freebsd-skq/sys/net/iflib.c
erj 9bf94a5091 iflib: fix dangling device softc pointer
Commit text by Jake:
If a driver's IFDI_ATTACH_PRE function fails, the iflib_device_register
function will free the ctx pointer. However, it does not reset the
device softc pointer to NULL.

This will result in memory corruption as a future access to the now
invalid pointer will corrupt memory that is later allocated on top of
the same memory location.

The iflib_device_deregister function correctly resets the softc pointer
by using device_set_softc().

This clears up the invalid dangling pointer and prevents memory
corruption that could lead to a panic or undefined behavior if the
device's driver failed to attach.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>

Submitted by:	Jacob Keller <jacob.e.keller@intel.com>
Reviewed by:	erj@, gallatin@
MFC after:	1 week
Sponsored by:	Intel Corporation
Differential Revision:	https://reviews.freebsd.org/D21003
2019-07-24 21:43:41 +00:00

6773 lines
180 KiB
C

/*-
* Copyright (c) 2014-2018, Matthew Macy <mmacy@mattmacy.io>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Neither the name of Matthew Macy nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_acpi.h"
#include "opt_sched.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/bus.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/kobj.h>
#include <sys/rman.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/taskqueue.h>
#include <sys/limits.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/mp_ring.h>
#include <net/pfil.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/tcp_lro.h>
#include <netinet/in_systm.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/ip_var.h>
#include <netinet/netdump/netdump.h>
#include <netinet6/ip6_var.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/led/led.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pci_private.h>
#include <net/iflib.h>
#include <net/iflib_private.h>
#include "ifdi_if.h"
#ifdef PCI_IOV
#include <dev/pci/pci_iov.h>
#endif
#include <sys/bitstring.h>
/*
* enable accounting of every mbuf as it comes in to and goes out of
* iflib's software descriptor references
*/
#define MEMORY_LOGGING 0
/*
* Enable mbuf vectors for compressing long mbuf chains
*/
/*
* NB:
* - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead
* we prefetch needs to be determined by the time spent in m_free vis a vis
* the cost of a prefetch. This will of course vary based on the workload:
* - NFLX's m_free path is dominated by vm-based M_EXT manipulation which
* is quite expensive, thus suggesting very little prefetch.
* - small packet forwarding which is just returning a single mbuf to
* UMA will typically be very fast vis a vis the cost of a memory
* access.
*/
/*
* File organization:
* - private structures
* - iflib private utility functions
* - ifnet functions
* - vlan registry and other exported functions
* - iflib public core functions
*
*
*/
MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library");
struct iflib_txq;
typedef struct iflib_txq *iflib_txq_t;
struct iflib_rxq;
typedef struct iflib_rxq *iflib_rxq_t;
struct iflib_fl;
typedef struct iflib_fl *iflib_fl_t;
struct iflib_ctx;
static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid);
static void iflib_timer(void *arg);
typedef struct iflib_filter_info {
driver_filter_t *ifi_filter;
void *ifi_filter_arg;
struct grouptask *ifi_task;
void *ifi_ctx;
} *iflib_filter_info_t;
struct iflib_ctx {
KOBJ_FIELDS;
/*
* Pointer to hardware driver's softc
*/
void *ifc_softc;
device_t ifc_dev;
if_t ifc_ifp;
cpuset_t ifc_cpus;
if_shared_ctx_t ifc_sctx;
struct if_softc_ctx ifc_softc_ctx;
struct sx ifc_ctx_sx;
struct mtx ifc_state_mtx;
iflib_txq_t ifc_txqs;
iflib_rxq_t ifc_rxqs;
uint32_t ifc_if_flags;
uint32_t ifc_flags;
uint32_t ifc_max_fl_buf_size;
uint32_t ifc_rx_mbuf_sz;
int ifc_link_state;
int ifc_watchdog_events;
struct cdev *ifc_led_dev;
struct resource *ifc_msix_mem;
struct if_irq ifc_legacy_irq;
struct grouptask ifc_admin_task;
struct grouptask ifc_vflr_task;
struct iflib_filter_info ifc_filter_info;
struct ifmedia ifc_media;
struct ifmedia *ifc_mediap;
struct sysctl_oid *ifc_sysctl_node;
uint16_t ifc_sysctl_ntxqs;
uint16_t ifc_sysctl_nrxqs;
uint16_t ifc_sysctl_qs_eq_override;
uint16_t ifc_sysctl_rx_budget;
uint16_t ifc_sysctl_tx_abdicate;
uint16_t ifc_sysctl_core_offset;
#define CORE_OFFSET_UNSPECIFIED 0xffff
uint8_t ifc_sysctl_separate_txrx;
qidx_t ifc_sysctl_ntxds[8];
qidx_t ifc_sysctl_nrxds[8];
struct if_txrx ifc_txrx;
#define isc_txd_encap ifc_txrx.ift_txd_encap
#define isc_txd_flush ifc_txrx.ift_txd_flush
#define isc_txd_credits_update ifc_txrx.ift_txd_credits_update
#define isc_rxd_available ifc_txrx.ift_rxd_available
#define isc_rxd_pkt_get ifc_txrx.ift_rxd_pkt_get
#define isc_rxd_refill ifc_txrx.ift_rxd_refill
#define isc_rxd_flush ifc_txrx.ift_rxd_flush
#define isc_rxd_refill ifc_txrx.ift_rxd_refill
#define isc_rxd_refill ifc_txrx.ift_rxd_refill
#define isc_legacy_intr ifc_txrx.ift_legacy_intr
eventhandler_tag ifc_vlan_attach_event;
eventhandler_tag ifc_vlan_detach_event;
struct ether_addr ifc_mac;
};
void *
iflib_get_softc(if_ctx_t ctx)
{
return (ctx->ifc_softc);
}
device_t
iflib_get_dev(if_ctx_t ctx)
{
return (ctx->ifc_dev);
}
if_t
iflib_get_ifp(if_ctx_t ctx)
{
return (ctx->ifc_ifp);
}
struct ifmedia *
iflib_get_media(if_ctx_t ctx)
{
return (ctx->ifc_mediap);
}
uint32_t
iflib_get_flags(if_ctx_t ctx)
{
return (ctx->ifc_flags);
}
void
iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN])
{
bcopy(mac, ctx->ifc_mac.octet, ETHER_ADDR_LEN);
}
if_softc_ctx_t
iflib_get_softc_ctx(if_ctx_t ctx)
{
return (&ctx->ifc_softc_ctx);
}
if_shared_ctx_t
iflib_get_sctx(if_ctx_t ctx)
{
return (ctx->ifc_sctx);
}
#define IP_ALIGNED(m) ((((uintptr_t)(m)->m_data) & 0x3) == 0x2)
#define CACHE_PTR_INCREMENT (CACHE_LINE_SIZE/sizeof(void*))
#define CACHE_PTR_NEXT(ptr) ((void *)(((uintptr_t)(ptr)+CACHE_LINE_SIZE-1) & (CACHE_LINE_SIZE-1)))
#define LINK_ACTIVE(ctx) ((ctx)->ifc_link_state == LINK_STATE_UP)
#define CTX_IS_VF(ctx) ((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF)
typedef struct iflib_sw_rx_desc_array {
bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */
struct mbuf **ifsd_m; /* pkthdr mbufs */
caddr_t *ifsd_cl; /* direct cluster pointer for rx */
bus_addr_t *ifsd_ba; /* bus addr of cluster for rx */
} iflib_rxsd_array_t;
typedef struct iflib_sw_tx_desc_array {
bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */
bus_dmamap_t *ifsd_tso_map; /* bus_dma maps for TSO packet */
struct mbuf **ifsd_m; /* pkthdr mbufs */
} if_txsd_vec_t;
/* magic number that should be high enough for any hardware */
#define IFLIB_MAX_TX_SEGS 128
#define IFLIB_RX_COPY_THRESH 128
#define IFLIB_MAX_RX_REFRESH 32
/* The minimum descriptors per second before we start coalescing */
#define IFLIB_MIN_DESC_SEC 16384
#define IFLIB_DEFAULT_TX_UPDATE_FREQ 16
#define IFLIB_QUEUE_IDLE 0
#define IFLIB_QUEUE_HUNG 1
#define IFLIB_QUEUE_WORKING 2
/* maximum number of txqs that can share an rx interrupt */
#define IFLIB_MAX_TX_SHARED_INTR 4
/* this should really scale with ring size - this is a fairly arbitrary value */
#define TX_BATCH_SIZE 32
#define IFLIB_RESTART_BUDGET 8
#define CSUM_OFFLOAD (CSUM_IP_TSO|CSUM_IP6_TSO|CSUM_IP| \
CSUM_IP_UDP|CSUM_IP_TCP|CSUM_IP_SCTP| \
CSUM_IP6_UDP|CSUM_IP6_TCP|CSUM_IP6_SCTP)
struct iflib_txq {
qidx_t ift_in_use;
qidx_t ift_cidx;
qidx_t ift_cidx_processed;
qidx_t ift_pidx;
uint8_t ift_gen;
uint8_t ift_br_offset;
uint16_t ift_npending;
uint16_t ift_db_pending;
uint16_t ift_rs_pending;
/* implicit pad */
uint8_t ift_txd_size[8];
uint64_t ift_processed;
uint64_t ift_cleaned;
uint64_t ift_cleaned_prev;
#if MEMORY_LOGGING
uint64_t ift_enqueued;
uint64_t ift_dequeued;
#endif
uint64_t ift_no_tx_dma_setup;
uint64_t ift_no_desc_avail;
uint64_t ift_mbuf_defrag_failed;
uint64_t ift_mbuf_defrag;
uint64_t ift_map_failed;
uint64_t ift_txd_encap_efbig;
uint64_t ift_pullups;
uint64_t ift_last_timer_tick;
struct mtx ift_mtx;
struct mtx ift_db_mtx;
/* constant values */
if_ctx_t ift_ctx;
struct ifmp_ring *ift_br;
struct grouptask ift_task;
qidx_t ift_size;
uint16_t ift_id;
struct callout ift_timer;
if_txsd_vec_t ift_sds;
uint8_t ift_qstatus;
uint8_t ift_closed;
uint8_t ift_update_freq;
struct iflib_filter_info ift_filter_info;
bus_dma_tag_t ift_buf_tag;
bus_dma_tag_t ift_tso_buf_tag;
iflib_dma_info_t ift_ifdi;
#define MTX_NAME_LEN 16
char ift_mtx_name[MTX_NAME_LEN];
bus_dma_segment_t ift_segs[IFLIB_MAX_TX_SEGS] __aligned(CACHE_LINE_SIZE);
#ifdef IFLIB_DIAGNOSTICS
uint64_t ift_cpu_exec_count[256];
#endif
} __aligned(CACHE_LINE_SIZE);
struct iflib_fl {
qidx_t ifl_cidx;
qidx_t ifl_pidx;
qidx_t ifl_credits;
uint8_t ifl_gen;
uint8_t ifl_rxd_size;
#if MEMORY_LOGGING
uint64_t ifl_m_enqueued;
uint64_t ifl_m_dequeued;
uint64_t ifl_cl_enqueued;
uint64_t ifl_cl_dequeued;
#endif
/* implicit pad */
bitstr_t *ifl_rx_bitmap;
qidx_t ifl_fragidx;
/* constant */
qidx_t ifl_size;
uint16_t ifl_buf_size;
uint16_t ifl_cltype;
uma_zone_t ifl_zone;
iflib_rxsd_array_t ifl_sds;
iflib_rxq_t ifl_rxq;
uint8_t ifl_id;
bus_dma_tag_t ifl_buf_tag;
iflib_dma_info_t ifl_ifdi;
uint64_t ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE);
caddr_t ifl_vm_addrs[IFLIB_MAX_RX_REFRESH];
qidx_t ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH];
} __aligned(CACHE_LINE_SIZE);
static inline qidx_t
get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen)
{
qidx_t used;
if (pidx > cidx)
used = pidx - cidx;
else if (pidx < cidx)
used = size - cidx + pidx;
else if (gen == 0 && pidx == cidx)
used = 0;
else if (gen == 1 && pidx == cidx)
used = size;
else
panic("bad state");
return (used);
}
#define TXQ_AVAIL(txq) (txq->ift_size - get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen))
#define IDXDIFF(head, tail, wrap) \
((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
struct iflib_rxq {
if_ctx_t ifr_ctx;
iflib_fl_t ifr_fl;
uint64_t ifr_rx_irq;
struct pfil_head *pfil;
/*
* If there is a separate completion queue (IFLIB_HAS_RXCQ), this is
* the command queue consumer index. Otherwise it's unused.
*/
qidx_t ifr_cq_cidx;
uint16_t ifr_id;
uint8_t ifr_nfl;
uint8_t ifr_ntxqirq;
uint8_t ifr_txqid[IFLIB_MAX_TX_SHARED_INTR];
uint8_t ifr_fl_offset;
struct lro_ctrl ifr_lc;
struct grouptask ifr_task;
struct iflib_filter_info ifr_filter_info;
iflib_dma_info_t ifr_ifdi;
/* dynamically allocate if any drivers need a value substantially larger than this */
struct if_rxd_frag ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE);
#ifdef IFLIB_DIAGNOSTICS
uint64_t ifr_cpu_exec_count[256];
#endif
} __aligned(CACHE_LINE_SIZE);
typedef struct if_rxsd {
caddr_t *ifsd_cl;
iflib_fl_t ifsd_fl;
qidx_t ifsd_cidx;
} *if_rxsd_t;
/* multiple of word size */
#ifdef __LP64__
#define PKT_INFO_SIZE 6
#define RXD_INFO_SIZE 5
#define PKT_TYPE uint64_t
#else
#define PKT_INFO_SIZE 11
#define RXD_INFO_SIZE 8
#define PKT_TYPE uint32_t
#endif
#define PKT_LOOP_BOUND ((PKT_INFO_SIZE/3)*3)
#define RXD_LOOP_BOUND ((RXD_INFO_SIZE/4)*4)
typedef struct if_pkt_info_pad {
PKT_TYPE pkt_val[PKT_INFO_SIZE];
} *if_pkt_info_pad_t;
typedef struct if_rxd_info_pad {
PKT_TYPE rxd_val[RXD_INFO_SIZE];
} *if_rxd_info_pad_t;
CTASSERT(sizeof(struct if_pkt_info_pad) == sizeof(struct if_pkt_info));
CTASSERT(sizeof(struct if_rxd_info_pad) == sizeof(struct if_rxd_info));
static inline void
pkt_info_zero(if_pkt_info_t pi)
{
if_pkt_info_pad_t pi_pad;
pi_pad = (if_pkt_info_pad_t)pi;
pi_pad->pkt_val[0] = 0; pi_pad->pkt_val[1] = 0; pi_pad->pkt_val[2] = 0;
pi_pad->pkt_val[3] = 0; pi_pad->pkt_val[4] = 0; pi_pad->pkt_val[5] = 0;
#ifndef __LP64__
pi_pad->pkt_val[6] = 0; pi_pad->pkt_val[7] = 0; pi_pad->pkt_val[8] = 0;
pi_pad->pkt_val[9] = 0; pi_pad->pkt_val[10] = 0;
#endif
}
static device_method_t iflib_pseudo_methods[] = {
DEVMETHOD(device_attach, noop_attach),
DEVMETHOD(device_detach, iflib_pseudo_detach),
DEVMETHOD_END
};
driver_t iflib_pseudodriver = {
"iflib_pseudo", iflib_pseudo_methods, sizeof(struct iflib_ctx),
};
static inline void
rxd_info_zero(if_rxd_info_t ri)
{
if_rxd_info_pad_t ri_pad;
int i;
ri_pad = (if_rxd_info_pad_t)ri;
for (i = 0; i < RXD_LOOP_BOUND; i += 4) {
ri_pad->rxd_val[i] = 0;
ri_pad->rxd_val[i+1] = 0;
ri_pad->rxd_val[i+2] = 0;
ri_pad->rxd_val[i+3] = 0;
}
#ifdef __LP64__
ri_pad->rxd_val[RXD_INFO_SIZE-1] = 0;
#endif
}
/*
* Only allow a single packet to take up most 1/nth of the tx ring
*/
#define MAX_SINGLE_PACKET_FRACTION 12
#define IF_BAD_DMA (bus_addr_t)-1
#define CTX_ACTIVE(ctx) ((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING))
#define CTX_LOCK_INIT(_sc) sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock")
#define CTX_LOCK(ctx) sx_xlock(&(ctx)->ifc_ctx_sx)
#define CTX_UNLOCK(ctx) sx_xunlock(&(ctx)->ifc_ctx_sx)
#define CTX_LOCK_DESTROY(ctx) sx_destroy(&(ctx)->ifc_ctx_sx)
#define STATE_LOCK_INIT(_sc, _name) mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF)
#define STATE_LOCK(ctx) mtx_lock(&(ctx)->ifc_state_mtx)
#define STATE_UNLOCK(ctx) mtx_unlock(&(ctx)->ifc_state_mtx)
#define STATE_LOCK_DESTROY(ctx) mtx_destroy(&(ctx)->ifc_state_mtx)
#define CALLOUT_LOCK(txq) mtx_lock(&txq->ift_mtx)
#define CALLOUT_UNLOCK(txq) mtx_unlock(&txq->ift_mtx)
void
iflib_set_detach(if_ctx_t ctx)
{
STATE_LOCK(ctx);
ctx->ifc_flags |= IFC_IN_DETACH;
STATE_UNLOCK(ctx);
}
/* Our boot-time initialization hook */
static int iflib_module_event_handler(module_t, int, void *);
static moduledata_t iflib_moduledata = {
"iflib",
iflib_module_event_handler,
NULL
};
DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY);
MODULE_VERSION(iflib, 1);
MODULE_DEPEND(iflib, pci, 1, 1, 1);
MODULE_DEPEND(iflib, ether, 1, 1, 1);
TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1);
TASKQGROUP_DEFINE(if_config_tqg, 1, 1);
#ifndef IFLIB_DEBUG_COUNTERS
#ifdef INVARIANTS
#define IFLIB_DEBUG_COUNTERS 1
#else
#define IFLIB_DEBUG_COUNTERS 0
#endif /* !INVARIANTS */
#endif
static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD, 0,
"iflib driver parameters");
/*
* XXX need to ensure that this can't accidentally cause the head to be moved backwards
*/
static int iflib_min_tx_latency = 0;
SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW,
&iflib_min_tx_latency, 0, "minimize transmit latency at the possible expense of throughput");
static int iflib_no_tx_batch = 0;
SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW,
&iflib_no_tx_batch, 0, "minimize transmit latency at the possible expense of throughput");
#if IFLIB_DEBUG_COUNTERS
static int iflib_tx_seen;
static int iflib_tx_sent;
static int iflib_tx_encap;
static int iflib_rx_allocs;
static int iflib_fl_refills;
static int iflib_fl_refills_large;
static int iflib_tx_frees;
SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD,
&iflib_tx_seen, 0, "# TX mbufs seen");
SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD,
&iflib_tx_sent, 0, "# TX mbufs sent");
SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD,
&iflib_tx_encap, 0, "# TX mbufs encapped");
SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD,
&iflib_tx_frees, 0, "# TX frees");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD,
&iflib_rx_allocs, 0, "# RX allocations");
SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD,
&iflib_fl_refills, 0, "# refills");
SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD,
&iflib_fl_refills_large, 0, "# large refills");
static int iflib_txq_drain_flushing;
static int iflib_txq_drain_oactive;
static int iflib_txq_drain_notready;
SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD,
&iflib_txq_drain_flushing, 0, "# drain flushes");
SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD,
&iflib_txq_drain_oactive, 0, "# drain oactives");
SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD,
&iflib_txq_drain_notready, 0, "# drain notready");
static int iflib_encap_load_mbuf_fail;
static int iflib_encap_pad_mbuf_fail;
static int iflib_encap_txq_avail_fail;
static int iflib_encap_txd_encap_fail;
SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD,
&iflib_encap_load_mbuf_fail, 0, "# busdma load failures");
SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD,
&iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures");
SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD,
&iflib_encap_txq_avail_fail, 0, "# txq avail failures");
SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD,
&iflib_encap_txd_encap_fail, 0, "# driver encap failures");
static int iflib_task_fn_rxs;
static int iflib_rx_intr_enables;
static int iflib_fast_intrs;
static int iflib_rx_unavail;
static int iflib_rx_ctx_inactive;
static int iflib_rx_if_input;
static int iflib_rxd_flush;
static int iflib_verbose_debug;
SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD,
&iflib_task_fn_rxs, 0, "# task_fn_rx calls");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD,
&iflib_rx_intr_enables, 0, "# RX intr enables");
SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD,
&iflib_fast_intrs, 0, "# fast_intr calls");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD,
&iflib_rx_unavail, 0, "# times rxeof called with no available data");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD,
&iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD,
&iflib_rx_if_input, 0, "# times rxeof called if_input");
SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD,
&iflib_rxd_flush, 0, "# times rxd_flush called");
SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW,
&iflib_verbose_debug, 0, "enable verbose debugging");
#define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1)
static void
iflib_debug_reset(void)
{
iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs =
iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees =
iflib_txq_drain_flushing = iflib_txq_drain_oactive =
iflib_txq_drain_notready =
iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail =
iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail =
iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs =
iflib_rx_unavail =
iflib_rx_ctx_inactive = iflib_rx_if_input =
iflib_rxd_flush = 0;
}
#else
#define DBG_COUNTER_INC(name)
static void iflib_debug_reset(void) {}
#endif
#define IFLIB_DEBUG 0
static void iflib_tx_structures_free(if_ctx_t ctx);
static void iflib_rx_structures_free(if_ctx_t ctx);
static int iflib_queues_alloc(if_ctx_t ctx);
static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq);
static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget);
static int iflib_qset_structures_setup(if_ctx_t ctx);
static int iflib_msix_init(if_ctx_t ctx);
static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str);
static void iflib_txq_check_drain(iflib_txq_t txq, int budget);
static uint32_t iflib_txq_can_drain(struct ifmp_ring *);
#ifdef ALTQ
static void iflib_altq_if_start(if_t ifp);
static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m);
#endif
static int iflib_register(if_ctx_t);
static void iflib_init_locked(if_ctx_t ctx);
static void iflib_add_device_sysctl_pre(if_ctx_t ctx);
static void iflib_add_device_sysctl_post(if_ctx_t ctx);
static void iflib_ifmp_purge(iflib_txq_t txq);
static void _iflib_pre_assert(if_softc_ctx_t scctx);
static void iflib_if_init_locked(if_ctx_t ctx);
static void iflib_free_intr_mem(if_ctx_t ctx);
#ifndef __NO_STRICT_ALIGNMENT
static struct mbuf * iflib_fixup_rx(struct mbuf *m);
#endif
static SLIST_HEAD(cpu_offset_list, cpu_offset) cpu_offsets =
SLIST_HEAD_INITIALIZER(cpu_offsets);
struct cpu_offset {
SLIST_ENTRY(cpu_offset) entries;
cpuset_t set;
unsigned int refcount;
uint16_t offset;
};
static struct mtx cpu_offset_mtx;
MTX_SYSINIT(iflib_cpu_offset, &cpu_offset_mtx, "iflib_cpu_offset lock",
MTX_DEF);
NETDUMP_DEFINE(iflib);
#ifdef DEV_NETMAP
#include <sys/selinfo.h>
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
MODULE_DEPEND(iflib, netmap, 1, 1, 1);
static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, uint32_t nm_i, bool init);
/*
* device-specific sysctl variables:
*
* iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it.
* During regular operations the CRC is stripped, but on some
* hardware reception of frames not multiple of 64 is slower,
* so using crcstrip=0 helps in benchmarks.
*
* iflib_rx_miss, iflib_rx_miss_bufs:
* count packets that might be missed due to lost interrupts.
*/
SYSCTL_DECL(_dev_netmap);
/*
* The xl driver by default strips CRCs and we do not override it.
*/
int iflib_crcstrip = 1;
SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip,
CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on RX frames");
int iflib_rx_miss, iflib_rx_miss_bufs;
SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss,
CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed RX intr");
SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs,
CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed RX intr bufs");
/*
* Register/unregister. We are already under netmap lock.
* Only called on the first register or the last unregister.
*/
static int
iflib_netmap_register(struct netmap_adapter *na, int onoff)
{
if_t ifp = na->ifp;
if_ctx_t ctx = ifp->if_softc;
int status;
CTX_LOCK(ctx);
IFDI_INTR_DISABLE(ctx);
/* Tell the stack that the interface is no longer active */
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
if (!CTX_IS_VF(ctx))
IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip);
/* enable or disable flags and callbacks in na and ifp */
if (onoff) {
nm_set_native_flags(na);
} else {
nm_clear_native_flags(na);
}
iflib_stop(ctx);
iflib_init_locked(ctx);
IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ?
status = ifp->if_drv_flags & IFF_DRV_RUNNING ? 0 : 1;
if (status)
nm_clear_native_flags(na);
CTX_UNLOCK(ctx);
return (status);
}
static int
netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, uint32_t nm_i, bool init)
{
struct netmap_adapter *na = kring->na;
u_int const lim = kring->nkr_num_slots - 1;
u_int head = kring->rhead;
struct netmap_ring *ring = kring->ring;
bus_dmamap_t *map;
struct if_rxd_update iru;
if_ctx_t ctx = rxq->ifr_ctx;
iflib_fl_t fl = &rxq->ifr_fl[0];
uint32_t refill_pidx, nic_i;
#if IFLIB_DEBUG_COUNTERS
int rf_count = 0;
#endif
if (nm_i == head && __predict_true(!init))
return 0;
iru_init(&iru, rxq, 0 /* flid */);
map = fl->ifl_sds.ifsd_map;
refill_pidx = netmap_idx_k2n(kring, nm_i);
/*
* IMPORTANT: we must leave one free slot in the ring,
* so move head back by one unit
*/
head = nm_prev(head, lim);
nic_i = UINT_MAX;
DBG_COUNTER_INC(fl_refills);
while (nm_i != head) {
#if IFLIB_DEBUG_COUNTERS
if (++rf_count == 9)
DBG_COUNTER_INC(fl_refills_large);
#endif
for (int tmp_pidx = 0; tmp_pidx < IFLIB_MAX_RX_REFRESH && nm_i != head; tmp_pidx++) {
struct netmap_slot *slot = &ring->slot[nm_i];
void *addr = PNMB(na, slot, &fl->ifl_bus_addrs[tmp_pidx]);
uint32_t nic_i_dma = refill_pidx;
nic_i = netmap_idx_k2n(kring, nm_i);
MPASS(tmp_pidx < IFLIB_MAX_RX_REFRESH);
if (addr == NETMAP_BUF_BASE(na)) /* bad buf */
return netmap_ring_reinit(kring);
fl->ifl_vm_addrs[tmp_pidx] = addr;
if (__predict_false(init)) {
netmap_load_map(na, fl->ifl_buf_tag,
map[nic_i], addr);
} else if (slot->flags & NS_BUF_CHANGED) {
/* buffer has changed, reload map */
netmap_reload_map(na, fl->ifl_buf_tag,
map[nic_i], addr);
}
slot->flags &= ~NS_BUF_CHANGED;
nm_i = nm_next(nm_i, lim);
fl->ifl_rxd_idxs[tmp_pidx] = nic_i = nm_next(nic_i, lim);
if (nm_i != head && tmp_pidx < IFLIB_MAX_RX_REFRESH-1)
continue;
iru.iru_pidx = refill_pidx;
iru.iru_count = tmp_pidx+1;
ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
refill_pidx = nic_i;
for (int n = 0; n < iru.iru_count; n++) {
bus_dmamap_sync(fl->ifl_buf_tag, map[nic_i_dma],
BUS_DMASYNC_PREREAD);
/* XXX - change this to not use the netmap func*/
nic_i_dma = nm_next(nic_i_dma, lim);
}
}
}
kring->nr_hwcur = head;
bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (__predict_true(nic_i != UINT_MAX)) {
ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id, nic_i);
DBG_COUNTER_INC(rxd_flush);
}
return (0);
}
/*
* Reconcile kernel and user view of the transmit ring.
*
* All information is in the kring.
* Userspace wants to send packets up to the one before kring->rhead,
* kernel knows kring->nr_hwcur is the first unsent packet.
*
* Here we push packets out (as many as possible), and possibly
* reclaim buffers from previously completed transmission.
*
* The caller (netmap) guarantees that there is only one instance
* running at any time. Any interference with other driver
* methods should be handled by the individual drivers.
*/
static int
iflib_netmap_txsync(struct netmap_kring *kring, int flags)
{
struct netmap_adapter *na = kring->na;
if_t ifp = na->ifp;
struct netmap_ring *ring = kring->ring;
u_int nm_i; /* index into the netmap kring */
u_int nic_i; /* index into the NIC ring */
u_int n;
u_int const lim = kring->nkr_num_slots - 1;
u_int const head = kring->rhead;
struct if_pkt_info pi;
/*
* interrupts on every tx packet are expensive so request
* them every half ring, or where NS_REPORT is set
*/
u_int report_frequency = kring->nkr_num_slots >> 1;
/* device-specific */
if_ctx_t ctx = ifp->if_softc;
iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id];
bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* First part: process new packets to send.
* nm_i is the current index in the netmap kring,
* nic_i is the corresponding index in the NIC ring.
*
* If we have packets to send (nm_i != head)
* iterate over the netmap ring, fetch length and update
* the corresponding slot in the NIC ring. Some drivers also
* need to update the buffer's physical address in the NIC slot
* even NS_BUF_CHANGED is not set (PNMB computes the addresses).
*
* The netmap_reload_map() calls is especially expensive,
* even when (as in this case) the tag is 0, so do only
* when the buffer has actually changed.
*
* If possible do not set the report/intr bit on all slots,
* but only a few times per ring or when NS_REPORT is set.
*
* Finally, on 10G and faster drivers, it might be useful
* to prefetch the next slot and txr entry.
*/
nm_i = kring->nr_hwcur;
if (nm_i != head) { /* we have new packets to send */
pkt_info_zero(&pi);
pi.ipi_segs = txq->ift_segs;
pi.ipi_qsidx = kring->ring_id;
nic_i = netmap_idx_k2n(kring, nm_i);
__builtin_prefetch(&ring->slot[nm_i]);
__builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]);
__builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]);
for (n = 0; nm_i != head; n++) {
struct netmap_slot *slot = &ring->slot[nm_i];
u_int len = slot->len;
uint64_t paddr;
void *addr = PNMB(na, slot, &paddr);
int flags = (slot->flags & NS_REPORT ||
nic_i == 0 || nic_i == report_frequency) ?
IPI_TX_INTR : 0;
/* device-specific */
pi.ipi_len = len;
pi.ipi_segs[0].ds_addr = paddr;
pi.ipi_segs[0].ds_len = len;
pi.ipi_nsegs = 1;
pi.ipi_ndescs = 0;
pi.ipi_pidx = nic_i;
pi.ipi_flags = flags;
/* Fill the slot in the NIC ring. */
ctx->isc_txd_encap(ctx->ifc_softc, &pi);
DBG_COUNTER_INC(tx_encap);
/* prefetch for next round */
__builtin_prefetch(&ring->slot[nm_i + 1]);
__builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]);
__builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]);
NM_CHECK_ADDR_LEN(na, addr, len);
if (slot->flags & NS_BUF_CHANGED) {
/* buffer has changed, reload map */
netmap_reload_map(na, txq->ift_buf_tag,
txq->ift_sds.ifsd_map[nic_i], addr);
}
/* make sure changes to the buffer are synced */
bus_dmamap_sync(txq->ift_buf_tag,
txq->ift_sds.ifsd_map[nic_i],
BUS_DMASYNC_PREWRITE);
slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
nm_i = nm_next(nm_i, lim);
nic_i = nm_next(nic_i, lim);
}
kring->nr_hwcur = nm_i;
/* synchronize the NIC ring */
bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* (re)start the tx unit up to slot nic_i (excluded) */
ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i);
}
/*
* Second part: reclaim buffers for completed transmissions.
*
* If there are unclaimed buffers, attempt to reclaim them.
* If none are reclaimed, and TX IRQs are not in use, do an initial
* minimal delay, then trigger the tx handler which will spin in the
* group task queue.
*/
if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
if (iflib_tx_credits_update(ctx, txq)) {
/* some tx completed, increment avail */
nic_i = txq->ift_cidx_processed;
kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim);
}
}
if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ))
if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
callout_reset_on(&txq->ift_timer, hz < 2000 ? 1 : hz / 1000,
iflib_timer, txq, txq->ift_timer.c_cpu);
}
return (0);
}
/*
* Reconcile kernel and user view of the receive ring.
* Same as for the txsync, this routine must be efficient.
* The caller guarantees a single invocations, but races against
* the rest of the driver should be handled here.
*
* On call, kring->rhead is the first packet that userspace wants
* to keep, and kring->rcur is the wakeup point.
* The kernel has previously reported packets up to kring->rtail.
*
* If (flags & NAF_FORCE_READ) also check for incoming packets irrespective
* of whether or not we received an interrupt.
*/
static int
iflib_netmap_rxsync(struct netmap_kring *kring, int flags)
{
struct netmap_adapter *na = kring->na;
struct netmap_ring *ring = kring->ring;
if_t ifp = na->ifp;
iflib_fl_t fl;
uint32_t nm_i; /* index into the netmap ring */
uint32_t nic_i; /* index into the NIC ring */
u_int i, n;
u_int const lim = kring->nkr_num_slots - 1;
u_int const head = kring->rhead;
int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
struct if_rxd_info ri;
if_ctx_t ctx = ifp->if_softc;
iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id];
if (head > lim)
return netmap_ring_reinit(kring);
/*
* XXX netmap_fl_refill() only ever (re)fills free list 0 so far.
*/
for (i = 0, fl = rxq->ifr_fl; i < rxq->ifr_nfl; i++, fl++) {
bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
/*
* First part: import newly received packets.
*
* nm_i is the index of the next free slot in the netmap ring,
* nic_i is the index of the next received packet in the NIC ring,
* and they may differ in case if_init() has been called while
* in netmap mode. For the receive ring we have
*
* nic_i = rxr->next_check;
* nm_i = kring->nr_hwtail (previous)
* and
* nm_i == (nic_i + kring->nkr_hwofs) % ring_size
*
* rxr->next_check is set to 0 on a ring reinit
*/
if (netmap_no_pendintr || force_update) {
int crclen = iflib_crcstrip ? 0 : 4;
int error, avail;
for (i = 0; i < rxq->ifr_nfl; i++) {
fl = &rxq->ifr_fl[i];
nic_i = fl->ifl_cidx;
nm_i = netmap_idx_n2k(kring, nic_i);
avail = ctx->isc_rxd_available(ctx->ifc_softc,
rxq->ifr_id, nic_i, USHRT_MAX);
for (n = 0; avail > 0; n++, avail--) {
rxd_info_zero(&ri);
ri.iri_frags = rxq->ifr_frags;
ri.iri_qsidx = kring->ring_id;
ri.iri_ifp = ctx->ifc_ifp;
ri.iri_cidx = nic_i;
error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
ring->slot[nm_i].len = error ? 0 : ri.iri_len - crclen;
ring->slot[nm_i].flags = 0;
bus_dmamap_sync(fl->ifl_buf_tag,
fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD);
nm_i = nm_next(nm_i, lim);
nic_i = nm_next(nic_i, lim);
}
if (n) { /* update the state variables */
if (netmap_no_pendintr && !force_update) {
/* diagnostics */
iflib_rx_miss ++;
iflib_rx_miss_bufs += n;
}
fl->ifl_cidx = nic_i;
kring->nr_hwtail = nm_i;
}
kring->nr_kflags &= ~NKR_PENDINTR;
}
}
/*
* Second part: skip past packets that userspace has released.
* (kring->nr_hwcur to head excluded),
* and make the buffers available for reception.
* As usual nm_i is the index in the netmap ring,
* nic_i is the index in the NIC ring, and
* nm_i == (nic_i + kring->nkr_hwofs) % ring_size
*/
/* XXX not sure how this will work with multiple free lists */
nm_i = kring->nr_hwcur;
return (netmap_fl_refill(rxq, kring, nm_i, false));
}
static void
iflib_netmap_intr(struct netmap_adapter *na, int onoff)
{
if_ctx_t ctx = na->ifp->if_softc;
CTX_LOCK(ctx);
if (onoff) {
IFDI_INTR_ENABLE(ctx);
} else {
IFDI_INTR_DISABLE(ctx);
}
CTX_UNLOCK(ctx);
}
static int
iflib_netmap_attach(if_ctx_t ctx)
{
struct netmap_adapter na;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
bzero(&na, sizeof(na));
na.ifp = ctx->ifc_ifp;
na.na_flags = NAF_BDG_MAYSLEEP;
MPASS(ctx->ifc_softc_ctx.isc_ntxqsets);
MPASS(ctx->ifc_softc_ctx.isc_nrxqsets);
na.num_tx_desc = scctx->isc_ntxd[0];
na.num_rx_desc = scctx->isc_nrxd[0];
na.nm_txsync = iflib_netmap_txsync;
na.nm_rxsync = iflib_netmap_rxsync;
na.nm_register = iflib_netmap_register;
na.nm_intr = iflib_netmap_intr;
na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
return (netmap_attach(&na));
}
static void
iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq)
{
struct netmap_adapter *na = NA(ctx->ifc_ifp);
struct netmap_slot *slot;
slot = netmap_reset(na, NR_TX, txq->ift_id, 0);
if (slot == NULL)
return;
for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) {
/*
* In netmap mode, set the map for the packet buffer.
* NOTE: Some drivers (not this one) also need to set
* the physical buffer address in the NIC ring.
* netmap_idx_n2k() maps a nic index, i, into the corresponding
* netmap slot index, si
*/
int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i);
netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i],
NMB(na, slot + si));
}
}
static void
iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq)
{
struct netmap_adapter *na = NA(ctx->ifc_ifp);
struct netmap_kring *kring = na->rx_rings[rxq->ifr_id];
struct netmap_slot *slot;
uint32_t nm_i;
slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0);
if (slot == NULL)
return;
nm_i = netmap_idx_n2k(kring, 0);
netmap_fl_refill(rxq, kring, nm_i, true);
}
static void
iflib_netmap_timer_adjust(if_ctx_t ctx, iflib_txq_t txq, uint32_t *reset_on)
{
struct netmap_kring *kring;
uint16_t txqid;
txqid = txq->ift_id;
kring = NA(ctx->ifc_ifp)->tx_rings[txqid];
if (kring->nr_hwcur != nm_next(kring->nr_hwtail, kring->nkr_num_slots - 1)) {
bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_POSTREAD);
if (ctx->isc_txd_credits_update(ctx->ifc_softc, txqid, false))
netmap_tx_irq(ctx->ifc_ifp, txqid);
if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ)) {
if (hz < 2000)
*reset_on = 1;
else
*reset_on = hz / 1000;
}
}
}
#define iflib_netmap_detach(ifp) netmap_detach(ifp)
#else
#define iflib_netmap_txq_init(ctx, txq)
#define iflib_netmap_rxq_init(ctx, rxq)
#define iflib_netmap_detach(ifp)
#define iflib_netmap_attach(ctx) (0)
#define netmap_rx_irq(ifp, qid, budget) (0)
#define netmap_tx_irq(ifp, qid) do {} while (0)
#define iflib_netmap_timer_adjust(ctx, txq, reset_on)
#endif
#if defined(__i386__) || defined(__amd64__)
static __inline void
prefetch(void *x)
{
__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
}
static __inline void
prefetch2cachelines(void *x)
{
__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
#if (CACHE_LINE_SIZE < 128)
__asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x)+CACHE_LINE_SIZE/(sizeof(unsigned long)))));
#endif
}
#else
#define prefetch(x)
#define prefetch2cachelines(x)
#endif
static void
iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid)
{
iflib_fl_t fl;
fl = &rxq->ifr_fl[flid];
iru->iru_paddrs = fl->ifl_bus_addrs;
iru->iru_vaddrs = &fl->ifl_vm_addrs[0];
iru->iru_idxs = fl->ifl_rxd_idxs;
iru->iru_qsidx = rxq->ifr_id;
iru->iru_buf_size = fl->ifl_buf_size;
iru->iru_flidx = fl->ifl_id;
}
static void
_iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
{
if (err)
return;
*(bus_addr_t *) arg = segs[0].ds_addr;
}
int
iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags)
{
int err;
device_t dev = ctx->ifc_dev;
err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
align, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&dma->idi_tag);
if (err) {
device_printf(dev,
"%s: bus_dma_tag_create failed: %d\n",
__func__, err);
goto fail_0;
}
err = bus_dmamem_alloc(dma->idi_tag, (void**) &dma->idi_vaddr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map);
if (err) {
device_printf(dev,
"%s: bus_dmamem_alloc(%ju) failed: %d\n",
__func__, (uintmax_t)size, err);
goto fail_1;
}
dma->idi_paddr = IF_BAD_DMA;
err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr,
size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT);
if (err || dma->idi_paddr == IF_BAD_DMA) {
device_printf(dev,
"%s: bus_dmamap_load failed: %d\n",
__func__, err);
goto fail_2;
}
dma->idi_size = size;
return (0);
fail_2:
bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
fail_1:
bus_dma_tag_destroy(dma->idi_tag);
fail_0:
dma->idi_tag = NULL;
return (err);
}
int
iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags)
{
if_shared_ctx_t sctx = ctx->ifc_sctx;
KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized"));
return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags));
}
int
iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count)
{
int i, err;
iflib_dma_info_t *dmaiter;
dmaiter = dmalist;
for (i = 0; i < count; i++, dmaiter++) {
if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0)
break;
}
if (err)
iflib_dma_free_multi(dmalist, i);
return (err);
}
void
iflib_dma_free(iflib_dma_info_t dma)
{
if (dma->idi_tag == NULL)
return;
if (dma->idi_paddr != IF_BAD_DMA) {
bus_dmamap_sync(dma->idi_tag, dma->idi_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->idi_tag, dma->idi_map);
dma->idi_paddr = IF_BAD_DMA;
}
if (dma->idi_vaddr != NULL) {
bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
dma->idi_vaddr = NULL;
}
bus_dma_tag_destroy(dma->idi_tag);
dma->idi_tag = NULL;
}
void
iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count)
{
int i;
iflib_dma_info_t *dmaiter = dmalist;
for (i = 0; i < count; i++, dmaiter++)
iflib_dma_free(*dmaiter);
}
#ifdef EARLY_AP_STARTUP
static const int iflib_started = 1;
#else
/*
* We used to abuse the smp_started flag to decide if the queues have been
* fully initialized (by late taskqgroup_adjust() calls in a SYSINIT()).
* That gave bad races, since the SYSINIT() runs strictly after smp_started
* is set. Run a SYSINIT() strictly after that to just set a usable
* completion flag.
*/
static int iflib_started;
static void
iflib_record_started(void *arg)
{
iflib_started = 1;
}
SYSINIT(iflib_record_started, SI_SUB_SMP + 1, SI_ORDER_FIRST,
iflib_record_started, NULL);
#endif
static int
iflib_fast_intr(void *arg)
{
iflib_filter_info_t info = arg;
struct grouptask *gtask = info->ifi_task;
int result;
if (!iflib_started)
return (FILTER_STRAY);
DBG_COUNTER_INC(fast_intrs);
if (info->ifi_filter != NULL) {
result = info->ifi_filter(info->ifi_filter_arg);
if ((result & FILTER_SCHEDULE_THREAD) == 0)
return (result);
}
GROUPTASK_ENQUEUE(gtask);
return (FILTER_HANDLED);
}
static int
iflib_fast_intr_rxtx(void *arg)
{
iflib_filter_info_t info = arg;
struct grouptask *gtask = info->ifi_task;
if_ctx_t ctx;
iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx;
iflib_txq_t txq;
void *sc;
int i, cidx, result;
qidx_t txqid;
bool intr_enable, intr_legacy;
if (!iflib_started)
return (FILTER_STRAY);
DBG_COUNTER_INC(fast_intrs);
if (info->ifi_filter != NULL) {
result = info->ifi_filter(info->ifi_filter_arg);
if ((result & FILTER_SCHEDULE_THREAD) == 0)
return (result);
}
ctx = rxq->ifr_ctx;
sc = ctx->ifc_softc;
intr_enable = false;
intr_legacy = !!(ctx->ifc_flags & IFC_LEGACY);
MPASS(rxq->ifr_ntxqirq);
for (i = 0; i < rxq->ifr_ntxqirq; i++) {
txqid = rxq->ifr_txqid[i];
txq = &ctx->ifc_txqs[txqid];
bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_POSTREAD);
if (!ctx->isc_txd_credits_update(sc, txqid, false)) {
if (intr_legacy)
intr_enable = true;
else
IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid);
continue;
}
GROUPTASK_ENQUEUE(&txq->ift_task);
}
if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ)
cidx = rxq->ifr_cq_cidx;
else
cidx = rxq->ifr_fl[0].ifl_cidx;
if (iflib_rxd_avail(ctx, rxq, cidx, 1))
GROUPTASK_ENQUEUE(gtask);
else {
if (intr_legacy)
intr_enable = true;
else
IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
DBG_COUNTER_INC(rx_intr_enables);
}
if (intr_enable)
IFDI_INTR_ENABLE(ctx);
return (FILTER_HANDLED);
}
static int
iflib_fast_intr_ctx(void *arg)
{
iflib_filter_info_t info = arg;
struct grouptask *gtask = info->ifi_task;
int result;
if (!iflib_started)
return (FILTER_STRAY);
DBG_COUNTER_INC(fast_intrs);
if (info->ifi_filter != NULL) {
result = info->ifi_filter(info->ifi_filter_arg);
if ((result & FILTER_SCHEDULE_THREAD) == 0)
return (result);
}
GROUPTASK_ENQUEUE(gtask);
return (FILTER_HANDLED);
}
static int
_iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
driver_filter_t filter, driver_intr_t handler, void *arg,
const char *name)
{
struct resource *res;
void *tag = NULL;
device_t dev = ctx->ifc_dev;
int flags, i, rc;
flags = RF_ACTIVE;
if (ctx->ifc_flags & IFC_LEGACY)
flags |= RF_SHAREABLE;
MPASS(rid < 512);
i = rid;
res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, flags);
if (res == NULL) {
device_printf(dev,
"failed to allocate IRQ for rid %d, name %s.\n", rid, name);
return (ENOMEM);
}
irq->ii_res = res;
KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL"));
rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET,
filter, handler, arg, &tag);
if (rc != 0) {
device_printf(dev,
"failed to setup interrupt for rid %d, name %s: %d\n",
rid, name ? name : "unknown", rc);
return (rc);
} else if (name)
bus_describe_intr(dev, res, tag, "%s", name);
irq->ii_tag = tag;
return (0);
}
/*********************************************************************
*
* Allocate DMA resources for TX buffers as well as memory for the TX
* mbuf map. TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a
* iflib_sw_tx_desc_array structure, storing all the information that
* is needed to transmit a packet on the wire. This is called only
* once at attach, setup is done every reset.
*
**********************************************************************/
static int
iflib_txsd_alloc(iflib_txq_t txq)
{
if_ctx_t ctx = txq->ift_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
device_t dev = ctx->ifc_dev;
bus_size_t tsomaxsize;
int err, nsegments, ntsosegments;
bool tso;
nsegments = scctx->isc_tx_nsegments;
ntsosegments = scctx->isc_tx_tso_segments_max;
tsomaxsize = scctx->isc_tx_tso_size_max;
if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU)
tsomaxsize += sizeof(struct ether_vlan_header);
MPASS(scctx->isc_ntxd[0] > 0);
MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0);
MPASS(nsegments > 0);
if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) {
MPASS(ntsosegments > 0);
MPASS(sctx->isc_tso_maxsize >= tsomaxsize);
}
/*
* Set up DMA tags for TX buffers.
*/
if ((err = bus_dma_tag_create(bus_get_dma_tag(dev),
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sctx->isc_tx_maxsize, /* maxsize */
nsegments, /* nsegments */
sctx->isc_tx_maxsegsize, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&txq->ift_buf_tag))) {
device_printf(dev,"Unable to allocate TX DMA tag: %d\n", err);
device_printf(dev,"maxsize: %ju nsegments: %d maxsegsize: %ju\n",
(uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize);
goto fail;
}
tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0;
if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev),
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
tsomaxsize, /* maxsize */
ntsosegments, /* nsegments */
sctx->isc_tso_maxsegsize,/* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&txq->ift_tso_buf_tag))) {
device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n",
err);
goto fail;
}
/* Allocate memory for the TX mbuf map. */
if (!(txq->ift_sds.ifsd_m =
(struct mbuf **) malloc(sizeof(struct mbuf *) *
scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to allocate TX mbuf map memory\n");
err = ENOMEM;
goto fail;
}
/*
* Create the DMA maps for TX buffers.
*/
if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc(
sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
device_printf(dev,
"Unable to allocate TX buffer DMA map memory\n");
err = ENOMEM;
goto fail;
}
if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc(
sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
device_printf(dev,
"Unable to allocate TSO TX buffer map memory\n");
err = ENOMEM;
goto fail;
}
for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) {
err = bus_dmamap_create(txq->ift_buf_tag, 0,
&txq->ift_sds.ifsd_map[i]);
if (err != 0) {
device_printf(dev, "Unable to create TX DMA map\n");
goto fail;
}
if (!tso)
continue;
err = bus_dmamap_create(txq->ift_tso_buf_tag, 0,
&txq->ift_sds.ifsd_tso_map[i]);
if (err != 0) {
device_printf(dev, "Unable to create TSO TX DMA map\n");
goto fail;
}
}
return (0);
fail:
/* We free all, it handles case where we are in the middle */
iflib_tx_structures_free(ctx);
return (err);
}
static void
iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i)
{
bus_dmamap_t map;
map = NULL;
if (txq->ift_sds.ifsd_map != NULL)
map = txq->ift_sds.ifsd_map[i];
if (map != NULL) {
bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->ift_buf_tag, map);
bus_dmamap_destroy(txq->ift_buf_tag, map);
txq->ift_sds.ifsd_map[i] = NULL;
}
map = NULL;
if (txq->ift_sds.ifsd_tso_map != NULL)
map = txq->ift_sds.ifsd_tso_map[i];
if (map != NULL) {
bus_dmamap_sync(txq->ift_tso_buf_tag, map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->ift_tso_buf_tag, map);
bus_dmamap_destroy(txq->ift_tso_buf_tag, map);
txq->ift_sds.ifsd_tso_map[i] = NULL;
}
}
static void
iflib_txq_destroy(iflib_txq_t txq)
{
if_ctx_t ctx = txq->ift_ctx;
for (int i = 0; i < txq->ift_size; i++)
iflib_txsd_destroy(ctx, txq, i);
if (txq->ift_sds.ifsd_map != NULL) {
free(txq->ift_sds.ifsd_map, M_IFLIB);
txq->ift_sds.ifsd_map = NULL;
}
if (txq->ift_sds.ifsd_tso_map != NULL) {
free(txq->ift_sds.ifsd_tso_map, M_IFLIB);
txq->ift_sds.ifsd_tso_map = NULL;
}
if (txq->ift_sds.ifsd_m != NULL) {
free(txq->ift_sds.ifsd_m, M_IFLIB);
txq->ift_sds.ifsd_m = NULL;
}
if (txq->ift_buf_tag != NULL) {
bus_dma_tag_destroy(txq->ift_buf_tag);
txq->ift_buf_tag = NULL;
}
if (txq->ift_tso_buf_tag != NULL) {
bus_dma_tag_destroy(txq->ift_tso_buf_tag);
txq->ift_tso_buf_tag = NULL;
}
}
static void
iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i)
{
struct mbuf **mp;
mp = &txq->ift_sds.ifsd_m[i];
if (*mp == NULL)
return;
if (txq->ift_sds.ifsd_map != NULL) {
bus_dmamap_sync(txq->ift_buf_tag,
txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]);
}
if (txq->ift_sds.ifsd_tso_map != NULL) {
bus_dmamap_sync(txq->ift_tso_buf_tag,
txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->ift_tso_buf_tag,
txq->ift_sds.ifsd_tso_map[i]);
}
m_free(*mp);
DBG_COUNTER_INC(tx_frees);
*mp = NULL;
}
static int
iflib_txq_setup(iflib_txq_t txq)
{
if_ctx_t ctx = txq->ift_ctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
iflib_dma_info_t di;
int i;
/* Set number of descriptors available */
txq->ift_qstatus = IFLIB_QUEUE_IDLE;
/* XXX make configurable */
txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ;
/* Reset indices */
txq->ift_cidx_processed = 0;
txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0;
txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset];
for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
bzero((void *)di->idi_vaddr, di->idi_size);
IFDI_TXQ_SETUP(ctx, txq->ift_id);
for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
bus_dmamap_sync(di->idi_tag, di->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*********************************************************************
*
* Allocate DMA resources for RX buffers as well as memory for the RX
* mbuf map, direct RX cluster pointer map and RX cluster bus address
* map. RX DMA map, RX mbuf map, direct RX cluster pointer map and
* RX cluster map are kept in a iflib_sw_rx_desc_array structure.
* Since we use use one entry in iflib_sw_rx_desc_array per received
* packet, the maximum number of entries we'll need is equal to the
* number of hardware receive descriptors that we've allocated.
*
**********************************************************************/
static int
iflib_rxsd_alloc(iflib_rxq_t rxq)
{
if_ctx_t ctx = rxq->ifr_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
device_t dev = ctx->ifc_dev;
iflib_fl_t fl;
int err;
MPASS(scctx->isc_nrxd[0] > 0);
MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0);
fl = rxq->ifr_fl;
for (int i = 0; i < rxq->ifr_nfl; i++, fl++) {
fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */
/* Set up DMA tag for RX buffers. */
err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sctx->isc_rx_maxsize, /* maxsize */
sctx->isc_rx_nsegments, /* nsegments */
sctx->isc_rx_maxsegsize, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&fl->ifl_buf_tag);
if (err) {
device_printf(dev,
"Unable to allocate RX DMA tag: %d\n", err);
goto fail;
}
/* Allocate memory for the RX mbuf map. */
if (!(fl->ifl_sds.ifsd_m =
(struct mbuf **) malloc(sizeof(struct mbuf *) *
scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev,
"Unable to allocate RX mbuf map memory\n");
err = ENOMEM;
goto fail;
}
/* Allocate memory for the direct RX cluster pointer map. */
if (!(fl->ifl_sds.ifsd_cl =
(caddr_t *) malloc(sizeof(caddr_t) *
scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev,
"Unable to allocate RX cluster map memory\n");
err = ENOMEM;
goto fail;
}
/* Allocate memory for the RX cluster bus address map. */
if (!(fl->ifl_sds.ifsd_ba =
(bus_addr_t *) malloc(sizeof(bus_addr_t) *
scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev,
"Unable to allocate RX bus address map memory\n");
err = ENOMEM;
goto fail;
}
/*
* Create the DMA maps for RX buffers.
*/
if (!(fl->ifl_sds.ifsd_map =
(bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev,
"Unable to allocate RX buffer DMA map memory\n");
err = ENOMEM;
goto fail;
}
for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) {
err = bus_dmamap_create(fl->ifl_buf_tag, 0,
&fl->ifl_sds.ifsd_map[i]);
if (err != 0) {
device_printf(dev, "Unable to create RX buffer DMA map\n");
goto fail;
}
}
}
return (0);
fail:
iflib_rx_structures_free(ctx);
return (err);
}
/*
* Internal service routines
*/
struct rxq_refill_cb_arg {
int error;
bus_dma_segment_t seg;
int nseg;
};
static void
_rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct rxq_refill_cb_arg *cb_arg = arg;
cb_arg->error = error;
cb_arg->seg = segs[0];
cb_arg->nseg = nseg;
}
/**
* _iflib_fl_refill - refill an rxq free-buffer list
* @ctx: the iflib context
* @fl: the free list to refill
* @count: the number of new buffers to allocate
*
* (Re)populate an rxq free-buffer list with up to @count new packet buffers.
* The caller must assure that @count does not exceed the queue's capacity.
*/
static void
_iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count)
{
struct if_rxd_update iru;
struct rxq_refill_cb_arg cb_arg;
struct mbuf *m;
caddr_t cl, *sd_cl;
struct mbuf **sd_m;
bus_dmamap_t *sd_map;
bus_addr_t bus_addr, *sd_ba;
int err, frag_idx, i, idx, n, pidx;
qidx_t credits;
sd_m = fl->ifl_sds.ifsd_m;
sd_map = fl->ifl_sds.ifsd_map;
sd_cl = fl->ifl_sds.ifsd_cl;
sd_ba = fl->ifl_sds.ifsd_ba;
pidx = fl->ifl_pidx;
idx = pidx;
frag_idx = fl->ifl_fragidx;
credits = fl->ifl_credits;
i = 0;
n = count;
MPASS(n > 0);
MPASS(credits + n <= fl->ifl_size);
if (pidx < fl->ifl_cidx)
MPASS(pidx + n <= fl->ifl_cidx);
if (pidx == fl->ifl_cidx && (credits < fl->ifl_size))
MPASS(fl->ifl_gen == 0);
if (pidx > fl->ifl_cidx)
MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx);
DBG_COUNTER_INC(fl_refills);
if (n > 8)
DBG_COUNTER_INC(fl_refills_large);
iru_init(&iru, fl->ifl_rxq, fl->ifl_id);
while (n--) {
/*
* We allocate an uninitialized mbuf + cluster, mbuf is
* initialized after rx.
*
* If the cluster is still set then we know a minimum sized packet was received
*/
bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size,
&frag_idx);
if (frag_idx < 0)
bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx);
MPASS(frag_idx >= 0);
if ((cl = sd_cl[frag_idx]) == NULL) {
if ((cl = m_cljget(NULL, M_NOWAIT, fl->ifl_buf_size)) == NULL)
break;
cb_arg.error = 0;
MPASS(sd_map != NULL);
err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx],
cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg,
BUS_DMA_NOWAIT);
if (err != 0 || cb_arg.error) {
/*
* !zone_pack ?
*/
if (fl->ifl_zone == zone_pack)
uma_zfree(fl->ifl_zone, cl);
break;
}
sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr;
sd_cl[frag_idx] = cl;
#if MEMORY_LOGGING
fl->ifl_cl_enqueued++;
#endif
} else {
bus_addr = sd_ba[frag_idx];
}
bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx],
BUS_DMASYNC_PREREAD);
if (sd_m[frag_idx] == NULL) {
if ((m = m_gethdr(M_NOWAIT, MT_NOINIT)) == NULL) {
break;
}
sd_m[frag_idx] = m;
}
bit_set(fl->ifl_rx_bitmap, frag_idx);
#if MEMORY_LOGGING
fl->ifl_m_enqueued++;
#endif
DBG_COUNTER_INC(rx_allocs);
fl->ifl_rxd_idxs[i] = frag_idx;
fl->ifl_bus_addrs[i] = bus_addr;
fl->ifl_vm_addrs[i] = cl;
credits++;
i++;
MPASS(credits <= fl->ifl_size);
if (++idx == fl->ifl_size) {
fl->ifl_gen = 1;
idx = 0;
}
if (n == 0 || i == IFLIB_MAX_RX_REFRESH) {
iru.iru_pidx = pidx;
iru.iru_count = i;
ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
i = 0;
pidx = idx;
fl->ifl_pidx = idx;
fl->ifl_credits = credits;
}
}
if (i) {
iru.iru_pidx = pidx;
iru.iru_count = i;
ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
fl->ifl_pidx = idx;
fl->ifl_credits = credits;
}
DBG_COUNTER_INC(rxd_flush);
if (fl->ifl_pidx == 0)
pidx = fl->ifl_size - 1;
else
pidx = fl->ifl_pidx - 1;
bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id, fl->ifl_id, pidx);
fl->ifl_fragidx = frag_idx;
}
static __inline void
__iflib_fl_refill_lt(if_ctx_t ctx, iflib_fl_t fl, int max)
{
/* we avoid allowing pidx to catch up with cidx as it confuses ixl */
int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1;
#ifdef INVARIANTS
int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1;
#endif
MPASS(fl->ifl_credits <= fl->ifl_size);
MPASS(reclaimable == delta);
if (reclaimable > 0)
_iflib_fl_refill(ctx, fl, min(max, reclaimable));
}
uint8_t
iflib_in_detach(if_ctx_t ctx)
{
bool in_detach;
STATE_LOCK(ctx);
in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH);
STATE_UNLOCK(ctx);
return (in_detach);
}
static void
iflib_fl_bufs_free(iflib_fl_t fl)
{
iflib_dma_info_t idi = fl->ifl_ifdi;
bus_dmamap_t sd_map;
uint32_t i;
for (i = 0; i < fl->ifl_size; i++) {
struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i];
caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i];
if (*sd_cl != NULL) {
sd_map = fl->ifl_sds.ifsd_map[i];
bus_dmamap_sync(fl->ifl_buf_tag, sd_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fl->ifl_buf_tag, sd_map);
if (*sd_cl != NULL)
uma_zfree(fl->ifl_zone, *sd_cl);
// XXX: Should this get moved out?
if (iflib_in_detach(fl->ifl_rxq->ifr_ctx))
bus_dmamap_destroy(fl->ifl_buf_tag, sd_map);
if (*sd_m != NULL) {
m_init(*sd_m, M_NOWAIT, MT_DATA, 0);
uma_zfree(zone_mbuf, *sd_m);
}
} else {
MPASS(*sd_cl == NULL);
MPASS(*sd_m == NULL);
}
#if MEMORY_LOGGING
fl->ifl_m_dequeued++;
fl->ifl_cl_dequeued++;
#endif
*sd_cl = NULL;
*sd_m = NULL;
}
#ifdef INVARIANTS
for (i = 0; i < fl->ifl_size; i++) {
MPASS(fl->ifl_sds.ifsd_cl[i] == NULL);
MPASS(fl->ifl_sds.ifsd_m[i] == NULL);
}
#endif
/*
* Reset free list values
*/
fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0;
bzero(idi->idi_vaddr, idi->idi_size);
}
/*********************************************************************
*
* Initialize a free list and its buffers.
*
**********************************************************************/
static int
iflib_fl_setup(iflib_fl_t fl)
{
iflib_rxq_t rxq = fl->ifl_rxq;
if_ctx_t ctx = rxq->ifr_ctx;
bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1);
/*
** Free current RX buffer structs and their mbufs
*/
iflib_fl_bufs_free(fl);
/* Now replenish the mbufs */
MPASS(fl->ifl_credits == 0);
fl->ifl_buf_size = ctx->ifc_rx_mbuf_sz;
if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size)
ctx->ifc_max_fl_buf_size = fl->ifl_buf_size;
fl->ifl_cltype = m_gettype(fl->ifl_buf_size);
fl->ifl_zone = m_getzone(fl->ifl_buf_size);
/* avoid pre-allocating zillions of clusters to an idle card
* potentially speeding up attach
*/
_iflib_fl_refill(ctx, fl, min(128, fl->ifl_size));
MPASS(min(128, fl->ifl_size) == fl->ifl_credits);
if (min(128, fl->ifl_size) != fl->ifl_credits)
return (ENOBUFS);
/*
* handle failure
*/
MPASS(rxq != NULL);
MPASS(fl->ifl_ifdi != NULL);
bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*********************************************************************
*
* Free receive ring data structures
*
**********************************************************************/
static void
iflib_rx_sds_free(iflib_rxq_t rxq)
{
iflib_fl_t fl;
int i, j;
if (rxq->ifr_fl != NULL) {
for (i = 0; i < rxq->ifr_nfl; i++) {
fl = &rxq->ifr_fl[i];
if (fl->ifl_buf_tag != NULL) {
if (fl->ifl_sds.ifsd_map != NULL) {
for (j = 0; j < fl->ifl_size; j++) {
if (fl->ifl_sds.ifsd_map[j] ==
NULL)
continue;
bus_dmamap_sync(
fl->ifl_buf_tag,
fl->ifl_sds.ifsd_map[j],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(
fl->ifl_buf_tag,
fl->ifl_sds.ifsd_map[j]);
}
}
bus_dma_tag_destroy(fl->ifl_buf_tag);
fl->ifl_buf_tag = NULL;
}
free(fl->ifl_sds.ifsd_m, M_IFLIB);
free(fl->ifl_sds.ifsd_cl, M_IFLIB);
free(fl->ifl_sds.ifsd_ba, M_IFLIB);
free(fl->ifl_sds.ifsd_map, M_IFLIB);
fl->ifl_sds.ifsd_m = NULL;
fl->ifl_sds.ifsd_cl = NULL;
fl->ifl_sds.ifsd_ba = NULL;
fl->ifl_sds.ifsd_map = NULL;
}
free(rxq->ifr_fl, M_IFLIB);
rxq->ifr_fl = NULL;
rxq->ifr_cq_cidx = 0;
}
}
/*
* Timer routine
*/
static void
iflib_timer(void *arg)
{
iflib_txq_t txq = arg;
if_ctx_t ctx = txq->ift_ctx;
if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
uint64_t this_tick = ticks;
uint32_t reset_on = hz / 2;
if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
return;
/*
** Check on the state of the TX queue(s), this
** can be done without the lock because its RO
** and the HUNG state will be static if set.
*/
if (this_tick - txq->ift_last_timer_tick >= hz / 2) {
txq->ift_last_timer_tick = this_tick;
IFDI_TIMER(ctx, txq->ift_id);
if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) &&
((txq->ift_cleaned_prev == txq->ift_cleaned) ||
(sctx->isc_pause_frames == 0)))
goto hung;
if (ifmp_ring_is_stalled(txq->ift_br))
txq->ift_qstatus = IFLIB_QUEUE_HUNG;
txq->ift_cleaned_prev = txq->ift_cleaned;
}
#ifdef DEV_NETMAP
if (if_getcapenable(ctx->ifc_ifp) & IFCAP_NETMAP)
iflib_netmap_timer_adjust(ctx, txq, &reset_on);
#endif
/* handle any laggards */
if (txq->ift_db_pending)
GROUPTASK_ENQUEUE(&txq->ift_task);
sctx->isc_pause_frames = 0;
if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)
callout_reset_on(&txq->ift_timer, reset_on, iflib_timer, txq, txq->ift_timer.c_cpu);
return;
hung:
device_printf(ctx->ifc_dev,
"Watchdog timeout (TX: %d desc avail: %d pidx: %d) -- resetting\n",
txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx);
STATE_LOCK(ctx);
if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
ctx->ifc_flags |= (IFC_DO_WATCHDOG|IFC_DO_RESET);
iflib_admin_intr_deferred(ctx);
STATE_UNLOCK(ctx);
}
static void
iflib_calc_rx_mbuf_sz(if_ctx_t ctx)
{
if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
/*
* XXX don't set the max_frame_size to larger
* than the hardware can handle
*/
if (sctx->isc_max_frame_size <= MCLBYTES)
ctx->ifc_rx_mbuf_sz = MCLBYTES;
else
ctx->ifc_rx_mbuf_sz = MJUMPAGESIZE;
}
uint32_t
iflib_get_rx_mbuf_sz(if_ctx_t ctx)
{
return (ctx->ifc_rx_mbuf_sz);
}
static void
iflib_init_locked(if_ctx_t ctx)
{
if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
if_t ifp = ctx->ifc_ifp;
iflib_fl_t fl;
iflib_txq_t txq;
iflib_rxq_t rxq;
int i, j, tx_ip_csum_flags, tx_ip6_csum_flags;
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
IFDI_INTR_DISABLE(ctx);
tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP);
tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP);
/* Set hardware offload abilities */
if_clearhwassist(ifp);
if (if_getcapenable(ifp) & IFCAP_TXCSUM)
if_sethwassistbits(ifp, tx_ip_csum_flags, 0);
if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6)
if_sethwassistbits(ifp, tx_ip6_csum_flags, 0);
if (if_getcapenable(ifp) & IFCAP_TSO4)
if_sethwassistbits(ifp, CSUM_IP_TSO, 0);
if (if_getcapenable(ifp) & IFCAP_TSO6)
if_sethwassistbits(ifp, CSUM_IP6_TSO, 0);
for (i = 0, txq = ctx->ifc_txqs; i < sctx->isc_ntxqsets; i++, txq++) {
CALLOUT_LOCK(txq);
callout_stop(&txq->ift_timer);
CALLOUT_UNLOCK(txq);
iflib_netmap_txq_init(ctx, txq);
}
/*
* Calculate a suitable Rx mbuf size prior to calling IFDI_INIT, so
* that drivers can use the value when setting up the hardware receive
* buffers.
*/
iflib_calc_rx_mbuf_sz(ctx);
#ifdef INVARIANTS
i = if_getdrvflags(ifp);
#endif
IFDI_INIT(ctx);
MPASS(if_getdrvflags(ifp) == i);
for (i = 0, rxq = ctx->ifc_rxqs; i < sctx->isc_nrxqsets; i++, rxq++) {
/* XXX this should really be done on a per-queue basis */
if (if_getcapenable(ifp) & IFCAP_NETMAP) {
MPASS(rxq->ifr_id == i);
iflib_netmap_rxq_init(ctx, rxq);
continue;
}
for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
if (iflib_fl_setup(fl)) {
device_printf(ctx->ifc_dev,
"setting up free list %d failed - "
"check cluster settings\n", j);
goto done;
}
}
}
done:
if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
IFDI_INTR_ENABLE(ctx);
txq = ctx->ifc_txqs;
for (i = 0; i < sctx->isc_ntxqsets; i++, txq++)
callout_reset_on(&txq->ift_timer, hz/2, iflib_timer, txq,
txq->ift_timer.c_cpu);
}
static int
iflib_media_change(if_t ifp)
{
if_ctx_t ctx = if_getsoftc(ifp);
int err;
CTX_LOCK(ctx);
if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0)
iflib_init_locked(ctx);
CTX_UNLOCK(ctx);
return (err);
}
static void
iflib_media_status(if_t ifp, struct ifmediareq *ifmr)
{
if_ctx_t ctx = if_getsoftc(ifp);
CTX_LOCK(ctx);
IFDI_UPDATE_ADMIN_STATUS(ctx);
IFDI_MEDIA_STATUS(ctx, ifmr);
CTX_UNLOCK(ctx);
}
void
iflib_stop(if_ctx_t ctx)
{
iflib_txq_t txq = ctx->ifc_txqs;
iflib_rxq_t rxq = ctx->ifc_rxqs;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
iflib_dma_info_t di;
iflib_fl_t fl;
int i, j;
/* Tell the stack that the interface is no longer active */
if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
IFDI_INTR_DISABLE(ctx);
DELAY(1000);
IFDI_STOP(ctx);
DELAY(1000);
iflib_debug_reset();
/* Wait for current tx queue users to exit to disarm watchdog timer. */
for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) {
/* make sure all transmitters have completed before proceeding XXX */
CALLOUT_LOCK(txq);
callout_stop(&txq->ift_timer);
CALLOUT_UNLOCK(txq);
/* clean any enqueued buffers */
iflib_ifmp_purge(txq);
/* Free any existing tx buffers. */
for (j = 0; j < txq->ift_size; j++) {
iflib_txsd_free(ctx, txq, j);
}
txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0;
txq->ift_in_use = txq->ift_gen = txq->ift_cidx = txq->ift_pidx = txq->ift_no_desc_avail = 0;
txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0;
txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0;
txq->ift_pullups = 0;
ifmp_ring_reset_stats(txq->ift_br);
for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++)
bzero((void *)di->idi_vaddr, di->idi_size);
}
for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) {
/* make sure all transmitters have completed before proceeding XXX */
rxq->ifr_cq_cidx = 0;
for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++)
bzero((void *)di->idi_vaddr, di->idi_size);
/* also resets the free lists pidx/cidx */
for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
iflib_fl_bufs_free(fl);
}
}
static inline caddr_t
calc_next_rxd(iflib_fl_t fl, int cidx)
{
qidx_t size;
int nrxd;
caddr_t start, end, cur, next;
nrxd = fl->ifl_size;
size = fl->ifl_rxd_size;
start = fl->ifl_ifdi->idi_vaddr;
if (__predict_false(size == 0))
return (start);
cur = start + size*cidx;
end = start + size*nrxd;
next = CACHE_PTR_NEXT(cur);
return (next < end ? next : start);
}
static inline void
prefetch_pkts(iflib_fl_t fl, int cidx)
{
int nextptr;
int nrxd = fl->ifl_size;
caddr_t next_rxd;
nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd-1);
prefetch(&fl->ifl_sds.ifsd_m[nextptr]);
prefetch(&fl->ifl_sds.ifsd_cl[nextptr]);
next_rxd = calc_next_rxd(fl, cidx);
prefetch(next_rxd);
prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd-1)]);
prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd-1)]);
prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd-1)]);
prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd-1)]);
prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd-1)]);
prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd-1)]);
prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd-1)]);
prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd-1)]);
}
static struct mbuf *
rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, bool unload, if_rxsd_t sd,
int *pf_rv, if_rxd_info_t ri)
{
bus_dmamap_t map;
iflib_fl_t fl;
caddr_t payload;
struct mbuf *m;
int flid, cidx, len, next;
map = NULL;
flid = irf->irf_flid;
cidx = irf->irf_idx;
fl = &rxq->ifr_fl[flid];
sd->ifsd_fl = fl;
sd->ifsd_cidx = cidx;
m = fl->ifl_sds.ifsd_m[cidx];
sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx];
fl->ifl_credits--;
#if MEMORY_LOGGING
fl->ifl_m_dequeued++;
#endif
if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH)
prefetch_pkts(fl, cidx);
next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size-1);
prefetch(&fl->ifl_sds.ifsd_map[next]);
map = fl->ifl_sds.ifsd_map[cidx];
next = (cidx + CACHE_LINE_SIZE) & (fl->ifl_size-1);
/* not valid assert if bxe really does SGE from non-contiguous elements */
MPASS(fl->ifl_cidx == cidx);
bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD);
if (rxq->pfil != NULL && PFIL_HOOKED_IN(rxq->pfil) && pf_rv != NULL) {
payload = *sd->ifsd_cl;
payload += ri->iri_pad;
len = ri->iri_len - ri->iri_pad;
*pf_rv = pfil_run_hooks(rxq->pfil, payload, ri->iri_ifp,
len | PFIL_MEMPTR | PFIL_IN, NULL);
switch (*pf_rv) {
case PFIL_DROPPED:
case PFIL_CONSUMED:
/*
* The filter ate it. Everything is recycled.
*/
m = NULL;
unload = 0;
break;
case PFIL_REALLOCED:
/*
* The filter copied it. Everything is recycled.
*/
m = pfil_mem2mbuf(payload);
unload = 0;
break;
case PFIL_PASS:
/*
* Filter said it was OK, so receive like
* normal
*/
fl->ifl_sds.ifsd_m[cidx] = NULL;
break;
default:
MPASS(0);
}
} else {
fl->ifl_sds.ifsd_m[cidx] = NULL;
*pf_rv = PFIL_PASS;
}
if (unload)
bus_dmamap_unload(fl->ifl_buf_tag, map);
fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size-1);
if (__predict_false(fl->ifl_cidx == 0))
fl->ifl_gen = 0;
bit_clear(fl->ifl_rx_bitmap, cidx);
return (m);
}
static struct mbuf *
assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd, int *pf_rv)
{
struct mbuf *m, *mh, *mt;
caddr_t cl;
int *pf_rv_ptr, flags, i, padlen;
bool consumed;
i = 0;
mh = NULL;
consumed = false;
*pf_rv = PFIL_PASS;
pf_rv_ptr = pf_rv;
do {
m = rxd_frag_to_sd(rxq, &ri->iri_frags[i], !consumed, sd,
pf_rv_ptr, ri);
MPASS(*sd->ifsd_cl != NULL);
/*
* Exclude zero-length frags & frags from
* packets the filter has consumed or dropped
*/
if (ri->iri_frags[i].irf_len == 0 || consumed ||
*pf_rv == PFIL_CONSUMED || *pf_rv == PFIL_DROPPED) {
if (mh == NULL) {
/* everything saved here */
consumed = true;
pf_rv_ptr = NULL;
continue;
}
/* XXX we can save the cluster here, but not the mbuf */
m_init(m, M_NOWAIT, MT_DATA, 0);
m_free(m);
continue;
}
if (mh == NULL) {
flags = M_PKTHDR|M_EXT;
mh = mt = m;
padlen = ri->iri_pad;
} else {
flags = M_EXT;
mt->m_next = m;
mt = m;
/* assuming padding is only on the first fragment */
padlen = 0;
}
cl = *sd->ifsd_cl;
*sd->ifsd_cl = NULL;
/* Can these two be made one ? */
m_init(m, M_NOWAIT, MT_DATA, flags);
m_cljset(m, cl, sd->ifsd_fl->ifl_cltype);
/*
* These must follow m_init and m_cljset
*/
m->m_data += padlen;
ri->iri_len -= padlen;
m->m_len = ri->iri_frags[i].irf_len;
} while (++i < ri->iri_nfrags);
return (mh);
}
/*
* Process one software descriptor
*/
static struct mbuf *
iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri)
{
struct if_rxsd sd;
struct mbuf *m;
int pf_rv;
/* should I merge this back in now that the two paths are basically duplicated? */
if (ri->iri_nfrags == 1 &&
ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) {
m = rxd_frag_to_sd(rxq, &ri->iri_frags[0], false, &sd,
&pf_rv, ri);
if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
return (m);
if (pf_rv == PFIL_PASS) {
m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
#ifndef __NO_STRICT_ALIGNMENT
if (!IP_ALIGNED(m))
m->m_data += 2;
#endif
memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len);
m->m_len = ri->iri_frags[0].irf_len;
}
} else {
m = assemble_segments(rxq, ri, &sd, &pf_rv);
if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
return (m);
}
m->m_pkthdr.len = ri->iri_len;
m->m_pkthdr.rcvif = ri->iri_ifp;
m->m_flags |= ri->iri_flags;
m->m_pkthdr.ether_vtag = ri->iri_vtag;
m->m_pkthdr.flowid = ri->iri_flowid;
M_HASHTYPE_SET(m, ri->iri_rsstype);
m->m_pkthdr.csum_flags = ri->iri_csum_flags;
m->m_pkthdr.csum_data = ri->iri_csum_data;
return (m);
}
#if defined(INET6) || defined(INET)
static void
iflib_get_ip_forwarding(struct lro_ctrl *lc, bool *v4, bool *v6)
{
CURVNET_SET(lc->ifp->if_vnet);
#if defined(INET6)
*v6 = V_ip6_forwarding;
#endif
#if defined(INET)
*v4 = V_ipforwarding;
#endif
CURVNET_RESTORE();
}
/*
* Returns true if it's possible this packet could be LROed.
* if it returns false, it is guaranteed that tcp_lro_rx()
* would not return zero.
*/
static bool
iflib_check_lro_possible(struct mbuf *m, bool v4_forwarding, bool v6_forwarding)
{
struct ether_header *eh;
eh = mtod(m, struct ether_header *);
switch (eh->ether_type) {
#if defined(INET6)
case htons(ETHERTYPE_IPV6):
return (!v6_forwarding);
#endif
#if defined (INET)
case htons(ETHERTYPE_IP):
return (!v4_forwarding);
#endif
}
return false;
}
#else
static void
iflib_get_ip_forwarding(struct lro_ctrl *lc __unused, bool *v4 __unused, bool *v6 __unused)
{
}
#endif
static bool
iflib_rxeof(iflib_rxq_t rxq, qidx_t budget)
{
if_t ifp;
if_ctx_t ctx = rxq->ifr_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
int avail, i;
qidx_t *cidxp;
struct if_rxd_info ri;
int err, budget_left, rx_bytes, rx_pkts;
iflib_fl_t fl;
int lro_enabled;
bool v4_forwarding, v6_forwarding, lro_possible;
/*
* XXX early demux data packets so that if_input processing only handles
* acks in interrupt context
*/
struct mbuf *m, *mh, *mt, *mf;
lro_possible = v4_forwarding = v6_forwarding = false;
ifp = ctx->ifc_ifp;
mh = mt = NULL;
MPASS(budget > 0);
rx_pkts = rx_bytes = 0;
if (sctx->isc_flags & IFLIB_HAS_RXCQ)
cidxp = &rxq->ifr_cq_cidx;
else
cidxp = &rxq->ifr_fl[0].ifl_cidx;
if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) {
for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
__iflib_fl_refill_lt(ctx, fl, budget + 8);
DBG_COUNTER_INC(rx_unavail);
return (false);
}
/* pfil needs the vnet to be set */
CURVNET_SET_QUIET(ifp->if_vnet);
for (budget_left = budget; budget_left > 0 && avail > 0;) {
if (__predict_false(!CTX_ACTIVE(ctx))) {
DBG_COUNTER_INC(rx_ctx_inactive);
break;
}
/*
* Reset client set fields to their default values
*/
rxd_info_zero(&ri);
ri.iri_qsidx = rxq->ifr_id;
ri.iri_cidx = *cidxp;
ri.iri_ifp = ifp;
ri.iri_frags = rxq->ifr_frags;
err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
if (err)
goto err;
rx_pkts += 1;
rx_bytes += ri.iri_len;
if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
*cidxp = ri.iri_cidx;
/* Update our consumer index */
/* XXX NB: shurd - check if this is still safe */
while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0])
rxq->ifr_cq_cidx -= scctx->isc_nrxd[0];
/* was this only a completion queue message? */
if (__predict_false(ri.iri_nfrags == 0))
continue;
}
MPASS(ri.iri_nfrags != 0);
MPASS(ri.iri_len != 0);
/* will advance the cidx on the corresponding free lists */
m = iflib_rxd_pkt_get(rxq, &ri);
avail--;
budget_left--;
if (avail == 0 && budget_left)
avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left);
if (__predict_false(m == NULL))
continue;
/* imm_pkt: -- cxgb */
if (mh == NULL)
mh = mt = m;
else {
mt->m_nextpkt = m;
mt = m;
}
}
CURVNET_RESTORE();
/* make sure that we can refill faster than drain */
for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
__iflib_fl_refill_lt(ctx, fl, budget + 8);
lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO);
if (lro_enabled)
iflib_get_ip_forwarding(&rxq->ifr_lc, &v4_forwarding, &v6_forwarding);
mt = mf = NULL;
while (mh != NULL) {
m = mh;
mh = mh->m_nextpkt;
m->m_nextpkt = NULL;
#ifndef __NO_STRICT_ALIGNMENT
if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL)
continue;
#endif
rx_bytes += m->m_pkthdr.len;
rx_pkts++;
#if defined(INET6) || defined(INET)
if (lro_enabled) {
if (!lro_possible) {
lro_possible = iflib_check_lro_possible(m, v4_forwarding, v6_forwarding);
if (lro_possible && mf != NULL) {
ifp->if_input(ifp, mf);
DBG_COUNTER_INC(rx_if_input);
mt = mf = NULL;
}
}
if ((m->m_pkthdr.csum_flags & (CSUM_L4_CALC|CSUM_L4_VALID)) ==
(CSUM_L4_CALC|CSUM_L4_VALID)) {
if (lro_possible && tcp_lro_rx(&rxq->ifr_lc, m, 0) == 0)
continue;
}
}
#endif
if (lro_possible) {
ifp->if_input(ifp, m);
DBG_COUNTER_INC(rx_if_input);
continue;
}
if (mf == NULL)
mf = m;
if (mt != NULL)
mt->m_nextpkt = m;
mt = m;
}
if (mf != NULL) {
ifp->if_input(ifp, mf);
DBG_COUNTER_INC(rx_if_input);
}
if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
/*
* Flush any outstanding LRO work
*/
#if defined(INET6) || defined(INET)
tcp_lro_flush_all(&rxq->ifr_lc);
#endif
if (avail)
return true;
return (iflib_rxd_avail(ctx, rxq, *cidxp, 1));
err:
STATE_LOCK(ctx);
ctx->ifc_flags |= IFC_DO_RESET;
iflib_admin_intr_deferred(ctx);
STATE_UNLOCK(ctx);
return (false);
}
#define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq)-1)
static inline qidx_t
txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use)
{
qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
qidx_t minthresh = txq->ift_size / 8;
if (in_use > 4*minthresh)
return (notify_count);
if (in_use > 2*minthresh)
return (notify_count >> 1);
if (in_use > minthresh)
return (notify_count >> 3);
return (0);
}
static inline qidx_t
txq_max_rs_deferred(iflib_txq_t txq)
{
qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
qidx_t minthresh = txq->ift_size / 8;
if (txq->ift_in_use > 4*minthresh)
return (notify_count);
if (txq->ift_in_use > 2*minthresh)
return (notify_count >> 1);
if (txq->ift_in_use > minthresh)
return (notify_count >> 2);
return (2);
}
#define M_CSUM_FLAGS(m) ((m)->m_pkthdr.csum_flags)
#define M_HAS_VLANTAG(m) (m->m_flags & M_VLANTAG)
#define TXQ_MAX_DB_DEFERRED(txq, in_use) txq_max_db_deferred((txq), (in_use))
#define TXQ_MAX_RS_DEFERRED(txq) txq_max_rs_deferred(txq)
#define TXQ_MAX_DB_CONSUMED(size) (size >> 4)
/* forward compatibility for cxgb */
#define FIRST_QSET(ctx) 0
#define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets)
#define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets)
#define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx))
#define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments))
/* XXX we should be setting this to something other than zero */
#define RECLAIM_THRESH(ctx) ((ctx)->ifc_sctx->isc_tx_reclaim_thresh)
#define MAX_TX_DESC(ctx) max((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \
(ctx)->ifc_softc_ctx.isc_tx_nsegments)
static inline bool
iflib_txd_db_check(if_ctx_t ctx, iflib_txq_t txq, int ring, qidx_t in_use)
{
qidx_t dbval, max;
bool rang;
rang = false;
max = TXQ_MAX_DB_DEFERRED(txq, in_use);
if (ring || txq->ift_db_pending >= max) {
dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx;
bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval);
txq->ift_db_pending = txq->ift_npending = 0;
rang = true;
}
return (rang);
}
#ifdef PKT_DEBUG
static void
print_pkt(if_pkt_info_t pi)
{
printf("pi len: %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n",
pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx);
printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n",
pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag);
printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n",
pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto);
}
#endif
#define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO)
#define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO))
#define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO)
#define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO))
static int
iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp)
{
if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx;
struct ether_vlan_header *eh;
struct mbuf *m;
m = *mp;
if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) &&
M_WRITABLE(m) == 0) {
if ((m = m_dup(m, M_NOWAIT)) == NULL) {
return (ENOMEM);
} else {
m_freem(*mp);
DBG_COUNTER_INC(tx_frees);
*mp = m;
}
}
/*
* Determine where frame payload starts.
* Jump over vlan headers if already present,
* helpful for QinQ too.
*/
if (__predict_false(m->m_len < sizeof(*eh))) {
txq->ift_pullups++;
if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL))
return (ENOMEM);
}
eh = mtod(m, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
pi->ipi_etype = ntohs(eh->evl_proto);
pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
pi->ipi_etype = ntohs(eh->evl_encap_proto);
pi->ipi_ehdrlen = ETHER_HDR_LEN;
}
switch (pi->ipi_etype) {
#ifdef INET
case ETHERTYPE_IP:
{
struct mbuf *n;
struct ip *ip = NULL;
struct tcphdr *th = NULL;
int minthlen;
minthlen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip) + sizeof(*th));
if (__predict_false(m->m_len < minthlen)) {
/*
* if this code bloat is causing too much of a hit
* move it to a separate function and mark it noinline
*/
if (m->m_len == pi->ipi_ehdrlen) {
n = m->m_next;
MPASS(n);
if (n->m_len >= sizeof(*ip)) {
ip = (struct ip *)n->m_data;
if (n->m_len >= (ip->ip_hl << 2) + sizeof(*th))
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
} else {
txq->ift_pullups++;
if (__predict_false((m = m_pullup(m, minthlen)) == NULL))
return (ENOMEM);
ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
}
} else {
txq->ift_pullups++;
if (__predict_false((m = m_pullup(m, minthlen)) == NULL))
return (ENOMEM);
ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th))
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
}
} else {
ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th))
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
}
pi->ipi_ip_hlen = ip->ip_hl << 2;
pi->ipi_ipproto = ip->ip_p;
pi->ipi_flags |= IPI_TX_IPV4;
/* TCP checksum offload may require TCP header length */
if (IS_TX_OFFLOAD4(pi)) {
if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) {
if (__predict_false(th == NULL)) {
txq->ift_pullups++;
if (__predict_false((m = m_pullup(m, (ip->ip_hl << 2) + sizeof(*th))) == NULL))
return (ENOMEM);
th = (struct tcphdr *)((caddr_t)ip + pi->ipi_ip_hlen);
}
pi->ipi_tcp_hflags = th->th_flags;
pi->ipi_tcp_hlen = th->th_off << 2;
pi->ipi_tcp_seq = th->th_seq;
}
if (IS_TSO4(pi)) {
if (__predict_false(ip->ip_p != IPPROTO_TCP))
return (ENXIO);
/*
* TSO always requires hardware checksum offload.
*/
pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP);
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
if (sctx->isc_flags & IFLIB_TSO_INIT_IP) {
ip->ip_sum = 0;
ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz);
}
}
}
if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP))
ip->ip_sum = 0;
break;
}
#endif
#ifdef INET6
case ETHERTYPE_IPV6:
{
struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
struct tcphdr *th;
pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
txq->ift_pullups++;
if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
return (ENOMEM);
}
th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen);
/* XXX-BZ this will go badly in case of ext hdrs. */
pi->ipi_ipproto = ip6->ip6_nxt;
pi->ipi_flags |= IPI_TX_IPV6;
/* TCP checksum offload may require TCP header length */
if (IS_TX_OFFLOAD6(pi)) {
if (pi->ipi_ipproto == IPPROTO_TCP) {
if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) {
txq->ift_pullups++;
if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL))
return (ENOMEM);
}
pi->ipi_tcp_hflags = th->th_flags;
pi->ipi_tcp_hlen = th->th_off << 2;
pi->ipi_tcp_seq = th->th_seq;
}
if (IS_TSO6(pi)) {
if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP))
return (ENXIO);
/*
* TSO always requires hardware checksum offload.
*/
pi->ipi_csum_flags |= CSUM_IP6_TCP;
th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
}
}
break;
}
#endif
default:
pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
pi->ipi_ip_hlen = 0;
break;
}
*mp = m;
return (0);
}
/*
* If dodgy hardware rejects the scatter gather chain we've handed it
* we'll need to remove the mbuf chain from ifsg_m[] before we can add the
* m_defrag'd mbufs
*/
static __noinline struct mbuf *
iflib_remove_mbuf(iflib_txq_t txq)
{
int ntxd, pidx;
struct mbuf *m, **ifsd_m;
ifsd_m = txq->ift_sds.ifsd_m;
ntxd = txq->ift_size;
pidx = txq->ift_pidx & (ntxd - 1);
ifsd_m = txq->ift_sds.ifsd_m;
m = ifsd_m[pidx];
ifsd_m[pidx] = NULL;
bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]);
if (txq->ift_sds.ifsd_tso_map != NULL)
bus_dmamap_unload(txq->ift_tso_buf_tag,
txq->ift_sds.ifsd_tso_map[pidx]);
#if MEMORY_LOGGING
txq->ift_dequeued++;
#endif
return (m);
}
static inline caddr_t
calc_next_txd(iflib_txq_t txq, int cidx, uint8_t qid)
{
qidx_t size;
int ntxd;
caddr_t start, end, cur, next;
ntxd = txq->ift_size;
size = txq->ift_txd_size[qid];
start = txq->ift_ifdi[qid].idi_vaddr;
if (__predict_false(size == 0))
return (start);
cur = start + size*cidx;
end = start + size*ntxd;
next = CACHE_PTR_NEXT(cur);
return (next < end ? next : start);
}
/*
* Pad an mbuf to ensure a minimum ethernet frame size.
* min_frame_size is the frame size (less CRC) to pad the mbuf to
*/
static __noinline int
iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size)
{
/*
* 18 is enough bytes to pad an ARP packet to 46 bytes, and
* and ARP message is the smallest common payload I can think of
*/
static char pad[18]; /* just zeros */
int n;
struct mbuf *new_head;
if (!M_WRITABLE(*m_head)) {
new_head = m_dup(*m_head, M_NOWAIT);
if (new_head == NULL) {
m_freem(*m_head);
device_printf(dev, "cannot pad short frame, m_dup() failed");
DBG_COUNTER_INC(encap_pad_mbuf_fail);
DBG_COUNTER_INC(tx_frees);
return ENOMEM;
}
m_freem(*m_head);
*m_head = new_head;
}
for (n = min_frame_size - (*m_head)->m_pkthdr.len;
n > 0; n -= sizeof(pad))
if (!m_append(*m_head, min(n, sizeof(pad)), pad))
break;
if (n > 0) {
m_freem(*m_head);
device_printf(dev, "cannot pad short frame\n");
DBG_COUNTER_INC(encap_pad_mbuf_fail);
DBG_COUNTER_INC(tx_frees);
return (ENOBUFS);
}
return 0;
}
static int
iflib_encap(iflib_txq_t txq, struct mbuf **m_headp)
{
if_ctx_t ctx;
if_shared_ctx_t sctx;
if_softc_ctx_t scctx;
bus_dma_tag_t buf_tag;
bus_dma_segment_t *segs;
struct mbuf *m_head, **ifsd_m;
void *next_txd;
bus_dmamap_t map;
struct if_pkt_info pi;
int remap = 0;
int err, nsegs, ndesc, max_segs, pidx, cidx, next, ntxd;
ctx = txq->ift_ctx;
sctx = ctx->ifc_sctx;
scctx = &ctx->ifc_softc_ctx;
segs = txq->ift_segs;
ntxd = txq->ift_size;
m_head = *m_headp;
map = NULL;
/*
* If we're doing TSO the next descriptor to clean may be quite far ahead
*/
cidx = txq->ift_cidx;
pidx = txq->ift_pidx;
if (ctx->ifc_flags & IFC_PREFETCH) {
next = (cidx + CACHE_PTR_INCREMENT) & (ntxd-1);
if (!(ctx->ifc_flags & IFLIB_HAS_TXCQ)) {
next_txd = calc_next_txd(txq, cidx, 0);
prefetch(next_txd);
}
/* prefetch the next cache line of mbuf pointers and flags */
prefetch(&txq->ift_sds.ifsd_m[next]);
prefetch(&txq->ift_sds.ifsd_map[next]);
next = (cidx + CACHE_LINE_SIZE) & (ntxd-1);
}
map = txq->ift_sds.ifsd_map[pidx];
ifsd_m = txq->ift_sds.ifsd_m;
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
buf_tag = txq->ift_tso_buf_tag;
max_segs = scctx->isc_tx_tso_segments_max;
map = txq->ift_sds.ifsd_tso_map[pidx];
MPASS(buf_tag != NULL);
MPASS(max_segs > 0);
} else {
buf_tag = txq->ift_buf_tag;
max_segs = scctx->isc_tx_nsegments;
map = txq->ift_sds.ifsd_map[pidx];
}
if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) &&
__predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) {
err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size);
if (err) {
DBG_COUNTER_INC(encap_txd_encap_fail);
return err;
}
}
m_head = *m_headp;
pkt_info_zero(&pi);
pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG|M_BCAST|M_MCAST));
pi.ipi_pidx = pidx;
pi.ipi_qsidx = txq->ift_id;
pi.ipi_len = m_head->m_pkthdr.len;
pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags;
pi.ipi_vtag = M_HAS_VLANTAG(m_head) ? m_head->m_pkthdr.ether_vtag : 0;
/* deliberate bitwise OR to make one condition */
if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) {
if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) {
DBG_COUNTER_INC(encap_txd_encap_fail);
return (err);
}
m_head = *m_headp;
}
retry:
err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs,
BUS_DMA_NOWAIT);
defrag:
if (__predict_false(err)) {
switch (err) {
case EFBIG:
/* try collapse once and defrag once */
if (remap == 0) {
m_head = m_collapse(*m_headp, M_NOWAIT, max_segs);
/* try defrag if collapsing fails */
if (m_head == NULL)
remap++;
}
if (remap == 1) {
txq->ift_mbuf_defrag++;
m_head = m_defrag(*m_headp, M_NOWAIT);
}
/*
* remap should never be >1 unless bus_dmamap_load_mbuf_sg
* failed to map an mbuf that was run through m_defrag
*/
MPASS(remap <= 1);
if (__predict_false(m_head == NULL || remap > 1))
goto defrag_failed;
remap++;
*m_headp = m_head;
goto retry;
break;
case ENOMEM:
txq->ift_no_tx_dma_setup++;
break;
default:
txq->ift_no_tx_dma_setup++;
m_freem(*m_headp);
DBG_COUNTER_INC(tx_frees);
*m_headp = NULL;
break;
}
txq->ift_map_failed++;
DBG_COUNTER_INC(encap_load_mbuf_fail);
DBG_COUNTER_INC(encap_txd_encap_fail);
return (err);
}
ifsd_m[pidx] = m_head;
/*
* XXX assumes a 1 to 1 relationship between segments and
* descriptors - this does not hold true on all drivers, e.g.
* cxgb
*/
if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) {
txq->ift_no_desc_avail++;
bus_dmamap_unload(buf_tag, map);
DBG_COUNTER_INC(encap_txq_avail_fail);
DBG_COUNTER_INC(encap_txd_encap_fail);
if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0)
GROUPTASK_ENQUEUE(&txq->ift_task);
return (ENOBUFS);
}
/*
* On Intel cards we can greatly reduce the number of TX interrupts
* we see by only setting report status on every Nth descriptor.
* However, this also means that the driver will need to keep track
* of the descriptors that RS was set on to check them for the DD bit.
*/
txq->ift_rs_pending += nsegs + 1;
if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) ||
iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx) + 2) {
pi.ipi_flags |= IPI_TX_INTR;
txq->ift_rs_pending = 0;
}
pi.ipi_segs = segs;
pi.ipi_nsegs = nsegs;
MPASS(pidx >= 0 && pidx < txq->ift_size);
#ifdef PKT_DEBUG
print_pkt(&pi);
#endif
if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) {
bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE);
DBG_COUNTER_INC(tx_encap);
MPASS(pi.ipi_new_pidx < txq->ift_size);
ndesc = pi.ipi_new_pidx - pi.ipi_pidx;
if (pi.ipi_new_pidx < pi.ipi_pidx) {
ndesc += txq->ift_size;
txq->ift_gen = 1;
}
/*
* drivers can need as many as
* two sentinels
*/
MPASS(ndesc <= pi.ipi_nsegs + 2);
MPASS(pi.ipi_new_pidx != pidx);
MPASS(ndesc > 0);
txq->ift_in_use += ndesc;
/*
* We update the last software descriptor again here because there may
* be a sentinel and/or there may be more mbufs than segments
*/
txq->ift_pidx = pi.ipi_new_pidx;
txq->ift_npending += pi.ipi_ndescs;
} else {
*m_headp = m_head = iflib_remove_mbuf(txq);
if (err == EFBIG) {
txq->ift_txd_encap_efbig++;
if (remap < 2) {
remap = 1;
goto defrag;
}
}
goto defrag_failed;
}
/*
* err can't possibly be non-zero here, so we don't neet to test it
* to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail).
*/
return (err);
defrag_failed:
txq->ift_mbuf_defrag_failed++;
txq->ift_map_failed++;
m_freem(*m_headp);
DBG_COUNTER_INC(tx_frees);
*m_headp = NULL;
DBG_COUNTER_INC(encap_txd_encap_fail);
return (ENOMEM);
}
static void
iflib_tx_desc_free(iflib_txq_t txq, int n)
{
uint32_t qsize, cidx, mask, gen;
struct mbuf *m, **ifsd_m;
bool do_prefetch;
cidx = txq->ift_cidx;
gen = txq->ift_gen;
qsize = txq->ift_size;
mask = qsize-1;
ifsd_m = txq->ift_sds.ifsd_m;
do_prefetch = (txq->ift_ctx->ifc_flags & IFC_PREFETCH);
while (n-- > 0) {
if (do_prefetch) {
prefetch(ifsd_m[(cidx + 3) & mask]);
prefetch(ifsd_m[(cidx + 4) & mask]);
}
if ((m = ifsd_m[cidx]) != NULL) {
prefetch(&ifsd_m[(cidx + CACHE_PTR_INCREMENT) & mask]);
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
bus_dmamap_sync(txq->ift_tso_buf_tag,
txq->ift_sds.ifsd_tso_map[cidx],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->ift_tso_buf_tag,
txq->ift_sds.ifsd_tso_map[cidx]);
} else {
bus_dmamap_sync(txq->ift_buf_tag,
txq->ift_sds.ifsd_map[cidx],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->ift_buf_tag,
txq->ift_sds.ifsd_map[cidx]);
}
/* XXX we don't support any drivers that batch packets yet */
MPASS(m->m_nextpkt == NULL);
m_freem(m);
ifsd_m[cidx] = NULL;
#if MEMORY_LOGGING
txq->ift_dequeued++;
#endif
DBG_COUNTER_INC(tx_frees);
}
if (__predict_false(++cidx == qsize)) {
cidx = 0;
gen = 0;
}
}
txq->ift_cidx = cidx;
txq->ift_gen = gen;
}
static __inline int
iflib_completed_tx_reclaim(iflib_txq_t txq, int thresh)
{
int reclaim;
if_ctx_t ctx = txq->ift_ctx;
KASSERT(thresh >= 0, ("invalid threshold to reclaim"));
MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size);
/*
* Need a rate-limiting check so that this isn't called every time
*/
iflib_tx_credits_update(ctx, txq);
reclaim = DESC_RECLAIMABLE(txq);
if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) {
#ifdef INVARIANTS
if (iflib_verbose_debug) {
printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __FUNCTION__,
txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments,
reclaim, thresh);
}
#endif
return (0);
}
iflib_tx_desc_free(txq, reclaim);
txq->ift_cleaned += reclaim;
txq->ift_in_use -= reclaim;
return (reclaim);
}
static struct mbuf **
_ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining)
{
int next, size;
struct mbuf **items;
size = r->size;
next = (cidx + CACHE_PTR_INCREMENT) & (size-1);
items = __DEVOLATILE(struct mbuf **, &r->items[0]);
prefetch(items[(cidx + offset) & (size-1)]);
if (remaining > 1) {
prefetch2cachelines(&items[next]);
prefetch2cachelines(items[(cidx + offset + 1) & (size-1)]);
prefetch2cachelines(items[(cidx + offset + 2) & (size-1)]);
prefetch2cachelines(items[(cidx + offset + 3) & (size-1)]);
}
return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size-1)]));
}
static void
iflib_txq_check_drain(iflib_txq_t txq, int budget)
{
ifmp_ring_check_drainage(txq->ift_br, budget);
}
static uint32_t
iflib_txq_can_drain(struct ifmp_ring *r)
{
iflib_txq_t txq = r->cookie;
if_ctx_t ctx = txq->ift_ctx;
if (TXQ_AVAIL(txq) > MAX_TX_DESC(ctx) + 2)
return (1);
bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_POSTREAD);
return (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id,
false));
}
static uint32_t
iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
{
iflib_txq_t txq = r->cookie;
if_ctx_t ctx = txq->ift_ctx;
if_t ifp = ctx->ifc_ifp;
struct mbuf *m, **mp;
int avail, bytes_sent, consumed, count, err, i, in_use_prev;
int mcast_sent, pkt_sent, reclaimed, txq_avail;
bool do_prefetch, rang, ring;
if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) ||
!LINK_ACTIVE(ctx))) {
DBG_COUNTER_INC(txq_drain_notready);
return (0);
}
reclaimed = iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
rang = iflib_txd_db_check(ctx, txq, reclaimed, txq->ift_in_use);
avail = IDXDIFF(pidx, cidx, r->size);
if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) {
DBG_COUNTER_INC(txq_drain_flushing);
for (i = 0; i < avail; i++) {
if (__predict_true(r->items[(cidx + i) & (r->size-1)] != (void *)txq))
m_free(r->items[(cidx + i) & (r->size-1)]);
r->items[(cidx + i) & (r->size-1)] = NULL;
}
return (avail);
}
if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) {
txq->ift_qstatus = IFLIB_QUEUE_IDLE;
CALLOUT_LOCK(txq);
callout_stop(&txq->ift_timer);
CALLOUT_UNLOCK(txq);
DBG_COUNTER_INC(txq_drain_oactive);
return (0);
}
if (reclaimed)
txq->ift_qstatus = IFLIB_QUEUE_IDLE;
consumed = mcast_sent = bytes_sent = pkt_sent = 0;
count = MIN(avail, TX_BATCH_SIZE);
#ifdef INVARIANTS
if (iflib_verbose_debug)
printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __FUNCTION__,
avail, ctx->ifc_flags, TXQ_AVAIL(txq));
#endif
do_prefetch = (ctx->ifc_flags & IFC_PREFETCH);
txq_avail = TXQ_AVAIL(txq);
err = 0;
for (i = 0; i < count && txq_avail > MAX_TX_DESC(ctx) + 2; i++) {
int rem = do_prefetch ? count - i : 0;
mp = _ring_peek_one(r, cidx, i, rem);
MPASS(mp != NULL && *mp != NULL);
if (__predict_false(*mp == (struct mbuf *)txq)) {
consumed++;
continue;
}
in_use_prev = txq->ift_in_use;
err = iflib_encap(txq, mp);
if (__predict_false(err)) {
/* no room - bail out */
if (err == ENOBUFS)
break;
consumed++;
/* we can't send this packet - skip it */
continue;
}
consumed++;
pkt_sent++;
m = *mp;
DBG_COUNTER_INC(tx_sent);
bytes_sent += m->m_pkthdr.len;
mcast_sent += !!(m->m_flags & M_MCAST);
txq_avail = TXQ_AVAIL(txq);
txq->ift_db_pending += (txq->ift_in_use - in_use_prev);
ETHER_BPF_MTAP(ifp, m);
if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
break;
rang = iflib_txd_db_check(ctx, txq, false, in_use_prev);
}
/* deliberate use of bitwise or to avoid gratuitous short-circuit */
ring = rang ? false : (iflib_min_tx_latency | err) || (TXQ_AVAIL(txq) < MAX_TX_DESC(ctx));
iflib_txd_db_check(ctx, txq, ring, txq->ift_in_use);
if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
if (mcast_sent)
if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
#ifdef INVARIANTS
if (iflib_verbose_debug)
printf("consumed=%d\n", consumed);
#endif
return (consumed);
}
static uint32_t
iflib_txq_drain_always(struct ifmp_ring *r)
{
return (1);
}
static uint32_t
iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
{
int i, avail;
struct mbuf **mp;
iflib_txq_t txq;
txq = r->cookie;
txq->ift_qstatus = IFLIB_QUEUE_IDLE;
CALLOUT_LOCK(txq);
callout_stop(&txq->ift_timer);
CALLOUT_UNLOCK(txq);
avail = IDXDIFF(pidx, cidx, r->size);
for (i = 0; i < avail; i++) {
mp = _ring_peek_one(r, cidx, i, avail - i);
if (__predict_false(*mp == (struct mbuf *)txq))
continue;
m_freem(*mp);
DBG_COUNTER_INC(tx_frees);
}
MPASS(ifmp_ring_is_stalled(r) == 0);
return (avail);
}
static void
iflib_ifmp_purge(iflib_txq_t txq)
{
struct ifmp_ring *r;
r = txq->ift_br;
r->drain = iflib_txq_drain_free;
r->can_drain = iflib_txq_drain_always;
ifmp_ring_check_drainage(r, r->size);
r->drain = iflib_txq_drain;
r->can_drain = iflib_txq_can_drain;
}
static void
_task_fn_tx(void *context)
{
iflib_txq_t txq = context;
if_ctx_t ctx = txq->ift_ctx;
#if defined(ALTQ) || defined(DEV_NETMAP)
if_t ifp = ctx->ifc_ifp;
#endif
int abdicate = ctx->ifc_sysctl_tx_abdicate;
#ifdef IFLIB_DIAGNOSTICS
txq->ift_cpu_exec_count[curcpu]++;
#endif
if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
return;
#ifdef DEV_NETMAP
if (if_getcapenable(ifp) & IFCAP_NETMAP) {
bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_POSTREAD);
if (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, false))
netmap_tx_irq(ifp, txq->ift_id);
if (ctx->ifc_flags & IFC_LEGACY)
IFDI_INTR_ENABLE(ctx);
else
IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id);
return;
}
#endif
#ifdef ALTQ
if (ALTQ_IS_ENABLED(&ifp->if_snd))
iflib_altq_if_start(ifp);
#endif
if (txq->ift_db_pending)
ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate);
else if (!abdicate)
ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
/*
* When abdicating, we always need to check drainage, not just when we don't enqueue
*/
if (abdicate)
ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
if (ctx->ifc_flags & IFC_LEGACY)
IFDI_INTR_ENABLE(ctx);
else
IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id);
}
static void
_task_fn_rx(void *context)
{
iflib_rxq_t rxq = context;
if_ctx_t ctx = rxq->ifr_ctx;
bool more;
uint16_t budget;
#ifdef IFLIB_DIAGNOSTICS
rxq->ifr_cpu_exec_count[curcpu]++;
#endif
DBG_COUNTER_INC(task_fn_rxs);
if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
return;
more = true;
#ifdef DEV_NETMAP
if (if_getcapenable(ctx->ifc_ifp) & IFCAP_NETMAP) {
u_int work = 0;
if (netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work)) {
more = false;
}
}
#endif
budget = ctx->ifc_sysctl_rx_budget;
if (budget == 0)
budget = 16; /* XXX */
if (more == false || (more = iflib_rxeof(rxq, budget)) == false) {
if (ctx->ifc_flags & IFC_LEGACY)
IFDI_INTR_ENABLE(ctx);
else
IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
DBG_COUNTER_INC(rx_intr_enables);
}
if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
return;
if (more)
GROUPTASK_ENQUEUE(&rxq->ifr_task);
}
static void
_task_fn_admin(void *context)
{
if_ctx_t ctx = context;
if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
iflib_txq_t txq;
int i;
bool oactive, running, do_reset, do_watchdog, in_detach;
uint32_t reset_on = hz / 2;
STATE_LOCK(ctx);
running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING);
oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE);
do_reset = (ctx->ifc_flags & IFC_DO_RESET);
do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG);
in_detach = (ctx->ifc_flags & IFC_IN_DETACH);
ctx->ifc_flags &= ~(IFC_DO_RESET|IFC_DO_WATCHDOG);
STATE_UNLOCK(ctx);
if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
return;
if (in_detach)
return;
CTX_LOCK(ctx);
for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
CALLOUT_LOCK(txq);
callout_stop(&txq->ift_timer);
CALLOUT_UNLOCK(txq);
}
if (do_watchdog) {
ctx->ifc_watchdog_events++;
IFDI_WATCHDOG_RESET(ctx);
}
IFDI_UPDATE_ADMIN_STATUS(ctx);
for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
#ifdef DEV_NETMAP
reset_on = hz / 2;
if (if_getcapenable(ctx->ifc_ifp) & IFCAP_NETMAP)
iflib_netmap_timer_adjust(ctx, txq, &reset_on);
#endif
callout_reset_on(&txq->ift_timer, reset_on, iflib_timer, txq, txq->ift_timer.c_cpu);
}
IFDI_LINK_INTR_ENABLE(ctx);
if (do_reset)
iflib_if_init_locked(ctx);
CTX_UNLOCK(ctx);
if (LINK_ACTIVE(ctx) == 0)
return;
for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++)
iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
}
static void
_task_fn_iov(void *context)
{
if_ctx_t ctx = context;
if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) &&
!(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
return;
CTX_LOCK(ctx);
IFDI_VFLR_HANDLE(ctx);
CTX_UNLOCK(ctx);
}
static int
iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
{
int err;
if_int_delay_info_t info;
if_ctx_t ctx;
info = (if_int_delay_info_t)arg1;
ctx = info->iidi_ctx;
info->iidi_req = req;
info->iidi_oidp = oidp;
CTX_LOCK(ctx);
err = IFDI_SYSCTL_INT_DELAY(ctx, info);
CTX_UNLOCK(ctx);
return (err);
}
/*********************************************************************
*
* IFNET FUNCTIONS
*
**********************************************************************/
static void
iflib_if_init_locked(if_ctx_t ctx)
{
iflib_stop(ctx);
iflib_init_locked(ctx);
}
static void
iflib_if_init(void *arg)
{
if_ctx_t ctx = arg;
CTX_LOCK(ctx);
iflib_if_init_locked(ctx);
CTX_UNLOCK(ctx);
}
static int
iflib_if_transmit(if_t ifp, struct mbuf *m)
{
if_ctx_t ctx = if_getsoftc(ifp);
iflib_txq_t txq;
int err, qidx;
int abdicate = ctx->ifc_sysctl_tx_abdicate;
if (__predict_false((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) {
DBG_COUNTER_INC(tx_frees);
m_freem(m);
return (ENETDOWN);
}
MPASS(m->m_nextpkt == NULL);
/* ALTQ-enabled interfaces always use queue 0. */
qidx = 0;
if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !ALTQ_IS_ENABLED(&ifp->if_snd))
qidx = QIDX(ctx, m);
/*
* XXX calculate buf_ring based on flowid (divvy up bits?)
*/
txq = &ctx->ifc_txqs[qidx];
#ifdef DRIVER_BACKPRESSURE
if (txq->ift_closed) {
while (m != NULL) {
next = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
DBG_COUNTER_INC(tx_frees);
m = next;
}
return (ENOBUFS);
}
#endif
#ifdef notyet
qidx = count = 0;
mp = marr;
next = m;
do {
count++;
next = next->m_nextpkt;
} while (next != NULL);
if (count > nitems(marr))
if ((mp = malloc(count*sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) {
/* XXX check nextpkt */
m_freem(m);
/* XXX simplify for now */
DBG_COUNTER_INC(tx_frees);
return (ENOBUFS);
}
for (next = m, i = 0; next != NULL; i++) {
mp[i] = next;
next = next->m_nextpkt;
mp[i]->m_nextpkt = NULL;
}
#endif
DBG_COUNTER_INC(tx_seen);
err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate);
if (abdicate)
GROUPTASK_ENQUEUE(&txq->ift_task);
if (err) {
if (!abdicate)
GROUPTASK_ENQUEUE(&txq->ift_task);
/* support forthcoming later */
#ifdef DRIVER_BACKPRESSURE
txq->ift_closed = TRUE;
#endif
ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
m_freem(m);
DBG_COUNTER_INC(tx_frees);
}
return (err);
}
#ifdef ALTQ
/*
* The overall approach to integrating iflib with ALTQ is to continue to use
* the iflib mp_ring machinery between the ALTQ queue(s) and the hardware
* ring. Technically, when using ALTQ, queueing to an intermediate mp_ring
* is redundant/unnecessary, but doing so minimizes the amount of
* ALTQ-specific code required in iflib. It is assumed that the overhead of
* redundantly queueing to an intermediate mp_ring is swamped by the
* performance limitations inherent in using ALTQ.
*
* When ALTQ support is compiled in, all iflib drivers will use a transmit
* routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the
* given interface. If ALTQ is enabled for an interface, then all
* transmitted packets for that interface will be submitted to the ALTQ
* subsystem via IFQ_ENQUEUE(). We don't use the legacy if_transmit()
* implementation because it uses IFQ_HANDOFF(), which will duplicatively
* update stats that the iflib machinery handles, and which is sensitve to
* the disused IFF_DRV_OACTIVE flag. Additionally, iflib_altq_if_start()
* will be installed as the start routine for use by ALTQ facilities that
* need to trigger queue drains on a scheduled basis.
*
*/
static void
iflib_altq_if_start(if_t ifp)
{
struct ifaltq *ifq = &ifp->if_snd;
struct mbuf *m;
IFQ_LOCK(ifq);
IFQ_DEQUEUE_NOLOCK(ifq, m);
while (m != NULL) {
iflib_if_transmit(ifp, m);
IFQ_DEQUEUE_NOLOCK(ifq, m);
}
IFQ_UNLOCK(ifq);
}
static int
iflib_altq_if_transmit(if_t ifp, struct mbuf *m)
{
int err;
if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
IFQ_ENQUEUE(&ifp->if_snd, m, err);
if (err == 0)
iflib_altq_if_start(ifp);
} else
err = iflib_if_transmit(ifp, m);
return (err);
}
#endif /* ALTQ */
static void
iflib_if_qflush(if_t ifp)
{
if_ctx_t ctx = if_getsoftc(ifp);
iflib_txq_t txq = ctx->ifc_txqs;
int i;
STATE_LOCK(ctx);
ctx->ifc_flags |= IFC_QFLUSH;
STATE_UNLOCK(ctx);
for (i = 0; i < NTXQSETS(ctx); i++, txq++)
while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br)))
iflib_txq_check_drain(txq, 0);
STATE_LOCK(ctx);
ctx->ifc_flags &= ~IFC_QFLUSH;
STATE_UNLOCK(ctx);
/*
* When ALTQ is enabled, this will also take care of purging the
* ALTQ queue(s).
*/
if_qflush(ifp);
}
#define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \
IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \
IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \
IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM)
static int
iflib_if_ioctl(if_t ifp, u_long command, caddr_t data)
{
if_ctx_t ctx = if_getsoftc(ifp);
struct ifreq *ifr = (struct ifreq *)data;
#if defined(INET) || defined(INET6)
struct ifaddr *ifa = (struct ifaddr *)data;
#endif
bool avoid_reset = false;
int err = 0, reinit = 0, bits;
switch (command) {
case SIOCSIFADDR:
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET)
avoid_reset = true;
#endif
#ifdef INET6
if (ifa->ifa_addr->sa_family == AF_INET6)
avoid_reset = true;
#endif
/*
** Calling init results in link renegotiation,
** so we avoid doing it when possible.
*/
if (avoid_reset) {
if_setflagbits(ifp, IFF_UP,0);
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
reinit = 1;
#ifdef INET
if (!(if_getflags(ifp) & IFF_NOARP))
arp_ifinit(ifp, ifa);
#endif
} else
err = ether_ioctl(ifp, command, data);
break;
case SIOCSIFMTU:
CTX_LOCK(ctx);
if (ifr->ifr_mtu == if_getmtu(ifp)) {
CTX_UNLOCK(ctx);
break;
}
bits = if_getdrvflags(ifp);
/* stop the driver and free any clusters before proceeding */
iflib_stop(ctx);
if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) {
STATE_LOCK(ctx);
if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size)
ctx->ifc_flags |= IFC_MULTISEG;
else
ctx->ifc_flags &= ~IFC_MULTISEG;
STATE_UNLOCK(ctx);
err = if_setmtu(ifp, ifr->ifr_mtu);
}
iflib_init_locked(ctx);
STATE_LOCK(ctx);
if_setdrvflags(ifp, bits);
STATE_UNLOCK(ctx);
CTX_UNLOCK(ctx);
break;
case SIOCSIFFLAGS:
CTX_LOCK(ctx);
if (if_getflags(ifp) & IFF_UP) {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
if ((if_getflags(ifp) ^ ctx->ifc_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
err = IFDI_PROMISC_SET(ctx, if_getflags(ifp));
}
} else
reinit = 1;
} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
iflib_stop(ctx);
}
ctx->ifc_if_flags = if_getflags(ifp);
CTX_UNLOCK(ctx);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
CTX_LOCK(ctx);
IFDI_INTR_DISABLE(ctx);
IFDI_MULTI_SET(ctx);
IFDI_INTR_ENABLE(ctx);
CTX_UNLOCK(ctx);
}
break;
case SIOCSIFMEDIA:
CTX_LOCK(ctx);
IFDI_MEDIA_SET(ctx);
CTX_UNLOCK(ctx);
/* FALLTHROUGH */
case SIOCGIFMEDIA:
case SIOCGIFXMEDIA:
err = ifmedia_ioctl(ifp, ifr, ctx->ifc_mediap, command);
break;
case SIOCGI2C:
{
struct ifi2creq i2c;
err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
if (err != 0)
break;
if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
err = EINVAL;
break;
}
if (i2c.len > sizeof(i2c.data)) {
err = EINVAL;
break;
}
if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0)
err = copyout(&i2c, ifr_data_get_ptr(ifr),
sizeof(i2c));
break;
}
case SIOCSIFCAP:
{
int mask, setmask, oldmask;
oldmask = if_getcapenable(ifp);
mask = ifr->ifr_reqcap ^ oldmask;
mask &= ctx->ifc_softc_ctx.isc_capabilities;
setmask = 0;
#ifdef TCP_OFFLOAD
setmask |= mask & (IFCAP_TOE4|IFCAP_TOE6);
#endif
setmask |= (mask & IFCAP_FLAGS);
setmask |= (mask & IFCAP_WOL);
/*
* If any RX csum has changed, change all the ones that
* are supported by the driver.
*/
if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) {
setmask |= ctx->ifc_softc_ctx.isc_capabilities &
(IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6);
}
/*
* want to ensure that traffic has stopped before we change any of the flags
*/
if (setmask) {
CTX_LOCK(ctx);
bits = if_getdrvflags(ifp);
if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
iflib_stop(ctx);
STATE_LOCK(ctx);
if_togglecapenable(ifp, setmask);
STATE_UNLOCK(ctx);
if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
iflib_init_locked(ctx);
STATE_LOCK(ctx);
if_setdrvflags(ifp, bits);
STATE_UNLOCK(ctx);
CTX_UNLOCK(ctx);
}
if_vlancap(ifp);
break;
}
case SIOCGPRIVATE_0:
case SIOCSDRVSPEC:
case SIOCGDRVSPEC:
CTX_LOCK(ctx);
err = IFDI_PRIV_IOCTL(ctx, command, data);
CTX_UNLOCK(ctx);
break;
default:
err = ether_ioctl(ifp, command, data);
break;
}
if (reinit)
iflib_if_init(ctx);
return (err);
}
static uint64_t
iflib_if_get_counter(if_t ifp, ift_counter cnt)
{
if_ctx_t ctx = if_getsoftc(ifp);
return (IFDI_GET_COUNTER(ctx, cnt));
}
/*********************************************************************
*
* OTHER FUNCTIONS EXPORTED TO THE STACK
*
**********************************************************************/
static void
iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag)
{
if_ctx_t ctx = if_getsoftc(ifp);
if ((void *)ctx != arg)
return;
if ((vtag == 0) || (vtag > 4095))
return;
CTX_LOCK(ctx);
IFDI_VLAN_REGISTER(ctx, vtag);
/* Re-init to load the changes */
if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
iflib_if_init_locked(ctx);
CTX_UNLOCK(ctx);
}
static void
iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag)
{
if_ctx_t ctx = if_getsoftc(ifp);
if ((void *)ctx != arg)
return;
if ((vtag == 0) || (vtag > 4095))
return;
CTX_LOCK(ctx);
IFDI_VLAN_UNREGISTER(ctx, vtag);
/* Re-init to load the changes */
if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
iflib_if_init_locked(ctx);
CTX_UNLOCK(ctx);
}
static void
iflib_led_func(void *arg, int onoff)
{
if_ctx_t ctx = arg;
CTX_LOCK(ctx);
IFDI_LED_FUNC(ctx, onoff);
CTX_UNLOCK(ctx);
}
/*********************************************************************
*
* BUS FUNCTION DEFINITIONS
*
**********************************************************************/
int
iflib_device_probe(device_t dev)
{
const pci_vendor_info_t *ent;
if_shared_ctx_t sctx;
uint16_t pci_device_id, pci_rev_id, pci_subdevice_id, pci_subvendor_id;
uint16_t pci_vendor_id;
if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
return (ENOTSUP);
pci_vendor_id = pci_get_vendor(dev);
pci_device_id = pci_get_device(dev);
pci_subvendor_id = pci_get_subvendor(dev);
pci_subdevice_id = pci_get_subdevice(dev);
pci_rev_id = pci_get_revid(dev);
if (sctx->isc_parse_devinfo != NULL)
sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id);
ent = sctx->isc_vendor_info;
while (ent->pvi_vendor_id != 0) {
if (pci_vendor_id != ent->pvi_vendor_id) {
ent++;
continue;
}
if ((pci_device_id == ent->pvi_device_id) &&
((pci_subvendor_id == ent->pvi_subvendor_id) ||
(ent->pvi_subvendor_id == 0)) &&
((pci_subdevice_id == ent->pvi_subdevice_id) ||
(ent->pvi_subdevice_id == 0)) &&
((pci_rev_id == ent->pvi_rev_id) ||
(ent->pvi_rev_id == 0))) {
device_set_desc_copy(dev, ent->pvi_name);
/* this needs to be changed to zero if the bus probing code
* ever stops re-probing on best match because the sctx
* may have its values over written by register calls
* in subsequent probes
*/
return (BUS_PROBE_DEFAULT);
}
ent++;
}
return (ENXIO);
}
int
iflib_device_probe_vendor(device_t dev)
{
int probe;
probe = iflib_device_probe(dev);
if (probe == BUS_PROBE_DEFAULT)
return (BUS_PROBE_VENDOR);
else
return (probe);
}
static void
iflib_reset_qvalues(if_ctx_t ctx)
{
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
device_t dev = ctx->ifc_dev;
int i;
if (ctx->ifc_sysctl_ntxqs != 0)
scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs;
if (ctx->ifc_sysctl_nrxqs != 0)
scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs;
for (i = 0; i < sctx->isc_ntxqs; i++) {
if (ctx->ifc_sysctl_ntxds[i] != 0)
scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i];
else
scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
}
for (i = 0; i < sctx->isc_nrxqs; i++) {
if (ctx->ifc_sysctl_nrxds[i] != 0)
scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i];
else
scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
}
for (i = 0; i < sctx->isc_nrxqs; i++) {
if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) {
device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n",
i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]);
scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i];
}
if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) {
device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n",
i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]);
scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i];
}
if (!powerof2(scctx->isc_nrxd[i])) {
device_printf(dev, "nrxd%d: %d is not a power of 2 - using default value of %d\n",
i, scctx->isc_nrxd[i], sctx->isc_nrxd_default[i]);
scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
}
}
for (i = 0; i < sctx->isc_ntxqs; i++) {
if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) {
device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n",
i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]);
scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i];
}
if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) {
device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n",
i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]);
scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i];
}
if (!powerof2(scctx->isc_ntxd[i])) {
device_printf(dev, "ntxd%d: %d is not a power of 2 - using default value of %d\n",
i, scctx->isc_ntxd[i], sctx->isc_ntxd_default[i]);
scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
}
}
}
static void
iflib_add_pfil(if_ctx_t ctx)
{
struct pfil_head *pfil;
struct pfil_head_args pa;
iflib_rxq_t rxq;
int i;
pa.pa_version = PFIL_VERSION;
pa.pa_flags = PFIL_IN;
pa.pa_type = PFIL_TYPE_ETHERNET;
pa.pa_headname = ctx->ifc_ifp->if_xname;
pfil = pfil_head_register(&pa);
for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
rxq->pfil = pfil;
}
}
static void
iflib_rem_pfil(if_ctx_t ctx)
{
struct pfil_head *pfil;
iflib_rxq_t rxq;
int i;
rxq = ctx->ifc_rxqs;
pfil = rxq->pfil;
for (i = 0; i < NRXQSETS(ctx); i++, rxq++) {
rxq->pfil = NULL;
}
pfil_head_unregister(pfil);
}
static uint16_t
get_ctx_core_offset(if_ctx_t ctx)
{
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
struct cpu_offset *op;
uint16_t qc;
uint16_t ret = ctx->ifc_sysctl_core_offset;
if (ret != CORE_OFFSET_UNSPECIFIED)
return (ret);
if (ctx->ifc_sysctl_separate_txrx)
qc = scctx->isc_ntxqsets + scctx->isc_nrxqsets;
else
qc = max(scctx->isc_ntxqsets, scctx->isc_nrxqsets);
mtx_lock(&cpu_offset_mtx);
SLIST_FOREACH(op, &cpu_offsets, entries) {
if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
ret = op->offset;
op->offset += qc;
MPASS(op->refcount < UINT_MAX);
op->refcount++;
break;
}
}
if (ret == CORE_OFFSET_UNSPECIFIED) {
ret = 0;
op = malloc(sizeof(struct cpu_offset), M_IFLIB,
M_NOWAIT | M_ZERO);
if (op == NULL) {
device_printf(ctx->ifc_dev,
"allocation for cpu offset failed.\n");
} else {
op->offset = qc;
op->refcount = 1;
CPU_COPY(&ctx->ifc_cpus, &op->set);
SLIST_INSERT_HEAD(&cpu_offsets, op, entries);
}
}
mtx_unlock(&cpu_offset_mtx);
return (ret);
}
static void
unref_ctx_core_offset(if_ctx_t ctx)
{
struct cpu_offset *op, *top;
mtx_lock(&cpu_offset_mtx);
SLIST_FOREACH_SAFE(op, &cpu_offsets, entries, top) {
if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
MPASS(op->refcount > 0);
op->refcount--;
if (op->refcount == 0) {
SLIST_REMOVE(&cpu_offsets, op, cpu_offset, entries);
free(op, M_IFLIB);
}
break;
}
}
mtx_unlock(&cpu_offset_mtx);
}
int
iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp)
{
if_ctx_t ctx;
if_t ifp;
if_softc_ctx_t scctx;
kobjop_desc_t kobj_desc;
kobj_method_t *kobj_method;
int err, msix, rid;
uint16_t main_rxq, main_txq;
ctx = malloc(sizeof(* ctx), M_IFLIB, M_WAITOK|M_ZERO);
if (sc == NULL) {
sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO);
device_set_softc(dev, ctx);
ctx->ifc_flags |= IFC_SC_ALLOCATED;
}
ctx->ifc_sctx = sctx;
ctx->ifc_dev = dev;
ctx->ifc_softc = sc;
if ((err = iflib_register(ctx)) != 0) {
device_printf(dev, "iflib_register failed %d\n", err);
goto fail_ctx_free;
}
iflib_add_device_sysctl_pre(ctx);
scctx = &ctx->ifc_softc_ctx;
ifp = ctx->ifc_ifp;
iflib_reset_qvalues(ctx);
CTX_LOCK(ctx);
if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
goto fail_unlock;
}
_iflib_pre_assert(scctx);
ctx->ifc_txrx = *scctx->isc_txrx;
if (sctx->isc_flags & IFLIB_DRIVER_MEDIA)
ctx->ifc_mediap = scctx->isc_media;
#ifdef INVARIANTS
if (scctx->isc_capabilities & IFCAP_TXCSUM)
MPASS(scctx->isc_tx_csum_flags);
#endif
if_setcapabilities(ifp, scctx->isc_capabilities | IFCAP_HWSTATS);
if_setcapenable(ifp, scctx->isc_capenable | IFCAP_HWSTATS);
if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets))
scctx->isc_ntxqsets = scctx->isc_ntxqsets_max;
if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets))
scctx->isc_nrxqsets = scctx->isc_nrxqsets_max;
main_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0;
main_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0;
/* XXX change for per-queue sizes */
device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n",
scctx->isc_ntxd[main_txq], scctx->isc_nrxd[main_rxq]);
if (scctx->isc_tx_nsegments > scctx->isc_ntxd[main_txq] /
MAX_SINGLE_PACKET_FRACTION)
scctx->isc_tx_nsegments = max(1, scctx->isc_ntxd[main_txq] /
MAX_SINGLE_PACKET_FRACTION);
if (scctx->isc_tx_tso_segments_max > scctx->isc_ntxd[main_txq] /
MAX_SINGLE_PACKET_FRACTION)
scctx->isc_tx_tso_segments_max = max(1,
scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION);
/* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
if (if_getcapabilities(ifp) & IFCAP_TSO) {
/*
* The stack can't handle a TSO size larger than IP_MAXPACKET,
* but some MACs do.
*/
if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max,
IP_MAXPACKET));
/*
* Take maximum number of m_pullup(9)'s in iflib_parse_header()
* into account. In the worst case, each of these calls will
* add another mbuf and, thus, the requirement for another DMA
* segment. So for best performance, it doesn't make sense to
* advertize a maximum of TSO segments that typically will
* require defragmentation in iflib_encap().
*/
if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3);
if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max);
}
if (scctx->isc_rss_table_size == 0)
scctx->isc_rss_table_size = 64;
scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1;
GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
/* XXX format name */
taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx,
NULL, NULL, "admin");
/* Set up cpu set. If it fails, use the set of all CPUs. */
if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) {
device_printf(dev, "Unable to fetch CPU list\n");
CPU_COPY(&all_cpus, &ctx->ifc_cpus);
}
MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0);
/*
** Now set up MSI or MSI-X, should return us the number of supported
** vectors (will be 1 for a legacy interrupt and MSI).
*/
if (sctx->isc_flags & IFLIB_SKIP_MSIX) {
msix = scctx->isc_vectors;
} else if (scctx->isc_msix_bar != 0)
/*
* The simple fact that isc_msix_bar is not 0 does not mean we
* we have a good value there that is known to work.
*/
msix = iflib_msix_init(ctx);
else {
scctx->isc_vectors = 1;
scctx->isc_ntxqsets = 1;
scctx->isc_nrxqsets = 1;
scctx->isc_intr = IFLIB_INTR_LEGACY;
msix = 0;
}
/* Get memory for the station queues */
if ((err = iflib_queues_alloc(ctx))) {
device_printf(dev, "Unable to allocate queue memory\n");
goto fail_intr_free;
}
if ((err = iflib_qset_structures_setup(ctx)))
goto fail_queues;
/*
* Now that we know how many queues there are, get the core offset.
*/
ctx->ifc_sysctl_core_offset = get_ctx_core_offset(ctx);
/*
* Group taskqueues aren't properly set up until SMP is started,
* so we disable interrupts until we can handle them post
* SI_SUB_SMP.
*
* XXX: disabling interrupts doesn't actually work, at least for
* the non-MSI case. When they occur before SI_SUB_SMP completes,
* we do null handling and depend on this not causing too large an
* interrupt storm.
*/
IFDI_INTR_DISABLE(ctx);
if (msix > 1) {
/*
* When using MSI-X, ensure that ifdi_{r,t}x_queue_intr_enable
* aren't the default NULL implementation.
*/
kobj_desc = &ifdi_rx_queue_intr_enable_desc;
kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
kobj_desc);
if (kobj_method == &kobj_desc->deflt) {
device_printf(dev,
"MSI-X requires ifdi_rx_queue_intr_enable method");
err = EOPNOTSUPP;
goto fail_queues;
}
kobj_desc = &ifdi_tx_queue_intr_enable_desc;
kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
kobj_desc);
if (kobj_method == &kobj_desc->deflt) {
device_printf(dev,
"MSI-X requires ifdi_tx_queue_intr_enable method");
err = EOPNOTSUPP;
goto fail_queues;
}
/*
* Assign the MSI-X vectors.
* Note that the default NULL ifdi_msix_intr_assign method will
* fail here, too.
*/
err = IFDI_MSIX_INTR_ASSIGN(ctx, msix);
if (err != 0) {
device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n",
err);
goto fail_queues;
}
} else {
rid = 0;
if (scctx->isc_intr == IFLIB_INTR_MSI) {
MPASS(msix == 1);
rid = 1;
}
if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) {
device_printf(dev, "iflib_legacy_setup failed %d\n", err);
goto fail_queues;
}
}
ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
goto fail_detach;
}
/*
* Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
* This must appear after the call to ether_ifattach() because
* ether_ifattach() sets if_hdrlen to the default value.
*/
if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
if ((err = iflib_netmap_attach(ctx))) {
device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err);
goto fail_detach;
}
*ctxp = ctx;
NETDUMP_SET(ctx->ifc_ifp, iflib);
if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter);
iflib_add_device_sysctl_post(ctx);
iflib_add_pfil(ctx);
ctx->ifc_flags |= IFC_INIT_DONE;
CTX_UNLOCK(ctx);
return (0);
fail_detach:
ether_ifdetach(ctx->ifc_ifp);
fail_intr_free:
iflib_free_intr_mem(ctx);
fail_queues:
iflib_tx_structures_free(ctx);
iflib_rx_structures_free(ctx);
IFDI_DETACH(ctx);
fail_unlock:
CTX_UNLOCK(ctx);
fail_ctx_free:
device_set_softc(ctx->ifc_dev, NULL);
if (ctx->ifc_flags & IFC_SC_ALLOCATED)
free(ctx->ifc_softc, M_IFLIB);
free(ctx, M_IFLIB);
return (err);
}
int
iflib_pseudo_register(device_t dev, if_shared_ctx_t sctx, if_ctx_t *ctxp,
struct iflib_cloneattach_ctx *clctx)
{
int err;
if_ctx_t ctx;
if_t ifp;
if_softc_ctx_t scctx;
int i;
void *sc;
uint16_t main_txq;
uint16_t main_rxq;
ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK|M_ZERO);
sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO);
ctx->ifc_flags |= IFC_SC_ALLOCATED;
if (sctx->isc_flags & (IFLIB_PSEUDO|IFLIB_VIRTUAL))
ctx->ifc_flags |= IFC_PSEUDO;
ctx->ifc_sctx = sctx;
ctx->ifc_softc = sc;
ctx->ifc_dev = dev;
if ((err = iflib_register(ctx)) != 0) {
device_printf(dev, "%s: iflib_register failed %d\n", __func__, err);
goto fail_ctx_free;
}
iflib_add_device_sysctl_pre(ctx);
scctx = &ctx->ifc_softc_ctx;
ifp = ctx->ifc_ifp;
iflib_reset_qvalues(ctx);
CTX_LOCK(ctx);
if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
goto fail_unlock;
}
if (sctx->isc_flags & IFLIB_GEN_MAC)
ether_gen_addr(ifp, &ctx->ifc_mac);
if ((err = IFDI_CLONEATTACH(ctx, clctx->cc_ifc, clctx->cc_name,
clctx->cc_params)) != 0) {
device_printf(dev, "IFDI_CLONEATTACH failed %d\n", err);
goto fail_ctx_free;
}
ifmedia_add(ctx->ifc_mediap, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
ifmedia_add(ctx->ifc_mediap, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(ctx->ifc_mediap, IFM_ETHER | IFM_AUTO);
#ifdef INVARIANTS
if (scctx->isc_capabilities & IFCAP_TXCSUM)
MPASS(scctx->isc_tx_csum_flags);
#endif
if_setcapabilities(ifp, scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_LINKSTATE);
if_setcapenable(ifp, scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_LINKSTATE);
ifp->if_flags |= IFF_NOGROUP;
if (sctx->isc_flags & IFLIB_PSEUDO) {
ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
goto fail_detach;
}
*ctxp = ctx;
/*
* Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
* This must appear after the call to ether_ifattach() because
* ether_ifattach() sets if_hdrlen to the default value.
*/
if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
if_setifheaderlen(ifp,
sizeof(struct ether_vlan_header));
if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter);
iflib_add_device_sysctl_post(ctx);
ctx->ifc_flags |= IFC_INIT_DONE;
return (0);
}
_iflib_pre_assert(scctx);
ctx->ifc_txrx = *scctx->isc_txrx;
if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets))
scctx->isc_ntxqsets = scctx->isc_ntxqsets_max;
if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets))
scctx->isc_nrxqsets = scctx->isc_nrxqsets_max;
main_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0;
main_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0;
/* XXX change for per-queue sizes */
device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n",
scctx->isc_ntxd[main_txq], scctx->isc_nrxd[main_rxq]);
if (scctx->isc_tx_nsegments > scctx->isc_ntxd[main_txq] /
MAX_SINGLE_PACKET_FRACTION)
scctx->isc_tx_nsegments = max(1, scctx->isc_ntxd[main_txq] /
MAX_SINGLE_PACKET_FRACTION);
if (scctx->isc_tx_tso_segments_max > scctx->isc_ntxd[main_txq] /
MAX_SINGLE_PACKET_FRACTION)
scctx->isc_tx_tso_segments_max = max(1,
scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION);
/* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
if (if_getcapabilities(ifp) & IFCAP_TSO) {
/*
* The stack can't handle a TSO size larger than IP_MAXPACKET,
* but some MACs do.
*/
if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max,
IP_MAXPACKET));
/*
* Take maximum number of m_pullup(9)'s in iflib_parse_header()
* into account. In the worst case, each of these calls will
* add another mbuf and, thus, the requirement for another DMA
* segment. So for best performance, it doesn't make sense to
* advertize a maximum of TSO segments that typically will
* require defragmentation in iflib_encap().
*/
if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3);
if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max);
}
if (scctx->isc_rss_table_size == 0)
scctx->isc_rss_table_size = 64;
scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1;
GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
/* XXX format name */
taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx,
NULL, NULL, "admin");
/* XXX --- can support > 1 -- but keep it simple for now */
scctx->isc_intr = IFLIB_INTR_LEGACY;
/* Get memory for the station queues */
if ((err = iflib_queues_alloc(ctx))) {
device_printf(dev, "Unable to allocate queue memory\n");
goto fail_iflib_detach;
}
if ((err = iflib_qset_structures_setup(ctx))) {
device_printf(dev, "qset structure setup failed %d\n", err);
goto fail_queues;
}
/*
* XXX What if anything do we want to do about interrupts?
*/
ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
goto fail_detach;
}
/*
* Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
* This must appear after the call to ether_ifattach() because
* ether_ifattach() sets if_hdrlen to the default value.
*/
if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
/* XXX handle more than one queue */
for (i = 0; i < scctx->isc_nrxqsets; i++)
IFDI_RX_CLSET(ctx, 0, i, ctx->ifc_rxqs[i].ifr_fl[0].ifl_sds.ifsd_cl);
*ctxp = ctx;
if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter);
iflib_add_device_sysctl_post(ctx);
ctx->ifc_flags |= IFC_INIT_DONE;
CTX_UNLOCK(ctx);
return (0);
fail_detach:
ether_ifdetach(ctx->ifc_ifp);
fail_queues:
iflib_tx_structures_free(ctx);
iflib_rx_structures_free(ctx);
fail_iflib_detach:
IFDI_DETACH(ctx);
fail_unlock:
CTX_UNLOCK(ctx);
fail_ctx_free:
free(ctx->ifc_softc, M_IFLIB);
free(ctx, M_IFLIB);
return (err);
}
int
iflib_pseudo_deregister(if_ctx_t ctx)
{
if_t ifp = ctx->ifc_ifp;
iflib_txq_t txq;
iflib_rxq_t rxq;
int i, j;
struct taskqgroup *tqg;
iflib_fl_t fl;
/* Unregister VLAN events */
if (ctx->ifc_vlan_attach_event != NULL)
EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event);
if (ctx->ifc_vlan_detach_event != NULL)
EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event);
ether_ifdetach(ifp);
/* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
CTX_LOCK_DESTROY(ctx);
/* XXX drain any dependent tasks */
tqg = qgroup_if_io_tqg;
for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) {
callout_drain(&txq->ift_timer);
if (txq->ift_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &txq->ift_task);
}
for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
if (rxq->ifr_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &rxq->ifr_task);
for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
free(fl->ifl_rx_bitmap, M_IFLIB);
}
tqg = qgroup_if_config_tqg;
if (ctx->ifc_admin_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &ctx->ifc_admin_task);
if (ctx->ifc_vflr_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &ctx->ifc_vflr_task);
if_free(ifp);
iflib_tx_structures_free(ctx);
iflib_rx_structures_free(ctx);
if (ctx->ifc_flags & IFC_SC_ALLOCATED)
free(ctx->ifc_softc, M_IFLIB);
free(ctx, M_IFLIB);
return (0);
}
int
iflib_device_attach(device_t dev)
{
if_ctx_t ctx;
if_shared_ctx_t sctx;
if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
return (ENOTSUP);
pci_enable_busmaster(dev);
return (iflib_device_register(dev, NULL, sctx, &ctx));
}
int
iflib_device_deregister(if_ctx_t ctx)
{
if_t ifp = ctx->ifc_ifp;
iflib_txq_t txq;
iflib_rxq_t rxq;
device_t dev = ctx->ifc_dev;
int i, j;
struct taskqgroup *tqg;
iflib_fl_t fl;
/* Make sure VLANS are not using driver */
if (if_vlantrunkinuse(ifp)) {
device_printf(dev, "Vlan in use, detach first\n");
return (EBUSY);
}
#ifdef PCI_IOV
if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) {
device_printf(dev, "SR-IOV in use; detach first.\n");
return (EBUSY);
}
#endif
STATE_LOCK(ctx);
ctx->ifc_flags |= IFC_IN_DETACH;
STATE_UNLOCK(ctx);
CTX_LOCK(ctx);
iflib_stop(ctx);
CTX_UNLOCK(ctx);
/* Unregister VLAN events */
if (ctx->ifc_vlan_attach_event != NULL)
EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event);
if (ctx->ifc_vlan_detach_event != NULL)
EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event);
iflib_netmap_detach(ifp);
ether_ifdetach(ifp);
iflib_rem_pfil(ctx);
if (ctx->ifc_led_dev != NULL)
led_destroy(ctx->ifc_led_dev);
/* XXX drain any dependent tasks */
tqg = qgroup_if_io_tqg;
for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) {
callout_drain(&txq->ift_timer);
if (txq->ift_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &txq->ift_task);
}
for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
if (rxq->ifr_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &rxq->ifr_task);
for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
free(fl->ifl_rx_bitmap, M_IFLIB);
}
tqg = qgroup_if_config_tqg;
if (ctx->ifc_admin_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &ctx->ifc_admin_task);
if (ctx->ifc_vflr_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &ctx->ifc_vflr_task);
CTX_LOCK(ctx);
IFDI_DETACH(ctx);
CTX_UNLOCK(ctx);
/* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
CTX_LOCK_DESTROY(ctx);
device_set_softc(ctx->ifc_dev, NULL);
iflib_free_intr_mem(ctx);
bus_generic_detach(dev);
if_free(ifp);
iflib_tx_structures_free(ctx);
iflib_rx_structures_free(ctx);
if (ctx->ifc_flags & IFC_SC_ALLOCATED)
free(ctx->ifc_softc, M_IFLIB);
unref_ctx_core_offset(ctx);
STATE_LOCK_DESTROY(ctx);
free(ctx, M_IFLIB);
return (0);
}
static void
iflib_free_intr_mem(if_ctx_t ctx)
{
if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) {
iflib_irq_free(ctx, &ctx->ifc_legacy_irq);
}
if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) {
pci_release_msi(ctx->ifc_dev);
}
if (ctx->ifc_msix_mem != NULL) {
bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY,
rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem);
ctx->ifc_msix_mem = NULL;
}
}
int
iflib_device_detach(device_t dev)
{
if_ctx_t ctx = device_get_softc(dev);
return (iflib_device_deregister(ctx));
}
int
iflib_device_suspend(device_t dev)
{
if_ctx_t ctx = device_get_softc(dev);
CTX_LOCK(ctx);
IFDI_SUSPEND(ctx);
CTX_UNLOCK(ctx);
return bus_generic_suspend(dev);
}
int
iflib_device_shutdown(device_t dev)
{
if_ctx_t ctx = device_get_softc(dev);
CTX_LOCK(ctx);
IFDI_SHUTDOWN(ctx);
CTX_UNLOCK(ctx);
return bus_generic_suspend(dev);
}
int
iflib_device_resume(device_t dev)
{
if_ctx_t ctx = device_get_softc(dev);
iflib_txq_t txq = ctx->ifc_txqs;
CTX_LOCK(ctx);
IFDI_RESUME(ctx);
iflib_if_init_locked(ctx);
CTX_UNLOCK(ctx);
for (int i = 0; i < NTXQSETS(ctx); i++, txq++)
iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
return (bus_generic_resume(dev));
}
int
iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params)
{
int error;
if_ctx_t ctx = device_get_softc(dev);
CTX_LOCK(ctx);
error = IFDI_IOV_INIT(ctx, num_vfs, params);
CTX_UNLOCK(ctx);
return (error);
}
void
iflib_device_iov_uninit(device_t dev)
{
if_ctx_t ctx = device_get_softc(dev);
CTX_LOCK(ctx);
IFDI_IOV_UNINIT(ctx);
CTX_UNLOCK(ctx);
}
int
iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params)
{
int error;
if_ctx_t ctx = device_get_softc(dev);
CTX_LOCK(ctx);
error = IFDI_IOV_VF_ADD(ctx, vfnum, params);
CTX_UNLOCK(ctx);
return (error);
}
/*********************************************************************
*
* MODULE FUNCTION DEFINITIONS
*
**********************************************************************/
/*
* - Start a fast taskqueue thread for each core
* - Start a taskqueue for control operations
*/
static int
iflib_module_init(void)
{
return (0);
}
static int
iflib_module_event_handler(module_t mod, int what, void *arg)
{
int err;
switch (what) {
case MOD_LOAD:
if ((err = iflib_module_init()) != 0)
return (err);
break;
case MOD_UNLOAD:
return (EBUSY);
default:
return (EOPNOTSUPP);
}
return (0);
}
/*********************************************************************
*
* PUBLIC FUNCTION DEFINITIONS
* ordered as in iflib.h
*
**********************************************************************/
static void
_iflib_assert(if_shared_ctx_t sctx)
{
int i;
MPASS(sctx->isc_tx_maxsize);
MPASS(sctx->isc_tx_maxsegsize);
MPASS(sctx->isc_rx_maxsize);
MPASS(sctx->isc_rx_nsegments);
MPASS(sctx->isc_rx_maxsegsize);
MPASS(sctx->isc_nrxqs >= 1 && sctx->isc_nrxqs <= 8);
for (i = 0; i < sctx->isc_nrxqs; i++) {
MPASS(sctx->isc_nrxd_min[i]);
MPASS(powerof2(sctx->isc_nrxd_min[i]));
MPASS(sctx->isc_nrxd_max[i]);
MPASS(powerof2(sctx->isc_nrxd_max[i]));
MPASS(sctx->isc_nrxd_default[i]);
MPASS(powerof2(sctx->isc_nrxd_default[i]));
}
MPASS(sctx->isc_ntxqs >= 1 && sctx->isc_ntxqs <= 8);
for (i = 0; i < sctx->isc_ntxqs; i++) {
MPASS(sctx->isc_ntxd_min[i]);
MPASS(powerof2(sctx->isc_ntxd_min[i]));
MPASS(sctx->isc_ntxd_max[i]);
MPASS(powerof2(sctx->isc_ntxd_max[i]));
MPASS(sctx->isc_ntxd_default[i]);
MPASS(powerof2(sctx->isc_ntxd_default[i]));
}
}
static void
_iflib_pre_assert(if_softc_ctx_t scctx)
{
MPASS(scctx->isc_txrx->ift_txd_encap);
MPASS(scctx->isc_txrx->ift_txd_flush);
MPASS(scctx->isc_txrx->ift_txd_credits_update);
MPASS(scctx->isc_txrx->ift_rxd_available);
MPASS(scctx->isc_txrx->ift_rxd_pkt_get);
MPASS(scctx->isc_txrx->ift_rxd_refill);
MPASS(scctx->isc_txrx->ift_rxd_flush);
}
static int
iflib_register(if_ctx_t ctx)
{
if_shared_ctx_t sctx = ctx->ifc_sctx;
driver_t *driver = sctx->isc_driver;
device_t dev = ctx->ifc_dev;
if_t ifp;
_iflib_assert(sctx);
CTX_LOCK_INIT(ctx);
STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev));
ifp = ctx->ifc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not allocate ifnet structure\n");
return (ENOMEM);
}
/*
* Initialize our context's device specific methods
*/
kobj_init((kobj_t) ctx, (kobj_class_t) driver);
kobj_class_compile((kobj_class_t) driver);
driver->refs++;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
if_setsoftc(ifp, ctx);
if_setdev(ifp, dev);
if_setinitfn(ifp, iflib_if_init);
if_setioctlfn(ifp, iflib_if_ioctl);
#ifdef ALTQ
if_setstartfn(ifp, iflib_altq_if_start);
if_settransmitfn(ifp, iflib_altq_if_transmit);
if_setsendqready(ifp);
#else
if_settransmitfn(ifp, iflib_if_transmit);
#endif
if_setqflushfn(ifp, iflib_if_qflush);
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
ctx->ifc_vlan_attach_event =
EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx,
EVENTHANDLER_PRI_FIRST);
ctx->ifc_vlan_detach_event =
EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx,
EVENTHANDLER_PRI_FIRST);
if ((sctx->isc_flags & IFLIB_DRIVER_MEDIA) == 0) {
ctx->ifc_mediap = &ctx->ifc_media;
ifmedia_init(ctx->ifc_mediap, IFM_IMASK,
iflib_media_change, iflib_media_status);
}
return (0);
}
static int
iflib_queues_alloc(if_ctx_t ctx)
{
if_shared_ctx_t sctx = ctx->ifc_sctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
device_t dev = ctx->ifc_dev;
int nrxqsets = scctx->isc_nrxqsets;
int ntxqsets = scctx->isc_ntxqsets;
iflib_txq_t txq;
iflib_rxq_t rxq;
iflib_fl_t fl = NULL;
int i, j, cpu, err, txconf, rxconf;
iflib_dma_info_t ifdip;
uint32_t *rxqsizes = scctx->isc_rxqsizes;
uint32_t *txqsizes = scctx->isc_txqsizes;
uint8_t nrxqs = sctx->isc_nrxqs;
uint8_t ntxqs = sctx->isc_ntxqs;
int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1;
caddr_t *vaddrs;
uint64_t *paddrs;
KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1"));
KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1"));
/* Allocate the TX ring struct memory */
if (!(ctx->ifc_txqs =
(iflib_txq_t) malloc(sizeof(struct iflib_txq) *
ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to allocate TX ring memory\n");
err = ENOMEM;
goto fail;
}
/* Now allocate the RX */
if (!(ctx->ifc_rxqs =
(iflib_rxq_t) malloc(sizeof(struct iflib_rxq) *
nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to allocate RX ring memory\n");
err = ENOMEM;
goto rx_fail;
}
txq = ctx->ifc_txqs;
rxq = ctx->ifc_rxqs;
/*
* XXX handle allocation failure
*/
for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) {
/* Set up some basics */
if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs,
M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
device_printf(dev,
"Unable to allocate TX DMA info memory\n");
err = ENOMEM;
goto err_tx_desc;
}
txq->ift_ifdi = ifdip;
for (j = 0; j < ntxqs; j++, ifdip++) {
if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) {
device_printf(dev,
"Unable to allocate TX descriptors\n");
err = ENOMEM;
goto err_tx_desc;
}
txq->ift_txd_size[j] = scctx->isc_txd_size[j];
bzero((void *)ifdip->idi_vaddr, txqsizes[j]);
}
txq->ift_ctx = ctx;
txq->ift_id = i;
if (sctx->isc_flags & IFLIB_HAS_TXCQ) {
txq->ift_br_offset = 1;
} else {
txq->ift_br_offset = 0;
}
/* XXX fix this */
txq->ift_timer.c_cpu = cpu;
if (iflib_txsd_alloc(txq)) {
device_printf(dev, "Critical Failure setting up TX buffers\n");
err = ENOMEM;
goto err_tx_desc;
}
/* Initialize the TX lock */
snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:TX(%d):callout",
device_get_nameunit(dev), txq->ift_id);
mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF);
callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0);
err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain,
iflib_txq_can_drain, M_IFLIB, M_WAITOK);
if (err) {
/* XXX free any allocated rings */
device_printf(dev, "Unable to allocate buf_ring\n");
goto err_tx_desc;
}
}
for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) {
/* Set up some basics */
if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs,
M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
device_printf(dev,
"Unable to allocate RX DMA info memory\n");
err = ENOMEM;
goto err_tx_desc;
}
rxq->ifr_ifdi = ifdip;
/* XXX this needs to be changed if #rx queues != #tx queues */
rxq->ifr_ntxqirq = 1;
rxq->ifr_txqid[0] = i;
for (j = 0; j < nrxqs; j++, ifdip++) {
if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) {
device_printf(dev,
"Unable to allocate RX descriptors\n");
err = ENOMEM;
goto err_tx_desc;
}
bzero((void *)ifdip->idi_vaddr, rxqsizes[j]);
}
rxq->ifr_ctx = ctx;
rxq->ifr_id = i;
if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
rxq->ifr_fl_offset = 1;
} else {
rxq->ifr_fl_offset = 0;
}
rxq->ifr_nfl = nfree_lists;
if (!(fl =
(iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to allocate free list memory\n");
err = ENOMEM;
goto err_tx_desc;
}
rxq->ifr_fl = fl;
for (j = 0; j < nfree_lists; j++) {
fl[j].ifl_rxq = rxq;
fl[j].ifl_id = j;
fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset];
fl[j].ifl_rxd_size = scctx->isc_rxd_size[j];
}
/* Allocate receive buffers for the ring */
if (iflib_rxsd_alloc(rxq)) {
device_printf(dev,
"Critical Failure setting up receive buffers\n");
err = ENOMEM;
goto err_rx_desc;
}
for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB,
M_WAITOK);
}
/* TXQs */
vaddrs = malloc(sizeof(caddr_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK);
paddrs = malloc(sizeof(uint64_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK);
for (i = 0; i < ntxqsets; i++) {
iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi;
for (j = 0; j < ntxqs; j++, di++) {
vaddrs[i*ntxqs + j] = di->idi_vaddr;
paddrs[i*ntxqs + j] = di->idi_paddr;
}
}
if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) {
device_printf(ctx->ifc_dev,
"Unable to allocate device TX queue\n");
iflib_tx_structures_free(ctx);
free(vaddrs, M_IFLIB);
free(paddrs, M_IFLIB);
goto err_rx_desc;
}
free(vaddrs, M_IFLIB);
free(paddrs, M_IFLIB);
/* RXQs */
vaddrs = malloc(sizeof(caddr_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK);
paddrs = malloc(sizeof(uint64_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK);
for (i = 0; i < nrxqsets; i++) {
iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi;
for (j = 0; j < nrxqs; j++, di++) {
vaddrs[i*nrxqs + j] = di->idi_vaddr;
paddrs[i*nrxqs + j] = di->idi_paddr;
}
}
if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) {
device_printf(ctx->ifc_dev,
"Unable to allocate device RX queue\n");
iflib_tx_structures_free(ctx);
free(vaddrs, M_IFLIB);
free(paddrs, M_IFLIB);
goto err_rx_desc;
}
free(vaddrs, M_IFLIB);
free(paddrs, M_IFLIB);
return (0);
/* XXX handle allocation failure changes */
err_rx_desc:
err_tx_desc:
rx_fail:
if (ctx->ifc_rxqs != NULL)
free(ctx->ifc_rxqs, M_IFLIB);
ctx->ifc_rxqs = NULL;
if (ctx->ifc_txqs != NULL)
free(ctx->ifc_txqs, M_IFLIB);
ctx->ifc_txqs = NULL;
fail:
return (err);
}
static int
iflib_tx_structures_setup(if_ctx_t ctx)
{
iflib_txq_t txq = ctx->ifc_txqs;
int i;
for (i = 0; i < NTXQSETS(ctx); i++, txq++)
iflib_txq_setup(txq);
return (0);
}
static void
iflib_tx_structures_free(if_ctx_t ctx)
{
iflib_txq_t txq = ctx->ifc_txqs;
if_shared_ctx_t sctx = ctx->ifc_sctx;
int i, j;
for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
iflib_txq_destroy(txq);
for (j = 0; j < sctx->isc_ntxqs; j++)
iflib_dma_free(&txq->ift_ifdi[j]);
}
free(ctx->ifc_txqs, M_IFLIB);
ctx->ifc_txqs = NULL;
IFDI_QUEUES_FREE(ctx);
}
/*********************************************************************
*
* Initialize all receive rings.
*
**********************************************************************/
static int
iflib_rx_structures_setup(if_ctx_t ctx)
{
iflib_rxq_t rxq = ctx->ifc_rxqs;
int q;
#if defined(INET6) || defined(INET)
int err, i;
#endif
for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) {
#if defined(INET6) || defined(INET)
if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_LRO) {
err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp,
TCP_LRO_ENTRIES, min(1024,
ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset]));
if (err != 0) {
device_printf(ctx->ifc_dev,
"LRO Initialization failed!\n");
goto fail;
}
}
#endif
IFDI_RXQ_SETUP(ctx, rxq->ifr_id);
}
return (0);
#if defined(INET6) || defined(INET)
fail:
/*
* Free LRO resources allocated so far, we will only handle
* the rings that completed, the failing case will have
* cleaned up for itself. 'q' failed, so its the terminus.
*/
rxq = ctx->ifc_rxqs;
for (i = 0; i < q; ++i, rxq++) {
if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_LRO)
tcp_lro_free(&rxq->ifr_lc);
}
return (err);
#endif
}
/*********************************************************************
*
* Free all receive rings.
*
**********************************************************************/
static void
iflib_rx_structures_free(if_ctx_t ctx)
{
iflib_rxq_t rxq = ctx->ifc_rxqs;
int i;
for (i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) {
iflib_rx_sds_free(rxq);
#if defined(INET6) || defined(INET)
if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_LRO)
tcp_lro_free(&rxq->ifr_lc);
#endif
}
free(ctx->ifc_rxqs, M_IFLIB);
ctx->ifc_rxqs = NULL;
}
static int
iflib_qset_structures_setup(if_ctx_t ctx)
{
int err;
/*
* It is expected that the caller takes care of freeing queues if this
* fails.
*/
if ((err = iflib_tx_structures_setup(ctx)) != 0) {
device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err);
return (err);
}
if ((err = iflib_rx_structures_setup(ctx)) != 0)
device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err);
return (err);
}
int
iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name)
{
return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name));
}
#ifdef SMP
static int
find_nth(if_ctx_t ctx, int qid)
{
cpuset_t cpus;
int i, cpuid, eqid, count;
CPU_COPY(&ctx->ifc_cpus, &cpus);
count = CPU_COUNT(&cpus);
eqid = qid % count;
/* clear up to the qid'th bit */
for (i = 0; i < eqid; i++) {
cpuid = CPU_FFS(&cpus);
MPASS(cpuid != 0);
CPU_CLR(cpuid-1, &cpus);
}
cpuid = CPU_FFS(&cpus);
MPASS(cpuid != 0);
return (cpuid-1);
}
#ifdef SCHED_ULE
extern struct cpu_group *cpu_top; /* CPU topology */
static int
find_child_with_core(int cpu, struct cpu_group *grp)
{
int i;
if (grp->cg_children == 0)
return -1;
MPASS(grp->cg_child);
for (i = 0; i < grp->cg_children; i++) {
if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask))
return i;
}
return -1;
}
/*
* Find the nth "close" core to the specified core
* "close" is defined as the deepest level that shares
* at least an L2 cache. With threads, this will be
* threads on the same core. If the shared cache is L3
* or higher, simply returns the same core.
*/
static int
find_close_core(int cpu, int core_offset)
{
struct cpu_group *grp;
int i;
int fcpu;
cpuset_t cs;
grp = cpu_top;
if (grp == NULL)
return cpu;
i = 0;
while ((i = find_child_with_core(cpu, grp)) != -1) {
/* If the child only has one cpu, don't descend */
if (grp->cg_child[i].cg_count <= 1)
break;
grp = &grp->cg_child[i];
}
/* If they don't share at least an L2 cache, use the same CPU */
if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE)
return cpu;
/* Now pick one */
CPU_COPY(&grp->cg_mask, &cs);
/* Add the selected CPU offset to core offset. */
for (i = 0; (fcpu = CPU_FFS(&cs)) != 0; i++) {
if (fcpu - 1 == cpu)
break;
CPU_CLR(fcpu - 1, &cs);
}
MPASS(fcpu);
core_offset += i;
CPU_COPY(&grp->cg_mask, &cs);
for (i = core_offset % grp->cg_count; i > 0; i--) {
MPASS(CPU_FFS(&cs));
CPU_CLR(CPU_FFS(&cs) - 1, &cs);
}
MPASS(CPU_FFS(&cs));
return CPU_FFS(&cs) - 1;
}
#else
static int
find_close_core(int cpu, int core_offset __unused)
{
return cpu;
}
#endif
static int
get_core_offset(if_ctx_t ctx, iflib_intr_type_t type, int qid)
{
switch (type) {
case IFLIB_INTR_TX:
/* TX queues get cores which share at least an L2 cache with the corresponding RX queue */
/* XXX handle multiple RX threads per core and more than two core per L2 group */
return qid / CPU_COUNT(&ctx->ifc_cpus) + 1;
case IFLIB_INTR_RX:
case IFLIB_INTR_RXTX:
/* RX queues get the specified core */
return qid / CPU_COUNT(&ctx->ifc_cpus);
default:
return -1;
}
}
#else
#define get_core_offset(ctx, type, qid) CPU_FIRST()
#define find_close_core(cpuid, tid) CPU_FIRST()
#define find_nth(ctx, gid) CPU_FIRST()
#endif
/* Just to avoid copy/paste */
static inline int
iflib_irq_set_affinity(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq,
const char *name)
{
device_t dev;
int co, cpuid, err, tid;
dev = ctx->ifc_dev;
co = ctx->ifc_sysctl_core_offset;
if (ctx->ifc_sysctl_separate_txrx && type == IFLIB_INTR_TX)
co += ctx->ifc_softc_ctx.isc_nrxqsets;
cpuid = find_nth(ctx, qid + co);
tid = get_core_offset(ctx, type, qid);
if (tid < 0) {
device_printf(dev, "get_core_offset failed\n");
return (EOPNOTSUPP);
}
cpuid = find_close_core(cpuid, tid);
err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, dev, irq->ii_res,
name);
if (err) {
device_printf(dev, "taskqgroup_attach_cpu failed %d\n", err);
return (err);
}
#ifdef notyet
if (cpuid > ctx->ifc_cpuid_highest)
ctx->ifc_cpuid_highest = cpuid;
#endif
return (0);
}
int
iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid,
iflib_intr_type_t type, driver_filter_t *filter,
void *filter_arg, int qid, const char *name)
{
device_t dev;
struct grouptask *gtask;
struct taskqgroup *tqg;
iflib_filter_info_t info;
gtask_fn_t *fn;
int tqrid, err;
driver_filter_t *intr_fast;
void *q;
info = &ctx->ifc_filter_info;
tqrid = rid;
switch (type) {
/* XXX merge tx/rx for netmap? */
case IFLIB_INTR_TX:
q = &ctx->ifc_txqs[qid];
info = &ctx->ifc_txqs[qid].ift_filter_info;
gtask = &ctx->ifc_txqs[qid].ift_task;
tqg = qgroup_if_io_tqg;
fn = _task_fn_tx;
intr_fast = iflib_fast_intr;
GROUPTASK_INIT(gtask, 0, fn, q);
ctx->ifc_flags |= IFC_NETMAP_TX_IRQ;
break;
case IFLIB_INTR_RX:
q = &ctx->ifc_rxqs[qid];
info = &ctx->ifc_rxqs[qid].ifr_filter_info;
gtask = &ctx->ifc_rxqs[qid].ifr_task;
tqg = qgroup_if_io_tqg;
fn = _task_fn_rx;
intr_fast = iflib_fast_intr;
GROUPTASK_INIT(gtask, 0, fn, q);
break;
case IFLIB_INTR_RXTX:
q = &ctx->ifc_rxqs[qid];
info = &ctx->ifc_rxqs[qid].ifr_filter_info;
gtask = &ctx->ifc_rxqs[qid].ifr_task;
tqg = qgroup_if_io_tqg;
fn = _task_fn_rx;
intr_fast = iflib_fast_intr_rxtx;
GROUPTASK_INIT(gtask, 0, fn, q);
break;
case IFLIB_INTR_ADMIN:
q = ctx;
tqrid = -1;
info = &ctx->ifc_filter_info;
gtask = &ctx->ifc_admin_task;
tqg = qgroup_if_config_tqg;
fn = _task_fn_admin;
intr_fast = iflib_fast_intr_ctx;
break;
default:
device_printf(ctx->ifc_dev, "%s: unknown net intr type\n",
__func__);
return (EINVAL);
}
info->ifi_filter = filter;
info->ifi_filter_arg = filter_arg;
info->ifi_task = gtask;
info->ifi_ctx = q;
dev = ctx->ifc_dev;
err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name);
if (err != 0) {
device_printf(dev, "_iflib_irq_alloc failed %d\n", err);
return (err);
}
if (type == IFLIB_INTR_ADMIN)
return (0);
if (tqrid != -1) {
err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg,
q, name);
if (err)
return (err);
} else {
taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
}
return (0);
}
void
iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type, void *arg, int qid, const char *name)
{
struct grouptask *gtask;
struct taskqgroup *tqg;
gtask_fn_t *fn;
void *q;
int err;
switch (type) {
case IFLIB_INTR_TX:
q = &ctx->ifc_txqs[qid];
gtask = &ctx->ifc_txqs[qid].ift_task;
tqg = qgroup_if_io_tqg;
fn = _task_fn_tx;
break;
case IFLIB_INTR_RX:
q = &ctx->ifc_rxqs[qid];
gtask = &ctx->ifc_rxqs[qid].ifr_task;
tqg = qgroup_if_io_tqg;
fn = _task_fn_rx;
break;
case IFLIB_INTR_IOV:
q = ctx;
gtask = &ctx->ifc_vflr_task;
tqg = qgroup_if_config_tqg;
fn = _task_fn_iov;
break;
default:
panic("unknown net intr type");
}
GROUPTASK_INIT(gtask, 0, fn, q);
if (irq != NULL) {
err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg,
q, name);
if (err)
taskqgroup_attach(tqg, gtask, q, ctx->ifc_dev,
irq->ii_res, name);
} else {
taskqgroup_attach(tqg, gtask, q, NULL, NULL, name);
}
}
void
iflib_irq_free(if_ctx_t ctx, if_irq_t irq)
{
if (irq->ii_tag)
bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag);
if (irq->ii_res)
bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ,
rman_get_rid(irq->ii_res), irq->ii_res);
}
static int
iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name)
{
iflib_txq_t txq = ctx->ifc_txqs;
iflib_rxq_t rxq = ctx->ifc_rxqs;
if_irq_t irq = &ctx->ifc_legacy_irq;
iflib_filter_info_t info;
device_t dev;
struct grouptask *gtask;
struct resource *res;
struct taskqgroup *tqg;
gtask_fn_t *fn;
void *q;
int err, tqrid;
q = &ctx->ifc_rxqs[0];
info = &rxq[0].ifr_filter_info;
gtask = &rxq[0].ifr_task;
tqg = qgroup_if_io_tqg;
tqrid = *rid;
fn = _task_fn_rx;
ctx->ifc_flags |= IFC_LEGACY;
info->ifi_filter = filter;
info->ifi_filter_arg = filter_arg;
info->ifi_task = gtask;
info->ifi_ctx = q;
dev = ctx->ifc_dev;
/* We allocate a single interrupt resource */
if ((err = _iflib_irq_alloc(ctx, irq, tqrid, iflib_fast_intr_rxtx,
NULL, info, name)) != 0)
return (err);
GROUPTASK_INIT(gtask, 0, fn, q);
res = irq->ii_res;
taskqgroup_attach(tqg, gtask, q, dev, res, name);
GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq);
taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, dev, res,
"tx");
return (0);
}
void
iflib_led_create(if_ctx_t ctx)
{
ctx->ifc_led_dev = led_create(iflib_led_func, ctx,
device_get_nameunit(ctx->ifc_dev));
}
void
iflib_tx_intr_deferred(if_ctx_t ctx, int txqid)
{
GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task);
}
void
iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid)
{
GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task);
}
void
iflib_admin_intr_deferred(if_ctx_t ctx)
{
#ifdef INVARIANTS
struct grouptask *gtask;
gtask = &ctx->ifc_admin_task;
MPASS(gtask != NULL && gtask->gt_taskqueue != NULL);
#endif
GROUPTASK_ENQUEUE(&ctx->ifc_admin_task);
}
void
iflib_iov_intr_deferred(if_ctx_t ctx)
{
GROUPTASK_ENQUEUE(&ctx->ifc_vflr_task);
}
void
iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, const char *name)
{
taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, NULL, NULL,
name);
}
void
iflib_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
const char *name)
{
GROUPTASK_INIT(gtask, 0, fn, ctx);
taskqgroup_attach(qgroup_if_config_tqg, gtask, gtask, NULL, NULL,
name);
}
void
iflib_config_gtask_deinit(struct grouptask *gtask)
{
taskqgroup_detach(qgroup_if_config_tqg, gtask);
}
void
iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate)
{
if_t ifp = ctx->ifc_ifp;
iflib_txq_t txq = ctx->ifc_txqs;
if_setbaudrate(ifp, baudrate);
if (baudrate >= IF_Gbps(10)) {
STATE_LOCK(ctx);
ctx->ifc_flags |= IFC_PREFETCH;
STATE_UNLOCK(ctx);
}
/* If link down, disable watchdog */
if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) {
for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++)
txq->ift_qstatus = IFLIB_QUEUE_IDLE;
}
ctx->ifc_link_state = link_state;
if_link_state_change(ifp, link_state);
}
static int
iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq)
{
int credits;
#ifdef INVARIANTS
int credits_pre = txq->ift_cidx_processed;
#endif
bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_POSTREAD);
if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0)
return (0);
txq->ift_processed += credits;
txq->ift_cidx_processed += credits;
MPASS(credits_pre + credits == txq->ift_cidx_processed);
if (txq->ift_cidx_processed >= txq->ift_size)
txq->ift_cidx_processed -= txq->ift_size;
return (credits);
}
static int
iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget)
{
iflib_fl_t fl;
u_int i;
for (i = 0, fl = &rxq->ifr_fl[0]; i < rxq->ifr_nfl; i++, fl++)
bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx,
budget));
}
void
iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name,
const char *description, if_int_delay_info_t info,
int offset, int value)
{
info->iidi_ctx = ctx;
info->iidi_offset = offset;
info->iidi_value = value;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)),
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
info, 0, iflib_sysctl_int_delay, "I", description);
}
struct sx *
iflib_ctx_lock_get(if_ctx_t ctx)
{
return (&ctx->ifc_ctx_sx);
}
static int
iflib_msix_init(if_ctx_t ctx)
{
device_t dev = ctx->ifc_dev;
if_shared_ctx_t sctx = ctx->ifc_sctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
int admincnt, bar, err, iflib_num_rx_queues, iflib_num_tx_queues;
int msgs, queuemsgs, queues, rx_queues, tx_queues, vectors;
iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs;
iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs;
if (bootverbose)
device_printf(dev, "msix_init qsets capped at %d\n",
imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets));
/* Override by tuneable */
if (scctx->isc_disable_msix)
goto msi;
/* First try MSI-X */
if ((msgs = pci_msix_count(dev)) == 0) {
if (bootverbose)
device_printf(dev, "MSI-X not supported or disabled\n");
goto msi;
}
bar = ctx->ifc_softc_ctx.isc_msix_bar;
/*
* bar == -1 => "trust me I know what I'm doing"
* Some drivers are for hardware that is so shoddily
* documented that no one knows which bars are which
* so the developer has to map all bars. This hack
* allows shoddy garbage to use MSI-X in this framework.
*/
if (bar != -1) {
ctx->ifc_msix_mem = bus_alloc_resource_any(dev,
SYS_RES_MEMORY, &bar, RF_ACTIVE);
if (ctx->ifc_msix_mem == NULL) {
device_printf(dev, "Unable to map MSI-X table\n");
goto msi;
}
}
admincnt = sctx->isc_admin_intrcnt;
#if IFLIB_DEBUG
/* use only 1 qset in debug mode */
queuemsgs = min(msgs - admincnt, 1);
#else
queuemsgs = msgs - admincnt;
#endif
#ifdef RSS
queues = imin(queuemsgs, rss_getnumbuckets());
#else
queues = queuemsgs;
#endif
queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues);
if (bootverbose)
device_printf(dev,
"intr CPUs: %d queue msgs: %d admincnt: %d\n",
CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt);
#ifdef RSS
/* If we're doing RSS, clamp at the number of RSS buckets */
if (queues > rss_getnumbuckets())
queues = rss_getnumbuckets();
#endif
if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt)
rx_queues = iflib_num_rx_queues;
else
rx_queues = queues;
if (rx_queues > scctx->isc_nrxqsets)
rx_queues = scctx->isc_nrxqsets;
/*
* We want this to be all logical CPUs by default
*/
if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues)
tx_queues = iflib_num_tx_queues;
else
tx_queues = mp_ncpus;
if (tx_queues > scctx->isc_ntxqsets)
tx_queues = scctx->isc_ntxqsets;
if (ctx->ifc_sysctl_qs_eq_override == 0) {
#ifdef INVARIANTS
if (tx_queues != rx_queues)
device_printf(dev,
"queue equality override not set, capping rx_queues at %d and tx_queues at %d\n",
min(rx_queues, tx_queues), min(rx_queues, tx_queues));
#endif
tx_queues = min(rx_queues, tx_queues);
rx_queues = min(rx_queues, tx_queues);
}
vectors = rx_queues + admincnt;
if (msgs < vectors) {
device_printf(dev,
"insufficient number of MSI-X vectors "
"(supported %d, need %d)\n", msgs, vectors);
goto msi;
}
device_printf(dev, "Using %d RX queues %d TX queues\n", rx_queues,
tx_queues);
msgs = vectors;
if ((err = pci_alloc_msix(dev, &vectors)) == 0) {
if (vectors != msgs) {
device_printf(dev,
"Unable to allocate sufficient MSI-X vectors "
"(got %d, need %d)\n", vectors, msgs);
pci_release_msi(dev);
if (bar != -1) {
bus_release_resource(dev, SYS_RES_MEMORY, bar,
ctx->ifc_msix_mem);
ctx->ifc_msix_mem = NULL;
}
goto msi;
}
device_printf(dev, "Using MSI-X interrupts with %d vectors\n",
vectors);
scctx->isc_vectors = vectors;
scctx->isc_nrxqsets = rx_queues;
scctx->isc_ntxqsets = tx_queues;
scctx->isc_intr = IFLIB_INTR_MSIX;
return (vectors);
} else {
device_printf(dev,
"failed to allocate %d MSI-X vectors, err: %d\n", vectors,
err);
if (bar != -1) {
bus_release_resource(dev, SYS_RES_MEMORY, bar,
ctx->ifc_msix_mem);
ctx->ifc_msix_mem = NULL;
}
}
msi:
vectors = pci_msi_count(dev);
scctx->isc_nrxqsets = 1;
scctx->isc_ntxqsets = 1;
scctx->isc_vectors = vectors;
if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) {
device_printf(dev,"Using an MSI interrupt\n");
scctx->isc_intr = IFLIB_INTR_MSI;
} else {
scctx->isc_vectors = 1;
device_printf(dev,"Using a Legacy interrupt\n");
scctx->isc_intr = IFLIB_INTR_LEGACY;
}
return (vectors);
}
static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" };
static int
mp_ring_state_handler(SYSCTL_HANDLER_ARGS)
{
int rc;
uint16_t *state = ((uint16_t *)oidp->oid_arg1);
struct sbuf *sb;
const char *ring_state = "UNKNOWN";
/* XXX needed ? */
rc = sysctl_wire_old_buffer(req, 0);
MPASS(rc == 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 80, req);
MPASS(sb != NULL);
if (sb == NULL)
return (ENOMEM);
if (state[3] <= 3)
ring_state = ring_states[state[3]];
sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s",
state[0], state[1], state[2], ring_state);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return(rc);
}
enum iflib_ndesc_handler {
IFLIB_NTXD_HANDLER,
IFLIB_NRXD_HANDLER,
};
static int
mp_ndesc_handler(SYSCTL_HANDLER_ARGS)
{
if_ctx_t ctx = (void *)arg1;
enum iflib_ndesc_handler type = arg2;
char buf[256] = {0};
qidx_t *ndesc;
char *p, *next;
int nqs, rc, i;
nqs = 8;
switch(type) {
case IFLIB_NTXD_HANDLER:
ndesc = ctx->ifc_sysctl_ntxds;
if (ctx->ifc_sctx)
nqs = ctx->ifc_sctx->isc_ntxqs;
break;
case IFLIB_NRXD_HANDLER:
ndesc = ctx->ifc_sysctl_nrxds;
if (ctx->ifc_sctx)
nqs = ctx->ifc_sctx->isc_nrxqs;
break;
default:
printf("%s: unhandled type\n", __func__);
return (EINVAL);
}
if (nqs == 0)
nqs = 8;
for (i=0; i<8; i++) {
if (i >= nqs)
break;
if (i)
strcat(buf, ",");
sprintf(strchr(buf, 0), "%d", ndesc[i]);
}
rc = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (rc || req->newptr == NULL)
return rc;
for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p;
i++, p = strsep(&next, " ,")) {
ndesc[i] = strtoul(p, NULL, 10);
}
return(rc);
}
#define NAME_BUFLEN 32
static void
iflib_add_device_sysctl_pre(if_ctx_t ctx)
{
device_t dev = iflib_get_dev(ctx);
struct sysctl_oid_list *child, *oid_list;
struct sysctl_ctx_list *ctx_list;
struct sysctl_oid *node;
ctx_list = device_get_sysctl_ctx(dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, "iflib",
CTLFLAG_RD, NULL, "IFLIB fields");
oid_list = SYSCTL_CHILDREN(node);
SYSCTL_ADD_CONST_STRING(ctx_list, oid_list, OID_AUTO, "driver_version",
CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version,
"driver version");
SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs",
CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0,
"# of txqs to use, 0 => use default #");
SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs",
CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0,
"# of rxqs to use, 0 => use default #");
SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable",
CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0,
"permit #txq != #rxq");
SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix",
CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0,
"disable MSI-X (default 0)");
SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget",
CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0,
"set the RX budget");
SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate",
CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0,
"cause TX to abdicate instead of running to completion");
ctx->ifc_sysctl_core_offset = CORE_OFFSET_UNSPECIFIED;
SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "core_offset",
CTLFLAG_RDTUN, &ctx->ifc_sysctl_core_offset, 0,
"offset to start using cores at");
SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "separate_txrx",
CTLFLAG_RDTUN, &ctx->ifc_sysctl_separate_txrx, 0,
"use separate cores for TX and RX");
/* XXX change for per-queue sizes */
SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds",
CTLTYPE_STRING|CTLFLAG_RWTUN, ctx, IFLIB_NTXD_HANDLER,
mp_ndesc_handler, "A",
"list of # of TX descriptors to use, 0 = use default #");
SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds",
CTLTYPE_STRING|CTLFLAG_RWTUN, ctx, IFLIB_NRXD_HANDLER,
mp_ndesc_handler, "A",
"list of # of RX descriptors to use, 0 = use default #");
}
static void
iflib_add_device_sysctl_post(if_ctx_t ctx)
{
if_shared_ctx_t sctx = ctx->ifc_sctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
device_t dev = iflib_get_dev(ctx);
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx_list;
iflib_fl_t fl;
iflib_txq_t txq;
iflib_rxq_t rxq;
int i, j;
char namebuf[NAME_BUFLEN];
char *qfmt;
struct sysctl_oid *queue_node, *fl_node, *node;
struct sysctl_oid_list *queue_list, *fl_list;
ctx_list = device_get_sysctl_ctx(dev);
node = ctx->ifc_sysctl_node;
child = SYSCTL_CHILDREN(node);
if (scctx->isc_ntxqsets > 100)
qfmt = "txq%03d";
else if (scctx->isc_ntxqsets > 10)
qfmt = "txq%02d";
else
qfmt = "txq%d";
for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
snprintf(namebuf, NAME_BUFLEN, qfmt, i);
queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
#if MEMORY_LOGGING
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued",
CTLFLAG_RD,
&txq->ift_dequeued, "total mbufs freed");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued",
CTLFLAG_RD,
&txq->ift_enqueued, "total mbufs enqueued");
#endif
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag",
CTLFLAG_RD,
&txq->ift_mbuf_defrag, "# of times m_defrag was called");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "m_pullups",
CTLFLAG_RD,
&txq->ift_pullups, "# of times m_pullup was called");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag_failed",
CTLFLAG_RD,
&txq->ift_mbuf_defrag_failed, "# of times m_defrag failed");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_desc_avail",
CTLFLAG_RD,
&txq->ift_no_desc_avail, "# of times no descriptors were available");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "tx_map_failed",
CTLFLAG_RD,
&txq->ift_map_failed, "# of times DMA map failed");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txd_encap_efbig",
CTLFLAG_RD,
&txq->ift_txd_encap_efbig, "# of times txd_encap returned EFBIG");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_tx_dma_setup",
CTLFLAG_RD,
&txq->ift_no_tx_dma_setup, "# of times map failed for other than EFBIG");
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx",
CTLFLAG_RD,
&txq->ift_pidx, 1, "Producer Index");
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx",
CTLFLAG_RD,
&txq->ift_cidx, 1, "Consumer Index");
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx_processed",
CTLFLAG_RD,
&txq->ift_cidx_processed, 1, "Consumer Index seen by credit update");
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use",
CTLFLAG_RD,
&txq->ift_in_use, 1, "descriptors in use");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_processed",
CTLFLAG_RD,
&txq->ift_processed, "descriptors procesed for clean");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned",
CTLFLAG_RD,
&txq->ift_cleaned, "total cleaned");
SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state",
CTLTYPE_STRING | CTLFLAG_RD, __DEVOLATILE(uint64_t *, &txq->ift_br->state),
0, mp_ring_state_handler, "A", "soft ring state");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_enqueues",
CTLFLAG_RD, &txq->ift_br->enqueues,
"# of enqueues to the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_drops",
CTLFLAG_RD, &txq->ift_br->drops,
"# of drops in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_starts",
CTLFLAG_RD, &txq->ift_br->starts,
"# of normal consumer starts in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_stalls",
CTLFLAG_RD, &txq->ift_br->stalls,
"# of consumer stalls in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_restarts",
CTLFLAG_RD, &txq->ift_br->restarts,
"# of consumer restarts in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_abdications",
CTLFLAG_RD, &txq->ift_br->abdications,
"# of consumer abdications in the mp_ring for this queue");
}
if (scctx->isc_nrxqsets > 100)
qfmt = "rxq%03d";
else if (scctx->isc_nrxqsets > 10)
qfmt = "rxq%02d";
else
qfmt = "rxq%d";
for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
snprintf(namebuf, NAME_BUFLEN, qfmt, i);
queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "rxq_cq_cidx",
CTLFLAG_RD,
&rxq->ifr_cq_cidx, 1, "Consumer Index");
}
for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j);
fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "freelist Name");
fl_list = SYSCTL_CHILDREN(fl_node);
SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx",
CTLFLAG_RD,
&fl->ifl_pidx, 1, "Producer Index");
SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx",
CTLFLAG_RD,
&fl->ifl_cidx, 1, "Consumer Index");
SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits",
CTLFLAG_RD,
&fl->ifl_credits, 1, "credits available");
#if MEMORY_LOGGING
SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_enqueued",
CTLFLAG_RD,
&fl->ifl_m_enqueued, "mbufs allocated");
SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_dequeued",
CTLFLAG_RD,
&fl->ifl_m_dequeued, "mbufs freed");
SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_enqueued",
CTLFLAG_RD,
&fl->ifl_cl_enqueued, "clusters allocated");
SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_dequeued",
CTLFLAG_RD,
&fl->ifl_cl_dequeued, "clusters freed");
#endif
}
}
}
void
iflib_request_reset(if_ctx_t ctx)
{
STATE_LOCK(ctx);
ctx->ifc_flags |= IFC_DO_RESET;
STATE_UNLOCK(ctx);
}
#ifndef __NO_STRICT_ALIGNMENT
static struct mbuf *
iflib_fixup_rx(struct mbuf *m)
{
struct mbuf *n;
if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
m->m_data += ETHER_HDR_LEN;
n = m;
} else {
MGETHDR(n, M_NOWAIT, MT_DATA);
if (n == NULL) {
m_freem(m);
return (NULL);
}
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
m->m_data += ETHER_HDR_LEN;
m->m_len -= ETHER_HDR_LEN;
n->m_len = ETHER_HDR_LEN;
M_MOVE_PKTHDR(n, m);
n->m_next = m;
}
return (n);
}
#endif
#ifdef NETDUMP
static void
iflib_netdump_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
{
if_ctx_t ctx;
ctx = if_getsoftc(ifp);
CTX_LOCK(ctx);
*nrxr = NRXQSETS(ctx);
*ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size;
*clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size;
CTX_UNLOCK(ctx);
}
static void
iflib_netdump_event(if_t ifp, enum netdump_ev event)
{
if_ctx_t ctx;
if_softc_ctx_t scctx;
iflib_fl_t fl;
iflib_rxq_t rxq;
int i, j;
ctx = if_getsoftc(ifp);
scctx = &ctx->ifc_softc_ctx;
switch (event) {
case NETDUMP_START:
for (i = 0; i < scctx->isc_nrxqsets; i++) {
rxq = &ctx->ifc_rxqs[i];
for (j = 0; j < rxq->ifr_nfl; j++) {
fl = rxq->ifr_fl;
fl->ifl_zone = m_getzone(fl->ifl_buf_size);
}
}
iflib_no_tx_batch = 1;
break;
default:
break;
}
}
static int
iflib_netdump_transmit(if_t ifp, struct mbuf *m)
{
if_ctx_t ctx;
iflib_txq_t txq;
int error;
ctx = if_getsoftc(ifp);
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return (EBUSY);
txq = &ctx->ifc_txqs[0];
error = iflib_encap(txq, &m);
if (error == 0)
(void)iflib_txd_db_check(ctx, txq, true, txq->ift_in_use);
return (error);
}
static int
iflib_netdump_poll(if_t ifp, int count)
{
if_ctx_t ctx;
if_softc_ctx_t scctx;
iflib_txq_t txq;
int i;
ctx = if_getsoftc(ifp);
scctx = &ctx->ifc_softc_ctx;
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return (EBUSY);
txq = &ctx->ifc_txqs[0];
(void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
for (i = 0; i < scctx->isc_nrxqsets; i++)
(void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */);
return (0);
}
#endif /* NETDUMP */