freebsd-skq/sys/kern/subr_smp.c
msmith 50016bdc27 Further fixes for multiple-IO-APIC systems from Tor Egge:
Further experimentation showed that some Dell 2450 machines with the
prevention kludge installed still got T_RESERVED traps.  CPU interrupt
vector 0x7A was observed to be triggered.  This might have been the
bitwise OR of two different vectors sent from each of the IOAPICs at
the same time.

	IOAPIC #0: 0x68 --> irq 8: RTC timer interrupt
	IOAPIC #1: 0x32 --> irq 18: scsi host adapter or network interface
		   ----
		   0x7a --> T_RESERVED

Both IOAPICs had ID 0.

Appendix B.3 in the MP spec indicates that the operating system is
responsible for assigning unique IDs to the IOAPICs.

The enclosed patch programs the IOAPIC IDs according to the IOAPIC
entries in the MP table.

Submitted by:	tegge
2000-05-31 21:37:28 +00:00

2737 lines
64 KiB
C

/*
* Copyright (c) 1996, by Steve Passe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the developer may NOT be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_smp.h"
#include "opt_cpu.h"
#include "opt_user_ldt.h"
#ifdef SMP
#include <machine/smptests.h>
#else
#error
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/memrange.h>
#ifdef BETTER_CLOCK
#include <sys/dkstat.h>
#endif
#include <sys/cons.h> /* cngetc() */
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#ifdef BETTER_CLOCK
#include <sys/lock.h>
#include <vm/vm_map.h>
#include <sys/user.h>
#ifdef GPROF
#include <sys/gmon.h>
#endif
#endif
#include <machine/smp.h>
#include <machine/apic.h>
#include <machine/atomic.h>
#include <machine/cpufunc.h>
#include <machine/mpapic.h>
#include <machine/psl.h>
#include <machine/segments.h>
#include <machine/smptests.h> /** TEST_DEFAULT_CONFIG, TEST_TEST1 */
#include <machine/tss.h>
#include <machine/specialreg.h>
#include <machine/globaldata.h>
#if defined(APIC_IO)
#include <machine/md_var.h> /* setidt() */
#include <i386/isa/icu.h> /* IPIs */
#include <i386/isa/intr_machdep.h> /* IPIs */
#endif /* APIC_IO */
#if defined(TEST_DEFAULT_CONFIG)
#define MPFPS_MPFB1 TEST_DEFAULT_CONFIG
#else
#define MPFPS_MPFB1 mpfps->mpfb1
#endif /* TEST_DEFAULT_CONFIG */
#define WARMBOOT_TARGET 0
#define WARMBOOT_OFF (KERNBASE + 0x0467)
#define WARMBOOT_SEG (KERNBASE + 0x0469)
#ifdef PC98
#define BIOS_BASE (0xe8000)
#define BIOS_SIZE (0x18000)
#else
#define BIOS_BASE (0xf0000)
#define BIOS_SIZE (0x10000)
#endif
#define BIOS_COUNT (BIOS_SIZE/4)
#define CMOS_REG (0x70)
#define CMOS_DATA (0x71)
#define BIOS_RESET (0x0f)
#define BIOS_WARM (0x0a)
#define PROCENTRY_FLAG_EN 0x01
#define PROCENTRY_FLAG_BP 0x02
#define IOAPICENTRY_FLAG_EN 0x01
/* MP Floating Pointer Structure */
typedef struct MPFPS {
char signature[4];
void *pap;
u_char length;
u_char spec_rev;
u_char checksum;
u_char mpfb1;
u_char mpfb2;
u_char mpfb3;
u_char mpfb4;
u_char mpfb5;
} *mpfps_t;
/* MP Configuration Table Header */
typedef struct MPCTH {
char signature[4];
u_short base_table_length;
u_char spec_rev;
u_char checksum;
u_char oem_id[8];
u_char product_id[12];
void *oem_table_pointer;
u_short oem_table_size;
u_short entry_count;
void *apic_address;
u_short extended_table_length;
u_char extended_table_checksum;
u_char reserved;
} *mpcth_t;
typedef struct PROCENTRY {
u_char type;
u_char apic_id;
u_char apic_version;
u_char cpu_flags;
u_long cpu_signature;
u_long feature_flags;
u_long reserved1;
u_long reserved2;
} *proc_entry_ptr;
typedef struct BUSENTRY {
u_char type;
u_char bus_id;
char bus_type[6];
} *bus_entry_ptr;
typedef struct IOAPICENTRY {
u_char type;
u_char apic_id;
u_char apic_version;
u_char apic_flags;
void *apic_address;
} *io_apic_entry_ptr;
typedef struct INTENTRY {
u_char type;
u_char int_type;
u_short int_flags;
u_char src_bus_id;
u_char src_bus_irq;
u_char dst_apic_id;
u_char dst_apic_int;
} *int_entry_ptr;
/* descriptions of MP basetable entries */
typedef struct BASETABLE_ENTRY {
u_char type;
u_char length;
char name[16];
} basetable_entry;
/*
* this code MUST be enabled here and in mpboot.s.
* it follows the very early stages of AP boot by placing values in CMOS ram.
* it NORMALLY will never be needed and thus the primitive method for enabling.
*
#define CHECK_POINTS
*/
#if defined(CHECK_POINTS) && !defined(PC98)
#define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA))
#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
#define CHECK_INIT(D); \
CHECK_WRITE(0x34, (D)); \
CHECK_WRITE(0x35, (D)); \
CHECK_WRITE(0x36, (D)); \
CHECK_WRITE(0x37, (D)); \
CHECK_WRITE(0x38, (D)); \
CHECK_WRITE(0x39, (D));
#define CHECK_PRINT(S); \
printf("%s: %d, %d, %d, %d, %d, %d\n", \
(S), \
CHECK_READ(0x34), \
CHECK_READ(0x35), \
CHECK_READ(0x36), \
CHECK_READ(0x37), \
CHECK_READ(0x38), \
CHECK_READ(0x39));
#else /* CHECK_POINTS */
#define CHECK_INIT(D)
#define CHECK_PRINT(S)
#endif /* CHECK_POINTS */
/*
* Values to send to the POST hardware.
*/
#define MP_BOOTADDRESS_POST 0x10
#define MP_PROBE_POST 0x11
#define MPTABLE_PASS1_POST 0x12
#define MP_START_POST 0x13
#define MP_ENABLE_POST 0x14
#define MPTABLE_PASS2_POST 0x15
#define START_ALL_APS_POST 0x16
#define INSTALL_AP_TRAMP_POST 0x17
#define START_AP_POST 0x18
#define MP_ANNOUNCE_POST 0x19
/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
int current_postcode;
/** XXX FIXME: what system files declare these??? */
extern struct region_descriptor r_gdt, r_idt;
int bsp_apic_ready = 0; /* flags useability of BSP apic */
int mp_ncpus; /* # of CPUs, including BSP */
int mp_naps; /* # of Applications processors */
int mp_nbusses; /* # of busses */
int mp_napics; /* # of IO APICs */
int boot_cpu_id; /* designated BSP */
vm_offset_t cpu_apic_address;
vm_offset_t io_apic_address[NAPICID]; /* NAPICID is more than enough */
extern int nkpt;
u_int32_t cpu_apic_versions[NCPU];
u_int32_t io_apic_versions[NAPIC];
#ifdef APIC_INTR_DIAGNOSTIC
int apic_itrace_enter[32];
int apic_itrace_tryisrlock[32];
int apic_itrace_gotisrlock[32];
int apic_itrace_active[32];
int apic_itrace_masked[32];
int apic_itrace_noisrlock[32];
int apic_itrace_masked2[32];
int apic_itrace_unmask[32];
int apic_itrace_noforward[32];
int apic_itrace_leave[32];
int apic_itrace_enter2[32];
int apic_itrace_doreti[32];
int apic_itrace_splz[32];
int apic_itrace_eoi[32];
#ifdef APIC_INTR_DIAGNOSTIC_IRQ
unsigned short apic_itrace_debugbuffer[32768];
int apic_itrace_debugbuffer_idx;
struct simplelock apic_itrace_debuglock;
#endif
#endif
#ifdef APIC_INTR_REORDER
struct {
volatile int *location;
int bit;
} apic_isrbit_location[32];
#endif
struct apic_intmapinfo int_to_apicintpin[APIC_INTMAPSIZE];
/*
* APIC ID logical/physical mapping structures.
* We oversize these to simplify boot-time config.
*/
int cpu_num_to_apic_id[NAPICID];
int io_num_to_apic_id[NAPICID];
int apic_id_to_logical[NAPICID];
/* Bitmap of all available CPUs */
u_int all_cpus;
/* AP uses this during bootstrap. Do not staticize. */
char *bootSTK;
static int bootAP;
/* Hotwire a 0->4MB V==P mapping */
extern pt_entry_t *KPTphys;
/* SMP page table page */
extern pt_entry_t *SMPpt;
struct pcb stoppcbs[NCPU];
int smp_started; /* has the system started? */
/*
* Local data and functions.
*/
static int mp_capable;
static u_int boot_address;
static u_int base_memory;
static int picmode; /* 0: virtual wire mode, 1: PIC mode */
static mpfps_t mpfps;
static int search_for_sig(u_int32_t target, int count);
static void mp_enable(u_int boot_addr);
static int mptable_pass1(void);
static int mptable_pass2(void);
static void default_mp_table(int type);
static void fix_mp_table(void);
static void setup_apic_irq_mapping(void);
static void init_locks(void);
static int start_all_aps(u_int boot_addr);
static void install_ap_tramp(u_int boot_addr);
static int start_ap(int logicalCpu, u_int boot_addr);
static int apic_int_is_bus_type(int intr, int bus_type);
/*
* Calculate usable address in base memory for AP trampoline code.
*/
u_int
mp_bootaddress(u_int basemem)
{
POSTCODE(MP_BOOTADDRESS_POST);
base_memory = basemem * 1024; /* convert to bytes */
boot_address = base_memory & ~0xfff; /* round down to 4k boundary */
if ((base_memory - boot_address) < bootMP_size)
boot_address -= 4096; /* not enough, lower by 4k */
return boot_address;
}
/*
* Look for an Intel MP spec table (ie, SMP capable hardware).
*/
int
mp_probe(void)
{
int x;
u_long segment;
u_int32_t target;
POSTCODE(MP_PROBE_POST);
/* see if EBDA exists */
if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
/* search first 1K of EBDA */
target = (u_int32_t) (segment << 4);
if ((x = search_for_sig(target, 1024 / 4)) >= 0)
goto found;
} else {
/* last 1K of base memory, effective 'top of base' passed in */
target = (u_int32_t) (base_memory - 0x400);
if ((x = search_for_sig(target, 1024 / 4)) >= 0)
goto found;
}
/* search the BIOS */
target = (u_int32_t) BIOS_BASE;
if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
goto found;
/* nothing found */
mpfps = (mpfps_t)0;
mp_capable = 0;
return 0;
found:
/* calculate needed resources */
mpfps = (mpfps_t)x;
if (mptable_pass1())
panic("you must reconfigure your kernel");
/* flag fact that we are running multiple processors */
mp_capable = 1;
return 1;
}
/*
* Startup the SMP processors.
*/
void
mp_start(void)
{
POSTCODE(MP_START_POST);
/* look for MP capable motherboard */
if (mp_capable)
mp_enable(boot_address);
else
panic("MP hardware not found!");
}
/*
* Print various information about the SMP system hardware and setup.
*/
void
mp_announce(void)
{
int x;
POSTCODE(MP_ANNOUNCE_POST);
printf("FreeBSD/SMP: Multiprocessor motherboard\n");
printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
printf(", version: 0x%08x", cpu_apic_versions[0]);
printf(", at 0x%08x\n", cpu_apic_address);
for (x = 1; x <= mp_naps; ++x) {
printf(" cpu%d (AP): apic id: %2d", x, CPU_TO_ID(x));
printf(", version: 0x%08x", cpu_apic_versions[x]);
printf(", at 0x%08x\n", cpu_apic_address);
}
#if defined(APIC_IO)
for (x = 0; x < mp_napics; ++x) {
printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
printf(", version: 0x%08x", io_apic_versions[x]);
printf(", at 0x%08x\n", io_apic_address[x]);
}
#else
printf(" Warning: APIC I/O disabled\n");
#endif /* APIC_IO */
}
/*
* AP cpu's call this to sync up protected mode.
*/
void
init_secondary(void)
{
int gsel_tss;
int x, myid = bootAP;
gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
gdt_segs[GPROC0_SEL].ssd_base =
(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
SMP_prvspace[myid].globaldata.gd_prvspace = &SMP_prvspace[myid];
for (x = 0; x < NGDT; x++) {
ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
}
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
r_gdt.rd_base = (int) &gdt[myid * NGDT];
lgdt(&r_gdt); /* does magic intra-segment return */
lidt(&r_idt);
lldt(_default_ldt);
#ifdef USER_LDT
currentldt = _default_ldt;
#endif
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
common_tss.tss_esp0 = 0; /* not used until after switch */
common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
common_tss.tss_ioopt = (sizeof common_tss) << 16;
tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd;
common_tssd = *tss_gdt;
ltr(gsel_tss);
load_cr0(0x8005003b); /* XXX! */
pmap_set_opt();
}
#if defined(APIC_IO)
/*
* Final configuration of the BSP's local APIC:
* - disable 'pic mode'.
* - disable 'virtual wire mode'.
* - enable NMI.
*/
void
bsp_apic_configure(void)
{
u_char byte;
u_int32_t temp;
/* leave 'pic mode' if necessary */
if (picmode) {
outb(0x22, 0x70); /* select IMCR */
byte = inb(0x23); /* current contents */
byte |= 0x01; /* mask external INTR */
outb(0x23, byte); /* disconnect 8259s/NMI */
}
/* mask lint0 (the 8259 'virtual wire' connection) */
temp = lapic.lvt_lint0;
temp |= APIC_LVT_M; /* set the mask */
lapic.lvt_lint0 = temp;
/* setup lint1 to handle NMI */
temp = lapic.lvt_lint1;
temp &= ~APIC_LVT_M; /* clear the mask */
lapic.lvt_lint1 = temp;
if (bootverbose)
apic_dump("bsp_apic_configure()");
}
#endif /* APIC_IO */
/*******************************************************************
* local functions and data
*/
/*
* start the SMP system
*/
static void
mp_enable(u_int boot_addr)
{
int x;
#if defined(APIC_IO)
int apic;
u_int ux;
#endif /* APIC_IO */
POSTCODE(MP_ENABLE_POST);
/* turn on 4MB of V == P addressing so we can get to MP table */
*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
invltlb();
/* examine the MP table for needed info, uses physical addresses */
x = mptable_pass2();
*(int *)PTD = 0;
invltlb();
/* can't process default configs till the CPU APIC is pmapped */
if (x)
default_mp_table(x);
/* post scan cleanup */
fix_mp_table();
setup_apic_irq_mapping();
#if defined(APIC_IO)
/* fill the LOGICAL io_apic_versions table */
for (apic = 0; apic < mp_napics; ++apic) {
ux = io_apic_read(apic, IOAPIC_VER);
io_apic_versions[apic] = ux;
io_apic_set_id(apic, IO_TO_ID(apic));
}
/* program each IO APIC in the system */
for (apic = 0; apic < mp_napics; ++apic)
if (io_apic_setup(apic) < 0)
panic("IO APIC setup failure");
/* install a 'Spurious INTerrupt' vector */
setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for TLB invalidation */
setidt(XINVLTLB_OFFSET, Xinvltlb,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#ifdef BETTER_CLOCK
/* install an inter-CPU IPI for reading processor state */
setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#endif
/* install an inter-CPU IPI for all-CPU rendezvous */
setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for forcing an additional software trap */
setidt(XCPUAST_OFFSET, Xcpuast,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for interrupt forwarding */
setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for CPU stop/restart */
setidt(XCPUSTOP_OFFSET, Xcpustop,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#if defined(TEST_TEST1)
/* install a "fake hardware INTerrupt" vector */
setidt(XTEST1_OFFSET, Xtest1,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#endif /** TEST_TEST1 */
#endif /* APIC_IO */
/* initialize all SMP locks */
init_locks();
/* start each Application Processor */
start_all_aps(boot_addr);
/*
* The init process might be started on a different CPU now,
* and the boot CPU might not call prepare_usermode to get
* cr0 correctly configured. Thus we initialize cr0 here.
*/
load_cr0(rcr0() | CR0_WP | CR0_AM);
}
/*
* look for the MP spec signature
*/
/* string defined by the Intel MP Spec as identifying the MP table */
#define MP_SIG 0x5f504d5f /* _MP_ */
#define NEXT(X) ((X) += 4)
static int
search_for_sig(u_int32_t target, int count)
{
int x;
u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
for (x = 0; x < count; NEXT(x))
if (addr[x] == MP_SIG)
/* make array index a byte index */
return (target + (x * sizeof(u_int32_t)));
return -1;
}
static basetable_entry basetable_entry_types[] =
{
{0, 20, "Processor"},
{1, 8, "Bus"},
{2, 8, "I/O APIC"},
{3, 8, "I/O INT"},
{4, 8, "Local INT"}
};
typedef struct BUSDATA {
u_char bus_id;
enum busTypes bus_type;
} bus_datum;
typedef struct INTDATA {
u_char int_type;
u_short int_flags;
u_char src_bus_id;
u_char src_bus_irq;
u_char dst_apic_id;
u_char dst_apic_int;
u_char int_vector;
} io_int, local_int;
typedef struct BUSTYPENAME {
u_char type;
char name[7];
} bus_type_name;
static bus_type_name bus_type_table[] =
{
{CBUS, "CBUS"},
{CBUSII, "CBUSII"},
{EISA, "EISA"},
{MCA, "MCA"},
{UNKNOWN_BUSTYPE, "---"},
{ISA, "ISA"},
{MCA, "MCA"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{PCI, "PCI"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{XPRESS, "XPRESS"},
{UNKNOWN_BUSTYPE, "---"}
};
/* from MP spec v1.4, table 5-1 */
static int default_data[7][5] =
{
/* nbus, id0, type0, id1, type1 */
{1, 0, ISA, 255, 255},
{1, 0, EISA, 255, 255},
{1, 0, EISA, 255, 255},
{1, 0, MCA, 255, 255},
{2, 0, ISA, 1, PCI},
{2, 0, EISA, 1, PCI},
{2, 0, MCA, 1, PCI}
};
/* the bus data */
static bus_datum bus_data[NBUS];
/* the IO INT data, one entry per possible APIC INTerrupt */
static io_int io_apic_ints[NINTR];
static int nintrs;
static int processor_entry __P((proc_entry_ptr entry, int cpu));
static int bus_entry __P((bus_entry_ptr entry, int bus));
static int io_apic_entry __P((io_apic_entry_ptr entry, int apic));
static int int_entry __P((int_entry_ptr entry, int intr));
static int lookup_bus_type __P((char *name));
/*
* 1st pass on motherboard's Intel MP specification table.
*
* initializes:
* mp_ncpus = 1
*
* determines:
* cpu_apic_address (common to all CPUs)
* io_apic_address[N]
* mp_naps
* mp_nbusses
* mp_napics
* nintrs
*/
static int
mptable_pass1(void)
{
int x;
mpcth_t cth;
int totalSize;
void* position;
int count;
int type;
int mustpanic;
POSTCODE(MPTABLE_PASS1_POST);
mustpanic = 0;
/* clear various tables */
for (x = 0; x < NAPICID; ++x) {
io_apic_address[x] = ~0; /* IO APIC address table */
}
/* init everything to empty */
mp_naps = 0;
mp_nbusses = 0;
mp_napics = 0;
nintrs = 0;
/* check for use of 'default' configuration */
if (MPFPS_MPFB1 != 0) {
/* use default addresses */
cpu_apic_address = DEFAULT_APIC_BASE;
io_apic_address[0] = DEFAULT_IO_APIC_BASE;
/* fill in with defaults */
mp_naps = 2; /* includes BSP */
mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
#if defined(APIC_IO)
mp_napics = 1;
nintrs = 16;
#endif /* APIC_IO */
}
else {
if ((cth = mpfps->pap) == 0)
panic("MP Configuration Table Header MISSING!");
cpu_apic_address = (vm_offset_t) cth->apic_address;
/* walk the table, recording info of interest */
totalSize = cth->base_table_length - sizeof(struct MPCTH);
position = (u_char *) cth + sizeof(struct MPCTH);
count = cth->entry_count;
while (count--) {
switch (type = *(u_char *) position) {
case 0: /* processor_entry */
if (((proc_entry_ptr)position)->cpu_flags
& PROCENTRY_FLAG_EN)
++mp_naps;
break;
case 1: /* bus_entry */
++mp_nbusses;
break;
case 2: /* io_apic_entry */
if (((io_apic_entry_ptr)position)->apic_flags
& IOAPICENTRY_FLAG_EN)
io_apic_address[mp_napics++] =
(vm_offset_t)((io_apic_entry_ptr)
position)->apic_address;
break;
case 3: /* int_entry */
++nintrs;
break;
case 4: /* int_entry */
break;
default:
panic("mpfps Base Table HOSED!");
/* NOTREACHED */
}
totalSize -= basetable_entry_types[type].length;
(u_char*)position += basetable_entry_types[type].length;
}
}
/* qualify the numbers */
if (mp_naps > NCPU) {
printf("Warning: only using %d of %d available CPUs!\n",
NCPU, mp_naps);
mp_naps = NCPU;
}
if (mp_nbusses > NBUS) {
printf("found %d busses, increase NBUS\n", mp_nbusses);
mustpanic = 1;
}
if (mp_napics > NAPIC) {
printf("found %d apics, increase NAPIC\n", mp_napics);
mustpanic = 1;
}
if (nintrs > NINTR) {
printf("found %d intrs, increase NINTR\n", nintrs);
mustpanic = 1;
}
/*
* Count the BSP.
* This is also used as a counter while starting the APs.
*/
mp_ncpus = 1;
--mp_naps; /* subtract the BSP */
return mustpanic;
}
/*
* 2nd pass on motherboard's Intel MP specification table.
*
* sets:
* boot_cpu_id
* ID_TO_IO(N), phy APIC ID to log CPU/IO table
* CPU_TO_ID(N), logical CPU to APIC ID table
* IO_TO_ID(N), logical IO to APIC ID table
* bus_data[N]
* io_apic_ints[N]
*/
static int
mptable_pass2(void)
{
int x;
mpcth_t cth;
int totalSize;
void* position;
int count;
int type;
int apic, bus, cpu, intr;
POSTCODE(MPTABLE_PASS2_POST);
/* clear various tables */
for (x = 0; x < NAPICID; ++x) {
ID_TO_IO(x) = -1; /* phy APIC ID to log CPU/IO table */
CPU_TO_ID(x) = -1; /* logical CPU to APIC ID table */
IO_TO_ID(x) = -1; /* logical IO to APIC ID table */
}
/* clear bus data table */
for (x = 0; x < NBUS; ++x)
bus_data[x].bus_id = 0xff;
/* clear IO APIC INT table */
for (x = 0; x < NINTR; ++x) {
io_apic_ints[x].int_type = 0xff;
io_apic_ints[x].int_vector = 0xff;
}
/* setup the cpu/apic mapping arrays */
boot_cpu_id = -1;
/* record whether PIC or virtual-wire mode */
picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
/* check for use of 'default' configuration */
if (MPFPS_MPFB1 != 0)
return MPFPS_MPFB1; /* return default configuration type */
if ((cth = mpfps->pap) == 0)
panic("MP Configuration Table Header MISSING!");
/* walk the table, recording info of interest */
totalSize = cth->base_table_length - sizeof(struct MPCTH);
position = (u_char *) cth + sizeof(struct MPCTH);
count = cth->entry_count;
apic = bus = intr = 0;
cpu = 1; /* pre-count the BSP */
while (count--) {
switch (type = *(u_char *) position) {
case 0:
if (processor_entry(position, cpu))
++cpu;
break;
case 1:
if (bus_entry(position, bus))
++bus;
break;
case 2:
if (io_apic_entry(position, apic))
++apic;
break;
case 3:
if (int_entry(position, intr))
++intr;
break;
case 4:
/* int_entry(position); */
break;
default:
panic("mpfps Base Table HOSED!");
/* NOTREACHED */
}
totalSize -= basetable_entry_types[type].length;
(u_char *) position += basetable_entry_types[type].length;
}
if (boot_cpu_id == -1)
panic("NO BSP found!");
/* report fact that its NOT a default configuration */
return 0;
}
void
assign_apic_irq(int apic, int intpin, int irq)
{
int x;
if (int_to_apicintpin[irq].ioapic != -1)
panic("assign_apic_irq: inconsistent table");
int_to_apicintpin[irq].ioapic = apic;
int_to_apicintpin[irq].int_pin = intpin;
int_to_apicintpin[irq].apic_address = ioapic[apic];
int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
for (x = 0; x < nintrs; x++) {
if ((io_apic_ints[x].int_type == 0 ||
io_apic_ints[x].int_type == 3) &&
io_apic_ints[x].int_vector == 0xff &&
io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
io_apic_ints[x].dst_apic_int == intpin)
io_apic_ints[x].int_vector = irq;
}
}
void
revoke_apic_irq(int irq)
{
int x;
int oldapic;
int oldintpin;
if (int_to_apicintpin[irq].ioapic == -1)
panic("assign_apic_irq: inconsistent table");
oldapic = int_to_apicintpin[irq].ioapic;
oldintpin = int_to_apicintpin[irq].int_pin;
int_to_apicintpin[irq].ioapic = -1;
int_to_apicintpin[irq].int_pin = 0;
int_to_apicintpin[irq].apic_address = NULL;
int_to_apicintpin[irq].redirindex = 0;
for (x = 0; x < nintrs; x++) {
if ((io_apic_ints[x].int_type == 0 ||
io_apic_ints[x].int_type == 3) &&
io_apic_ints[x].int_vector == 0xff &&
io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
io_apic_ints[x].dst_apic_int == oldintpin)
io_apic_ints[x].int_vector = 0xff;
}
}
/*
* parse an Intel MP specification table
*/
static void
fix_mp_table(void)
{
int x;
int id;
int bus_0 = 0; /* Stop GCC warning */
int bus_pci = 0; /* Stop GCC warning */
int num_pci_bus;
/*
* Fix mis-numbering of the PCI bus and its INT entries if the BIOS
* did it wrong. The MP spec says that when more than 1 PCI bus
* exists the BIOS must begin with bus entries for the PCI bus and use
* actual PCI bus numbering. This implies that when only 1 PCI bus
* exists the BIOS can choose to ignore this ordering, and indeed many
* MP motherboards do ignore it. This causes a problem when the PCI
* sub-system makes requests of the MP sub-system based on PCI bus
* numbers. So here we look for the situation and renumber the
* busses and associated INTs in an effort to "make it right".
*/
/* find bus 0, PCI bus, count the number of PCI busses */
for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
if (bus_data[x].bus_id == 0) {
bus_0 = x;
}
if (bus_data[x].bus_type == PCI) {
++num_pci_bus;
bus_pci = x;
}
}
/*
* bus_0 == slot of bus with ID of 0
* bus_pci == slot of last PCI bus encountered
*/
/* check the 1 PCI bus case for sanity */
if (num_pci_bus == 1) {
/* if it is number 0 all is well */
if (bus_data[bus_pci].bus_id == 0)
return;
/* mis-numbered, swap with whichever bus uses slot 0 */
/* swap the bus entry types */
bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
bus_data[bus_0].bus_type = PCI;
/* swap each relavant INTerrupt entry */
id = bus_data[bus_pci].bus_id;
for (x = 0; x < nintrs; ++x) {
if (io_apic_ints[x].src_bus_id == id) {
io_apic_ints[x].src_bus_id = 0;
}
else if (io_apic_ints[x].src_bus_id == 0) {
io_apic_ints[x].src_bus_id = id;
}
}
}
}
/* Assign low level interrupt handlers */
static void
setup_apic_irq_mapping(void)
{
int x;
int int_vector;
/* Clear array */
for (x = 0; x < APIC_INTMAPSIZE; x++) {
int_to_apicintpin[x].ioapic = -1;
int_to_apicintpin[x].int_pin = 0;
int_to_apicintpin[x].apic_address = NULL;
int_to_apicintpin[x].redirindex = 0;
}
/* First assign ISA/EISA interrupts */
for (x = 0; x < nintrs; x++) {
int_vector = io_apic_ints[x].src_bus_irq;
if (int_vector < APIC_INTMAPSIZE &&
io_apic_ints[x].int_vector == 0xff &&
int_to_apicintpin[int_vector].ioapic == -1 &&
(apic_int_is_bus_type(x, ISA) ||
apic_int_is_bus_type(x, EISA)) &&
io_apic_ints[x].int_type == 0) {
assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
io_apic_ints[x].dst_apic_int,
int_vector);
}
}
/* Assign interrupts on first 24 intpins on IOAPIC #0 */
for (x = 0; x < nintrs; x++) {
int_vector = io_apic_ints[x].dst_apic_int;
if (int_vector < APIC_INTMAPSIZE &&
io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
io_apic_ints[x].int_vector == 0xff &&
int_to_apicintpin[int_vector].ioapic == -1 &&
(io_apic_ints[x].int_type == 0 ||
io_apic_ints[x].int_type == 3)) {
assign_apic_irq(0,
io_apic_ints[x].dst_apic_int,
int_vector);
}
}
/*
* Assign interrupts for remaining intpins.
* Skip IOAPIC #0 intpin 0 if the type is ExtInt, since this indicates
* that an entry for ISA/EISA irq 0 exist, and a fallback to mixed mode
* due to 8254 interrupts not being delivered can reuse that low level
* interrupt handler.
*/
int_vector = 0;
while (int_vector < APIC_INTMAPSIZE &&
int_to_apicintpin[int_vector].ioapic != -1)
int_vector++;
for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
if ((io_apic_ints[x].int_type == 0 ||
(io_apic_ints[x].int_type == 3 &&
(io_apic_ints[x].dst_apic_id != IO_TO_ID(0) ||
io_apic_ints[x].dst_apic_int != 0))) &&
io_apic_ints[x].int_vector == 0xff) {
assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
io_apic_ints[x].dst_apic_int,
int_vector);
int_vector++;
while (int_vector < APIC_INTMAPSIZE &&
int_to_apicintpin[int_vector].ioapic != -1)
int_vector++;
}
}
}
static int
processor_entry(proc_entry_ptr entry, int cpu)
{
/* check for usability */
if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
return 0;
/* check for BSP flag */
if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
boot_cpu_id = entry->apic_id;
CPU_TO_ID(0) = entry->apic_id;
ID_TO_CPU(entry->apic_id) = 0;
return 0; /* its already been counted */
}
/* add another AP to list, if less than max number of CPUs */
else if (cpu < NCPU) {
CPU_TO_ID(cpu) = entry->apic_id;
ID_TO_CPU(entry->apic_id) = cpu;
return 1;
}
return 0;
}
static int
bus_entry(bus_entry_ptr entry, int bus)
{
int x;
char c, name[8];
/* encode the name into an index */
for (x = 0; x < 6; ++x) {
if ((c = entry->bus_type[x]) == ' ')
break;
name[x] = c;
}
name[x] = '\0';
if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
panic("unknown bus type: '%s'", name);
bus_data[bus].bus_id = entry->bus_id;
bus_data[bus].bus_type = x;
return 1;
}
static int
io_apic_entry(io_apic_entry_ptr entry, int apic)
{
if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
return 0;
IO_TO_ID(apic) = entry->apic_id;
ID_TO_IO(entry->apic_id) = apic;
return 1;
}
static int
lookup_bus_type(char *name)
{
int x;
for (x = 0; x < MAX_BUSTYPE; ++x)
if (strcmp(bus_type_table[x].name, name) == 0)
return bus_type_table[x].type;
return UNKNOWN_BUSTYPE;
}
static int
int_entry(int_entry_ptr entry, int intr)
{
int apic;
io_apic_ints[intr].int_type = entry->int_type;
io_apic_ints[intr].int_flags = entry->int_flags;
io_apic_ints[intr].src_bus_id = entry->src_bus_id;
io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
if (entry->dst_apic_id == 255) {
/* This signal goes to all IO APICS. Select an IO APIC
with sufficient number of interrupt pins */
for (apic = 0; apic < mp_napics; apic++)
if (((io_apic_read(apic, IOAPIC_VER) &
IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
entry->dst_apic_int)
break;
if (apic < mp_napics)
io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
else
io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
} else
io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
return 1;
}
static int
apic_int_is_bus_type(int intr, int bus_type)
{
int bus;
for (bus = 0; bus < mp_nbusses; ++bus)
if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
&& ((int) bus_data[bus].bus_type == bus_type))
return 1;
return 0;
}
/*
* Given a traditional ISA INT mask, return an APIC mask.
*/
u_int
isa_apic_mask(u_int isa_mask)
{
int isa_irq;
int apic_pin;
#if defined(SKIP_IRQ15_REDIRECT)
if (isa_mask == (1 << 15)) {
printf("skipping ISA IRQ15 redirect\n");
return isa_mask;
}
#endif /* SKIP_IRQ15_REDIRECT */
isa_irq = ffs(isa_mask); /* find its bit position */
if (isa_irq == 0) /* doesn't exist */
return 0;
--isa_irq; /* make it zero based */
apic_pin = isa_apic_irq(isa_irq); /* look for APIC connection */
if (apic_pin == -1)
return 0;
return (1 << apic_pin); /* convert pin# to a mask */
}
/*
* Determine which APIC pin an ISA/EISA INT is attached to.
*/
#define INTTYPE(I) (io_apic_ints[(I)].int_type)
#define INTPIN(I) (io_apic_ints[(I)].dst_apic_int)
#define INTIRQ(I) (io_apic_ints[(I)].int_vector)
#define INTAPIC(I) (ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
#define SRCBUSIRQ(I) (io_apic_ints[(I)].src_bus_irq)
int
isa_apic_irq(int isa_irq)
{
int intr;
for (intr = 0; intr < nintrs; ++intr) { /* check each record */
if (INTTYPE(intr) == 0) { /* standard INT */
if (SRCBUSIRQ(intr) == isa_irq) {
if (apic_int_is_bus_type(intr, ISA) ||
apic_int_is_bus_type(intr, EISA))
return INTIRQ(intr); /* found */
}
}
}
return -1; /* NOT found */
}
/*
* Determine which APIC pin a PCI INT is attached to.
*/
#define SRCBUSID(I) (io_apic_ints[(I)].src_bus_id)
#define SRCBUSDEVICE(I) ((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
#define SRCBUSLINE(I) (io_apic_ints[(I)].src_bus_irq & 0x03)
int
pci_apic_irq(int pciBus, int pciDevice, int pciInt)
{
int intr;
--pciInt; /* zero based */
for (intr = 0; intr < nintrs; ++intr) /* check each record */
if ((INTTYPE(intr) == 0) /* standard INT */
&& (SRCBUSID(intr) == pciBus)
&& (SRCBUSDEVICE(intr) == pciDevice)
&& (SRCBUSLINE(intr) == pciInt)) /* a candidate IRQ */
if (apic_int_is_bus_type(intr, PCI))
return INTIRQ(intr); /* exact match */
return -1; /* NOT found */
}
int
next_apic_irq(int irq)
{
int intr, ointr;
int bus, bustype;
bus = 0;
bustype = 0;
for (intr = 0; intr < nintrs; intr++) {
if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
continue;
bus = SRCBUSID(intr);
bustype = apic_bus_type(bus);
if (bustype != ISA &&
bustype != EISA &&
bustype != PCI)
continue;
break;
}
if (intr >= nintrs) {
return -1;
}
for (ointr = intr + 1; ointr < nintrs; ointr++) {
if (INTTYPE(ointr) != 0)
continue;
if (bus != SRCBUSID(ointr))
continue;
if (bustype == PCI) {
if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
continue;
if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
continue;
}
if (bustype == ISA || bustype == EISA) {
if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
continue;
}
if (INTPIN(intr) == INTPIN(ointr))
continue;
break;
}
if (ointr >= nintrs) {
return -1;
}
return INTIRQ(ointr);
}
#undef SRCBUSLINE
#undef SRCBUSDEVICE
#undef SRCBUSID
#undef SRCBUSIRQ
#undef INTPIN
#undef INTIRQ
#undef INTAPIC
#undef INTTYPE
/*
* Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
*
* XXX FIXME:
* Exactly what this means is unclear at this point. It is a solution
* for motherboards that redirect the MBIRQ0 pin. Generically a motherboard
* could route any of the ISA INTs to upper (>15) IRQ values. But most would
* NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
* option.
*/
int
undirect_isa_irq(int rirq)
{
#if defined(READY)
if (bootverbose)
printf("Freeing redirected ISA irq %d.\n", rirq);
/** FIXME: tickle the MB redirector chip */
return ???;
#else
if (bootverbose)
printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
return 0;
#endif /* READY */
}
/*
* Reprogram the MB chipset to NOT redirect a PCI INTerrupt
*/
int
undirect_pci_irq(int rirq)
{
#if defined(READY)
if (bootverbose)
printf("Freeing redirected PCI irq %d.\n", rirq);
/** FIXME: tickle the MB redirector chip */
return ???;
#else
if (bootverbose)
printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
rirq);
return 0;
#endif /* READY */
}
/*
* given a bus ID, return:
* the bus type if found
* -1 if NOT found
*/
int
apic_bus_type(int id)
{
int x;
for (x = 0; x < mp_nbusses; ++x)
if (bus_data[x].bus_id == id)
return bus_data[x].bus_type;
return -1;
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated src bus ID if found
* -1 if NOT found
*/
int
apic_src_bus_id(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].src_bus_id);
return -1; /* NOT found */
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated src bus IRQ if found
* -1 if NOT found
*/
int
apic_src_bus_irq(int apic, int pin)
{
int x;
for (x = 0; x < nintrs; x++)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].src_bus_irq);
return -1; /* NOT found */
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated INTerrupt type if found
* -1 if NOT found
*/
int
apic_int_type(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].int_type);
return -1; /* NOT found */
}
int
apic_irq(int apic, int pin)
{
int x;
int res;
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int)) {
res = io_apic_ints[x].int_vector;
if (res == 0xff)
return -1;
if (apic != int_to_apicintpin[res].ioapic)
panic("apic_irq: inconsistent table");
if (pin != int_to_apicintpin[res].int_pin)
panic("apic_irq inconsistent table (2)");
return res;
}
return -1;
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated trigger mode if found
* -1 if NOT found
*/
int
apic_trigger(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return ((io_apic_ints[x].int_flags >> 2) & 0x03);
return -1; /* NOT found */
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated 'active' level if found
* -1 if NOT found
*/
int
apic_polarity(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].int_flags & 0x03);
return -1; /* NOT found */
}
/*
* set data according to MP defaults
* FIXME: probably not complete yet...
*/
static void
default_mp_table(int type)
{
int ap_cpu_id;
#if defined(APIC_IO)
u_int32_t ux;
int io_apic_id;
int pin;
#endif /* APIC_IO */
#if 0
printf(" MP default config type: %d\n", type);
switch (type) {
case 1:
printf(" bus: ISA, APIC: 82489DX\n");
break;
case 2:
printf(" bus: EISA, APIC: 82489DX\n");
break;
case 3:
printf(" bus: EISA, APIC: 82489DX\n");
break;
case 4:
printf(" bus: MCA, APIC: 82489DX\n");
break;
case 5:
printf(" bus: ISA+PCI, APIC: Integrated\n");
break;
case 6:
printf(" bus: EISA+PCI, APIC: Integrated\n");
break;
case 7:
printf(" bus: MCA+PCI, APIC: Integrated\n");
break;
default:
printf(" future type\n");
break;
/* NOTREACHED */
}
#endif /* 0 */
boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
/* BSP */
CPU_TO_ID(0) = boot_cpu_id;
ID_TO_CPU(boot_cpu_id) = 0;
/* one and only AP */
CPU_TO_ID(1) = ap_cpu_id;
ID_TO_CPU(ap_cpu_id) = 1;
#if defined(APIC_IO)
/* one and only IO APIC */
io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
/*
* sanity check, refer to MP spec section 3.6.6, last paragraph
* necessary as some hardware isn't properly setting up the IO APIC
*/
#if defined(REALLY_ANAL_IOAPICID_VALUE)
if (io_apic_id != 2) {
#else
if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
#endif /* REALLY_ANAL_IOAPICID_VALUE */
io_apic_set_id(0, 2);
io_apic_id = 2;
}
IO_TO_ID(0) = io_apic_id;
ID_TO_IO(io_apic_id) = 0;
#endif /* APIC_IO */
/* fill out bus entries */
switch (type) {
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
bus_data[0].bus_id = default_data[type - 1][1];
bus_data[0].bus_type = default_data[type - 1][2];
bus_data[1].bus_id = default_data[type - 1][3];
bus_data[1].bus_type = default_data[type - 1][4];
break;
/* case 4: case 7: MCA NOT supported */
default: /* illegal/reserved */
panic("BAD default MP config: %d", type);
/* NOTREACHED */
}
#if defined(APIC_IO)
/* general cases from MP v1.4, table 5-2 */
for (pin = 0; pin < 16; ++pin) {
io_apic_ints[pin].int_type = 0;
io_apic_ints[pin].int_flags = 0x05; /* edge/active-hi */
io_apic_ints[pin].src_bus_id = 0;
io_apic_ints[pin].src_bus_irq = pin; /* IRQ2 caught below */
io_apic_ints[pin].dst_apic_id = io_apic_id;
io_apic_ints[pin].dst_apic_int = pin; /* 1-to-1 */
}
/* special cases from MP v1.4, table 5-2 */
if (type == 2) {
io_apic_ints[2].int_type = 0xff; /* N/C */
io_apic_ints[13].int_type = 0xff; /* N/C */
#if !defined(APIC_MIXED_MODE)
/** FIXME: ??? */
panic("sorry, can't support type 2 default yet");
#endif /* APIC_MIXED_MODE */
}
else
io_apic_ints[2].src_bus_irq = 0; /* ISA IRQ0 is on APIC INT 2 */
if (type == 7)
io_apic_ints[0].int_type = 0xff; /* N/C */
else
io_apic_ints[0].int_type = 3; /* vectored 8259 */
#endif /* APIC_IO */
}
/*
* initialize all the SMP locks
*/
/* critical region around IO APIC, apic_imen */
struct simplelock imen_lock;
/* critical region around splxx(), cpl, cml, cil, ipending */
struct simplelock cpl_lock;
/* Make FAST_INTR() routines sequential */
struct simplelock fast_intr_lock;
/* critical region around INTR() routines */
struct simplelock intr_lock;
/* lock regions protected in UP kernel via cli/sti */
struct simplelock mpintr_lock;
/* lock region used by kernel profiling */
struct simplelock mcount_lock;
#ifdef USE_COMLOCK
/* locks com (tty) data/hardware accesses: a FASTINTR() */
struct simplelock com_lock;
#endif /* USE_COMLOCK */
#ifdef USE_CLOCKLOCK
/* lock regions around the clock hardware */
struct simplelock clock_lock;
#endif /* USE_CLOCKLOCK */
/* lock around the MP rendezvous */
static struct simplelock smp_rv_lock;
static void
init_locks(void)
{
/*
* Get the initial mp_lock with a count of 1 for the BSP.
* This uses a LOGICAL cpu ID, ie BSP == 0.
*/
mp_lock = 0x00000001;
#if 0
/* ISR uses its own "giant lock" */
isr_lock = FREE_LOCK;
#endif
#if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
s_lock_init((struct simplelock*)&apic_itrace_debuglock);
#endif
s_lock_init((struct simplelock*)&mpintr_lock);
s_lock_init((struct simplelock*)&mcount_lock);
s_lock_init((struct simplelock*)&fast_intr_lock);
s_lock_init((struct simplelock*)&intr_lock);
s_lock_init((struct simplelock*)&imen_lock);
s_lock_init((struct simplelock*)&cpl_lock);
s_lock_init(&smp_rv_lock);
#ifdef USE_COMLOCK
s_lock_init((struct simplelock*)&com_lock);
#endif /* USE_COMLOCK */
#ifdef USE_CLOCKLOCK
s_lock_init((struct simplelock*)&clock_lock);
#endif /* USE_CLOCKLOCK */
}
/* Wait for all APs to be fully initialized */
extern int wait_ap(unsigned int);
/*
* start each AP in our list
*/
static int
start_all_aps(u_int boot_addr)
{
int x, i, pg;
u_char mpbiosreason;
u_long mpbioswarmvec;
struct globaldata *gd;
char *stack;
POSTCODE(START_ALL_APS_POST);
/* initialize BSP's local APIC */
apic_initialize();
bsp_apic_ready = 1;
/* install the AP 1st level boot code */
install_ap_tramp(boot_addr);
/* save the current value of the warm-start vector */
mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
mpbiosreason = inb(CMOS_DATA);
#endif
/* record BSP in CPU map */
all_cpus = 1;
/* set up 0 -> 4MB P==V mapping for AP boot */
*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
invltlb();
/* start each AP */
for (x = 1; x <= mp_naps; ++x) {
/* This is a bit verbose, it will go away soon. */
/* first page of AP's private space */
pg = x * i386_btop(sizeof(struct privatespace));
/* allocate a new private data page */
gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
/* wire it into the private page table page */
SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
/* allocate and set up an idle stack data page */
stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
for (i = 0; i < UPAGES; i++)
SMPpt[pg + 5 + i] = (pt_entry_t)
(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
SMPpt[pg + 1] = 0; /* *prv_CMAP1 */
SMPpt[pg + 2] = 0; /* *prv_CMAP2 */
SMPpt[pg + 3] = 0; /* *prv_CMAP3 */
SMPpt[pg + 4] = 0; /* *prv_PMAP1 */
/* prime data page for it to use */
gd->gd_cpuid = x;
gd->gd_cpu_lockid = x << 24;
gd->gd_prv_CMAP1 = &SMPpt[pg + 1];
gd->gd_prv_CMAP2 = &SMPpt[pg + 2];
gd->gd_prv_CMAP3 = &SMPpt[pg + 3];
gd->gd_prv_PMAP1 = &SMPpt[pg + 4];
gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1;
gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2;
gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3;
gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1;
/* setup a vector to our boot code */
*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
#endif
bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
bootAP = x;
/* attempt to start the Application Processor */
CHECK_INIT(99); /* setup checkpoints */
if (!start_ap(x, boot_addr)) {
printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
CHECK_PRINT("trace"); /* show checkpoints */
/* better panic as the AP may be running loose */
printf("panic y/n? [y] ");
if (cngetc() != 'n')
panic("bye-bye");
}
CHECK_PRINT("trace"); /* show checkpoints */
/* record its version info */
cpu_apic_versions[x] = cpu_apic_versions[0];
all_cpus |= (1 << x); /* record AP in CPU map */
}
/* build our map of 'other' CPUs */
other_cpus = all_cpus & ~(1 << cpuid);
/* fill in our (BSP) APIC version */
cpu_apic_versions[0] = lapic.version;
/* restore the warmstart vector */
*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
outb(CMOS_DATA, mpbiosreason);
#endif
/*
* Set up the idle context for the BSP. Similar to above except
* that some was done by locore, some by pmap.c and some is implicit
* because the BSP is cpu#0 and the page is initially zero, and also
* because we can refer to variables by name on the BSP..
*/
/* Allocate and setup BSP idle stack */
stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
for (i = 0; i < UPAGES; i++)
SMPpt[5 + i] = (pt_entry_t)
(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
*(int *)PTD = 0;
pmap_set_opt();
/* number of APs actually started */
return mp_ncpus - 1;
}
/*
* load the 1st level AP boot code into base memory.
*/
/* targets for relocation */
extern void bigJump(void);
extern void bootCodeSeg(void);
extern void bootDataSeg(void);
extern void MPentry(void);
extern u_int MP_GDT;
extern u_int mp_gdtbase;
static void
install_ap_tramp(u_int boot_addr)
{
int x;
int size = *(int *) ((u_long) & bootMP_size);
u_char *src = (u_char *) ((u_long) bootMP);
u_char *dst = (u_char *) boot_addr + KERNBASE;
u_int boot_base = (u_int) bootMP;
u_int8_t *dst8;
u_int16_t *dst16;
u_int32_t *dst32;
POSTCODE(INSTALL_AP_TRAMP_POST);
for (x = 0; x < size; ++x)
*dst++ = *src++;
/*
* modify addresses in code we just moved to basemem. unfortunately we
* need fairly detailed info about mpboot.s for this to work. changes
* to mpboot.s might require changes here.
*/
/* boot code is located in KERNEL space */
dst = (u_char *) boot_addr + KERNBASE;
/* modify the lgdt arg */
dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
/* modify the ljmp target for MPentry() */
dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
*dst32 = ((u_int) MPentry - KERNBASE);
/* modify the target for boot code segment */
dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
dst8 = (u_int8_t *) (dst16 + 1);
*dst16 = (u_int) boot_addr & 0xffff;
*dst8 = ((u_int) boot_addr >> 16) & 0xff;
/* modify the target for boot data segment */
dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
dst8 = (u_int8_t *) (dst16 + 1);
*dst16 = (u_int) boot_addr & 0xffff;
*dst8 = ((u_int) boot_addr >> 16) & 0xff;
}
/*
* this function starts the AP (application processor) identified
* by the APIC ID 'physicalCpu'. It does quite a "song and dance"
* to accomplish this. This is necessary because of the nuances
* of the different hardware we might encounter. It ain't pretty,
* but it seems to work.
*/
static int
start_ap(int logical_cpu, u_int boot_addr)
{
int physical_cpu;
int vector;
int cpus;
u_long icr_lo, icr_hi;
POSTCODE(START_AP_POST);
/* get the PHYSICAL APIC ID# */
physical_cpu = CPU_TO_ID(logical_cpu);
/* calculate the vector */
vector = (boot_addr >> 12) & 0xff;
/* used as a watchpoint to signal AP startup */
cpus = mp_ncpus;
/*
* first we do an INIT/RESET IPI this INIT IPI might be run, reseting
* and running the target CPU. OR this INIT IPI might be latched (P5
* bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
* ignored.
*/
/* setup the address for the target AP */
icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
icr_hi |= (physical_cpu << 24);
lapic.icr_hi = icr_hi;
/* do an INIT IPI: assert RESET */
icr_lo = lapic.icr_lo & 0xfff00000;
lapic.icr_lo = icr_lo | 0x0000c500;
/* wait for pending status end */
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
/* do an INIT IPI: deassert RESET */
lapic.icr_lo = icr_lo | 0x00008500;
/* wait for pending status end */
u_sleep(10000); /* wait ~10mS */
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
/*
* next we do a STARTUP IPI: the previous INIT IPI might still be
* latched, (P5 bug) this 1st STARTUP would then terminate
* immediately, and the previously started INIT IPI would continue. OR
* the previous INIT IPI has already run. and this STARTUP IPI will
* run. OR the previous INIT IPI was ignored. and this STARTUP IPI
* will run.
*/
/* do a STARTUP IPI */
lapic.icr_lo = icr_lo | 0x00000600 | vector;
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
u_sleep(200); /* wait ~200uS */
/*
* finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
* the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
* this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
* recognized after hardware RESET or INIT IPI.
*/
lapic.icr_lo = icr_lo | 0x00000600 | vector;
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
u_sleep(200); /* wait ~200uS */
/* wait for it to start */
set_apic_timer(5000000);/* == 5 seconds */
while (read_apic_timer())
if (mp_ncpus > cpus)
return 1; /* return SUCCESS */
return 0; /* return FAILURE */
}
/*
* Flush the TLB on all other CPU's
*
* XXX: Needs to handshake and wait for completion before proceding.
*/
void
smp_invltlb(void)
{
#if defined(APIC_IO)
if (smp_started && invltlb_ok)
all_but_self_ipi(XINVLTLB_OFFSET);
#endif /* APIC_IO */
}
void
invlpg(u_int addr)
{
__asm __volatile("invlpg (%0)"::"r"(addr):"memory");
/* send a message to the other CPUs */
smp_invltlb();
}
void
invltlb(void)
{
u_long temp;
/*
* This should be implemented as load_cr3(rcr3()) when load_cr3() is
* inlined.
*/
__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
/* send a message to the other CPUs */
smp_invltlb();
}
/*
* When called the executing CPU will send an IPI to all other CPUs
* requesting that they halt execution.
*
* Usually (but not necessarily) called with 'other_cpus' as its arg.
*
* - Signals all CPUs in map to stop.
* - Waits for each to stop.
*
* Returns:
* -1: error
* 0: NA
* 1: ok
*
* XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
* from executing at same time.
*/
int
stop_cpus(u_int map)
{
if (!smp_started)
return 0;
/* send the Xcpustop IPI to all CPUs in map */
selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
while ((stopped_cpus & map) != map)
/* spin */ ;
return 1;
}
/*
* Called by a CPU to restart stopped CPUs.
*
* Usually (but not necessarily) called with 'stopped_cpus' as its arg.
*
* - Signals all CPUs in map to restart.
* - Waits for each to restart.
*
* Returns:
* -1: error
* 0: NA
* 1: ok
*/
int
restart_cpus(u_int map)
{
if (!smp_started)
return 0;
started_cpus = map; /* signal other cpus to restart */
while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
/* spin */ ;
return 1;
}
int smp_active = 0; /* are the APs allowed to run? */
SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
/* XXX maybe should be hw.ncpu */
static int smp_cpus = 1; /* how many cpu's running */
SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
int invltlb_ok = 0; /* throttle smp_invltlb() till safe */
SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
/* Warning: Do not staticize. Used from swtch.s */
int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
&do_page_zero_idle, 0, "");
/* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
int forward_irq_enabled = 1;
SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
&forward_irq_enabled, 0, "");
/* Enable forwarding of a signal to a process running on a different CPU */
static int forward_signal_enabled = 1;
SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
&forward_signal_enabled, 0, "");
/* Enable forwarding of roundrobin to all other cpus */
static int forward_roundrobin_enabled = 1;
SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
&forward_roundrobin_enabled, 0, "");
/*
* This is called once the rest of the system is up and running and we're
* ready to let the AP's out of the pen.
*/
void ap_init(void);
void
ap_init()
{
u_int apic_id;
/* BSP may have changed PTD while we're waiting for the lock */
cpu_invltlb();
smp_cpus++;
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
lidt(&r_idt);
#endif
/* Build our map of 'other' CPUs. */
other_cpus = all_cpus & ~(1 << cpuid);
printf("SMP: AP CPU #%d Launched!\n", cpuid);
/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
/* set up FPU state on the AP */
npxinit(__INITIAL_NPXCW__);
/* A quick check from sanity claus */
apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
if (cpuid != apic_id) {
printf("SMP: cpuid = %d\n", cpuid);
printf("SMP: apic_id = %d\n", apic_id);
printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
panic("cpuid mismatch! boom!!");
}
/* Init local apic for irq's */
apic_initialize();
/* Set memory range attributes for this CPU to match the BSP */
mem_range_AP_init();
/*
* Activate smp_invltlb, although strictly speaking, this isn't
* quite correct yet. We should have a bitfield for cpus willing
* to accept TLB flush IPI's or something and sync them.
*/
if (smp_cpus == mp_ncpus) {
invltlb_ok = 1;
smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
smp_active = 1; /* historic */
}
}
#ifdef BETTER_CLOCK
#define CHECKSTATE_USER 0
#define CHECKSTATE_SYS 1
#define CHECKSTATE_INTR 2
/* Do not staticize. Used from apic_vector.s */
struct proc* checkstate_curproc[NCPU];
int checkstate_cpustate[NCPU];
u_long checkstate_pc[NCPU];
extern long cp_time[CPUSTATES];
#define PC_TO_INDEX(pc, prof) \
((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
(u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
static void
addupc_intr_forwarded(struct proc *p, int id, int *astmap)
{
int i;
struct uprof *prof;
u_long pc;
pc = checkstate_pc[id];
prof = &p->p_stats->p_prof;
if (pc >= prof->pr_off &&
(i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
if ((p->p_flag & P_OWEUPC) == 0) {
prof->pr_addr = pc;
prof->pr_ticks = 1;
p->p_flag |= P_OWEUPC;
}
*astmap |= (1 << id);
}
}
static void
forwarded_statclock(int id, int pscnt, int *astmap)
{
struct pstats *pstats;
long rss;
struct rusage *ru;
struct vmspace *vm;
int cpustate;
struct proc *p;
#ifdef GPROF
register struct gmonparam *g;
int i;
#endif
p = checkstate_curproc[id];
cpustate = checkstate_cpustate[id];
switch (cpustate) {
case CHECKSTATE_USER:
if (p->p_flag & P_PROFIL)
addupc_intr_forwarded(p, id, astmap);
if (pscnt > 1)
return;
p->p_uticks++;
if (p->p_nice > NZERO)
cp_time[CP_NICE]++;
else
cp_time[CP_USER]++;
break;
case CHECKSTATE_SYS:
#ifdef GPROF
/*
* Kernel statistics are just like addupc_intr, only easier.
*/
g = &_gmonparam;
if (g->state == GMON_PROF_ON) {
i = checkstate_pc[id] - g->lowpc;
if (i < g->textsize) {
i /= HISTFRACTION * sizeof(*g->kcount);
g->kcount[i]++;
}
}
#endif
if (pscnt > 1)
return;
if (!p)
cp_time[CP_IDLE]++;
else {
p->p_sticks++;
cp_time[CP_SYS]++;
}
break;
case CHECKSTATE_INTR:
default:
#ifdef GPROF
/*
* Kernel statistics are just like addupc_intr, only easier.
*/
g = &_gmonparam;
if (g->state == GMON_PROF_ON) {
i = checkstate_pc[id] - g->lowpc;
if (i < g->textsize) {
i /= HISTFRACTION * sizeof(*g->kcount);
g->kcount[i]++;
}
}
#endif
if (pscnt > 1)
return;
if (p)
p->p_iticks++;
cp_time[CP_INTR]++;
}
if (p != NULL) {
schedclock(p);
/* Update resource usage integrals and maximums. */
if ((pstats = p->p_stats) != NULL &&
(ru = &pstats->p_ru) != NULL &&
(vm = p->p_vmspace) != NULL) {
ru->ru_ixrss += pgtok(vm->vm_tsize);
ru->ru_idrss += pgtok(vm->vm_dsize);
ru->ru_isrss += pgtok(vm->vm_ssize);
rss = pgtok(vmspace_resident_count(vm));
if (ru->ru_maxrss < rss)
ru->ru_maxrss = rss;
}
}
}
void
forward_statclock(int pscnt)
{
int map;
int id;
int i;
/* Kludge. We don't yet have separate locks for the interrupts
* and the kernel. This means that we cannot let the other processors
* handle complex interrupts while inhibiting them from entering
* the kernel in a non-interrupt context.
*
* What we can do, without changing the locking mechanisms yet,
* is letting the other processors handle a very simple interrupt
* (wich determines the processor states), and do the main
* work ourself.
*/
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
/* Step 1: Probe state (user, cpu, interrupt, spinlock, idle ) */
map = other_cpus & ~stopped_cpus ;
checkstate_probed_cpus = 0;
if (map != 0)
selected_apic_ipi(map,
XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while (checkstate_probed_cpus != map) {
/* spin */
i++;
if (i == 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_statclock: checkstate %x\n",
checkstate_probed_cpus);
#endif
break;
}
}
/*
* Step 2: walk through other processors processes, update ticks and
* profiling info.
*/
map = 0;
for (id = 0; id < mp_ncpus; id++) {
if (id == cpuid)
continue;
if (((1 << id) & checkstate_probed_cpus) == 0)
continue;
forwarded_statclock(id, pscnt, &map);
}
if (map != 0) {
checkstate_need_ast |= map;
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_statclock: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
}
}
void
forward_hardclock(int pscnt)
{
int map;
int id;
struct proc *p;
struct pstats *pstats;
int i;
/* Kludge. We don't yet have separate locks for the interrupts
* and the kernel. This means that we cannot let the other processors
* handle complex interrupts while inhibiting them from entering
* the kernel in a non-interrupt context.
*
* What we can do, without changing the locking mechanisms yet,
* is letting the other processors handle a very simple interrupt
* (wich determines the processor states), and do the main
* work ourself.
*/
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
/* Step 1: Probe state (user, cpu, interrupt, spinlock, idle) */
map = other_cpus & ~stopped_cpus ;
checkstate_probed_cpus = 0;
if (map != 0)
selected_apic_ipi(map,
XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while (checkstate_probed_cpus != map) {
/* spin */
i++;
if (i == 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_hardclock: checkstate %x\n",
checkstate_probed_cpus);
#endif
break;
}
}
/*
* Step 2: walk through other processors processes, update virtual
* timer and profiling timer. If stathz == 0, also update ticks and
* profiling info.
*/
map = 0;
for (id = 0; id < mp_ncpus; id++) {
if (id == cpuid)
continue;
if (((1 << id) & checkstate_probed_cpus) == 0)
continue;
p = checkstate_curproc[id];
if (p) {
pstats = p->p_stats;
if (checkstate_cpustate[id] == CHECKSTATE_USER &&
timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
psignal(p, SIGVTALRM);
map |= (1 << id);
}
if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
psignal(p, SIGPROF);
map |= (1 << id);
}
}
if (stathz == 0) {
forwarded_statclock( id, pscnt, &map);
}
}
if (map != 0) {
checkstate_need_ast |= map;
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_hardclock: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
}
}
#endif /* BETTER_CLOCK */
void
forward_signal(struct proc *p)
{
int map;
int id;
int i;
/* Kludge. We don't yet have separate locks for the interrupts
* and the kernel. This means that we cannot let the other processors
* handle complex interrupts while inhibiting them from entering
* the kernel in a non-interrupt context.
*
* What we can do, without changing the locking mechanisms yet,
* is letting the other processors handle a very simple interrupt
* (wich determines the processor states), and do the main
* work ourself.
*/
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
if (!forward_signal_enabled)
return;
while (1) {
if (p->p_stat != SRUN)
return;
id = p->p_oncpu;
if (id == 0xff)
return;
map = (1<<id);
checkstate_need_ast |= map;
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#if 0
printf("forward_signal: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
if (id == p->p_oncpu)
return;
}
}
void
forward_roundrobin(void)
{
u_int map;
int i;
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
if (!forward_roundrobin_enabled)
return;
resched_cpus |= other_cpus;
map = other_cpus & ~stopped_cpus ;
#if 1
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
#else
(void) all_but_self_ipi(XCPUAST_OFFSET);
#endif
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#if 0
printf("forward_roundrobin: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
}
#ifdef APIC_INTR_REORDER
/*
* Maintain mapping from softintr vector to isr bit in local apic.
*/
void
set_lapic_isrloc(int intr, int vector)
{
if (intr < 0 || intr > 32)
panic("set_apic_isrloc: bad intr argument: %d",intr);
if (vector < ICU_OFFSET || vector > 255)
panic("set_apic_isrloc: bad vector argument: %d",vector);
apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
apic_isrbit_location[intr].bit = (1<<(vector & 31));
}
#endif
/*
* All-CPU rendezvous. CPUs are signalled, all execute the setup function
* (if specified), rendezvous, execute the action function (if specified),
* rendezvous again, execute the teardown function (if specified), and then
* resume.
*
* Note that the supplied external functions _must_ be reentrant and aware
* that they are running in parallel and in an unknown lock context.
*/
static void (*smp_rv_setup_func)(void *arg);
static void (*smp_rv_action_func)(void *arg);
static void (*smp_rv_teardown_func)(void *arg);
static void *smp_rv_func_arg;
static volatile int smp_rv_waiters[2];
void
smp_rendezvous_action(void)
{
/* setup function */
if (smp_rv_setup_func != NULL)
smp_rv_setup_func(smp_rv_func_arg);
/* spin on entry rendezvous */
atomic_add_int(&smp_rv_waiters[0], 1);
while (smp_rv_waiters[0] < mp_ncpus)
;
/* action function */
if (smp_rv_action_func != NULL)
smp_rv_action_func(smp_rv_func_arg);
/* spin on exit rendezvous */
atomic_add_int(&smp_rv_waiters[1], 1);
while (smp_rv_waiters[1] < mp_ncpus)
;
/* teardown function */
if (smp_rv_teardown_func != NULL)
smp_rv_teardown_func(smp_rv_func_arg);
}
void
smp_rendezvous(void (* setup_func)(void *),
void (* action_func)(void *),
void (* teardown_func)(void *),
void *arg)
{
u_int efl;
/* obtain rendezvous lock */
s_lock(&smp_rv_lock); /* XXX sleep here? NOWAIT flag? */
/* set static function pointers */
smp_rv_setup_func = setup_func;
smp_rv_action_func = action_func;
smp_rv_teardown_func = teardown_func;
smp_rv_func_arg = arg;
smp_rv_waiters[0] = 0;
smp_rv_waiters[1] = 0;
/* disable interrupts on this CPU, save interrupt status */
efl = read_eflags();
write_eflags(efl & ~PSL_I);
/* signal other processors, which will enter the IPI with interrupts off */
all_but_self_ipi(XRENDEZVOUS_OFFSET);
/* call executor function */
smp_rendezvous_action();
/* restore interrupt flag */
write_eflags(efl);
/* release lock */
s_unlock(&smp_rv_lock);
}