KEVQ_UNLOCK((out)); \
|
|
} \
|
|
if ((out) == (element)) { \
|
|
(out) = NULL; \
|
|
break; \
|
|
} \
|
|
} \
|
|
} while(0)
|
|
|
|
static struct kevq * kevqlist_find(struct kevqlist *kevq_list, struct kqueue *kq);
|
|
static void kevq_thred_init(struct kevq_thred *kevq_th);
|
|
static void kevq_thred_destroy(struct kevq_thred *kevq_th);
|
|
static void kevq_wakeup(struct kevq* kevq);
|
|
static void kevq_init(struct kevq *kevq);
|
|
static void kevq_release(struct kevq* kevq, int locked);
|
|
static int kevq_acquire_kq(struct kqueue *kq, struct thread *td, struct kevq **kevqp);
|
|
static void kevq_destroy(struct kevq *kevq);
|
|
static int kevq_acquire(struct kevq *kevq);
|
|
void kevq_drain(struct kevq *kevq);
|
|
|
|
static void knote_xinit(struct knote *kn);
|
|
|
|
static int kevent_copyout(void *arg, struct kevent *kevp, int count);
|
|
static int kevent_copyin(void *arg, struct kevent *kevp, int count);
|
|
static int kqueue_register(struct kqueue *kq, struct kevq *kevq,
|
|
struct kevent *kev, struct thread *td, int mflag);
|
|
static int kqueue_acquire(struct file *fp, struct kqueue **kqp);
|
|
static int kqueue_acquire_both(struct file *fp, struct thread *td, struct kqueue **kqp, struct kevq **kevqp);
|
|
static void kqueue_release(struct kqueue *kq, int locked);
|
|
static void kqueue_destroy(struct kqueue *kq);
|
|
static void kqueue_drain(struct kqueue *kq, struct kevq *kevq, struct thread *td);
|
|
static int kqueue_expand(struct kqueue *kq, struct filterops *fops,
|
|
uintptr_t ident, int mflag);
|
|
static void kqueue_task(void *arg, int pending);
|
|
static int kqueue_scan(struct kevq *kq, int maxevents,
|
|
struct kevent_copyops *k_ops,
|
|
const struct timespec *timeout,
|
|
struct kevent *keva, struct thread *td);
|
|
static void kqueue_wakeup(struct kqueue *kq);
|
|
static struct filterops *kqueue_fo_find(int filt);
|
|
static void kqueue_fo_release(int filt);
|
|
struct g_kevent_args;
|
|
static int kern_kevent_generic(struct thread *td,
|
|
struct g_kevent_args *uap,
|
|
struct kevent_copyops *k_ops, const char *struct_name);
|
|
|
|
static fo_ioctl_t kqueue_ioctl;
|
|
static fo_poll_t kqueue_poll;
|
|
static fo_kqfilter_t kqueue_kqfilter;
|
|
static fo_stat_t kqueue_stat;
|
|
static fo_close_t kqueue_close;
|
|
static fo_fill_kinfo_t kqueue_fill_kinfo;
|
|
|
|
static struct fileops kqueueops = {
|
|
.fo_read = invfo_rdwr,
|
|
.fo_write = invfo_rdwr,
|
|
.fo_truncate = invfo_truncate,
|
|
.fo_ioctl = kqueue_ioctl,
|
|
.fo_poll = kqueue_poll,
|
|
.fo_kqfilter = kqueue_kqfilter,
|
|
.fo_stat = kqueue_stat,
|
|
.fo_close = kqueue_close,
|
|
.fo_chmod = invfo_chmod,
|
|
.fo_chown = invfo_chown,
|
|
.fo_sendfile = invfo_sendfile,
|
|
.fo_fill_kinfo = kqueue_fill_kinfo,
|
|
};
|
|
|
|
static bool knote_leave_flux_ul(struct knote *kn);
|
|
static bool knote_leave_flux(struct knote *kn);
|
|
static void knote_enter_flux(struct knote *kn);
|
|
static void knote_enter_flux_ul(struct knote *kn);
|
|
static void knote_flux_wakeup_ul(struct knote *kn);
|
|
static void knote_flux_wakeup(struct knote *kn);
|
|
static void knote_activate(struct knote *kn);
|
|
static int knote_attach(struct knote *kn, struct kqueue *kq);
|
|
static void knote_drop(struct knote *kn, struct thread *td);
|
|
static void knote_drop_detached(struct knote *kn, struct thread *td);
|
|
static void knote_enqueue(struct knote *kn, struct kevq *kevq);
|
|
static void knote_dequeue(struct knote *kn);
|
|
static void knote_init(void);
|
|
static struct knote *knote_alloc(int mflag);
|
|
static void knote_free(struct knote *kn);
|
|
static void knote_sched(struct knote *kn);
|
|
|
|
|
|
static void kqdom_init(struct kqdom *kqd);
|
|
static void kqdom_update_stats(struct kqdom *leaf, struct timespec *avg);
|
|
static void kqdom_insert(struct kqdom *kqd, struct kevq *kevq);
|
|
static void kqdom_remove(struct kqdom *kqd, struct kevq *kevq);
|
|
static void kqdom_destroy(struct kqdom *root);
|
|
static void kqdom_update_stats(struct kqdom *leaf, struct timespec *avg);
|
|
static void kqdom_build_internal(struct kqdom *kqd_cur, struct cpu_group *cg_cur, int *kqd_id);
|
|
static struct kqdom * kqdom_build(void);
|
|
static struct kqdom * kqdom_find(struct kqdom *root, int cpuid);
|
|
|
|
static void filt_kqdetach(struct knote *kn);
|
|
static int filt_kqueue(struct knote *kn, long hint);
|
|
static int filt_procattach(struct knote *kn);
|
|
static void filt_procdetach(struct knote *kn);
|
|
static int filt_proc(struct knote *kn, long hint);
|
|
static int filt_fileattach(struct knote *kn);
|
|
static void filt_timerexpire(void *knx);
|
|
static int filt_timerattach(struct knote *kn);
|
|
static void filt_timerdetach(struct knote *kn);
|
|
static void filt_timerstart(struct knote *kn, sbintime_t to);
|
|
static void filt_timertouch(struct knote *kn, struct kevent *kev,
|
|
u_long type);
|
|
static int filt_timervalidate(struct knote *kn, sbintime_t *to);
|
|
static int filt_timer(struct knote *kn, long hint);
|
|
static int filt_userattach(struct knote *kn);
|
|
static void filt_userdetach(struct knote *kn);
|
|
static int filt_user(struct knote *kn, long hint);
|
|
static void filt_usertouch(struct knote *kn, struct kevent *kev,
|
|
u_long type);
|
|
|
|
static struct filterops file_filtops = {
|
|
.f_isfd = 1,
|
|
.f_attach = filt_fileattach,
|
|
};
|
|
static struct filterops kqread_filtops = {
|
|
.f_isfd = 1,
|
|
.f_detach = filt_kqdetach,
|
|
.f_event = filt_kqueue,
|
|
};
|
|
/* XXX - move to kern_proc.c? */
|
|
static struct filterops proc_filtops = {
|
|
.f_isfd = 0,
|
|
.f_attach = filt_procattach,
|
|
.f_detach = filt_procdetach,
|
|
.f_event = filt_proc,
|
|
};
|
|
static struct filterops timer_filtops = {
|
|
.f_isfd = 0,
|
|
.f_attach = filt_timerattach,
|
|
.f_detach = filt_timerdetach,
|
|
.f_event = filt_timer,
|
|
.f_touch = filt_timertouch,
|
|
};
|
|
static struct filterops user_filtops = {
|
|
.f_attach = filt_userattach,
|
|
.f_detach = filt_userdetach,
|
|
.f_event = filt_user,
|
|
.f_touch = filt_usertouch,
|
|
};
|
|
|
|
static uma_zone_t knote_zone;
|
|
static unsigned int kq_ncallouts = 0;
|
|
static unsigned int kq_calloutmax = 4 * 1024;
|
|
SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
|
|
&kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
|
|
|
|
//#define ENABLE_SELECT
|
|
|
|
#define KTR_KQ (KTR_SPARE5)
|
|
|
|
#define KQ_LOCK(kq) do { \
|
|
mtx_lock(&(kq)->kq_lock); \
|
|
} while (0)
|
|
#define KN_FLUX_LOCK(kn) do { \
|
|
mtx_lock(&(kn)->kn_fluxlock); \
|
|
} while (0)
|
|
#define KEVQ_TH_LOCK(kevqth) do { \
|
|
mtx_lock(&(kevqth)->lock); \
|
|
} while (0)
|
|
#define KQD_LOCK(kqd) do { \
|
|
mtx_lock(&(kqd)->kqd_lock); \
|
|
} while (0)
|
|
#define KQD_LOCK_BOTH(kqd1, kqd2) do { \
|
|
if (kqd1->id < kqd2->id) { \
|
|
KQD_LOCK(kqd1); \
|
|
KQD_LOCK(kqd2); \
|
|
} else { \
|
|
KQD_LOCK(kqd2); \
|
|
KQD_LOCK(kqd1); \
|
|
} \
|
|
} while(0)
|
|
#define KEVQ_LOCK(kevq) do { \
|
|
mtx_lock(&(kevq)->lock); \
|
|
} while (0)
|
|
#define KQ_UNLOCK(kq) do { \
|
|
mtx_unlock(&(kq)->kq_lock); \
|
|
} while (0)
|
|
#define KN_FLUX_UNLOCK(kn) do { \
|
|
mtx_unlock(&(kn)->kn_fluxlock); \
|
|
} while (0)
|
|
#define KN_LEAVE_FLUX_WAKEUP(kn) do { \
|
|
KN_FLUX_NOTOWNED((kn)); \
|
|
KN_FLUX_LOCK((kn)); \
|
|
knote_leave_flux((kn)); \
|
|
knote_flux_wakeup((kn)); \
|
|
KN_FLUX_UNLOCK((kn)); \
|
|
} while(0)
|
|
#define KEVQ_TH_UNLOCK(kevqth) do { \
|
|
mtx_unlock(&(kevqth)->lock); \
|
|
} while (0)
|
|
#define KQD_UNLOCK(kqd) do { \
|
|
mtx_unlock(&(kqd)->kqd_lock); \
|
|
} while (0)
|
|
#define KQD_UNLOCK_BOTH(kqd1, kqd2) do { \
|
|
KQD_UNLOCK(kqd1); \
|
|
KQD_UNLOCK(kqd2); \
|
|
} while (0)
|
|
#define KEVQ_UNLOCK(kevq) do { \
|
|
mtx_unlock(&(kevq)->lock); \
|
|
} while (0)
|
|
#define KQ_OWNED(kq) do { \
|
|
mtx_assert(&(kq)->kq_lock, MA_OWNED); \
|
|
} while (0)
|
|
#define KQ_NOTOWNED(kq) do { \
|
|
mtx_assert(&(kq)->kq_lock, MA_NOTOWNED); \
|
|
} while (0)
|
|
#define KN_FLUX_OWNED(kn) do { \
|
|
mtx_assert(&(kn)->kn_fluxlock, MA_OWNED); \
|
|
} while (0)
|
|
#define KN_FLUX_NOTOWNED(kn) do { \
|
|
mtx_assert(&(kn)->kn_fluxlock, MA_NOTOWNED); \
|
|
} while (0)
|
|
#define KEVQ_OWNED(kevq) do { \
|
|
mtx_assert(&(kevq)->lock, MA_OWNED); \
|
|
} while (0)
|
|
#define KQD_OWNED(kqd) do { \
|
|
mtx_assert(&(kqd)->kqd_lock, MA_OWNED); \
|
|
} while (0)
|
|
#define KEVQ_NOTOWNED(kevq) do { \
|
|
mtx_assert(&(kevq)->lock, MA_NOTOWNED); \
|
|
} while (0)
|
|
#define KEVQ_AVAIL(kevq) ((((kevq)->kevq_state & KEVQ_CLOSING) == 0) && (((kevq)->kevq_state & KEVQ_RDY) != 0))
|
|
|
|
static struct knlist *
|
|
kn_list_lock(struct knote *kn)
|
|
{
|
|
struct knlist *knl;
|
|
|
|
knl = kn->kn_knlist;
|
|
if (knl != NULL)
|
|
knl->kl_lock(knl->kl_lockarg);
|
|
return (knl);
|
|
}
|
|
|
|
static void
|
|
kn_list_unlock(struct knlist *knl)
|
|
{
|
|
bool do_free;
|
|
|
|
if (knl == NULL)
|
|
return;
|
|
do_free = knl->kl_autodestroy && knlist_empty(knl);
|
|
knl->kl_unlock(knl->kl_lockarg);
|
|
if (do_free) {
|
|
knlist_destroy(knl);
|
|
free(knl, M_KQUEUE);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
kn_in_flux(struct knote *kn)
|
|
{
|
|
|
|
return (kn->kn_influx > 0);
|
|
}
|
|
|
|
static void
|
|
knote_enter_flux_ul(struct knote *kn)
|
|
{
|
|
KN_FLUX_NOTOWNED(kn);
|
|
KN_FLUX_LOCK(kn);
|
|
knote_enter_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
}
|
|
|
|
static void
|
|
knote_enter_flux(struct knote *kn)
|
|
{
|
|
CTR2(KTR_KQ, "knote_enter_flux: %p flux: %d", kn, kn->kn_influx);
|
|
KN_FLUX_OWNED(kn);
|
|
MPASS(kn->kn_influx < INT_MAX);
|
|
kn->kn_influx++;
|
|
}
|
|
|
|
/* TODO: change *_ul functions to macros? */
|
|
static bool
|
|
knote_leave_flux_ul(struct knote *kn)
|
|
{
|
|
bool ret;
|
|
KN_FLUX_NOTOWNED(kn);
|
|
KN_FLUX_LOCK(kn);
|
|
ret = knote_leave_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
return ret;
|
|
}
|
|
|
|
static bool
|
|
knote_leave_flux(struct knote *kn)
|
|
{
|
|
CTR2(KTR_KQ, "knote_leave_flux: %p flux: %d", kn, kn->kn_influx);
|
|
KN_FLUX_OWNED(kn);
|
|
MPASS(kn->kn_influx > 0);
|
|
kn->kn_influx--;
|
|
|
|
return (kn->kn_influx == 0);
|
|
}
|
|
|
|
#define KNL_ASSERT_LOCK(knl, islocked) do { \
|
|
if (islocked) \
|
|
KNL_ASSERT_LOCKED(knl); \
|
|
else \
|
|
KNL_ASSERT_UNLOCKED(knl); \
|
|
} while (0)
|
|
#ifdef INVARIANTS
|
|
#define KNL_ASSERT_LOCKED(knl) do { \
|
|
knl->kl_assert_locked((knl)->kl_lockarg); \
|
|
} while (0)
|
|
#define KNL_ASSERT_UNLOCKED(knl) do { \
|
|
knl->kl_assert_unlocked((knl)->kl_lockarg); \
|
|
} while (0)
|
|
#else /* !INVARIANTS */
|
|
#define KNL_ASSERT_LOCKED(knl) do {} while(0)
|
|
#define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
|
|
#endif /* INVARIANTS */
|
|
|
|
#ifndef KN_HASHSIZE
|
|
#define KN_HASHSIZE 64 /* XXX should be tunable */
|
|
#define KEVQ_HASHSIZE 128
|
|
#endif
|
|
|
|
#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
|
|
#define KEVQ_HASH(val, mask) KN_HASH((val), (mask))
|
|
|
|
static int
|
|
filt_nullattach(struct knote *kn)
|
|
{
|
|
|
|
return (ENXIO);
|
|
};
|
|
|
|
struct filterops null_filtops = {
|
|
.f_isfd = 0,
|
|
.f_attach = filt_nullattach,
|
|
};
|
|
|
|
/* XXX - make SYSINIT to add these, and move into respective modules. */
|
|
extern struct filterops sig_filtops;
|
|
extern struct filterops fs_filtops;
|
|
|
|
/*
|
|
* Table for for all system-defined filters.
|
|
*/
|
|
static struct mtx filterops_lock;
|
|
MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
|
|
MTX_DEF);
|
|
static struct {
|
|
struct filterops *for_fop;
|
|
int for_nolock;
|
|
int for_refcnt;
|
|
} sysfilt_ops[EVFILT_SYSCOUNT] = {
|
|
{ &file_filtops, 1 }, /* EVFILT_READ */
|
|
{ &file_filtops, 1 }, /* EVFILT_WRITE */
|
|
{ &null_filtops }, /* EVFILT_AIO */
|
|
{ &file_filtops, 1 }, /* EVFILT_VNODE */
|
|
{ &proc_filtops, 1 }, /* EVFILT_PROC */
|
|
{ &sig_filtops, 1 }, /* EVFILT_SIGNAL */
|
|
{ &timer_filtops, 1 }, /* EVFILT_TIMER */
|
|
{ &file_filtops, 1 }, /* EVFILT_PROCDESC */
|
|
{ &fs_filtops, 1 }, /* EVFILT_FS */
|
|
{ &null_filtops }, /* EVFILT_LIO */
|
|
{ &user_filtops, 1 }, /* EVFILT_USER */
|
|
{ &null_filtops }, /* EVFILT_SENDFILE */
|
|
{ &file_filtops, 1 }, /* EVFILT_EMPTY */
|
|
};
|
|
|
|
/*
|
|
* Simple redirection for all cdevsw style objects to call their fo_kqfilter
|
|
* method.
|
|
*/
|
|
static int
|
|
filt_fileattach(struct knote *kn)
|
|
{
|
|
|
|
return (fo_kqfilter(kn->kn_fp, kn));
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
kqueue_kqfilter(struct file *fp, struct knote *kn)
|
|
{
|
|
CTR1(KTR_KQ, "kqueue_kqfilter called for kn %p", kn);
|
|
|
|
struct kqueue *kq = kn->kn_fp->f_data;
|
|
|
|
if (kn->kn_filter != EVFILT_READ)
|
|
return (EINVAL);
|
|
|
|
kn->kn_status |= KN_KQUEUE;
|
|
kn->kn_fop = &kqread_filtops;
|
|
knlist_add(&kq->kq_sel.si_note, kn, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_kqdetach(struct knote *kn)
|
|
{
|
|
struct kqueue *kq = kn->kn_fp->f_data;
|
|
|
|
knlist_remove(&kq->kq_sel.si_note, kn, 0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_kqueue(struct knote *kn, long hint)
|
|
{
|
|
struct kqueue *kq = kn->kn_fp->f_data;
|
|
struct kevq *kevq;
|
|
|
|
CTR1(KTR_KQ, "filt_kqueue called for kn %p", kn);
|
|
|
|
if ( (kq->kq_state & KQ_FLAG_MULTI) == KQ_FLAG_MULTI) {
|
|
return 0;
|
|
}
|
|
|
|
kevq = kq->kq_kevq;
|
|
|
|
if (kevq == NULL) {
|
|
return 0;
|
|
} else {
|
|
kn->kn_data = kevq->kn_count;
|
|
return (kn->kn_data > 0);
|
|
}
|
|
}
|
|
|
|
/* XXX - move to kern_proc.c? */
|
|
static int
|
|
filt_procattach(struct knote *kn)
|
|
{
|
|
struct proc *p;
|
|
int error;
|
|
bool exiting, immediate;
|
|
|
|
exiting = immediate = false;
|
|
if (kn->kn_sfflags & NOTE_EXIT)
|
|
p = pfind_any(kn->kn_id);
|
|
else
|
|
p = pfind(kn->kn_id);
|
|
if (p == NULL)
|
|
return (ESRCH);
|
|
if (p->p_flag & P_WEXIT)
|
|
exiting = true;
|
|
|
|
if ((error = p_cansee(curthread, p))) {
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
kn->kn_ptr.p_proc = p;
|
|
kn->kn_flags |= EV_CLEAR; /* automatically set */
|
|
|
|
/*
|
|
* Internal flag indicating registration done by kernel for the
|
|
* purposes of getting a NOTE_CHILD notification.
|
|
*/
|
|
if (kn->kn_flags & EV_FLAG2) {
|
|
kn->kn_flags &= ~EV_FLAG2;
|
|
kn->kn_data = kn->kn_sdata; /* ppid */
|
|
kn->kn_fflags = NOTE_CHILD;
|
|
kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
|
|
immediate = true; /* Force immediate activation of child note. */
|
|
}
|
|
/*
|
|
* Internal flag indicating registration done by kernel (for other than
|
|
* NOTE_CHILD).
|
|
*/
|
|
if (kn->kn_flags & EV_FLAG1) {
|
|
kn->kn_flags &= ~EV_FLAG1;
|
|
}
|
|
|
|
knlist_add(p->p_klist, kn, 1);
|
|
|
|
/*
|
|
* Immediately activate any child notes or, in the case of a zombie
|
|
* target process, exit notes. The latter is necessary to handle the
|
|
* case where the target process, e.g. a child, dies before the kevent
|
|
* is registered.
|
|
*/
|
|
if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
|
|
knote_activate(kn);
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The knote may be attached to a different process, which may exit,
|
|
* leaving nothing for the knote to be attached to. So when the process
|
|
* exits, the knote is marked as DETACHED and also flagged as ONESHOT so
|
|
* it will be deleted when read out. However, as part of the knote deletion,
|
|
* this routine is called, so a check is needed to avoid actually performing
|
|
* a detach, because the original process does not exist any more.
|
|
*/
|
|
/* XXX - move to kern_proc.c? */
|
|
static void
|
|
filt_procdetach(struct knote *kn)
|
|
{
|
|
|
|
knlist_remove(kn->kn_knlist, kn, 0);
|
|
kn->kn_ptr.p_proc = NULL;
|
|
}
|
|
|
|
/* XXX - move to kern_proc.c? */
|
|
static int
|
|
filt_proc(struct knote *kn, long hint)
|
|
{
|
|
struct proc *p;
|
|
u_int event;
|
|
|
|
CTR1(KTR_KQ, "KQUEUE: filt_proc called for kn %p", kn);
|
|
|
|
p = kn->kn_ptr.p_proc;
|
|
if (p == NULL) /* already activated, from attach filter */
|
|
return (0);
|
|
|
|
/* Mask off extra data. */
|
|
event = (u_int)hint & NOTE_PCTRLMASK;
|
|
|
|
/* If the user is interested in this event, record it. */
|
|
if (kn->kn_sfflags & event)
|
|
kn->kn_fflags |= event;
|
|
|
|
/* Process is gone, so flag the event as finished. */
|
|
if (event == NOTE_EXIT) {
|
|
kn->kn_flags |= EV_EOF | EV_ONESHOT;
|
|
kn->kn_ptr.p_proc = NULL;
|
|
if (kn->kn_fflags & NOTE_EXIT)
|
|
kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
|
|
if (kn->kn_fflags == 0)
|
|
kn->kn_flags |= EV_DROP;
|
|
return (1);
|
|
}
|
|
|
|
return (kn->kn_fflags != 0);
|
|
}
|
|
|
|
/*
|
|
* Called when the process forked. It mostly does the same as the
|
|
* knote(), activating all knotes registered to be activated when the
|
|
* process forked. Additionally, for each knote attached to the
|
|
* parent, check whether user wants to track the new process. If so
|
|
* attach a new knote to it, and immediately report an event with the
|
|
* child's pid.
|
|
*/
|
|
void
|
|
knote_fork(struct knlist *list, struct thread *td, int pid)
|
|
{
|
|
struct kqueue *kq;
|
|
struct knote *kn;
|
|
struct kevq *kevq;
|
|
struct kevent kev;
|
|
int error;
|
|
int event;
|
|
|
|
MPASS(list != NULL);
|
|
KNL_ASSERT_LOCKED(list);
|
|
if (SLIST_EMPTY(&list->kl_list))
|
|
return;
|
|
|
|
memset(&kev, 0, sizeof(kev));
|
|
SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
|
|
kq = kn->kn_kq;
|
|
kevq = kn->kn_org_kevq;
|
|
|
|
KQ_LOCK(kq);
|
|
KN_FLUX_LOCK(kn);
|
|
if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
|
|
KN_FLUX_UNLOCK(kn);
|
|
KQ_UNLOCK(kq);
|
|
continue;
|
|
}
|
|
|
|
knote_enter_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
|
|
/*
|
|
* The same as knote(), activate the event.
|
|
*/
|
|
if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
|
|
event = kn->kn_fop->f_event(kn, NOTE_FORK);
|
|
KQ_UNLOCK(kq);
|
|
|
|
if (event)
|
|
knote_activate(kn);
|
|
|
|
KN_LEAVE_FLUX_WAKEUP(kn);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The NOTE_TRACK case. In addition to the activation
|
|
* of the event, we need to register new events to
|
|
* track the child. Drop the locks in preparation for
|
|
* the call to kqueue_register().
|
|
*/
|
|
KQ_UNLOCK(kq);
|
|
list->kl_unlock(list->kl_lockarg);
|
|
|
|
/*
|
|
* Activate existing knote and register tracking knotes with
|
|
* new process.
|
|
*
|
|
* First register a knote to get just the child notice. This
|
|
* must be a separate note from a potential NOTE_EXIT
|
|
* notification since both NOTE_CHILD and NOTE_EXIT are defined
|
|
* to use the data field (in conflicting ways).
|
|
*/
|
|
kev.ident = pid;
|
|
kev.filter = kn->kn_filter;
|
|
kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
|
|
EV_FLAG2;
|
|
kev.fflags = kn->kn_sfflags;
|
|
kev.data = kn->kn_id; /* parent */
|
|
kev.udata = kn->kn_kevent.udata;/* preserve udata */
|
|
error = kqueue_register(kq, kevq, &kev, NULL, M_NOWAIT);
|
|
if (error)
|
|
kn->kn_fflags |= NOTE_TRACKERR;
|
|
|
|
/*
|
|
* Then register another knote to track other potential events
|
|
* from the new process.
|
|
*/
|
|
kev.ident = pid;
|
|
kev.filter = kn->kn_filter;
|
|
kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
|
|
kev.fflags = kn->kn_sfflags;
|
|
kev.data = kn->kn_id; /* parent */
|
|
kev.udata = kn->kn_kevent.udata;/* preserve udata */
|
|
error = kqueue_register(kq, kevq, &kev, NULL, M_NOWAIT);
|
|
if (error)
|
|
kn->kn_fflags |= NOTE_TRACKERR;
|
|
if (kn->kn_fop->f_event(kn, NOTE_FORK))
|
|
knote_activate(kn);
|
|
list->kl_lock(list->kl_lockarg);
|
|
|
|
KN_LEAVE_FLUX_WAKEUP(kn);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
|
|
* interval timer support code.
|
|
*/
|
|
|
|
#define NOTE_TIMER_PRECMASK \
|
|
(NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
|
|
|
|
static sbintime_t
|
|
timer2sbintime(intptr_t data, int flags)
|
|
{
|
|
int64_t secs;
|
|
|
|
/*
|
|
* Macros for converting to the fractional second portion of an
|
|
* sbintime_t using 64bit multiplication to improve precision.
|
|
*/
|
|
#define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
|
|
#define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
|
|
#define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
|
|
switch (flags & NOTE_TIMER_PRECMASK) {
|
|
case NOTE_SECONDS:
|
|
#ifdef __LP64__
|
|
if (data > (SBT_MAX / SBT_1S))
|
|
return (SBT_MAX);
|
|
#endif
|
|
return ((sbintime_t)data << 32);
|
|
case NOTE_MSECONDS: /* FALLTHROUGH */
|
|
case 0:
|
|
if (data >= 1000) {
|
|
secs = data / 1000;
|
|
#ifdef __LP64__
|
|
if (secs > (SBT_MAX / SBT_1S))
|
|
return (SBT_MAX);
|
|
#endif
|
|
return (secs << 32 | MS_TO_SBT(data % 1000));
|
|
}
|
|
return (MS_TO_SBT(data));
|
|
case NOTE_USECONDS:
|
|
if (data >= 1000000) {
|
|
secs = data / 1000000;
|
|
#ifdef __LP64__
|
|
if (secs > (SBT_MAX / SBT_1S))
|
|
return (SBT_MAX);
|
|
#endif
|
|
return (secs << 32 | US_TO_SBT(data % 1000000));
|
|
}
|
|
return (US_TO_SBT(data));
|
|
case NOTE_NSECONDS:
|
|
if (data >= 1000000000) {
|
|
secs = data / 1000000000;
|
|
#ifdef __LP64__
|
|
if (secs > (SBT_MAX / SBT_1S))
|
|
return (SBT_MAX);
|
|
#endif
|
|
return (secs << 32 | US_TO_SBT(data % 1000000000));
|
|
}
|
|
return (NS_TO_SBT(data));
|
|
default:
|
|
break;
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
struct kq_timer_cb_data {
|
|
struct callout c;
|
|
sbintime_t next; /* next timer event fires at */
|
|
sbintime_t to; /* precalculated timer period, 0 for abs */
|
|
};
|
|
|
|
static void
|
|
filt_timerexpire(void *knx)
|
|
{
|
|
struct knote *kn;
|
|
struct kq_timer_cb_data *kc;
|
|
|
|
kn = knx;
|
|
kn->kn_data++;
|
|
|
|
knote_enter_flux_ul(kn);
|
|
knote_activate(kn);
|
|
KN_LEAVE_FLUX_WAKEUP(kn);
|
|
|
|
if ((kn->kn_flags & EV_ONESHOT) != 0)
|
|
return;
|
|
kc = kn->kn_ptr.p_v;
|
|
if (kc->to == 0)
|
|
return;
|
|
kc->next += kc->to;
|
|
callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
|
|
PCPU_GET(cpuid), C_ABSOLUTE);
|
|
}
|
|
|
|
/*
|
|
* data contains amount of time to sleep
|
|
*/
|
|
static int
|
|
filt_timervalidate(struct knote *kn, sbintime_t *to)
|
|
{
|
|
struct bintime bt;
|
|
sbintime_t sbt;
|
|
|
|
if (kn->kn_sdata < 0)
|
|
return (EINVAL);
|
|
if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
|
|
kn->kn_sdata = 1;
|
|
/*
|
|
* The only fflags values supported are the timer unit
|
|
* (precision) and the absolute time indicator.
|
|
*/
|
|
if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
|
|
return (EINVAL);
|
|
|
|
*to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
|
|
if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
|
|
getboottimebin(&bt);
|
|
sbt = bttosbt(bt);
|
|
*to -= sbt;
|
|
}
|
|
if (*to < 0)
|
|
return (EINVAL);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
filt_timerattach(struct knote *kn)
|
|
{
|
|
struct kq_timer_cb_data *kc;
|
|
sbintime_t to;
|
|
unsigned int ncallouts;
|
|
int error;
|
|
|
|
error = filt_timervalidate(kn, &to);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
do {
|
|
ncallouts = kq_ncallouts;
|
|
if (ncallouts >= kq_calloutmax)
|
|
return (ENOMEM);
|
|
} while (!atomic_cmpset_int(&kq_ncallouts, ncallouts, ncallouts + 1));
|
|
|
|
if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
|
|
kn->kn_flags |= EV_CLEAR; /* automatically set */
|
|
kn->kn_status &= ~KN_DETACHED; /* knlist_add clears it */
|
|
kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
|
|
callout_init(&kc->c, 1);
|
|
filt_timerstart(kn, to);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_timerstart(struct knote *kn, sbintime_t to)
|
|
{
|
|
struct kq_timer_cb_data *kc;
|
|
|
|
kc = kn->kn_ptr.p_v;
|
|
if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
|
|
kc->next = to;
|
|
kc->to = 0;
|
|
} else {
|
|
kc->next = to + sbinuptime();
|
|
kc->to = to;
|
|
}
|
|
callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
|
|
PCPU_GET(cpuid), C_ABSOLUTE);
|
|
}
|
|
|
|
static void
|
|
filt_timerdetach(struct knote *kn)
|
|
{
|
|
struct kq_timer_cb_data *kc;
|
|
unsigned int old __unused;
|
|
|
|
kc = kn->kn_ptr.p_v;
|
|
callout_drain(&kc->c);
|
|
free(kc, M_KQUEUE);
|
|
old = atomic_fetchadd_int(&kq_ncallouts, -1);
|
|
KASSERT(old > 0, ("Number of callouts cannot become negative"));
|
|
kn->kn_status |= KN_DETACHED; /* knlist_remove sets it */
|
|
}
|
|
|
|
static void
|
|
filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
|
|
{
|
|
struct kq_timer_cb_data *kc;
|
|
struct kqueue *kq;
|
|
struct kevq *kevq;
|
|
sbintime_t to;
|
|
int error;
|
|
|
|
switch (type) {
|
|
case EVENT_REGISTER:
|
|
/* Handle re-added timers that update data/fflags */
|
|
if (kev->flags & EV_ADD) {
|
|
kc = kn->kn_ptr.p_v;
|
|
|
|
/* Drain any existing callout. */
|
|
callout_drain(&kc->c);
|
|
|
|
/* Throw away any existing undelivered record
|
|
* of the timer expiration. This is done under
|
|
* the presumption that if a process is
|
|
* re-adding this timer with new parameters,
|
|
* it is no longer interested in what may have
|
|
* happened under the old parameters. If it is
|
|
* interested, it can wait for the expiration,
|
|
* delete the old timer definition, and then
|
|
* add the new one.
|
|
*
|
|
* This has to be done while the kq is locked:
|
|
* - if enqueued, dequeue
|
|
* - make it no longer active
|
|
* - clear the count of expiration events
|
|
*/
|
|
kq = kn->kn_kq;
|
|
kevq = kn->kn_kevq;
|
|
KQ_LOCK(kq);
|
|
if (kn->kn_status & KN_QUEUED) {
|
|
KEVQ_LOCK(kevq);
|
|
knote_dequeue(kn);
|
|
KEVQ_UNLOCK(kevq);
|
|
}
|
|
|
|
kn->kn_status &= ~KN_ACTIVE;
|
|
kn->kn_data = 0;
|
|
KQ_UNLOCK(kq);
|
|
|
|
/* Reschedule timer based on new data/fflags */
|
|
kn->kn_sfflags = kev->fflags;
|
|
kn->kn_sdata = kev->data;
|
|
error = filt_timervalidate(kn, &to);
|
|
if (error != 0) {
|
|
kn->kn_flags |= EV_ERROR;
|
|
kn->kn_data = error;
|
|
} else
|
|
filt_timerstart(kn, to);
|
|
}
|
|
break;
|
|
|
|
case EVENT_PROCESS:
|
|
*kev = kn->kn_kevent;
|
|
if (kn->kn_flags & EV_CLEAR) {
|
|
kn->kn_data = 0;
|
|
kn->kn_fflags = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
panic("filt_timertouch() - invalid type (%ld)", type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
filt_timer(struct knote *kn, long hint)
|
|
{
|
|
CTR1(KTR_KQ, "filt_timer called for kn %p", kn);
|
|
return (kn->kn_data != 0);
|
|
}
|
|
|
|
static int
|
|
filt_userattach(struct knote *kn)
|
|
{
|
|
|
|
/*
|
|
* EVFILT_USER knotes are not attached to anything in the kernel.
|
|
*/
|
|
kn->kn_hook = NULL;
|
|
if (kn->kn_fflags & NOTE_TRIGGER)
|
|
kn->kn_hookid = 1;
|
|
else
|
|
kn->kn_hookid = 0;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_userdetach(__unused struct knote *kn)
|
|
{
|
|
|
|
/*
|
|
* EVFILT_USER knotes are not attached to anything in the kernel.
|
|
*/
|
|
}
|
|
|
|
static int
|
|
filt_user(struct knote *kn, __unused long hint)
|
|
{
|
|
CTR1(KTR_KQ, "KQUEUE: filt_user called for kn %p", kn);
|
|
return (kn->kn_hookid);
|
|
}
|
|
|
|
static void
|
|
filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
|
|
{
|
|
u_int ffctrl;
|
|
|
|
switch (type) {
|
|
case EVENT_REGISTER:
|
|
if (kev->fflags & NOTE_TRIGGER)
|
|
kn->kn_hookid = 1;
|
|
|
|
ffctrl = kev->fflags & NOTE_FFCTRLMASK;
|
|
kev->fflags &= NOTE_FFLAGSMASK;
|
|
switch (ffctrl) {
|
|
case NOTE_FFNOP:
|
|
break;
|
|
|
|
case NOTE_FFAND:
|
|
kn->kn_sfflags &= kev->fflags;
|
|
break;
|
|
|
|
case NOTE_FFOR:
|
|
kn->kn_sfflags |= kev->fflags;
|
|
break;
|
|
|
|
case NOTE_FFCOPY:
|
|
kn->kn_sfflags = kev->fflags;
|
|
break;
|
|
|
|
default:
|
|
/* XXX Return error? */
|
|
break;
|
|
}
|
|
kn->kn_sdata = kev->data;
|
|
if (kev->flags & EV_CLEAR) {
|
|
kn->kn_hookid = 0;
|
|
kn->kn_data = 0;
|
|
kn->kn_fflags = 0;
|
|
}
|
|
break;
|
|
|
|
case EVENT_PROCESS:
|
|
*kev = kn->kn_kevent;
|
|
kev->fflags = kn->kn_sfflags;
|
|
kev->data = kn->kn_sdata;
|
|
if (kn->kn_flags & EV_CLEAR) {
|
|
kn->kn_hookid = 0;
|
|
kn->kn_data = 0;
|
|
kn->kn_fflags = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
panic("filt_usertouch() - invalid type (%ld)", type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int
|
|
sys_kqueue(struct thread *td, struct kqueue_args *uap)
|
|
{
|
|
|
|
return (kern_kqueue(td, 0, NULL));
|
|
}
|
|
|
|
static void
|
|
kqueue_init(struct kqueue *kq)
|
|
{
|
|
mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
|
|
knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
|
|
TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
|
|
}
|
|
|
|
int
|
|
kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
|
|
{
|
|
struct filedesc *fdp;
|
|
struct kqueue *kq;
|
|
struct file *fp;
|
|
struct ucred *cred;
|
|
int fd, error;
|
|
|
|
fdp = td->td_proc->p_fd;
|
|
cred = td->td_ucred;
|
|
if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
|
|
return (ENOMEM);
|
|
|
|
error = falloc_caps(td, &fp, &fd, flags, fcaps);
|
|
if (error != 0) {
|
|
chgkqcnt(cred->cr_ruidinfo, -1, 0);
|
|
return (error);
|
|
}
|
|
|
|
/* An extra reference on `fp' has been held for us by falloc(). */
|
|
kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
|
|
kqueue_init(kq);
|
|
kq->kq_fdp = fdp;
|
|
kq->kq_cred = crhold(cred);
|
|
|
|
FILEDESC_XLOCK(fdp);
|
|
TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
|
|
FILEDESC_XUNLOCK(fdp);
|
|
|
|
finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
|
|
fdrop(fp, td);
|
|
|
|
td->td_retval[0] = fd;
|
|
return (0);
|
|
}
|
|
|
|
struct g_kevent_args {
|
|
int fd;
|
|
void *changelist;
|
|
int nchanges;
|
|
void *eventlist;
|
|
int nevents;
|
|
const struct timespec *timeout;
|
|
};
|
|
|
|
int
|
|
sys_kevent(struct thread *td, struct kevent_args *uap)
|
|
{
|
|
struct kevent_copyops k_ops = {
|
|
.arg = uap,
|
|
.k_copyout = kevent_copyout,
|
|
.k_copyin = kevent_copyin,
|
|
.kevent_size = sizeof(struct kevent),
|
|
};
|
|
struct g_kevent_args gk_args = {
|
|
.fd = uap->fd,
|
|
.changelist = uap->changelist,
|
|
.nchanges = uap->nchanges,
|
|
.eventlist = uap->eventlist,
|
|
.nevents = uap->nevents,
|
|
.timeout = uap->timeout,
|
|
};
|
|
|
|
return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
|
|
}
|
|
|
|
static int
|
|
kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
|
|
struct kevent_copyops *k_ops, const char *struct_name)
|
|
{
|
|
struct timespec ts, *tsp;
|
|
#ifdef KTRACE
|
|
struct kevent *eventlist = uap->eventlist;
|
|
#endif
|
|
int error;
|
|
|
|
if (uap->timeout != NULL) {
|
|
error = copyin(uap->timeout, &ts, sizeof(ts));
|
|
if (error)
|
|
return (error);
|
|
tsp = &ts;
|
|
} else
|
|
tsp = NULL;
|
|
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(td, KTR_STRUCT_ARRAY))
|
|
ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
|
|
uap->nchanges, k_ops->kevent_size);
|
|
#endif
|
|
|
|
error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
|
|
k_ops, tsp);
|
|
|
|
#ifdef KTRACE
|
|
if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
|
|
ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
|
|
td->td_retval[0], k_ops->kevent_size);
|
|
#endif
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Copy 'count' items into the destination list pointed to by uap->eventlist.
|
|
*/
|
|
static int
|
|
kevent_copyout(void *arg, struct kevent *kevp, int count)
|
|
{
|
|
struct kevent_args *uap;
|
|
int error;
|
|
|
|
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
|
|
uap = (struct kevent_args *)arg;
|
|
|
|
error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
|
|
if (error == 0)
|
|
uap->eventlist += count;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Copy 'count' items from the list pointed to by uap->changelist.
|
|
*/
|
|
static int
|
|
kevent_copyin(void *arg, struct kevent *kevp, int count)
|
|
{
|
|
struct kevent_args *uap;
|
|
int error;
|
|
|
|
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
|
|
uap = (struct kevent_args *)arg;
|
|
|
|
error = copyin(uap->changelist, kevp, count * sizeof *kevp);
|
|
if (error == 0)
|
|
uap->changelist += count;
|
|
return (error);
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD11
|
|
static int
|
|
kevent11_copyout(void *arg, struct kevent *kevp, int count)
|
|
{
|
|
struct freebsd11_kevent_args *uap;
|
|
struct kevent_freebsd11 kev11;
|
|
int error, i;
|
|
|
|
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
|
|
uap = (struct freebsd11_kevent_args *)arg;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
kev11.ident = kevp->ident;
|
|
kev11.filter = kevp->filter;
|
|
kev11.flags = kevp->flags;
|
|
kev11.fflags = kevp->fflags;
|
|
kev11.data = kevp->data;
|
|
kev11.udata = kevp->udata;
|
|
error = copyout(&kev11, uap->eventlist, sizeof(kev11));
|
|
if (error != 0)
|
|
break;
|
|
uap->eventlist++;
|
|
kevp++;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Copy 'count' items from the list pointed to by uap->changelist.
|
|
*/
|
|
static int
|
|
kevent11_copyin(void *arg, struct kevent *kevp, int count)
|
|
{
|
|
struct freebsd11_kevent_args *uap;
|
|
struct kevent_freebsd11 kev11;
|
|
int error, i;
|
|
|
|
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
|
|
uap = (struct freebsd11_kevent_args *)arg;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
error = copyin(uap->changelist, &kev11, sizeof(kev11));
|
|
if (error != 0)
|
|
break;
|
|
kevp->ident = kev11.ident;
|
|
kevp->filter = kev11.filter;
|
|
kevp->flags = kev11.flags;
|
|
kevp->fflags = kev11.fflags;
|
|
kevp->data = (uintptr_t)kev11.data;
|
|
kevp->udata = kev11.udata;
|
|
bzero(&kevp->ext, sizeof(kevp->ext));
|
|
uap->changelist++;
|
|
kevp++;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
|
|
{
|
|
struct kevent_copyops k_ops = {
|
|
.arg = uap,
|
|
.k_copyout = kevent11_copyout,
|
|
.k_copyin = kevent11_copyin,
|
|
.kevent_size = sizeof(struct kevent_freebsd11),
|
|
};
|
|
struct g_kevent_args gk_args = {
|
|
.fd = uap->fd,
|
|
.changelist = uap->changelist,
|
|
.nchanges = uap->nchanges,
|
|
.eventlist = uap->eventlist,
|
|
.nevents = uap->nevents,
|
|
.timeout = uap->timeout,
|
|
};
|
|
|
|
return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent_freebsd11"));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
|
|
struct kevent_copyops *k_ops, const struct timespec *timeout)
|
|
{
|
|
cap_rights_t rights;
|
|
struct file *fp;
|
|
int error;
|
|
|
|
cap_rights_init(&rights);
|
|
if (nchanges > 0)
|
|
cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
|
|
if (nevents > 0)
|
|
cap_rights_set(&rights, CAP_KQUEUE_EVENT);
|
|
error = fget(td, fd, &rights, &fp);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
|
|
fdrop(fp, td);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static struct kevq *
|
|
kevqlist_find(struct kevqlist *kevq_list, struct kqueue *kq)
|
|
{
|
|
struct kevq *kevq_found, *kevq_each, *tkevq;
|
|
|
|
kevq_found = NULL;
|
|
|
|
LIST_FOREACH_SAFE(kevq_each, kevq_list, kevq_th_e, tkevq) {
|
|
if (kevq_each->kq == kq) {
|
|
kevq_found = kevq_each;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return kevq_found;
|
|
}
|
|
|
|
static int
|
|
kqueue_kevent(struct kqueue *kq, struct kevq *kevq, struct thread *td, int nchanges, int nevents,
|
|
struct kevent_copyops *k_ops, const struct timespec *timeout)
|
|
{
|
|
struct kevent keva[KQ_NEVENTS];
|
|
struct kevent *kevp, *changes;
|
|
struct timespec cur_ts;
|
|
int i, n, nerrors, error;
|
|
|
|
if ((kq->kq_state & KQ_FLAG_MULTI) == 0 && (kevq->kevq_state & KEVQ_RDY) == 0) {
|
|
/* Mark the global kevq as ready for single threaded mode to close the window between
|
|
kqueue_register and kqueue_scan.*/
|
|
KEVQ_LOCK(kevq);
|
|
kevq->kevq_state |= KEVQ_RDY;
|
|
KEVQ_UNLOCK(kevq);
|
|
}
|
|
|
|
KEVQ_LOCK(kevq);
|
|
/* prob don't need the lock here as these are only accessible by one thread */
|
|
if (kevq->kevq_last_nkev != 0)
|
|
{
|
|
/* make sure we actually processed events last time */
|
|
|
|
getnanouptime(&cur_ts);
|
|
timespecsub(&cur_ts, &kevq->kevq_last_kev, &cur_ts);
|
|
/* divide by the number of events processed */
|
|
TIMESPEC_DIV(&cur_ts, kevq->kevq_last_nkev, &cur_ts);
|
|
if (timespecisset(&kevq->kevq_avg_lat)) {
|
|
CALC_OVERTIME_AVG(&kevq->kevq_avg_lat, &kevq->kevq_avg_lat, &cur_ts);
|
|
} else {
|
|
/* first time */
|
|
timespecadd(&cur_ts, &kevq->kevq_avg_lat, &kevq->kevq_avg_lat);
|
|
}
|
|
|
|
CTR4(KTR_KQ, "kevent: td %d spent %ld s %ld ns per event on %d events", td->td_tid, cur_ts.tv_sec, cur_ts.tv_nsec, kevq->kevq_last_nkev);
|
|
/* clear parameters */
|
|
timespecclear(&kevq->kevq_last_kev);
|
|
kevq->kevq_last_nkev = 0;
|
|
}
|
|
KEVQ_UNLOCK(kevq);
|
|
|
|
nerrors = 0;
|
|
while (nchanges > 0) {
|
|
n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
|
|
error = k_ops->k_copyin(k_ops->arg, keva, n);
|
|
if (error)
|
|
return (error);
|
|
changes = keva;
|
|
for (i = 0; i < n; i++) {
|
|
kevp = &changes[i];
|
|
if (!kevp->filter)
|
|
continue;
|
|
kevp->flags &= ~EV_SYSFLAGS;
|
|
error = kqueue_register(kq, kevq, kevp, td, M_WAITOK);
|
|
if (error || (kevp->flags & EV_RECEIPT)) {
|
|
if (nevents == 0)
|
|
return (error);
|
|
kevp->flags = EV_ERROR;
|
|
kevp->data = error;
|
|
(void)k_ops->k_copyout(k_ops->arg, kevp, 1);
|
|
nevents--;
|
|
nerrors++;
|
|
}
|
|
}
|
|
nchanges -= n;
|
|
}
|
|
if (nerrors) {
|
|
td->td_retval[0] = nerrors;
|
|
return (0);
|
|
}
|
|
|
|
return (kqueue_scan(kevq, nevents, k_ops, timeout, keva, td));
|
|
}
|
|
|
|
int
|
|
kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
|
|
struct kevent_copyops *k_ops, const struct timespec *timeout)
|
|
{
|
|
struct kqueue *kq;
|
|
struct kevq *kevq;
|
|
int error;
|
|
|
|
error = kqueue_acquire_both(fp, td, &kq, &kevq);
|
|
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = kqueue_kevent(kq, kevq, td, nchanges, nevents, k_ops, timeout);
|
|
kqueue_release(kq, 0);
|
|
kevq_release(kevq, 0);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Performs a kevent() call on a temporarily created kqueue. This can be
|
|
* used to perform one-shot polling, similar to poll() and select().
|
|
*/
|
|
int
|
|
kern_kevent_anonymous(struct thread *td, int nevents,
|
|
struct kevent_copyops *k_ops)
|
|
{
|
|
struct kqueue kq = {};
|
|
struct kevq kevq = {};
|
|
int error;
|
|
|
|
kqueue_init(&kq);
|
|
kevq_init(&kevq);
|
|
kq.kq_kevq = &kevq;
|
|
kevq.kq = &kq;
|
|
kq.kq_refcnt = 1;
|
|
kevq.kevq_refcnt = 1;
|
|
error = kqueue_kevent(&kq, &kevq, td, nevents, nevents, k_ops, NULL);
|
|
// TODO: kevq destroy called here but memory not dynamically allocated
|
|
kqueue_drain(&kq, &kevq, td);
|
|
kqueue_destroy(&kq);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kqueue_add_filteropts(int filt, struct filterops *filtops)
|
|
{
|
|
int error;
|
|
|
|
error = 0;
|
|
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
|
|
CTR2(KTR_KQ, "trying to add a filterop that is out of range: %d is beyond %d", ~filt, EVFILT_SYSCOUNT);
|
|
return EINVAL;
|
|
}
|
|
mtx_lock(&filterops_lock);
|
|
if (sysfilt_ops[~filt].for_fop != &null_filtops &&
|
|
sysfilt_ops[~filt].for_fop != NULL)
|
|
error = EEXIST;
|
|
else {
|
|
sysfilt_ops[~filt].for_fop = filtops;
|
|
sysfilt_ops[~filt].for_refcnt = 0;
|
|
}
|
|
mtx_unlock(&filterops_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kqueue_del_filteropts(int filt)
|
|
{
|
|
int error;
|
|
|
|
error = 0;
|
|
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
|
|
return EINVAL;
|
|
|
|
mtx_lock(&filterops_lock);
|
|
if (sysfilt_ops[~filt].for_fop == &null_filtops ||
|
|
sysfilt_ops[~filt].for_fop == NULL)
|
|
error = EINVAL;
|
|
else if (sysfilt_ops[~filt].for_refcnt != 0)
|
|
error = EBUSY;
|
|
else {
|
|
sysfilt_ops[~filt].for_fop = &null_filtops;
|
|
sysfilt_ops[~filt].for_refcnt = 0;
|
|
}
|
|
mtx_unlock(&filterops_lock);
|
|
|
|
return error;
|
|
}
|
|
|
|
static struct filterops *
|
|
kqueue_fo_find(int filt)
|
|
{
|
|
|
|
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
|
|
return NULL;
|
|
|
|
if (sysfilt_ops[~filt].for_nolock)
|
|
return sysfilt_ops[~filt].for_fop;
|
|
|
|
mtx_lock(&filterops_lock);
|
|
sysfilt_ops[~filt].for_refcnt++;
|
|
if (sysfilt_ops[~filt].for_fop == NULL)
|
|
sysfilt_ops[~filt].for_fop = &null_filtops;
|
|
mtx_unlock(&filterops_lock);
|
|
|
|
return sysfilt_ops[~filt].for_fop;
|
|
}
|
|
|
|
static void
|
|
kqueue_fo_release(int filt)
|
|
{
|
|
|
|
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
|
|
return;
|
|
|
|
if (sysfilt_ops[~filt].for_nolock)
|
|
return;
|
|
|
|
mtx_lock(&filterops_lock);
|
|
KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
|
|
("filter object refcount not valid on release"));
|
|
sysfilt_ops[~filt].for_refcnt--;
|
|
mtx_unlock(&filterops_lock);
|
|
}
|
|
|
|
/*
|
|
* A ref to kq (obtained via kqueue_acquire) must be held.
|
|
*/
|
|
static int
|
|
kqueue_register(struct kqueue *kq, struct kevq *kevq, struct kevent *kev, struct thread *td,
|
|
int mflag)
|
|
{
|
|
struct filterops *fops;
|
|
struct file *fp;
|
|
struct knote *kn, *tkn;
|
|
struct knlist *knl;
|
|
int error, filt;
|
|
int haskqglobal, filedesc_unlock;
|
|
|
|
CTR5(KTR_KQ, "kqueue_register: kq %p, kevq %p, ident: %d, filter: %d, flags: 0x%X", kq, kevq, (int)kev->ident, kev->filter, kev->flags);
|
|
|
|
if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
|
|
return (EINVAL);
|
|
|
|
fp = NULL;
|
|
kn = NULL;
|
|
knl = NULL;
|
|
error = 0;
|
|
haskqglobal = 0;
|
|
filedesc_unlock = 0;
|
|
|
|
filt = kev->filter;
|
|
fops = kqueue_fo_find(filt);
|
|
if (fops == NULL)
|
|
return EINVAL;
|
|
|
|
if (kev->flags & EV_ADD) {
|
|
/*
|
|
* Prevent waiting with locks. Non-sleepable
|
|
* allocation failures are handled in the loop, only
|
|
* if the spare knote appears to be actually required.
|
|
*/
|
|
tkn = knote_alloc(mflag);
|
|
} else {
|
|
tkn = NULL;
|
|
}
|
|
|
|
findkn:
|
|
if (fops->f_isfd) {
|
|
KASSERT(td != NULL, ("td is NULL"));
|
|
if (kev->ident > INT_MAX)
|
|
error = EBADF;
|
|
else
|
|
error = fget(td, kev->ident, &cap_event_rights, &fp);
|
|
if (error)
|
|
goto done;
|
|
|
|
if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
|
|
kev->ident, M_NOWAIT) != 0) {
|
|
/* try again */
|
|
fdrop(fp, td);
|
|
fp = NULL;
|
|
error = kqueue_expand(kq, fops, kev->ident, mflag);
|
|
if (error)
|
|
goto done;
|
|
goto findkn;
|
|
}
|
|
|
|
if (fp->f_type == DTYPE_KQUEUE) {
|
|
/*
|
|
* If we add some intelligence about what we are doing,
|
|
* we should be able to support events on ourselves.
|
|
* We need to know when we are doing this to prevent
|
|
* getting both the knlist lock and the kq lock since
|
|
* they are the same thing.
|
|
*/
|
|
if (fp->f_data == kq) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Pre-lock the filedesc before the global
|
|
* lock mutex, see the comment in
|
|
* kqueue_close().
|
|
*/
|
|
FILEDESC_XLOCK(td->td_proc->p_fd);
|
|
filedesc_unlock = 1;
|
|
KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
|
|
}
|
|
|
|
/* lock the kq lock for accessing kq_knhash table */
|
|
KQ_LOCK(kq);
|
|
if (kev->ident < kq->kq_knlistsize) {
|
|
SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
|
|
if (kev->filter == kn->kn_filter)
|
|
break;
|
|
}
|
|
} else {
|
|
if ((kev->flags & EV_ADD) == EV_ADD) {
|
|
error = kqueue_expand(kq, fops, kev->ident, mflag);
|
|
if (error != 0)
|
|
goto done;
|
|
}
|
|
|
|
/* lock the kq lock for accessing kq_knhash table */
|
|
KQ_LOCK(kq);
|
|
|
|
/*
|
|
* If possible, find an existing knote to use for this kevent.
|
|
*/
|
|
if (kev->filter == EVFILT_PROC &&
|
|
(kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
|
|
/* This is an internal creation of a process tracking
|
|
* note. Don't attempt to coalesce this with an
|
|
* existing note.
|
|
*/
|
|
;
|
|
} else if (kq->kq_knhashmask != 0) {
|
|
struct klist *list;
|
|
|
|
list = &kq->kq_knhash[
|
|
KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
|
|
SLIST_FOREACH(kn, list, kn_link)
|
|
if (kev->ident == kn->kn_id &&
|
|
kev->filter == kn->kn_filter)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* We need the kq lock because attaching to KQ requires KQ Lock */
|
|
KQ_OWNED(kq);
|
|
|
|
/* knote is in the process of changing, wait for it to stabilize. */
|
|
if (kn != NULL) {
|
|
KN_FLUX_LOCK(kn);
|
|
if (kn_in_flux(kn)) {
|
|
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
|
|
if (filedesc_unlock) {
|
|
FILEDESC_XUNLOCK(td->td_proc->p_fd);
|
|
filedesc_unlock = 0;
|
|
}
|
|
kn->kn_fluxwait = 1;
|
|
KN_FLUX_UNLOCK(kn);
|
|
msleep(kn, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
|
|
|
|
if (fp != NULL) {
|
|
fdrop(fp, td);
|
|
fp = NULL;
|
|
}
|
|
goto findkn;
|
|
}
|
|
}
|
|
/* We now have exclusive access to the knote with flux lock and kq lock */
|
|
|
|
/*
|
|
* kn now contains the matching knote, or NULL if no match
|
|
*/
|
|
if (kn == NULL) {
|
|
if (kev->flags & EV_ADD) {
|
|
kn = tkn;
|
|
tkn = NULL;
|
|
if (kn == NULL) {
|
|
KQ_UNLOCK(kq);
|
|
error = ENOMEM;
|
|
goto done;
|
|
}
|
|
knote_xinit(kn);
|
|
kn->kn_kevq = kevq;
|
|
// this is set later depending on the scheduled CPU
|
|
kn->kn_kqd = NULL;
|
|
kn->kn_fp = fp;
|
|
kn->kn_kq = kq;
|
|
kn->kn_fop = fops;
|
|
/*
|
|
* apply reference counts to knote structure, and
|
|
* do not release it at the end of this routine.
|
|
*/
|
|
fops = NULL;
|
|
fp = NULL;
|
|
|
|
kn->kn_sfflags = kev->fflags;
|
|
kn->kn_sdata = kev->data;
|
|
kev->fflags = 0;
|
|
kev->data = 0;
|
|
kn->kn_kevent = *kev;
|
|
kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
|
|
EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
|
|
kn->kn_status = KN_DETACHED;
|
|
if ((kev->flags & EV_DISABLE) != 0)
|
|
kn->kn_status |= KN_DISABLED;
|
|
knote_enter_flux_ul(kn);
|
|
|
|
error = knote_attach(kn, kq);
|
|
KQ_UNLOCK(kq);
|
|
if (error != 0) {
|
|
tkn = kn;
|
|
goto done;
|
|
}
|
|
|
|
if ((error = kn->kn_fop->f_attach(kn)) != 0) {
|
|
knote_drop_detached(kn, td);
|
|
goto done;
|
|
}
|
|
knl = kn_list_lock(kn);
|
|
goto done_ev_add;
|
|
} else {
|
|
/* No matching knote and the EV_ADD flag is not set. */
|
|
KQ_UNLOCK(kq);
|
|
error = ENOENT;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (kev->flags & EV_DELETE) {
|
|
/* We have the exclusive flux lock here */
|
|
knote_enter_flux(kn);
|
|
|
|
KN_FLUX_UNLOCK(kn);
|
|
KQ_UNLOCK(kq);
|
|
|
|
knote_drop(kn, td);
|
|
goto done;
|
|
}
|
|
|
|
/* We have the exclusive lock */
|
|
knote_enter_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
KQ_UNLOCK(kq);
|
|
|
|
// we have kq lock and knote influx
|
|
if (kev->flags & EV_FORCEONESHOT) {
|
|
kn->kn_flags |= EV_ONESHOT;
|
|
|
|
knote_activate(kn);
|
|
}
|
|
|
|
if ((kev->flags & EV_ENABLE) != 0)
|
|
kn->kn_status &= ~KN_DISABLED;
|
|
else if ((kev->flags & EV_DISABLE) != 0)
|
|
kn->kn_status |= KN_DISABLED;
|
|
|
|
/*
|
|
* The user may change some filter values after the initial EV_ADD,
|
|
* but doing so will not reset any filter which has already been
|
|
* triggered.
|
|
*/
|
|
kn->kn_status |= KN_SCAN;
|
|
|
|
knl = kn_list_lock(kn);
|
|
kn->kn_kevent.udata = kev->udata;
|
|
if (!fops->f_isfd && fops->f_touch != NULL) {
|
|
fops->f_touch(kn, kev, EVENT_REGISTER);
|
|
} else {
|
|
kn->kn_sfflags = kev->fflags;
|
|
kn->kn_sdata = kev->data;
|
|
}
|
|
|
|
done_ev_add:
|
|
/*
|
|
* We can get here with kn->kn_knlist == NULL. This can happen when
|
|
* the initial attach event decides that the event is "completed"
|
|
* already, e.g., filt_procattach() is called on a zombie process. It
|
|
* will call filt_proc() which will remove it from the list, and NULL
|
|
* kn_knlist.
|
|
*
|
|
* KN_DISABLED will be stable while the knote is in flux, so the
|
|
* unlocked read will not race with an update.
|
|
*/
|
|
if ((kn->kn_status & KN_DISABLED) == 0 && kn->kn_fop->f_event(kn, 0))
|
|
kn->kn_status |= KN_ACTIVE;
|
|
|
|
if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) == KN_ACTIVE)
|
|
knote_activate(kn);
|
|
|
|
kn->kn_status &= ~KN_SCAN;
|
|
KN_LEAVE_FLUX_WAKEUP(kn);
|
|
|
|
kn_list_unlock(knl);
|
|
|
|
done:
|
|
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
|
|
if (filedesc_unlock)
|
|
FILEDESC_XUNLOCK(td->td_proc->p_fd);
|
|
if (fp != NULL)
|
|
fdrop(fp, td);
|
|
knote_free(tkn);
|
|
if (fops != NULL)
|
|
kqueue_fo_release(filt);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
kevq_thred_init(struct kevq_thred *kevq_th) {
|
|
mtx_init(&kevq_th->lock, "kevq_th", NULL, MTX_DEF | MTX_DUPOK);
|
|
LIST_INIT(&kevq_th->kevq_list);
|
|
}
|
|
|
|
static void
|
|
kevq_thred_destroy(struct kevq_thred *kevq_th) {
|
|
free(kevq_th->kevq_hash, M_KQUEUE);
|
|
free(kevq_th, M_KQUEUE);
|
|
CTR1(KTR_KQ, "kevq_thred_destroy: freed kevq_th %p", kevq_th);
|
|
}
|
|
|
|
void
|
|
kevq_thred_drain(struct kevq_thred *kevq_th, struct thread* td) {
|
|
struct kevq *kevq;
|
|
|
|
CTR2(KTR_KQ, "kevq_thred_drain: draining kevq_th %p on thread %d", kevq_th, td->td_tid);
|
|
|
|
KEVQ_TH_LOCK(kevq_th);
|
|
while((kevq = LIST_FIRST(&kevq_th->kevq_list)) != NULL) {
|
|
if (kevq_acquire(kevq) == 0) {
|
|
CTR2(KTR_KQ, "kevq_thred_drain: draining kevq %p on kevq_th %p", kevq, kevq_th);
|
|
KEVQ_TH_UNLOCK(kevq_th);
|
|
kevq_drain(kevq);
|
|
KEVQ_TH_LOCK(kevq_th);
|
|
}
|
|
}
|
|
KEVQ_TH_UNLOCK(kevq_th);
|
|
|
|
kevq_thred_destroy(kevq_th);
|
|
}
|
|
|
|
static void
|
|
kevq_init(struct kevq *kevq) {
|
|
mtx_init(&kevq->lock, "kevq", NULL, MTX_DEF | MTX_DUPOK);
|
|
TAILQ_INIT(&kevq->kn_head);
|
|
timespecclear(&kevq->kevq_avg_lat);
|
|
timespecclear(&kevq->kevq_last_kev);
|
|
}
|
|
|
|
static void
|
|
kevq_release(struct kevq* kevq, int locked)
|
|
{
|
|
if (locked)
|
|
KEVQ_OWNED(kevq);
|
|
else
|
|
KEVQ_LOCK(kevq);
|
|
CTR2(KTR_KQ, "releasing kevq %p (refcnt = %d)", kevq, kevq->kevq_refcnt);
|
|
kevq->kevq_refcnt--;
|
|
if (kevq->kevq_refcnt == 1)
|
|
wakeup(&kevq->kevq_refcnt);
|
|
if (!locked)
|
|
KEVQ_UNLOCK(kevq);
|
|
}
|
|
|
|
static int
|
|
kevq_acquire(struct kevq *kevq)
|
|
{
|
|
KEVQ_NOTOWNED(kevq);
|
|
int error;
|
|
error = 0;
|
|
KEVQ_LOCK(kevq);
|
|
CTR2(KTR_KQ, "referencing kevq %p (refcnt = %d)", kevq, kevq->kevq_refcnt);
|
|
if ((kevq->kevq_state & KEVQ_CLOSING) == KEVQ_CLOSING) {
|
|
error = EINVAL;
|
|
} else {
|
|
kevq->kevq_refcnt++;
|
|
}
|
|
KEVQ_UNLOCK(kevq);
|
|
return error;
|
|
}
|
|
|
|
/* a reference to kq must be held */
|
|
static int
|
|
kevq_acquire_kq(struct kqueue *kq, struct thread *td, struct kevq **kevqp)
|
|
{
|
|
int error;
|
|
void* to_free;
|
|
struct kevq_thred *kevq_th;
|
|
struct kevq *kevq, *alloc_kevq;
|
|
struct kevqlist *kevq_list;
|
|
struct kqdom *kqd;
|
|
|
|
kevq = NULL;
|
|
error = 0;
|
|
to_free = NULL;
|
|
kevq_th = NULL;
|
|
|
|
KQ_NOTOWNED(kq);
|
|
|
|
if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
|
|
return EINVAL;
|
|
}
|
|
|
|
if ((kq->kq_state & KQ_FLAG_MULTI) == KQ_FLAG_MULTI) {
|
|
// allocate KEVQ_TH
|
|
if (td->td_kevq_thred == NULL) {
|
|
kevq_th = malloc(sizeof(struct kevq_thred), M_KQUEUE, M_WAITOK | M_ZERO);
|
|
kevq_thred_init(kevq_th);
|
|
kevq_th->kevq_hash = hashinit_flags(KEVQ_HASHSIZE, M_KQUEUE, &kevq_th->kevq_hashmask , HASH_WAITOK);
|
|
|
|
thread_lock(td);
|
|
if (td->td_kevq_thred == NULL) {
|
|
td->td_kevq_thred = kevq_th;
|
|
CTR2(KTR_KQ, "kevq_acquire_kq(M): allocated kevq_th %p for thread %d", kevq_th, td->td_tid);
|
|
} else {
|
|
to_free = kevq_th;
|
|
kevq_th = td->td_kevq_thred;
|
|
}
|
|
thread_unlock(td);
|
|
if (to_free != NULL) {
|
|
free(((struct kevq_thred*)to_free)->kevq_hash, M_KQUEUE);
|
|
free(to_free, M_KQUEUE);
|
|
}
|
|
} else {
|
|
kevq_th = td->td_kevq_thred;
|
|
}
|
|
|
|
KASSERT(kevq_th != NULL && kevq_th->kevq_hashmask != 0, ("unallocated kevq"));
|
|
|
|
KEVQ_TH_LOCK(kevq_th);
|
|
kevq_list = &kevq_th->kevq_hash[KEVQ_HASH((unsigned long long)kq, kevq_th->kevq_hashmask)];
|
|
kevq = kevqlist_find(kevq_list, kq);
|
|
KEVQ_TH_UNLOCK(kevq_th);
|
|
|
|
// allocate kevq
|
|
if (kevq == NULL) {
|
|
to_free = NULL;
|
|
alloc_kevq = malloc(sizeof(struct kevq), M_KQUEUE, M_WAITOK | M_ZERO);
|
|
kevq_init(alloc_kevq);
|
|
alloc_kevq->kq = kq;
|
|
alloc_kevq->kevq_th = kevq_th;
|
|
|
|
// assign the proper kqdomain
|
|
KASSERT(kq->kq_kqd != NULL, ("kqdom doesn't exist after referecing kq"));
|
|
kqd = kqdom_find(kq->kq_kqd, td->td_oncpu);
|
|
alloc_kevq->kevq_kqd = kqd;
|
|
|
|
CTR4(KTR_KQ, "kevq_acquire_kq(M): allocated kevq %p for thread %d (oncpu = %d), kqdom %d", alloc_kevq, td->td_tid, td->td_oncpu, kqd->id);
|
|
|
|
KQ_LOCK(kq);
|
|
KQD_LOCK(kqd);
|
|
KEVQ_TH_LOCK(kevq_th);
|
|
kevq = kevqlist_find(kevq_list, kq);
|
|
/* TODO: probably don't need to re-check unless a thread can asynchronously call
|
|
* kevent (signal handler?) */
|
|
if (kevq == NULL) {
|
|
kevq = alloc_kevq;
|
|
// insert kevq to the kevq_th hash table
|
|
LIST_INSERT_HEAD(kevq_list, kevq, kevq_th_e);
|
|
// insert kevq to the kevq_th list, the list is used to drain kevq
|
|
LIST_INSERT_HEAD(&kevq_th->kevq_list, kevq, kevq_th_tqe);
|
|
|
|
LIST_INSERT_HEAD(&kq->kq_kevqlist, kevq, kq_e);
|
|
|
|
kqdom_insert(kqd, kevq);
|
|
} else {
|
|
to_free = alloc_kevq;
|
|
}
|
|
KEVQ_TH_UNLOCK(kevq_th);
|
|
KQD_UNLOCK(kqd);
|
|
KQ_UNLOCK(kq);
|
|
|
|
if (to_free != NULL) {
|
|
free(to_free, M_KQUEUE);
|
|
}
|
|
}
|
|
|
|
KASSERT(kevq != NULL, ("kevq isn't allocated."));
|
|
|
|
} else {
|
|
kevq = kq->kq_kevq;
|
|
if (kevq == NULL) {
|
|
alloc_kevq = malloc(sizeof(struct kevq), M_KQUEUE, M_WAITOK | M_ZERO);
|
|
CTR2(KTR_KQ, "kevq_acquire_kq(S): allocated kevq %p for kq %p", alloc_kevq, kq);
|
|
kevq_init(alloc_kevq);
|
|
alloc_kevq->kq = kq;
|
|
|
|
KQ_LOCK(kq);
|
|
if ((kevq = kq->kq_kevq) == NULL) {
|
|
kq->kq_kevq = alloc_kevq;
|
|
kevq = alloc_kevq;
|
|
} else {
|
|
to_free = alloc_kevq;
|
|
}
|
|
KQ_UNLOCK(kq);
|
|
|
|
if (to_free != NULL) {
|
|
free(to_free, M_KQUEUE);
|
|
}
|
|
}
|
|
}
|
|
|
|
error = kevq_acquire(kevq);
|
|
|
|
if (!error) {
|
|
*kevqp = kevq;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
kqueue_acquire(struct file *fp, struct kqueue **kqp)
|
|
{
|
|
struct kqueue *kq;
|
|
struct kqdom *kqd;
|
|
|
|
kq = fp->f_data;
|
|
if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
|
|
return (EBADF);
|
|
*kqp = kq;
|
|
|
|
KQ_LOCK(kq);
|
|
if (((kq->kq_state) & KQ_CLOSING) != 0) {
|
|
return (EBADF);
|
|
}
|
|
if ((kq->kq_state & KQ_FLAG_INIT) == 0) {
|
|
kq->kq_state |= KQ_FLAG_INIT;
|
|
}
|
|
kq->kq_refcnt++;
|
|
KQ_UNLOCK(kq);
|
|
|
|
if (((kq->kq_state & KQ_FLAG_MULTI) != 0) && (kq->kq_kqd == NULL)) {
|
|
kqd = kqdom_build();
|
|
KQ_LOCK(kq);
|
|
if (kq->kq_kqd == NULL) {
|
|
kq->kq_kqd = kqd;
|
|
kqd = NULL;
|
|
}
|
|
KQ_UNLOCK(kq);
|
|
|
|
if (kqd != NULL) {
|
|
kqdom_destroy(kqd);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kqueue_acquire_both(struct file *fp, struct thread *td, struct kqueue **kqp, struct kevq **kevqp)
|
|
{
|
|
int error;
|
|
struct kqueue *tmp_kq;
|
|
struct kevq *tmp_kevq;
|
|
|
|
error = kqueue_acquire(fp, &tmp_kq);
|
|
|
|
if (!error) {
|
|
error = kevq_acquire_kq(tmp_kq, td, &tmp_kevq);
|
|
}
|
|
|
|
if (error) {
|
|
kqueue_release(tmp_kq, 0);
|
|
} else {
|
|
*kqp = tmp_kq;
|
|
*kevqp = tmp_kevq;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
kqueue_release(struct kqueue *kq, int locked)
|
|
{
|
|
if (locked)
|
|
KQ_OWNED(kq);
|
|
else
|
|
KQ_LOCK(kq);
|
|
kq->kq_refcnt--;
|
|
if (kq->kq_refcnt == 1)
|
|
wakeup(&kq->kq_refcnt);
|
|
if (!locked)
|
|
KQ_UNLOCK(kq);
|
|
}
|
|
|
|
static void
|
|
kqueue_schedtask(struct kqueue *kq)
|
|
{
|
|
|
|
KQ_OWNED(kq);
|
|
KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
|
|
("scheduling kqueue task while draining"));
|
|
|
|
if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
|
|
taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
|
|
kq->kq_state |= KQ_TASKSCHED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
// not guaranteed to have a children
|
|
static struct kqdom *
|
|
kqdom_next_leaf(struct kqdom *kqd)
|
|
{
|
|
struct kqdom *parent;
|
|
struct kqdom *cur;
|
|
struct kqdom *next;
|
|
struct kqdom *each_child;
|
|
|
|
cur = kqd;
|
|
parent = cur->parent;
|
|
next = NULL;
|
|
|
|
// move right once
|
|
while (cur != NULL) {
|
|
next = TAILQ_NEXT(cur, child_e);
|
|
|
|
if (next != NULL && next->num_kevq > 0)
|
|
break;
|
|
|
|
cur = parent;
|
|
parent = cur->parent;
|
|
}
|
|
|
|
// if the selected kqdom isn't leaf, return a leaf
|
|
while (next != NULL && next->num_children > 0) {
|
|
TAILQ_FOREACH(each_child, &next->children, child_e) {
|
|
if (each_child->num_kevq > 0) {
|
|
if (each_child->num_children == 0) {
|
|
// return if we have a valid leaf node
|
|
break;
|
|
}
|
|
// we have a non-leaf node, set next to child and try again
|
|
next = each_child;
|
|
continue;
|
|
}
|
|
}
|
|
// we traversed all children and nobody has >0 kevqs, return NULL
|
|
next = NULL;
|
|
break;
|
|
}
|
|
|
|
return next;
|
|
}
|
|
*/
|
|
|
|
static void
|
|
kqdom_init(struct kqdom *kqd)
|
|
{
|
|
mtx_init(&kqd->kqd_lock, "kqdom_lock", NULL, MTX_DEF | MTX_DUPOK);
|
|
LIST_INIT(&kqd->kqd_kevqlist);
|
|
TAILQ_INIT(&kqd->children);
|
|
}
|
|
|
|
/* inserts a list*/
|
|
static void
|
|
kqdom_insert(struct kqdom *kqd, struct kevq *kevq)
|
|
{
|
|
int val;
|
|
struct kqdom* parent;
|
|
KQD_OWNED(kqd);
|
|
KASSERT(kqd->num_children == 0, ("inserting into a non-leaf kqdom"));
|
|
LIST_INSERT_HEAD(&kqd->kqd_kevqlist, kevq, kqd_e);
|
|
/* TODO: don't hold the lock while doing the update */
|
|
parent = kqd;
|
|
while(parent != NULL) {
|
|
val = atomic_fetchadd_int(&parent->num_kevq, 1);
|
|
KASSERT(val >= 0, ("invalid num_kevq for kqdom <= 0"));
|
|
parent = parent->parent;
|
|
}
|
|
}
|
|
|
|
/* removes a list */
|
|
static void
|
|
kqdom_remove(struct kqdom *kqd, struct kevq *kevq)
|
|
{
|
|
int val;
|
|
struct kqdom* parent;
|
|
KQD_OWNED(kqd);
|
|
KASSERT(kqd->num_children == 0, ("removing from a non-leaf kqdom"));
|
|
LIST_REMOVE(kevq, kqd_e);
|
|
/* TODO: don't hold the lock while doing the update */
|
|
parent = kqd;
|
|
while(parent != NULL) {
|
|
val = atomic_fetchadd_int(&parent->num_kevq, -1);
|
|
KASSERT(val >= 0, ("invalid num_kevq for kqdom <= 0"));
|
|
parent = parent->parent;
|
|
}
|
|
|
|
if (kqd->kqd_ckevq == kevq) {
|
|
kqd->kqd_ckevq = LIST_NEXT(kevq, kqd_e);
|
|
}
|
|
}
|
|
|
|
static void
|
|
kqdom_destroy(struct kqdom *root)
|
|
{
|
|
struct kqdom *kqdom, *tkqd;
|
|
|
|
TAILQ_FOREACH_SAFE(kqdom, &root->children, child_e, tkqd) {
|
|
kqdom_destroy(kqdom);
|
|
}
|
|
|
|
CTR2(KTR_KQ, "kqdom_destroy: destroyed kqdom %p with %d child kqdoms", root, root->num_children);
|
|
KASSERT(LIST_FIRST(&root->kqd_kevqlist) == NULL, ("freeing a kqdom with kevqs"));
|
|
free(root, M_KQUEUE);
|
|
}
|
|
|
|
static void
|
|
kqdom_update_stats(struct kqdom *leaf, struct timespec *avg)
|
|
{
|
|
struct timespec last_avg;
|
|
last_avg.tv_sec = avg->tv_sec;
|
|
last_avg.tv_nsec = avg->tv_nsec;
|
|
|
|
while(leaf != NULL) {
|
|
KQD_LOCK(leaf);
|
|
|
|
CALC_OVERTIME_AVG(&leaf->kqd_avg_lat, &last_avg, &leaf->kqd_avg_lat);
|
|
CTR3(KTR_KQ, "kqdom_update_stats: updated avg lat %ld sec %ld for kqdom %d",
|
|
leaf->kqd_avg_lat.tv_sec, leaf->kqd_avg_lat.tv_nsec, leaf->id);
|
|
|
|
last_avg.tv_sec = leaf->kqd_avg_lat.tv_sec;
|
|
last_avg.tv_nsec = leaf->kqd_avg_lat.tv_nsec;
|
|
|
|
KQD_UNLOCK(leaf);
|
|
|
|
leaf = leaf->parent;
|
|
}
|
|
}
|
|
|
|
/* DFS to mirror the cpu_group structure */
|
|
static void
|
|
kqdom_build_internal(struct kqdom *kqd_cur, struct cpu_group *cg_cur, int *kqd_id)
|
|
{
|
|
struct kqdom *child;
|
|
int cg_numchild = cg_cur->cg_children;
|
|
CTR4(KTR_KQ, "kqdom_build_internal: processing cpu_group with %d child groups, %d CPUs, shared cache level %d, kqd_id %d",
|
|
cg_numchild, cg_cur->cg_count, cg_cur->cg_level, *kqd_id);
|
|
|
|
// init fields for current
|
|
kqd_cur->id = *kqd_id;
|
|
(*kqd_id)++;
|
|
kqd_cur->num_children = cg_numchild;
|
|
CPU_COPY(&cg_cur->cg_mask, &kqd_cur->cpu_mask);
|
|
|
|
for (int i = 0; i < cg_numchild; i++) {
|
|
child = malloc(sizeof(struct kqdom), M_KQUEUE, M_WAITOK | M_ZERO);
|
|
kqdom_init(child);
|
|
|
|
child->parent = kqd_cur;
|
|
|
|
TAILQ_INSERT_TAIL(&kqd_cur->children, child, child_e);
|
|
kqdom_build_internal(child, &cg_cur->cg_child[i], kqd_id);
|
|
}
|
|
}
|
|
|
|
static struct kqdom *
|
|
kqdom_build()
|
|
{
|
|
int kqd_id = 0;
|
|
CTR0(KTR_KQ, "kqueue_build_sched: mirroring cpu_group...");
|
|
struct kqdom* kqd_root = malloc(sizeof(struct kqdom), M_KQUEUE, M_WAITOK | M_ZERO);
|
|
kqdom_init(kqd_root);
|
|
kqdom_build_internal(kqd_root, cpu_top, &kqd_id);
|
|
return kqd_root;
|
|
}
|
|
|
|
static struct kqdom *
|
|
kqdom_find(struct kqdom *root, int cpuid)
|
|
{
|
|
struct kqdom *child, *tchild;
|
|
|
|
if (root->num_children == 0) {
|
|
KASSERT(CPU_ISSET(cpuid, &root->cpu_mask), ("kqdom_find: cpuid and cpumask mismatch"));
|
|
return root;
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(child, &root->children, child_e, tchild) {
|
|
if (CPU_ISSET(cpuid, &child->cpu_mask)) {
|
|
return kqdom_find(child, cpuid);
|
|
}
|
|
}
|
|
|
|
KASSERT(0, ( "kqdom_find: cpu doesn't exist "));
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Expand the kq to make sure we have storage for fops/ident pair.
|
|
*
|
|
* Return 0 on success (or no work necessary), return errno on failure.
|
|
*/
|
|
static int
|
|
kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
|
|
int mflag)
|
|
{
|
|
struct klist *list, *tmp_knhash, *to_free;
|
|
u_long tmp_knhashmask;
|
|
int error, fd, size;
|
|
|
|
KQ_NOTOWNED(kq);
|
|
|
|
error = 0;
|
|
to_free = NULL;
|
|
if (fops->f_isfd) {
|
|
fd = ident;
|
|
if (kq->kq_knlistsize <= fd) {
|
|
size = kq->kq_knlistsize;
|
|
while (size <= fd)
|
|
size += KQEXTENT;
|
|
list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
|
|
if (list == NULL)
|
|
return ENOMEM;
|
|
KQ_LOCK(kq);
|
|
if ((kq->kq_state & KQ_CLOSING) != 0) {
|
|
to_free = list;
|
|
error = EBADF;
|
|
} else if (kq->kq_knlistsize > fd) {
|
|
to_free = list;
|
|
} else {
|
|
if (kq->kq_knlist != NULL) {
|
|
bcopy(kq->kq_knlist, list,
|
|
kq->kq_knlistsize * sizeof(*list));
|
|
to_free = kq->kq_knlist;
|
|
kq->kq_knlist = NULL;
|
|
}
|
|
bzero((caddr_t)list +
|
|
kq->kq_knlistsize * sizeof(*list),
|
|
(size - kq->kq_knlistsize) * sizeof(*list));
|
|
kq->kq_knlistsize = size;
|
|
kq->kq_knlist = list;
|
|
}
|
|
KQ_UNLOCK(kq);
|
|
}
|
|
} else {
|
|
if (kq->kq_knhashmask == 0) {
|
|
tmp_knhash = hashinit_flags(KN_HASHSIZE, M_KQUEUE,
|
|
&tmp_knhashmask, (mflag & M_WAITOK) != 0 ?
|
|
HASH_WAITOK : HASH_NOWAIT);
|
|
if (tmp_knhash == NULL)
|
|
return (ENOMEM);
|
|
KQ_LOCK(kq);
|
|
if ((kq->kq_state & KQ_CLOSING) != 0) {
|
|
to_free = tmp_knhash;
|
|
error = EBADF;
|
|
} else if (kq->kq_knhashmask == 0) {
|
|
kq->kq_knhash = tmp_knhash;
|
|
kq->kq_knhashmask = tmp_knhashmask;
|
|
} else {
|
|
to_free = tmp_knhash;
|
|
}
|
|
KQ_UNLOCK(kq);
|
|
}
|
|
}
|
|
free(to_free, M_KQUEUE);
|
|
|
|
KQ_NOTOWNED(kq);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
kqueue_task(void *arg, int pending)
|
|
{
|
|
struct kqueue *kq;
|
|
int haskqglobal;
|
|
|
|
haskqglobal = 0;
|
|
kq = arg;
|
|
|
|
KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
|
|
KQ_LOCK(kq);
|
|
|
|
KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
|
|
|
|
kq->kq_state &= ~KQ_TASKSCHED;
|
|
if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
|
|
wakeup(&kq->kq_state);
|
|
}
|
|
KQ_UNLOCK(kq);
|
|
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
|
|
}
|
|
|
|
/*
|
|
* Scan, update kn_data (if not ONESHOT), and copyout triggered events.
|
|
* We treat KN_MARKER knotes as if they are in flux.
|
|
*/
|
|
static int
|
|
kqueue_scan(struct kevq *kevq, int maxevents, struct kevent_copyops *k_ops,
|
|
const struct timespec *tsp, struct kevent *keva, struct thread *td)
|
|
{
|
|
struct kevent *kevp;
|
|
struct knote *kn, *marker;
|
|
struct knlist *knl;
|
|
sbintime_t asbt, rsbt;
|
|
int count, error, haskqglobal, influx, nkev, touch;
|
|
|
|
count = maxevents;
|
|
nkev = 0;
|
|
error = 0;
|
|
haskqglobal = 0;
|
|
|
|
if (maxevents == 0)
|
|
goto done_nl;
|
|
|
|
rsbt = 0;
|
|
if (tsp != NULL) {
|
|
if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
|
|
tsp->tv_nsec >= 1000000000) {
|
|
error = EINVAL;
|
|
goto done_nl;
|
|
}
|
|
if (timespecisset(tsp)) {
|
|
if (tsp->tv_sec <= INT32_MAX) {
|
|
rsbt = tstosbt(*tsp);
|
|
if (TIMESEL(&asbt, rsbt))
|
|
asbt += tc_tick_sbt;
|
|
if (asbt <= SBT_MAX - rsbt)
|
|
asbt += rsbt;
|
|
else
|
|
asbt = 0;
|
|
rsbt >>= tc_precexp;
|
|
} else
|
|
asbt = 0;
|
|
} else
|
|
asbt = -1;
|
|
} else
|
|
asbt = 0;
|
|
marker = knote_alloc(M_WAITOK);
|
|
CTR2(KTR_KQ, "kqueue_scan: td %d allocated marker %p", td->td_tid, marker);
|
|
knote_xinit(marker);
|
|
marker->kn_status = KN_MARKER;
|
|
KEVQ_LOCK(kevq);
|
|
|
|
if ((kevq->kevq_state & KEVQ_RDY) == 0) {
|
|
/* Mark the kevq as ready to receive events */
|
|
kevq->kevq_state |= KEVQ_RDY;
|
|
}
|
|
|
|
retry:
|
|
kevp = keva;
|
|
CTR3(KTR_KQ, "kqueue_scan: td %d on kevq %p has %d events", td->td_tid, kevq, kevq->kn_count);
|
|
if (kevq->kn_count == 0) {
|
|
if (asbt == -1) {
|
|
error = EWOULDBLOCK;
|
|
} else {
|
|
kevq->kevq_state |= KEVQ_SLEEP;
|
|
CTR2(KTR_KQ, "kqueue_scan: td %d waiting on kevq %p for events", td->td_tid, kevq);
|
|
error = msleep_sbt(kevq, &kevq->lock, PSOCK | PCATCH,
|
|
"kqread", asbt, rsbt, C_ABSOLUTE);
|
|
CTR2(KTR_KQ, "kqueue_scan: td %d wokeup on kevq %p for events", td->td_tid, kevq);
|
|
}
|
|
if (error == 0)
|
|
goto retry;
|
|
/* don't restart after signals... */
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
else if (error == EWOULDBLOCK)
|
|
error = 0;
|
|
goto done;
|
|
}
|
|
|
|
KEVQ_OWNED(kevq);
|
|
TAILQ_INSERT_TAIL(&kevq->kn_head, marker, kn_tqe);
|
|
influx = 0;
|
|
|
|
while (count) {
|
|
KEVQ_OWNED(kevq);
|
|
kn = TAILQ_FIRST(&kevq->kn_head);
|
|
|
|
KN_FLUX_LOCK(kn);
|
|
if ((kn->kn_status == KN_MARKER && kn != marker) ||
|
|
kn_in_flux(kn)) {
|
|
if (influx) {
|
|
influx = 0;
|
|
knote_flux_wakeup(kn);
|
|
}
|
|
kn->kn_fluxwait = 1;
|
|
KN_FLUX_UNLOCK(kn);
|
|
CTR3(KTR_KQ, "kqueue_scan: td %d fluxwait on kn %p marker %p", td->td_tid, kn, marker);
|
|
error = msleep(kn, &kevq->lock, PSOCK,
|
|
"kevqflxwt3", 0);
|
|
|
|
CTR3(KTR_KQ, "kqueue_scan: td %d fluxwait WAKEUP kn %p marker %p", td->td_tid, kn, marker);
|
|
continue;
|
|
}
|
|
|
|
/* Now we have exclusive access to kn */
|
|
TAILQ_REMOVE(&kevq->kn_head, kn, kn_tqe);
|
|
CTR3(KTR_KQ, "kqueue_scan: td %d on kevq %p dequeued knote %p", td->td_tid, kevq, kn);
|
|
if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
|
|
kn->kn_status &= ~KN_QUEUED;
|
|
kevq->kn_count--;
|
|
KN_FLUX_UNLOCK(kn);
|
|
continue;
|
|
}
|
|
if (kn == marker) {
|
|
/* We are dequeuing our marker, wakeup threads waiting on it */
|
|
knote_flux_wakeup(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
CTR2(KTR_KQ, "kqueue_scan: td %d MARKER WAKEUP %p", td->td_tid, kn);
|
|
if (count == maxevents) {
|
|
goto retry;
|
|
}
|
|
goto done;
|
|
}
|
|
KASSERT(!kn_in_flux(kn),
|
|
("knote %p is unexpectedly in flux", kn));
|
|
|
|
if ((kn->kn_flags & EV_DROP) == EV_DROP) {
|
|
kn->kn_status &= ~KN_QUEUED;
|
|
knote_enter_flux(kn);
|
|
kevq->kn_count--;
|
|
KN_FLUX_UNLOCK(kn);
|
|
KEVQ_UNLOCK(kevq);
|
|
/*
|
|
* We don't need to lock the list since we've
|
|
* marked it as in flux.
|
|
*/
|
|
knote_drop(kn, td);
|
|
KEVQ_LOCK(kevq);
|
|
continue;
|
|
} else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
|
|
kn->kn_status &= ~KN_QUEUED;
|
|
knote_enter_flux(kn);
|
|
kevq->kn_count--;
|
|
KN_FLUX_UNLOCK(kn);
|
|
KEVQ_UNLOCK(kevq);
|
|
/*
|
|
* We don't need to lock the list since we've
|
|
* marked the knote as being in flux.
|
|
*/
|
|
*kevp = kn->kn_kevent;
|
|
knote_drop(kn, td);
|
|
KEVQ_LOCK(kevq);
|
|
kn = NULL;
|
|
} else {
|
|
kn->kn_status |= KN_SCAN;
|
|
knote_enter_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
KEVQ_UNLOCK(kevq);
|
|
if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE) {
|
|
/* TODO: we are waiting for another kqueue
|
|
*/
|
|
KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
|
|
}
|
|
knl = kn_list_lock(kn);
|
|
if (kn->kn_fop->f_event(kn, 0) == 0) {
|
|
KEVQ_LOCK(kevq);
|
|
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
|
|
kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
|
|
KN_SCAN);
|
|
knote_leave_flux_ul(kn);
|
|
kevq->kn_count--;
|
|
kn_list_unlock(knl);
|
|
influx = 1;
|
|
CTR3(KTR_KQ, "kqueue_scan: kn %p not valid anymore for kevq %p, td %d", kn, kevq, td->td_tid);
|
|
continue;
|
|
}
|
|
touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL);
|
|
if (touch)
|
|
kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
|
|
else
|
|
*kevp = kn->kn_kevent;
|
|
KEVQ_LOCK(kevq);
|
|
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
|
|
if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
|
|
/*
|
|
* Manually clear knotes who weren't
|
|
* 'touch'ed.
|
|
*/
|
|
if (touch == 0 && kn->kn_flags & EV_CLEAR) {
|
|
kn->kn_data = 0;
|
|
kn->kn_fflags = 0;
|
|
}
|
|
if (kn->kn_flags & EV_DISPATCH)
|
|
kn->kn_status |= KN_DISABLED;
|
|
kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
|
|
kevq->kn_count--;
|
|
} else {
|
|
CTR2(KTR_KQ, "kqueue_scan: requeued kn %p to kevq %p", kn, kevq);
|
|
TAILQ_INSERT_TAIL(&kevq->kn_head, kn, kn_tqe);
|
|
}
|
|
|
|
kn->kn_status &= ~KN_SCAN;
|
|
knote_leave_flux_ul(kn);
|
|
kn_list_unlock(knl);
|
|
influx = 1;
|
|
}
|
|
|
|
/* we are returning a copy to the user */
|
|
kevp++;
|
|
nkev++;
|
|
count--;
|
|
|
|
if (nkev == KQ_NEVENTS) {
|
|
influx = 0;
|
|
knote_flux_wakeup_ul(kn);
|
|
KEVQ_UNLOCK(kevq);
|
|
|
|
error = k_ops->k_copyout(k_ops->arg, keva, nkev);
|
|
nkev = 0;
|
|
kevp = keva;
|
|
KEVQ_LOCK(kevq);
|
|
if (error)
|
|
break;
|
|
}
|
|
}
|
|
TAILQ_REMOVE(&kevq->kn_head, marker, kn_tqe);
|
|
done:
|
|
KEVQ_OWNED(kevq);
|
|
|
|
if (kn != NULL) {
|
|
knote_flux_wakeup_ul(kn);
|
|
}
|
|
|
|
if (marker != NULL) {
|
|
knote_flux_wakeup_ul(marker);
|
|
}
|
|
|
|
if (nkev != 0) {
|
|
/* book keep the statistics */
|
|
getnanouptime(&kevq->kevq_last_kev);
|
|
kevq->kevq_last_nkev = nkev;
|
|
}
|
|
|
|
KEVQ_UNLOCK(kevq);
|
|
CTR2(KTR_KQ, "kqueue_scan: knote_free marker %p td %d", marker, td->td_tid);
|
|
knote_free(marker);
|
|
done_nl:
|
|
KEVQ_NOTOWNED(kevq);
|
|
if (nkev != 0)
|
|
error = k_ops->k_copyout(k_ops->arg, keva, nkev);
|
|
td->td_retval[0] = maxevents - count;
|
|
return (error);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
kqueue_ioctl(struct file *fp, u_long cmd, void *data,
|
|
struct ucred *active_cred, struct thread *td)
|
|
{
|
|
/*
|
|
* Enabling sigio causes two major problems:
|
|
* 1) infinite recursion:
|
|
* Synopsys: kevent is being used to track signals and have FIOASYNC
|
|
* set. On receipt of a signal this will cause a kqueue to recurse
|
|
* into itself over and over. Sending the sigio causes the kqueue
|
|
* to become ready, which in turn posts sigio again, forever.
|
|
* Solution: this can be solved by setting a flag in the kqueue that
|
|
* we have a SIGIO in progress.
|
|
* 2) locking problems:
|
|
* Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
|
|
* us above the proc and pgrp locks.
|
|
* Solution: Post a signal using an async mechanism, being sure to
|
|
* record a generation count in the delivery so that we do not deliver
|
|
* a signal to the wrong process.
|
|
*
|
|
* Note, these two mechanisms are somewhat mutually exclusive!
|
|
*/
|
|
#if 0
|
|
struct kqueue *kq;
|
|
|
|
kq = fp->f_data;
|
|
switch (cmd) {
|
|
case FIOASYNC:
|
|
if (*(int *)data) {
|
|
kq->kq_state |= KQ_ASYNC;
|
|
} else {
|
|
kq->kq_state &= ~KQ_ASYNC;
|
|
}
|
|
return (0);
|
|
|
|
case FIOSETOWN:
|
|
return (fsetown(*(int *)data, &kq->kq_sigio));
|
|
|
|
case FIOGETOWN:
|
|
*(int *)data = fgetown(&kq->kq_sigio);
|
|
return (0);
|
|
}
|
|
#endif
|
|
struct kqueue *kq;
|
|
int error = 0;
|
|
|
|
kq = fp->f_data;
|
|
CTR2(KTR_KQ, "kqueue_ioctl: received: kq %p cmd: 0x%lx", kq, cmd);
|
|
switch (cmd) {
|
|
case FKQMULTI:
|
|
KQ_LOCK(kq);
|
|
if ((kq->kq_state & KQ_FLAG_INIT) == KQ_FLAG_INIT) {
|
|
error = (EINVAL);
|
|
} else {
|
|
CTR2(KTR_KQ, "kqueue_ioctl: multi flag set for kq %p, scheduler flags: %d", kq, *(int*)data);
|
|
kq->kq_state |= (KQ_FLAG_INIT | KQ_FLAG_MULTI);
|
|
kq->kq_sched_flags = *(int*)data;
|
|
}
|
|
KQ_UNLOCK(kq);
|
|
break;
|
|
default:
|
|
error = (ENOTTY);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
|
|
struct thread *td)
|
|
{
|
|
struct kqueue *kq;
|
|
struct kevq *kevq;
|
|
int revents = 0;
|
|
int error;
|
|
|
|
if ((error = kqueue_acquire_both(fp, td, &kq, &kevq)))
|
|
return POLLERR;
|
|
|
|
KQ_LOCK(kq);
|
|
if ((kq->kq_state & KQ_FLAG_MULTI) != KQ_FLAG_MULTI ) {
|
|
revents = 0;
|
|
} else {
|
|
if (events & (POLLIN | POLLRDNORM)) {
|
|
if (kevq->kn_count) {
|
|
revents |= events & (POLLIN | POLLRDNORM);
|
|
} else {
|
|
selrecord(td, &kq->kq_sel);
|
|
if (SEL_WAITING(&kq->kq_sel))
|
|
kq->kq_state |= KQ_SEL;
|
|
}
|
|
}
|
|
}
|
|
|
|
kqueue_release(kq, 1);
|
|
KQ_UNLOCK(kq);
|
|
kevq_release(kevq, 0);
|
|
return (revents);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
|
|
struct thread *td)
|
|
{
|
|
|
|
bzero((void *)st, sizeof *st);
|
|
/*
|
|
* We no longer return kq_count because the unlocked value is useless.
|
|
* If you spent all this time getting the count, why not spend your
|
|
* syscall better by calling kevent?
|
|
*
|
|
* XXX - This is needed for libc_r.
|
|
*/
|
|
st->st_mode = S_IFIFO;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
kevq_destroy(struct kevq *kevq)
|
|
{
|
|
CTR1(KTR_KQ, "kevq_destroy for %p", kevq);
|
|
free(kevq, M_KQUEUE);
|
|
}
|
|
|
|
/* This is called on every kevq when kqueue exits
|
|
This is also called when a thread exits/crashes (currently racing, also to make it work need to reconfigure kq->ck_evq)
|
|
* a ref cnt must be held */
|
|
void
|
|
kevq_drain(struct kevq *kevq)
|
|
{
|
|
struct kqueue *kq;
|
|
struct knote *kn;
|
|
struct kqdom *kqd;
|
|
struct kevqlist *kevq_list;
|
|
CTR3(KTR_KQ, "kevq_drain for %p (refcnt = %d) with %d knotes", kevq, kevq->kevq_refcnt, kevq->kn_count);
|
|
kq = kevq->kq;
|
|
kqd = kevq->kevq_kqd;
|
|
|
|
KQ_NOTOWNED(kq);
|
|
KEVQ_NOTOWNED(kevq);
|
|
|
|
KEVQ_LOCK(kevq);
|
|
if(kevq->kevq_state == KEVQ_CLOSING) {
|
|
// already closing, dereference
|
|
kevq_release(kevq, 1);
|
|
KEVQ_UNLOCK(kevq);
|
|
return;
|
|
} else {
|
|
kevq->kevq_state |= KEVQ_CLOSING;
|
|
}
|
|
|
|
// Wait for extra references to the kevq
|
|
if (kevq->kevq_refcnt > 1)
|
|
msleep(&kevq->kevq_refcnt, &kevq->lock, PSOCK, "kevqclose1", 0);
|
|
|
|
KEVQ_OWNED(kevq);
|
|
KASSERT(kevq->kevq_refcnt == 1, ("other refs of kevq are out there!"));
|
|
|
|
/* drain all knotes on the kevq */
|
|
while ((kn = TAILQ_FIRST(&kevq->kn_head)) != NULL) {
|
|
KEVQ_OWNED(kevq);
|
|
KN_FLUX_LOCK(kn);
|
|
/* Wait for kn to stablize */
|
|
if (kn_in_flux(kn)) {
|
|
kn->kn_fluxwait = 1;
|
|
CTR2(KTR_KQ, "kevq_drain %p fluxwait knote %p", kevq, kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
msleep(kn, &kevq->lock, PSOCK, "kevqclose2", 0);
|
|
continue;
|
|
}
|
|
|
|
CTR2(KTR_KQ, "kevq_drain %p draining knote %p", kevq, kn);
|
|
|
|
KN_FLUX_OWNED(kn);
|
|
KASSERT(!kn_in_flux(kn), ("knote is still influx"));
|
|
|
|
knote_enter_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
|
|
knote_dequeue(kn);
|
|
|
|
if ((kq->kq_state & KQ_FLAG_MULTI) == KQ_FLAG_MULTI && (kq->kq_state & KQ_CLOSING) != KQ_CLOSING && (kn->kn_status & KN_MARKER) == 0) {
|
|
KEVQ_UNLOCK(kevq);
|
|
/* TODO: When we knote activate, if the ev has EV_CLEAR set, maybe we shouldn't activate the event
|
|
* if there hasn't been activities on the fd
|
|
*/
|
|
knote_activate(kn);
|
|
KEVQ_LOCK(kevq);
|
|
}
|
|
|
|
KN_LEAVE_FLUX_WAKEUP(kn);
|
|
}
|
|
|
|
KASSERT(kevq->kn_count == 0, ("some knotes are left"));
|
|
KEVQ_OWNED(kevq);
|
|
KEVQ_UNLOCK(kevq);
|
|
|
|
//
|
|
// Here it's guaranteed that no knotes contain a pointer to the kevq
|
|
//
|
|
// First, all knotes with kn->kn_kevq != kevq before queuing is not an issue
|
|
// because if kn->kn_kevq == NULL, scheduler will grab kevq from either kqdom (QC) or kevqlist (RR) or kn->orgkevq (EV_AFFINITY)
|
|
// EV_AFFINITY is currently broken (need to keep a list of EV_AFFINITY for each kevq and delete them atomically)
|
|
// KEVQs grabbed from QC or RR are locked with QC or RR locked, therefore they are either grabbed before kevq invalidation
|
|
// or after kevq detachment. (In between doesn't matter since kevq is already invalidated)
|
|
// In the former case, the knote would be queued to the kevq and later drained as usual.
|
|
// In the latter case, the kevq would not be found at all because it's already removed from QC or RR.
|
|
//
|
|
// Second, for all knotes with kn->kn_kevq == kevq. They would be already queued to kevq
|
|
// and will be dequeued later (kn->kn_kevq will be set to another valid kevq)
|
|
//
|
|
|
|
if ((kq->kq_state & KQ_FLAG_MULTI) == KQ_FLAG_MULTI) {
|
|
// drop from KQ Domain
|
|
KQ_LOCK(kq);
|
|
KQD_LOCK(kqd);
|
|
KEVQ_TH_LOCK(kevq->kevq_th);
|
|
|
|
// detach from kevq_th
|
|
LIST_REMOVE(kevq, kevq_th_tqe);
|
|
kevq_list = &kevq->kevq_th->kevq_hash[KEVQ_HASH((unsigned long long)kq, kevq->kevq_th->kevq_hashmask)];
|
|
LIST_REMOVE(kevq, kevq_th_e);
|
|
|
|
// detach from kqdom
|
|
kqdom_remove(kqd, kevq);
|
|
|
|
// detach from kqueue
|
|
if (kq->kq_ckevq == kevq) {
|
|
kq->kq_ckevq = LIST_NEXT(kevq, kq_e);
|
|
}
|
|
LIST_REMOVE(kevq, kq_e);
|
|
|
|
KEVQ_TH_UNLOCK(kevq->kevq_th);
|
|
KQD_UNLOCK(kqd);
|
|
KQ_UNLOCK(kq);
|
|
} else {
|
|
KQ_LOCK(kq);
|
|
kq->kq_kevq = NULL;
|
|
KQ_UNLOCK(kq);
|
|
}
|
|
|
|
/* delete the kevq */
|
|
kevq_destroy(kevq);
|
|
}
|
|
|
|
/* kevq is only used when kq is in single mode
|
|
in this case kevq has been referenced by the caller */
|
|
static void
|
|
kqueue_drain(struct kqueue *kq, struct kevq *kevq, struct thread *td)
|
|
{
|
|
struct knote *kn;
|
|
int i;
|
|
|
|
CTR2(KTR_KQ, "kqueue_drain on %p. args kevq %p", kq, kevq);
|
|
|
|
KQ_LOCK(kq);
|
|
|
|
KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
|
|
("kqueue already closing"));
|
|
kq->kq_state |= KQ_CLOSING;
|
|
if (kq->kq_refcnt > 1)
|
|
msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
|
|
|
|
KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
|
|
|
|
KASSERT(knlist_empty(&kq->kq_sel.si_note),
|
|
("kqueue's knlist not empty"));
|
|
|
|
// destroy knotes first
|
|
for (i = 0; i < kq->kq_knlistsize; i++) {
|
|
while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
|
|
KN_FLUX_LOCK(kn);
|
|
if (kn_in_flux(kn)) {
|
|
kn->kn_fluxwait = 1;
|
|
KN_FLUX_UNLOCK(kn);
|
|
msleep(kn, &kq->kq_lock, PSOCK, "kqclo1", 0);
|
|
continue;
|
|
}
|
|
knote_enter_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
KQ_UNLOCK(kq);
|
|
knote_drop(kn, td);
|
|
KQ_LOCK(kq);
|
|
}
|
|
}
|
|
if (kq->kq_knhashmask != 0) {
|
|
for (i = 0; i <= kq->kq_knhashmask; i++) {
|
|
while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
|
|
KN_FLUX_LOCK(kn);
|
|
if (kn_in_flux(kn)) {
|
|
kn->kn_fluxwait = 1;
|
|
KN_FLUX_UNLOCK(kn);
|
|
msleep(kn, &kq->kq_lock, PSOCK, "kqclo2", 0);
|
|
continue;
|
|
}
|
|
knote_enter_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
KQ_UNLOCK(kq);
|
|
knote_drop(kn, td);
|
|
KQ_LOCK(kq);
|
|
}
|
|
}
|
|
}
|
|
|
|
// destroy kqdoms and kevqs
|
|
if ((kq->kq_state & KQ_FLAG_MULTI) == KQ_FLAG_MULTI) {
|
|
while((kevq = LIST_FIRST(&kq->kq_kevqlist)) != NULL) {
|
|
KQ_UNLOCK(kq);
|
|
if (kevq_acquire(kevq) == 0)
|
|
kevq_drain(kevq);
|
|
KQ_LOCK(kq);
|
|
}
|
|
|
|
KQ_OWNED(kq);
|
|
kqdom_destroy(kq->kq_kqd);
|
|
} else {
|
|
KQ_UNLOCK(kq);
|
|
// we already have a reference for single threaded mode
|
|
kevq_drain(kq->kq_kevq);
|
|
KQ_LOCK(kq);
|
|
}
|
|
|
|
KQ_OWNED(kq);
|
|
|
|
if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
|
|
kq->kq_state |= KQ_TASKDRAIN;
|
|
msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
|
|
}
|
|
|
|
if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
|
|
selwakeuppri(&kq->kq_sel, PSOCK);
|
|
if (!SEL_WAITING(&kq->kq_sel))
|
|
kq->kq_state &= ~KQ_SEL;
|
|
}
|
|
|
|
KQ_UNLOCK(kq);
|
|
}
|
|
|
|
static void
|
|
kqueue_destroy(struct kqueue *kq)
|
|
{
|
|
|
|
KASSERT(kq->kq_fdp == NULL,
|
|
("kqueue still attached to a file descriptor"));
|
|
seldrain(&kq->kq_sel);
|
|
knlist_destroy(&kq->kq_sel.si_note);
|
|
mtx_destroy(&kq->kq_lock);
|
|
|
|
if (kq->kq_knhash != NULL)
|
|
free(kq->kq_knhash, M_KQUEUE);
|
|
if (kq->kq_knlist != NULL)
|
|
free(kq->kq_knlist, M_KQUEUE);
|
|
|
|
funsetown(&kq->kq_sigio);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
kqueue_close(struct file *fp, struct thread *td)
|
|
{
|
|
struct kqueue *kq = fp->f_data;
|
|
struct kevq *kevq = NULL;
|
|
struct filedesc *fdp;
|
|
int error;
|
|
int filedesc_unlock;
|
|
|
|
if ((kq->kq_state & KQ_FLAG_MULTI) == KQ_FLAG_MULTI) {
|
|
// only acquire the kqueue lock here
|
|
if ((error = kqueue_acquire(fp, &kq)))
|
|
return error;
|
|
} else {
|
|
// acquire both
|
|
if ((error = kqueue_acquire_both(fp, td, &kq, &kevq)))
|
|
return error;
|
|
}
|
|
|
|
kqueue_drain(kq, kevq, td);
|
|
|
|
/*
|
|
* We could be called due to the knote_drop() doing fdrop(),
|
|
* called from kqueue_register(). In this case the global
|
|
* lock is owned, and filedesc sx is locked before, to not
|
|
* take the sleepable lock after non-sleepable.
|
|
*/
|
|
fdp = kq->kq_fdp;
|
|
kq->kq_fdp = NULL;
|
|
if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
|
|
FILEDESC_XLOCK(fdp);
|
|
filedesc_unlock = 1;
|
|
} else
|
|
filedesc_unlock = 0;
|
|
TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
|
|
if (filedesc_unlock)
|
|
FILEDESC_XUNLOCK(fdp);
|
|
|
|
kqueue_destroy(kq);
|
|
chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
|
|
crfree(kq->kq_cred);
|
|
free(kq, M_KQUEUE);
|
|
fp->f_data = NULL;
|
|
CTR1(KTR_KQ, "kqueue_close: %p.", kq);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
|
|
{
|
|
|
|
kif->kf_type = KF_TYPE_KQUEUE;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
kevq_wakeup(struct kevq* kevq)
|
|
{
|
|
KEVQ_OWNED(kevq);
|
|
if ((kevq->kevq_state & KEVQ_SLEEP) == KEVQ_SLEEP) {
|
|
kevq->kevq_state &= ~KEVQ_SLEEP;
|
|
}
|
|
wakeup(kevq);
|
|
}
|
|
|
|
static void
|
|
kqueue_wakeup(struct kqueue *kq)
|
|
{
|
|
KQ_OWNED(kq);
|
|
if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
|
|
selwakeuppri(&kq->kq_sel, PSOCK);
|
|
if (!SEL_WAITING(&kq->kq_sel))
|
|
kq->kq_state &= ~KQ_SEL;
|
|
}
|
|
if (!knlist_empty(&kq->kq_sel.si_note))
|
|
kqueue_schedtask(kq);
|
|
if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
|
|
pgsigio(&kq->kq_sigio, SIGIO, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Walk down a list of knotes, activating them if their event has triggered.
|
|
*
|
|
* There is a possibility to optimize in the case of one kq watching another.
|
|
* Instead of scheduling a task to wake it up, you could pass enough state
|
|
* down the chain to make up the parent kqueue. Make this code functional
|
|
* first.
|
|
*/
|
|
void
|
|
knote(struct knlist *list, long hint, int lockflags)
|
|
{
|
|
struct kqueue *kq;
|
|
struct knote *kn, *tkn;
|
|
int require_kqlock, kn_active;
|
|
|
|
if (list == NULL)
|
|
return;
|
|
|
|
KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
|
|
|
|
if ((lockflags & KNF_LISTLOCKED) == 0)
|
|
list->kl_lock(list->kl_lockarg);
|
|
|
|
/*
|
|
* If we unlock the list lock (and enter influx), we can
|
|
* eliminate the kqueue scheduling, but this will introduce
|
|
* four lock/unlock's for each knote to test. Also, marker
|
|
* would be needed to keep iteration position, since filters
|
|
* or other threads could remove events.
|
|
*/
|
|
SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
|
|
CTR1(KTR_KQ, "knote() scanning kn %p", kn);
|
|
KN_FLUX_LOCK(kn);
|
|
if (kn_in_flux(kn) && ((kn->kn_status & KN_SCAN) == 0)) {
|
|
/*
|
|
* Do not process the influx notes, except for
|
|
* the influx coming from the kq unlock in the
|
|
* kqueue_scan(). In the later case, we do
|
|
* not interfere with the scan, since the code
|
|
* fragment in kqueue_scan() locks the knlist,
|
|
* and cannot proceed until we finished.
|
|
*/
|
|
KN_FLUX_UNLOCK(kn);
|
|
} else {
|
|
// either not influx or being scanned
|
|
kq = kn->kn_kq;
|
|
knote_enter_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
|
|
require_kqlock = ((lockflags & KNF_NOKQLOCK) == 0);
|
|
|
|
if (require_kqlock)
|
|
KQ_LOCK(kq);
|
|
|
|
kn_active = kn->kn_fop->f_event(kn, hint);
|
|
|
|
if (require_kqlock)
|
|
KQ_UNLOCK(kq);
|
|
|
|
if (kn_active)
|
|
knote_activate(kn);
|
|
|
|
KN_LEAVE_FLUX_WAKEUP(kn);
|
|
}
|
|
}
|
|
if ((lockflags & KNF_LISTLOCKED) == 0)
|
|
list->kl_unlock(list->kl_lockarg);
|
|
}
|
|
|
|
static void
|
|
knote_flux_wakeup_ul(struct knote *kn)
|
|
{
|
|
KN_FLUX_NOTOWNED(kn);
|
|
KN_FLUX_LOCK(kn);
|
|
knote_flux_wakeup(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
}
|
|
|
|
static void
|
|
knote_flux_wakeup(struct knote *kn)
|
|
{
|
|
KN_FLUX_OWNED(kn);
|
|
if (kn->kn_fluxwait) {
|
|
CTR1(KTR_KQ, "waking up kn %p", kn);
|
|
kn->kn_fluxwait = 0;
|
|
wakeup(kn);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* activate a knote
|
|
* the knote should be marked in flux and the knote flux lock should not be owned
|
|
* none of the other locks should be held
|
|
*/
|
|
static void
|
|
knote_activate(struct knote *kn)
|
|
{
|
|
struct kqueue *kq;
|
|
kq = kn->kn_kq;
|
|
|
|
KQ_NOTOWNED(kq);
|
|
|
|
CTR2(KTR_KQ, "knote_activate: kn %p, flags %d", kn, kn->kn_status);
|
|
KN_FLUX_NOTOWNED(kn);
|
|
KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
|
|
|
|
kn->kn_status |= KN_ACTIVE;
|
|
|
|
if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
|
|
knote_sched(kn);
|
|
} else {
|
|
CTR2(KTR_KQ, "knote_activate: kn %p, flags %d not sched", kn, kn->kn_status);
|
|
}
|
|
|
|
#ifdef ENABLE_SELECT
|
|
KQ_LOCK(kq);
|
|
kqueue_wakeup(kq);
|
|
KQ_UNLOCK(kq);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* add a knote to a knlist
|
|
*/
|
|
void
|
|
knlist_add(struct knlist *knl, struct knote *kn, int islocked)
|
|
{
|
|
CTR1(KTR_KQ, "knlist_add kn %p", kn);
|
|
KNL_ASSERT_LOCK(knl, islocked);
|
|
KQ_NOTOWNED(kn->kn_kq);
|
|
KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
|
|
KASSERT((kn->kn_status & KN_DETACHED) != 0,
|
|
("knote %p was not detached", kn));
|
|
if (!islocked)
|
|
knl->kl_lock(knl->kl_lockarg);
|
|
SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
|
|
if (!islocked)
|
|
knl->kl_unlock(knl->kl_lockarg);
|
|
KQ_LOCK(kn->kn_kq);
|
|
kn->kn_knlist = knl;
|
|
kn->kn_status &= ~KN_DETACHED;
|
|
KQ_UNLOCK(kn->kn_kq);
|
|
}
|
|
|
|
static void
|
|
knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
|
|
int kqislocked)
|
|
{
|
|
|
|
KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
|
|
KNL_ASSERT_LOCK(knl, knlislocked);
|
|
mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
|
|
KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
|
|
KASSERT((kn->kn_status & KN_DETACHED) == 0,
|
|
("knote %p was already detached", kn));
|
|
if (!knlislocked)
|
|
knl->kl_lock(knl->kl_lockarg);
|
|
SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
|
|
kn->kn_knlist = NULL;
|
|
if (!knlislocked)
|
|
kn_list_unlock(knl);
|
|
if (!kqislocked)
|
|
KQ_LOCK(kn->kn_kq);
|
|
kn->kn_status |= KN_DETACHED;
|
|
if (!kqislocked)
|
|
KQ_UNLOCK(kn->kn_kq);
|
|
}
|
|
|
|
/*
|
|
* remove knote from the specified knlist
|
|
*/
|
|
void
|
|
knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
|
|
{
|
|
|
|
knlist_remove_kq(knl, kn, islocked, 0);
|
|
}
|
|
|
|
int
|
|
knlist_empty(struct knlist *knl)
|
|
{
|
|
|
|
KNL_ASSERT_LOCKED(knl);
|
|
return (SLIST_EMPTY(&knl->kl_list));
|
|
}
|
|
|
|
static struct mtx knlist_lock;
|
|
MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
|
|
MTX_DEF);
|
|
static void knlist_mtx_lock(void *arg);
|
|
static void knlist_mtx_unlock(void *arg);
|
|
|
|
static void
|
|
knlist_mtx_lock(void *arg)
|
|
{
|
|
|
|
mtx_lock((struct mtx *)arg);
|
|
}
|
|
|
|
static void
|
|
knlist_mtx_unlock(void *arg)
|
|
{
|
|
|
|
mtx_unlock((struct mtx *)arg);
|
|
}
|
|
|
|
static void
|
|
knlist_mtx_assert_locked(void *arg)
|
|
{
|
|
|
|
mtx_assert((struct mtx *)arg, MA_OWNED);
|
|
}
|
|
|
|
static void
|
|
knlist_mtx_assert_unlocked(void *arg)
|
|
{
|
|
|
|
mtx_assert((struct mtx *)arg, MA_NOTOWNED);
|
|
}
|
|
|
|
static void
|
|
knlist_rw_rlock(void *arg)
|
|
{
|
|
|
|
rw_rlock((struct rwlock *)arg);
|
|
}
|
|
|
|
static void
|
|
knlist_rw_runlock(void *arg)
|
|
{
|
|
|
|
rw_runlock((struct rwlock *)arg);
|
|
}
|
|
|
|
static void
|
|
knlist_rw_assert_locked(void *arg)
|
|
{
|
|
|
|
rw_assert((struct rwlock *)arg, RA_LOCKED);
|
|
}
|
|
|
|
static void
|
|
knlist_rw_assert_unlocked(void *arg)
|
|
{
|
|
|
|
rw_assert((struct rwlock *)arg, RA_UNLOCKED);
|
|
}
|
|
|
|
void
|
|
knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
|
|
void (*kl_unlock)(void *),
|
|
void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
|
|
{
|
|
|
|
if (lock == NULL)
|
|
knl->kl_lockarg = &knlist_lock;
|
|
else
|
|
knl->kl_lockarg = lock;
|
|
|
|
if (kl_lock == NULL)
|
|
knl->kl_lock = knlist_mtx_lock;
|
|
else
|
|
knl->kl_lock = kl_lock;
|
|
if (kl_unlock == NULL)
|
|
knl->kl_unlock = knlist_mtx_unlock;
|
|
else
|
|
knl->kl_unlock = kl_unlock;
|
|
if (kl_assert_locked == NULL)
|
|
knl->kl_assert_locked = knlist_mtx_assert_locked;
|
|
else
|
|
knl->kl_assert_locked = kl_assert_locked;
|
|
if (kl_assert_unlocked == NULL)
|
|
knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
|
|
else
|
|
knl->kl_assert_unlocked = kl_assert_unlocked;
|
|
|
|
knl->kl_autodestroy = 0;
|
|
SLIST_INIT(&knl->kl_list);
|
|
}
|
|
|
|
void
|
|
knlist_init_mtx(struct knlist *knl, struct mtx *lock)
|
|
{
|
|
|
|
knlist_init(knl, lock, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
struct knlist *
|
|
knlist_alloc(struct mtx *lock)
|
|
{
|
|
struct knlist *knl;
|
|
|
|
knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
|
|
knlist_init_mtx(knl, lock);
|
|
return (knl);
|
|
}
|
|
|
|
void
|
|
knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
|
|
{
|
|
|
|
knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
|
|
knlist_rw_assert_locked, knlist_rw_assert_unlocked);
|
|
}
|
|
|
|
void
|
|
knlist_destroy(struct knlist *knl)
|
|
{
|
|
|
|
KASSERT(KNLIST_EMPTY(knl),
|
|
("destroying knlist %p with knotes on it", knl));
|
|
}
|
|
|
|
void
|
|
knlist_detach(struct knlist *knl)
|
|
{
|
|
|
|
KNL_ASSERT_LOCKED(knl);
|
|
knl->kl_autodestroy = 1;
|
|
if (knlist_empty(knl)) {
|
|
knlist_destroy(knl);
|
|
free(knl, M_KQUEUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Even if we are locked, we may need to drop the lock to allow any influx
|
|
* knotes time to "settle".
|
|
*/
|
|
void
|
|
knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
|
|
{
|
|
struct knote *kn, *kn2;
|
|
struct kqueue *kq;
|
|
|
|
KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
|
|
if (islocked)
|
|
KNL_ASSERT_LOCKED(knl);
|
|
else {
|
|
KNL_ASSERT_UNLOCKED(knl);
|
|
again: /* need to reacquire lock since we have dropped it */
|
|
knl->kl_lock(knl->kl_lockarg);
|
|
}
|
|
|
|
SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
|
|
kq = kn->kn_kq;
|
|
KQ_LOCK(kq);
|
|
KN_FLUX_LOCK(kn);
|
|
if (kn_in_flux(kn)) {
|
|
KN_FLUX_UNLOCK(kn);
|
|
KQ_UNLOCK(kq);
|
|
continue;
|
|
}
|
|
knlist_remove_kq(knl, kn, 1, 1);
|
|
if (killkn) {
|
|
knote_enter_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
KQ_UNLOCK(kq);
|
|
knote_drop_detached(kn, td);
|
|
} else {
|
|
/* Make sure cleared knotes disappear soon */
|
|
kn->kn_flags |= EV_EOF | EV_ONESHOT;
|
|
KN_FLUX_UNLOCK(kn);
|
|
KQ_UNLOCK(kq);
|
|
}
|
|
kq = NULL;
|
|
}
|
|
|
|
if (!SLIST_EMPTY(&knl->kl_list)) {
|
|
/* there are still in flux knotes remaining */
|
|
kn = SLIST_FIRST(&knl->kl_list);
|
|
kq = kn->kn_kq;
|
|
KQ_LOCK(kq);
|
|
KN_FLUX_LOCK(kn);
|
|
KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
|
|
knl->kl_unlock(knl->kl_lockarg);
|
|
kn->kn_fluxwait = 1;
|
|
KN_FLUX_UNLOCK(kn);
|
|
msleep(kn, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
|
|
kq = NULL;
|
|
goto again;
|
|
}
|
|
|
|
if (islocked)
|
|
KNL_ASSERT_LOCKED(knl);
|
|
else {
|
|
knl->kl_unlock(knl->kl_lockarg);
|
|
KNL_ASSERT_UNLOCKED(knl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove all knotes referencing a specified fd must be called with FILEDESC
|
|
* lock. This prevents a race where a new fd comes along and occupies the
|
|
* entry and we attach a knote to the fd.
|
|
*/
|
|
void
|
|
knote_fdclose(struct thread *td, int fd)
|
|
{
|
|
struct filedesc *fdp = td->td_proc->p_fd;
|
|
struct kqueue *kq;
|
|
struct knote *kn;
|
|
int influx;
|
|
|
|
FILEDESC_XLOCK_ASSERT(fdp);
|
|
|
|
/*
|
|
* We shouldn't have to worry about new kevents appearing on fd
|
|
* since filedesc is locked.
|
|
*/
|
|
TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
|
|
KQ_LOCK(kq);
|
|
|
|
again:
|
|
influx = 0;
|
|
while (kq->kq_knlistsize > fd &&
|
|
(kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
|
|
KQ_OWNED(kq);
|
|
KN_FLUX_LOCK(kn);
|
|
if (kn_in_flux(kn)) {
|
|
/* someone else might be waiting on our knote */
|
|
if (influx)
|
|
knote_flux_wakeup(kn);
|
|
kn->kn_fluxwait = 1;
|
|
KN_FLUX_UNLOCK(kn);
|
|
msleep(kn, &kq->kq_lock, PSOCK, "kqflxwt4", 0);
|
|
goto again;
|
|
}
|
|
knote_enter_flux(kn);
|
|
KN_FLUX_UNLOCK(kn);
|
|
KQ_UNLOCK(kq);
|
|
influx = 1;
|
|
knote_drop(kn, td);
|
|
KQ_LOCK(kq);
|
|
}
|
|
KQ_UNLOCK(kq);
|
|
}
|
|
}
|
|
|
|
static int
|
|
knote_attach(struct knote *kn, struct kqueue *kq)
|
|
{
|
|
struct klist *list;
|
|
|
|
KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
|
|
KQ_OWNED(kq);
|
|
|
|
if ((kq->kq_state & KQ_CLOSING) != 0)
|
|
return (EBADF);
|
|
if (kn->kn_fop->f_isfd) {
|
|
if (kn->kn_id >= kq->kq_knlistsize)
|
|
return (ENOMEM);
|
|
list = &kq->kq_knlist[kn->kn_id];
|
|
} else {
|
|
if (kq->kq_knhash == NULL)
|
|
return (ENOMEM);
|
|
list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
|
|
}
|
|
SLIST_INSERT_HEAD(list, kn, kn_link);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
knote_drop(struct knote *kn, struct thread *td)
|
|
{
|
|
|
|
if ((kn->kn_status & KN_DETACHED) == 0)
|
|
kn->kn_fop->f_detach(kn);
|
|
knote_drop_detached(kn, td);
|
|
}
|
|
|
|
static void
|
|
knote_drop_detached(struct knote *kn, struct thread *td)
|
|
{
|
|
struct kqueue *kq;
|
|
struct kevq *kevq;
|
|
struct klist *list;
|
|
|
|
kq = kn->kn_kq;
|
|
kevq = kn->kn_kevq;
|
|
|
|
KASSERT((kn->kn_status & KN_DETACHED) != 0,
|
|
("knote %p still attached", kn));
|
|
KQ_NOTOWNED(kq);
|
|
|
|
KQ_LOCK(kq);
|
|
|
|
KASSERT(kn->kn_influx == 1,
|
|
("knote_drop called on %p with influx %d", kn, kn->kn_influx));
|
|
|
|
if (kn->kn_fop->f_isfd)
|
|
list = &kq->kq_knlist[kn->kn_id];
|
|
else
|
|
list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
|
|
|
|
if (!SLIST_EMPTY(list))
|
|
SLIST_REMOVE(list, kn, knote, kn_link);
|
|
|
|
if (kn->kn_status & KN_QUEUED) {
|
|
KEVQ_LOCK(kevq);
|
|
knote_dequeue(kn);
|
|
KEVQ_UNLOCK(kevq);
|
|
}
|
|
|
|
KN_LEAVE_FLUX_WAKEUP(kn);
|
|
KQ_UNLOCK(kq);
|
|
|
|
if (kn->kn_fop->f_isfd) {
|
|
fdrop(kn->kn_fp, td);
|
|
kn->kn_fp = NULL;
|
|
}
|
|
kqueue_fo_release(kn->kn_kevent.filter);
|
|
kn->kn_fop = NULL;
|
|
knote_free(kn);
|
|
}
|
|
|
|
|
|
/* select the next kevq based on knote and scheduler flags and locks the returned kevq */
|
|
static struct kevq *
|
|
knote_next_kevq(struct knote *kn)
|
|
{
|
|
struct kqdom *kqd;
|
|
struct kqueue *kq;
|
|
struct kevq *next_kevq;
|
|
|
|
next_kevq = NULL;
|
|
kq = kn->kn_kq;
|
|
|
|
CTR1(KTR_KQ, "knote_next_kevq: processing kn %p", kn);
|
|
|
|
if ((kq->kq_state & KQ_FLAG_MULTI) == 0) {
|
|
// single threaded mode, just return the current kevq
|
|
KQ_LOCK(kn->kn_kq);
|
|
if ((kq->kq_state & KQ_CLOSING) == 0)
|
|
next_kevq = kn->kn_kq->kq_kevq;
|
|
KQ_UNLOCK(kn->kn_kq);
|
|
|
|
if (next_kevq != NULL)
|
|
KEVQ_LOCK(next_kevq);
|
|
|
|
CTR2(KTR_KQ, "knote_next_kevq: [LEGACY] next kevq %p for kn %p", next_kevq, kn);
|
|
return next_kevq;
|
|
}
|
|
|
|
if ((kn->kn_flags & EV_AFFINITY) == EV_AFFINITY) {
|
|
next_kevq = kn->kn_org_kevq;
|
|
KEVQ_LOCK(next_kevq);
|
|
if (!KEVQ_AVAIL(next_kevq)) {
|
|
KEVQ_UNLOCK(next_kevq);
|
|
next_kevq = NULL;
|
|
}
|
|
|
|
CTR2(KTR_KQ, "knote_next_kevq: [AFFIN] next kevq %p for kn %p", kn, next_kevq);
|
|
return next_kevq;
|
|
}
|
|
|
|
if ((kq->kq_sched_flags & KQ_SCHED_QUEUE) != 0) {
|
|
if (kn->kn_kqd == NULL) {
|
|
/* the first time knote is queued, record the kqdom */
|
|
kn->kn_kqd = kqdom_find(kq->kq_kqd, PCPU_GET(cpuid));
|
|
|
|
KASSERT(kn->kn_kqd != NULL, ("knote scheduled on an unidentified CPU2"));
|
|
CTR2(KTR_KQ, "knote_next_kevq: [QUEUE] knote %p attached to kqdom id %d", kn, kn->kn_kqd->id);
|
|
}
|
|
|
|
kqd = kn->kn_kqd;
|
|
KQD_LOCK(kqd);
|
|
|
|
KEVQ_NEXT_AVAIL_LOCKED(next_kevq, &kqd->kqd_kevqlist, kqd->kqd_ckevq, kqd_e);
|
|
kqd->kqd_ckevq = next_kevq;
|
|
|
|
KQD_UNLOCK(kqd);
|
|
|
|
CTR2(KTR_KQ, "knote_next_kevq: [QUEUE] next kevq %p for kn %p", next_kevq, kn);
|
|
}
|
|
|
|
// generic round-robbin
|
|
if (next_kevq == NULL) {
|
|
KQ_LOCK(kq);
|
|
|
|
KEVQ_NEXT_AVAIL_LOCKED(next_kevq, &kq->kq_kevqlist, kq->kq_ckevq, kq_e);
|
|
kq->kq_ckevq = next_kevq;
|
|
|
|
KQ_UNLOCK(kq);
|
|
CTR2(KTR_KQ, "knote_next_kevq: [RR] next kevq %p for kn %p", next_kevq, kn);
|
|
}
|
|
|
|
if (next_kevq != NULL)
|
|
KEVQ_OWNED(next_kevq);
|
|
|
|
return next_kevq;
|
|
}
|
|
|
|
// if no kevqs are available for queueing, returns NULL
|
|
static void
|
|
knote_sched(struct knote *kn)
|
|
{
|
|
struct kevq *next_kevq;
|
|
|
|
KASSERT(kn_in_flux(kn), ("kn not in flux"));
|
|
|
|
// note that kevq will be locked after this
|
|
next_kevq = knote_next_kevq(kn);
|
|
|
|
CTR2(KTR_KQ, "knote_sched: next kevq %p for kn %p", next_kevq, kn);
|
|
|
|
if (next_kevq != NULL) {
|
|
KEVQ_OWNED(next_kevq);
|
|
knote_enqueue(kn, next_kevq);
|
|
KEVQ_UNLOCK(next_kevq);
|
|
}
|
|
}
|
|
|
|
static void
|
|
knote_enqueue(struct knote *kn, struct kevq *kevq)
|
|
{
|
|
struct kqueue *kq;
|
|
kq = kn->kn_kq;
|
|
|
|
CTR2(KTR_KQ, "knote_enqueue: kn %p to kevq %p", kn, kevq);
|
|
|
|
KEVQ_OWNED(kevq);
|
|
|
|
KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
|
|
KASSERT((kevq->kevq_state & KEVQ_CLOSING) == 0 && (kevq->kevq_state & KEVQ_RDY) != 0, ("kevq already closing or not ready"));
|
|
|
|
kn->kn_kevq = kevq;
|
|
kn->kn_status |= KN_QUEUED;
|
|
|
|
TAILQ_INSERT_TAIL(&kevq->kn_head, kn, kn_tqe);
|
|
kevq->kn_count++;
|
|
|
|
kevq_wakeup(kevq);
|
|
}
|
|
|
|
static void
|
|
knote_xinit(struct knote *kn)
|
|
{
|
|
mtx_init(&kn->kn_fluxlock, "kn_fluxlock", NULL, MTX_DEF | MTX_DUPOK);
|
|
}
|
|
|
|
static void
|
|
knote_dequeue(struct knote *kn)
|
|
{
|
|
struct kevq *kevq = kn->kn_kevq;
|
|
|
|
KEVQ_OWNED(kevq);
|
|
|
|
CTR2(KTR_KQ, "knote_dequeue: kn %p from kevq %p", kn, kevq);
|
|
KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
|
|
|
|
TAILQ_REMOVE(&kevq->kn_head, kn, kn_tqe);
|
|
kn->kn_status &= ~KN_QUEUED;
|
|
kn->kn_kevq = NULL;
|
|
kevq->kn_count--;
|
|
}
|
|
|
|
static void
|
|
knote_init(void)
|
|
{
|
|
|
|
knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
|
|
NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
}
|
|
SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
|
|
|
|
static struct knote *
|
|
knote_alloc(int mflag)
|
|
{
|
|
struct knote *ret = uma_zalloc(knote_zone, mflag | M_ZERO);
|
|
CTR1(KTR_KQ, "knote_alloc: allocating knote %p", ret);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
knote_free(struct knote *kn)
|
|
{
|
|
CTR1(KTR_KQ, "knote_free: kn %p", kn);
|
|
uma_zfree(knote_zone, kn);
|
|
}
|
|
|
|
/*
|
|
* Register the kev w/ the kq specified by fd.
|
|
*/
|
|
int
|
|
kqfd_register(int fd, struct kevent *kev, struct thread *td, int mflag)
|
|
{
|
|
struct kqueue *kq;
|
|
struct kevq *kevq;
|
|
struct file *fp;
|
|
cap_rights_t rights;
|
|
int error;
|
|
|
|
error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
|
|
if (error != 0)
|
|
return (error);
|
|
if ((error = kqueue_acquire_both(fp, td, &kq, &kevq)) != 0)
|
|
goto noacquire;
|
|
|
|
error = kqueue_register(kq, kevq, kev, td, mflag);
|
|
kqueue_release(kq, 0);
|
|
kevq_release(kevq, 0);
|
|
|
|
noacquire:
|
|
fdrop(fp, td);
|
|
return (error);
|
|
}
|