a108ab6394
The rxmonitor hook is called on each received packet. This can get very, very busy as the tx/rx/chanbusy registers are thus read each time a packet is received. Instead, shuffle out the true per-packet processing which is needed and move the rest of the ANI processing into a periodic event which runs every 100ms by default.
691 lines
17 KiB
C
691 lines
17 KiB
C
/*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2006 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
|
|
#include "ar5211/ar5211.h"
|
|
#include "ar5211/ar5211reg.h"
|
|
#include "ar5211/ar5211phy.h"
|
|
|
|
#include "ah_eeprom_v3.h"
|
|
|
|
#define AR_NUM_GPIO 6 /* 6 GPIO bits */
|
|
#define AR_GPIOD_MASK 0x2f /* 6-bit mask */
|
|
|
|
void
|
|
ar5211GetMacAddress(struct ath_hal *ah, uint8_t *mac)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
|
|
OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
|
|
OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
void
|
|
ar5211GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
|
|
{
|
|
static const uint8_t ones[IEEE80211_ADDR_LEN] =
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
|
|
OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
|
|
{
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Read 16 bits of data from the specified EEPROM offset.
|
|
*/
|
|
HAL_BOOL
|
|
ar5211EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
|
|
{
|
|
OS_REG_WRITE(ah, AR_EEPROM_ADDR, off);
|
|
OS_REG_WRITE(ah, AR_EEPROM_CMD, AR_EEPROM_CMD_READ);
|
|
|
|
if (!ath_hal_wait(ah, AR_EEPROM_STS,
|
|
AR_EEPROM_STS_READ_COMPLETE | AR_EEPROM_STS_READ_ERROR,
|
|
AR_EEPROM_STS_READ_COMPLETE)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: read failed for entry 0x%x\n", __func__, off);
|
|
return AH_FALSE;
|
|
}
|
|
*data = OS_REG_READ(ah, AR_EEPROM_DATA) & 0xffff;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
#ifdef AH_SUPPORT_WRITE_EEPROM
|
|
/*
|
|
* Write 16 bits of data to the specified EEPROM offset.
|
|
*/
|
|
HAL_BOOL
|
|
ar5211EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
|
|
{
|
|
return AH_FALSE;
|
|
}
|
|
#endif /* AH_SUPPORT_WRITE_EEPROM */
|
|
|
|
/*
|
|
* Attempt to change the cards operating regulatory domain to the given value
|
|
*/
|
|
HAL_BOOL
|
|
ar5211SetRegulatoryDomain(struct ath_hal *ah,
|
|
uint16_t regDomain, HAL_STATUS *status)
|
|
{
|
|
HAL_STATUS ecode;
|
|
|
|
if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
|
|
ecode = HAL_EINVAL;
|
|
goto bad;
|
|
}
|
|
/*
|
|
* Check if EEPROM is configured to allow this; must
|
|
* be a proper version and the protection bits must
|
|
* permit re-writing that segment of the EEPROM.
|
|
*/
|
|
if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
|
|
ecode = HAL_EEWRITE;
|
|
goto bad;
|
|
}
|
|
#ifdef AH_SUPPORT_WRITE_REGDOMAIN
|
|
if (ar5211EepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: set regulatory domain to %u (0x%x)\n",
|
|
__func__, regDomain, regDomain);
|
|
AH_PRIVATE(ah)->ah_currentRD = regDomain;
|
|
return AH_TRUE;
|
|
}
|
|
#endif
|
|
ecode = HAL_EIO;
|
|
bad:
|
|
if (status)
|
|
*status = ecode;
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Return the wireless modes (a,b,g,t) supported by hardware.
|
|
*
|
|
* This value is what is actually supported by the hardware
|
|
* and is unaffected by regulatory/country code settings.
|
|
*
|
|
*/
|
|
u_int
|
|
ar5211GetWirelessModes(struct ath_hal *ah)
|
|
{
|
|
u_int mode = 0;
|
|
|
|
if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
|
|
mode = HAL_MODE_11A;
|
|
if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
|
|
mode |= HAL_MODE_TURBO | HAL_MODE_108A;
|
|
}
|
|
if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
|
|
mode |= HAL_MODE_11B;
|
|
return mode;
|
|
}
|
|
|
|
#if 0
|
|
HAL_BOOL
|
|
ar5211GetTurboDisable(struct ath_hal *ah)
|
|
{
|
|
return (AH5211(ah)->ah_turboDisable != 0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called if RfKill is supported (according to EEPROM). Set the interrupt and
|
|
* GPIO values so the ISR and can disable RF on a switch signal
|
|
*/
|
|
void
|
|
ar5211EnableRfKill(struct ath_hal *ah)
|
|
{
|
|
uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
|
|
int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
|
|
int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
|
|
|
|
/*
|
|
* Configure the desired GPIO port for input
|
|
* and enable baseband rf silence.
|
|
*/
|
|
ar5211GpioCfgInput(ah, select);
|
|
OS_REG_SET_BIT(ah, AR_PHY_BASE, 0x00002000);
|
|
/*
|
|
* If radio disable switch connection to GPIO bit x is enabled
|
|
* program GPIO interrupt.
|
|
* If rfkill bit on eeprom is 1, setupeeprommap routine has already
|
|
* verified that it is a later version of eeprom, it has a place for
|
|
* rfkill bit and it is set to 1, indicating that GPIO bit x hardware
|
|
* connection is present.
|
|
*/
|
|
ar5211GpioSetIntr(ah, select, (ar5211GpioGet(ah, select) != polarity));
|
|
}
|
|
|
|
/*
|
|
* Configure GPIO Output lines
|
|
*/
|
|
HAL_BOOL
|
|
ar5211GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
|
|
{
|
|
uint32_t reg;
|
|
|
|
HALASSERT(gpio < AR_NUM_GPIO);
|
|
|
|
reg = OS_REG_READ(ah, AR_GPIOCR);
|
|
reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
|
|
reg |= AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT);
|
|
|
|
OS_REG_WRITE(ah, AR_GPIOCR, reg);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Configure GPIO Input lines
|
|
*/
|
|
HAL_BOOL
|
|
ar5211GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
|
|
{
|
|
uint32_t reg;
|
|
|
|
HALASSERT(gpio < AR_NUM_GPIO);
|
|
|
|
reg = OS_REG_READ(ah, AR_GPIOCR);
|
|
reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
|
|
reg |= AR_GPIOCR_0_CR_N << (gpio * AR_GPIOCR_CR_SHIFT);
|
|
|
|
OS_REG_WRITE(ah, AR_GPIOCR, reg);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Once configured for I/O - set output lines
|
|
*/
|
|
HAL_BOOL
|
|
ar5211GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
|
|
{
|
|
uint32_t reg;
|
|
|
|
HALASSERT(gpio < AR_NUM_GPIO);
|
|
|
|
reg = OS_REG_READ(ah, AR_GPIODO);
|
|
reg &= ~(1 << gpio);
|
|
reg |= (val&1) << gpio;
|
|
|
|
OS_REG_WRITE(ah, AR_GPIODO, reg);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Once configured for I/O - get input lines
|
|
*/
|
|
uint32_t
|
|
ar5211GpioGet(struct ath_hal *ah, uint32_t gpio)
|
|
{
|
|
if (gpio < AR_NUM_GPIO) {
|
|
uint32_t val = OS_REG_READ(ah, AR_GPIODI);
|
|
val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
|
|
return val;
|
|
} else {
|
|
return 0xffffffff;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the GPIO 0 Interrupt (gpio is ignored)
|
|
*/
|
|
void
|
|
ar5211GpioSetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
|
|
{
|
|
uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
|
|
|
|
/* Clear the bits that we will modify. */
|
|
val &= ~(AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
|
|
AR_GPIOCR_0_CR_A);
|
|
|
|
val |= AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_ENA;
|
|
if (ilevel)
|
|
val |= AR_GPIOCR_INT_SELH;
|
|
|
|
/* Don't need to change anything for low level interrupt. */
|
|
OS_REG_WRITE(ah, AR_GPIOCR, val);
|
|
|
|
/* Change the interrupt mask. */
|
|
ar5211SetInterrupts(ah, AH5211(ah)->ah_maskReg | HAL_INT_GPIO);
|
|
}
|
|
|
|
/*
|
|
* Change the LED blinking pattern to correspond to the connectivity
|
|
*/
|
|
void
|
|
ar5211SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
|
|
{
|
|
static const uint32_t ledbits[8] = {
|
|
AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_INIT */
|
|
AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_SCAN */
|
|
AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_AUTH */
|
|
AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_ASSOC*/
|
|
AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_RUN */
|
|
AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
|
|
AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
|
|
AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
|
|
};
|
|
OS_REG_WRITE(ah, AR_PCICFG,
|
|
(OS_REG_READ(ah, AR_PCICFG) &~
|
|
(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE))
|
|
| ledbits[state & 0x7]
|
|
);
|
|
}
|
|
|
|
/*
|
|
* Change association related fields programmed into the hardware.
|
|
* Writing a valid BSSID to the hardware effectively enables the hardware
|
|
* to synchronize its TSF to the correct beacons and receive frames coming
|
|
* from that BSSID. It is called by the SME JOIN operation.
|
|
*/
|
|
void
|
|
ar5211WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
|
|
/* XXX save bssid for possible re-use on reset */
|
|
OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
|
|
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
|
|
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
|
|
((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
|
|
}
|
|
|
|
/*
|
|
* Get the current hardware tsf for stamlme.
|
|
*/
|
|
uint64_t
|
|
ar5211GetTsf64(struct ath_hal *ah)
|
|
{
|
|
uint32_t low1, low2, u32;
|
|
|
|
/* sync multi-word read */
|
|
low1 = OS_REG_READ(ah, AR_TSF_L32);
|
|
u32 = OS_REG_READ(ah, AR_TSF_U32);
|
|
low2 = OS_REG_READ(ah, AR_TSF_L32);
|
|
if (low2 < low1) { /* roll over */
|
|
/*
|
|
* If we are not preempted this will work. If we are
|
|
* then we re-reading AR_TSF_U32 does no good as the
|
|
* low bits will be meaningless. Likewise reading
|
|
* L32, U32, U32, then comparing the last two reads
|
|
* to check for rollover doesn't help if preempted--so
|
|
* we take this approach as it costs one less PCI
|
|
* read which can be noticeable when doing things
|
|
* like timestamping packets in monitor mode.
|
|
*/
|
|
u32++;
|
|
}
|
|
return (((uint64_t) u32) << 32) | ((uint64_t) low2);
|
|
}
|
|
|
|
/*
|
|
* Get the current hardware tsf for stamlme.
|
|
*/
|
|
uint32_t
|
|
ar5211GetTsf32(struct ath_hal *ah)
|
|
{
|
|
return OS_REG_READ(ah, AR_TSF_L32);
|
|
}
|
|
|
|
/*
|
|
* Reset the current hardware tsf for stamlme
|
|
*/
|
|
void
|
|
ar5211ResetTsf(struct ath_hal *ah)
|
|
{
|
|
uint32_t val = OS_REG_READ(ah, AR_BEACON);
|
|
|
|
OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
|
|
}
|
|
|
|
/*
|
|
* Grab a semi-random value from hardware registers - may not
|
|
* change often
|
|
*/
|
|
uint32_t
|
|
ar5211GetRandomSeed(struct ath_hal *ah)
|
|
{
|
|
uint32_t nf;
|
|
|
|
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
|
|
if (nf & 0x100)
|
|
nf = 0 - ((nf ^ 0x1ff) + 1);
|
|
return (OS_REG_READ(ah, AR_TSF_U32) ^
|
|
OS_REG_READ(ah, AR_TSF_L32) ^ nf);
|
|
}
|
|
|
|
/*
|
|
* Detect if our card is present
|
|
*/
|
|
HAL_BOOL
|
|
ar5211DetectCardPresent(struct ath_hal *ah)
|
|
{
|
|
uint16_t macVersion, macRev;
|
|
uint32_t v;
|
|
|
|
/*
|
|
* Read the Silicon Revision register and compare that
|
|
* to what we read at attach time. If the same, we say
|
|
* a card/device is present.
|
|
*/
|
|
v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID_M;
|
|
macVersion = v >> AR_SREV_ID_S;
|
|
macRev = v & AR_SREV_REVISION_M;
|
|
return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
|
|
AH_PRIVATE(ah)->ah_macRev == macRev);
|
|
}
|
|
|
|
/*
|
|
* Update MIB Counters
|
|
*/
|
|
void
|
|
ar5211UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
|
|
{
|
|
stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
|
|
stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
|
|
stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
|
|
stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
|
|
stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetSifsTime(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
|
|
if (us > ath_hal_mac_usec(ah, 0xffff)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
|
|
__func__, us);
|
|
ahp->ah_sifstime = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
|
|
ahp->ah_slottime = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5211GetSifsTime(struct ath_hal *ah)
|
|
{
|
|
u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetSlotTime(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
|
|
if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
|
|
__func__, us);
|
|
ahp->ah_slottime = us; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
|
|
ahp->ah_slottime = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5211GetSlotTime(struct ath_hal *ah)
|
|
{
|
|
u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetAckTimeout(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
|
|
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
|
|
__func__, us);
|
|
ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
|
|
AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
|
|
ahp->ah_acktimeout = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5211GetAckTimeout(struct ath_hal *ah)
|
|
{
|
|
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
u_int
|
|
ar5211GetAckCTSRate(struct ath_hal *ah)
|
|
{
|
|
return ((AH5211(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetAckCTSRate(struct ath_hal *ah, u_int high)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
|
|
if (high) {
|
|
OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
|
|
ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
|
|
} else {
|
|
OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
|
|
ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetCTSTimeout(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
|
|
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
|
|
__func__, us);
|
|
ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
|
|
AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
|
|
ahp->ah_ctstimeout = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5211GetCTSTimeout(struct ath_hal *ah)
|
|
{
|
|
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
|
|
{
|
|
/* nothing to do */
|
|
return AH_TRUE;
|
|
}
|
|
|
|
void
|
|
ar5211SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Control Adaptive Noise Immunity Parameters
|
|
*/
|
|
HAL_BOOL
|
|
ar5211AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
|
|
{
|
|
return AH_FALSE;
|
|
}
|
|
|
|
void
|
|
ar5211AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
}
|
|
|
|
void
|
|
ar5211RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats,
|
|
const struct ieee80211_channel *chan)
|
|
{
|
|
}
|
|
|
|
void
|
|
ar5211MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Get the rssi of frame curently being received.
|
|
*/
|
|
uint32_t
|
|
ar5211GetCurRssi(struct ath_hal *ah)
|
|
{
|
|
return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
|
|
}
|
|
|
|
u_int
|
|
ar5211GetDefAntenna(struct ath_hal *ah)
|
|
{
|
|
return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
|
|
}
|
|
|
|
void
|
|
ar5211SetDefAntenna(struct ath_hal *ah, u_int antenna)
|
|
{
|
|
OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
|
|
}
|
|
|
|
HAL_ANT_SETTING
|
|
ar5211GetAntennaSwitch(struct ath_hal *ah)
|
|
{
|
|
return AH5211(ah)->ah_diversityControl;
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
|
|
{
|
|
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
|
|
|
|
if (chan == AH_NULL) {
|
|
AH5211(ah)->ah_diversityControl = settings;
|
|
return AH_TRUE;
|
|
}
|
|
return ar5211SetAntennaSwitchInternal(ah, settings, chan);
|
|
}
|
|
|
|
HAL_STATUS
|
|
ar5211GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
|
|
uint32_t capability, uint32_t *result)
|
|
{
|
|
|
|
switch (type) {
|
|
case HAL_CAP_CIPHER: /* cipher handled in hardware */
|
|
switch (capability) {
|
|
case HAL_CIPHER_AES_OCB:
|
|
case HAL_CIPHER_WEP:
|
|
case HAL_CIPHER_CLR:
|
|
return HAL_OK;
|
|
default:
|
|
return HAL_ENOTSUPP;
|
|
}
|
|
default:
|
|
return ath_hal_getcapability(ah, type, capability, result);
|
|
}
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
|
|
uint32_t capability, uint32_t setting, HAL_STATUS *status)
|
|
{
|
|
switch (type) {
|
|
case HAL_CAP_DIAG: /* hardware diagnostic support */
|
|
/*
|
|
* NB: could split this up into virtual capabilities,
|
|
* (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
|
|
* seems worth the additional complexity.
|
|
*/
|
|
#ifdef AH_DEBUG
|
|
AH_PRIVATE(ah)->ah_diagreg = setting;
|
|
#else
|
|
AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
|
|
#endif
|
|
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
|
|
return AH_TRUE;
|
|
default:
|
|
return ath_hal_setcapability(ah, type, capability,
|
|
setting, status);
|
|
}
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211GetDiagState(struct ath_hal *ah, int request,
|
|
const void *args, uint32_t argsize,
|
|
void **result, uint32_t *resultsize)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
|
|
(void) ahp;
|
|
if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
|
|
return AH_TRUE;
|
|
switch (request) {
|
|
case HAL_DIAG_EEPROM:
|
|
return ath_hal_eepromDiag(ah, request,
|
|
args, argsize, result, resultsize);
|
|
case HAL_DIAG_RFGAIN:
|
|
*result = &ahp->ah_gainValues;
|
|
*resultsize = sizeof(GAIN_VALUES);
|
|
return AH_TRUE;
|
|
case HAL_DIAG_RFGAIN_CURSTEP:
|
|
*result = __DECONST(void *, ahp->ah_gainValues.currStep);
|
|
*resultsize = (*result == AH_NULL) ?
|
|
0 : sizeof(GAIN_OPTIMIZATION_STEP);
|
|
return AH_TRUE;
|
|
}
|
|
return AH_FALSE;
|
|
}
|