freebsd-skq/sys/i386/isa/sound/gus_wave.c
1996-09-10 08:32:01 +00:00

3446 lines
78 KiB
C

/*
* sound/gus_wave.c
*
* Driver for the Gravis UltraSound wave table synth.
*
* Copyright by Hannu Savolainen 1993, 1994
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer. 2.
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <i386/isa/sound/sound_config.h>
#include <machine/ultrasound.h>
#include <i386/isa/sound/gus_hw.h>
static unsigned char gus_look8 __P((int reg));
static unsigned short gus_read16 __P((int reg));
static void gus_write_addr __P((int reg, unsigned long address, int is16bit));
static void gus_write16 __P((int reg, unsigned int data));
#if defined(CONFIGURE_SOUNDCARD) && !defined(EXCLUDE_GUS)
#define MAX_SAMPLE 150
#define MAX_PATCH 256
struct voice_info
{
unsigned long orig_freq;
unsigned long current_freq;
unsigned long mode;
int bender;
int bender_range;
int panning;
int midi_volume;
unsigned int initial_volume;
unsigned int current_volume;
int loop_irq_mode, loop_irq_parm;
#define LMODE_FINISH 1
#define LMODE_PCM 2
#define LMODE_PCM_STOP 3
int volume_irq_mode, volume_irq_parm;
#define VMODE_HALT 1
#define VMODE_ENVELOPE 2
#define VMODE_START_NOTE 3
int env_phase;
unsigned char env_rate[6];
unsigned char env_offset[6];
/*
* Volume computation parameters for gus_adagio_vol()
*/
int main_vol, expression_vol, patch_vol;
/* Variables for "Ultraclick" removal */
int dev_pending, note_pending, volume_pending, sample_pending;
char kill_pending;
long offset_pending;
};
static struct voice_alloc_info *voice_alloc;
extern int gus_base;
extern int gus_irq, gus_dma;
static long gus_mem_size = 0;
static long free_mem_ptr = 0;
static int gus_busy[MAX_AUDIO_DEV], gus_dspnum=0;
static int gus_dma_read=0;
static int nr_voices = 0;
static int gus_devnum = 0;
static int volume_base, volume_scale, volume_method;
static int gus_recmask = SOUND_MASK_MIC;
static int recording_active = 0;
static int only_read_access = 0;
int gus_wave_volume = 60;
static int gus_pcm_volume = 80;
int have_gus_max = 0;
static int gus_line_vol = 100, gus_mic_vol = 0;
static unsigned char mix_image = 0x00;
/*
* Current version of this driver doesn't allow synth and PCM functions
* at the same time. The active_device specifies the active driver
*/
static int active_device = 0;
#define GUS_DEV_WAVE 1 /* Wave table synth */
#define GUS_DEV_PCM_DONE 2 /* PCM device, transfer done */
#define GUS_DEV_PCM_CONTINUE 3 /* PCM device, transfer done ch. 1/2 */
static int gus_sampling_speed;
static int gus_sampling_channels;
static int gus_sampling_bits;
DEFINE_WAIT_QUEUE (dram_sleeper, dram_sleep_flag);
/*
* Variables and buffers for PCM output
*/
#define MAX_PCM_BUFFERS (32*MAX_REALTIME_FACTOR) /* Don't change */
static int pcm_bsize, pcm_nblk, pcm_banksize;
static int pcm_datasize[MAX_PCM_BUFFERS];
static volatile int pcm_head, pcm_tail, pcm_qlen;
static volatile int pcm_active;
static volatile int dma_active;
static int pcm_opened = 0;
static int pcm_current_dev;
static int pcm_current_block;
static unsigned long pcm_current_buf;
static int pcm_current_count;
static int pcm_current_intrflag;
#if defined(__FreeBSD__)
static char *gus_copy_buf;
#endif
static struct voice_info voices[32];
static int freq_div_table[] =
{
44100, /* 14 */
41160, /* 15 */
38587, /* 16 */
36317, /* 17 */
34300, /* 18 */
32494, /* 19 */
30870, /* 20 */
29400, /* 21 */
28063, /* 22 */
26843, /* 23 */
25725, /* 24 */
24696, /* 25 */
23746, /* 26 */
22866, /* 27 */
22050, /* 28 */
21289, /* 29 */
20580, /* 30 */
19916, /* 31 */
19293 /* 32 */
};
static struct patch_info *samples;
static long sample_ptrs[MAX_SAMPLE + 1];
static int sample_map[32];
static int free_sample;
static int patch_table[MAX_PATCH];
static int patch_map[32];
static struct synth_info gus_info =
{"Gravis UltraSound", 0, SYNTH_TYPE_SAMPLE, SAMPLE_TYPE_GUS, 0, 16, 0, MAX_PATCH};
static void gus_poke (long addr, unsigned char data);
static void compute_and_set_volume (int voice, int volume, int ramp_time);
extern unsigned short gus_adagio_vol (int vel, int mainv, int xpn, int voicev);
extern unsigned short gus_linear_vol (int vol, int mainvol);
static void compute_volume (int voice, int volume);
static void do_volume_irq (int voice);
static void set_input_volumes (void);
#define INSTANT_RAMP -1 /* Instant change. No ramping */
#define FAST_RAMP 0 /* Fastest possible ramp */
static void
reset_sample_memory (void)
{
int i;
for (i = 0; i <= MAX_SAMPLE; i++)
sample_ptrs[i] = -1;
for (i = 0; i < 32; i++)
sample_map[i] = -1;
for (i = 0; i < 32; i++)
patch_map[i] = -1;
gus_poke (0, 0); /* Put a silent sample to the beginning */
gus_poke (1, 0);
free_mem_ptr = 2;
free_sample = 0;
for (i = 0; i < MAX_PATCH; i++)
patch_table[i] = -1;
}
void
gus_delay (void)
{
int i;
for (i = 0; i < 7; i++)
INB (u_DRAMIO);
}
static void
gus_poke (long addr, unsigned char data)
{ /* Writes a byte to the DRAM */
unsigned long flags;
DISABLE_INTR (flags);
OUTB (0x43, u_Command);
OUTB (addr & 0xff, u_DataLo);
OUTB ((addr >> 8) & 0xff, u_DataHi);
OUTB (0x44, u_Command);
OUTB ((addr >> 16) & 0xff, u_DataHi);
OUTB (data, u_DRAMIO);
RESTORE_INTR (flags);
}
static unsigned char
gus_peek (long addr)
{ /* Reads a byte from the DRAM */
unsigned long flags;
unsigned char tmp;
DISABLE_INTR (flags);
OUTB (0x43, u_Command);
OUTB (addr & 0xff, u_DataLo);
OUTB ((addr >> 8) & 0xff, u_DataHi);
OUTB (0x44, u_Command);
OUTB ((addr >> 16) & 0xff, u_DataHi);
tmp = INB (u_DRAMIO);
RESTORE_INTR (flags);
return tmp;
}
void
gus_write8 (int reg, unsigned int data)
{ /* Writes to an indirect register (8 bit) */
unsigned long flags;
DISABLE_INTR (flags);
OUTB (reg, u_Command);
OUTB ((unsigned char) (data & 0xff), u_DataHi);
RESTORE_INTR (flags);
}
static unsigned char
gus_read8 (int reg)
{ /* Reads from an indirect register (8 bit). Offset 0x80. */
unsigned long flags;
unsigned char val;
DISABLE_INTR (flags);
OUTB (reg | 0x80, u_Command);
val = INB (u_DataHi);
RESTORE_INTR (flags);
return val;
}
static unsigned char
gus_look8 (int reg)
{ /* Reads from an indirect register (8 bit). No additional offset. */
unsigned long flags;
unsigned char val;
DISABLE_INTR (flags);
OUTB (reg, u_Command);
val = INB (u_DataHi);
RESTORE_INTR (flags);
return val;
}
static void
gus_write16 (int reg, unsigned int data)
{ /* Writes to an indirect register (16 bit) */
unsigned long flags;
DISABLE_INTR (flags);
OUTB (reg, u_Command);
OUTB ((unsigned char) (data & 0xff), u_DataLo);
OUTB ((unsigned char) ((data >> 8) & 0xff), u_DataHi);
RESTORE_INTR (flags);
}
static unsigned short
gus_read16 (int reg)
{ /* Reads from an indirect register (16 bit). Offset 0x80. */
unsigned long flags;
unsigned char hi, lo;
DISABLE_INTR (flags);
OUTB (reg | 0x80, u_Command);
lo = INB (u_DataLo);
hi = INB (u_DataHi);
RESTORE_INTR (flags);
return ((hi << 8) & 0xff00) | lo;
}
static void
gus_write_addr (int reg, unsigned long address, int is16bit)
{ /* Writes an 24 bit memory address */
unsigned long hold_address;
unsigned long flags;
DISABLE_INTR (flags);
if (is16bit)
{
/*
* Special processing required for 16 bit patches
*/
hold_address = address;
address = address >> 1;
address &= 0x0001ffffL;
address |= (hold_address & 0x000c0000L);
}
gus_write16 (reg, (unsigned short) ((address >> 7) & 0xffff));
gus_write16 (reg + 1, (unsigned short) ((address << 9) & 0xffff));
/* Could writing twice fix problems with GUS_VOICE_POS() ? Lets try... */
gus_delay ();
gus_write16 (reg, (unsigned short) ((address >> 7) & 0xffff));
gus_write16 (reg + 1, (unsigned short) ((address << 9) & 0xffff));
RESTORE_INTR (flags);
}
static void
gus_select_voice (int voice)
{
if (voice < 0 || voice > 31)
return;
OUTB (voice, u_Voice);
}
static void
gus_select_max_voices (int nvoices)
{
if (nvoices < 14)
nvoices = 14;
if (nvoices > 32)
nvoices = 32;
voice_alloc->max_voice = nr_voices = nvoices;
gus_write8 (0x0e, (nvoices - 1) | 0xc0);
}
static void
gus_voice_on (unsigned int mode)
{
gus_write8 (0x00, (unsigned char) (mode & 0xfc));
gus_delay ();
gus_write8 (0x00, (unsigned char) (mode & 0xfc));
}
static void
gus_voice_off (void)
{
gus_write8 (0x00, gus_read8 (0x00) | 0x03);
}
static void
gus_voice_mode (unsigned int m)
{
unsigned char mode = (unsigned char) (m & 0xff);
gus_write8 (0x00, (gus_read8 (0x00) & 0x03) |
(mode & 0xfc)); /* Don't touch last two bits */
gus_delay ();
gus_write8 (0x00, (gus_read8 (0x00) & 0x03) | (mode & 0xfc));
}
static void
gus_voice_freq (unsigned long freq)
{
unsigned long divisor = freq_div_table[nr_voices - 14];
unsigned short fc;
fc = (unsigned short) (((freq << 9) + (divisor >> 1)) / divisor);
fc = fc << 1;
gus_write16 (0x01, fc);
}
static void
gus_voice_volume (unsigned int vol)
{
gus_write8 (0x0d, 0x03); /* Stop ramp before setting volume */
gus_write16 (0x09, (unsigned short) (vol << 4));
}
static void
gus_voice_balance (unsigned int balance)
{
gus_write8 (0x0c, (unsigned char) (balance & 0xff));
}
static void
gus_ramp_range (unsigned int low, unsigned int high)
{
gus_write8 (0x07, (unsigned char) ((low >> 4) & 0xff));
gus_write8 (0x08, (unsigned char) ((high >> 4) & 0xff));
}
static void
gus_ramp_rate (unsigned int scale, unsigned int rate)
{
gus_write8 (0x06, (unsigned char) (((scale & 0x03) << 6) | (rate & 0x3f)));
}
static void
gus_rampon (unsigned int m)
{
unsigned char mode = (unsigned char) (m & 0xff);
gus_write8 (0x0d, mode & 0xfc);
gus_delay ();
gus_write8 (0x0d, mode & 0xfc);
}
static void
gus_ramp_mode (unsigned int m)
{
unsigned char mode = (unsigned char) (m & 0xff);
gus_write8 (0x0d, (gus_read8 (0x0d) & 0x03) |
(mode & 0xfc)); /* Leave the last 2 bits alone */
gus_delay ();
gus_write8 (0x0d, (gus_read8 (0x0d) & 0x03) | (mode & 0xfc));
}
static void
gus_rampoff (void)
{
gus_write8 (0x0d, 0x03);
}
static void
gus_set_voice_pos (int voice, long position)
{
int sample_no;
if ((sample_no = sample_map[voice]) != -1)
if (position < samples[sample_no].len)
if (voices[voice].volume_irq_mode == VMODE_START_NOTE)
voices[voice].offset_pending = position;
else
gus_write_addr (0x0a, sample_ptrs[sample_no] + position,
samples[sample_no].mode & WAVE_16_BITS);
}
static void
gus_voice_init (int voice)
{
unsigned long flags;
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_voice_volume (0);
gus_voice_off ();
gus_write_addr (0x0a, 0, 0); /* Set current position to 0 */
gus_write8 (0x00, 0x03); /* Voice off */
gus_write8 (0x0d, 0x03); /* Ramping off */
voice_alloc->map[voice] = 0;
voice_alloc->alloc_times[voice] = 0;
RESTORE_INTR (flags);
}
static void
gus_voice_init2 (int voice)
{
voices[voice].panning = 0;
voices[voice].mode = 0;
voices[voice].orig_freq = 20000;
voices[voice].current_freq = 20000;
voices[voice].bender = 0;
voices[voice].bender_range = 200;
voices[voice].initial_volume = 0;
voices[voice].current_volume = 0;
voices[voice].loop_irq_mode = 0;
voices[voice].loop_irq_parm = 0;
voices[voice].volume_irq_mode = 0;
voices[voice].volume_irq_parm = 0;
voices[voice].env_phase = 0;
voices[voice].main_vol = 127;
voices[voice].patch_vol = 127;
voices[voice].expression_vol = 127;
voices[voice].sample_pending = -1;
}
static void
step_envelope (int voice)
{
unsigned vol, prev_vol, phase;
unsigned char rate;
long int flags;
if (voices[voice].mode & WAVE_SUSTAIN_ON && voices[voice].env_phase == 2)
{
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_rampoff ();
RESTORE_INTR (flags);
return;
/*
* Sustain phase begins. Continue envelope after receiving note off.
*/
}
if (voices[voice].env_phase >= 5)
{ /* Envelope finished. Shoot the voice down */
gus_voice_init (voice);
return;
}
prev_vol = voices[voice].current_volume;
phase = ++voices[voice].env_phase;
compute_volume (voice, voices[voice].midi_volume);
vol = voices[voice].initial_volume * voices[voice].env_offset[phase] / 255;
rate = voices[voice].env_rate[phase];
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_voice_volume (prev_vol);
gus_write8 (0x06, rate); /* Ramping rate */
voices[voice].volume_irq_mode = VMODE_ENVELOPE;
if (((vol - prev_vol) / 64) == 0) /* No significant volume change */
{
RESTORE_INTR (flags);
step_envelope (voice); /* Continue the envelope on the next step */
return;
}
if (vol > prev_vol)
{
if (vol >= (4096 - 64))
vol = 4096 - 65;
gus_ramp_range (0, vol);
gus_rampon (0x20); /* Increasing volume, with IRQ */
}
else
{
if (vol <= 64)
vol = 65;
gus_ramp_range (vol, 4030);
gus_rampon (0x60); /* Decreasing volume, with IRQ */
}
voices[voice].current_volume = vol;
RESTORE_INTR (flags);
}
static void
init_envelope (int voice)
{
voices[voice].env_phase = -1;
voices[voice].current_volume = 64;
step_envelope (voice);
}
static void
start_release (int voice, long int flags)
{
if (gus_read8 (0x00) & 0x03)
return; /* Voice already stopped */
voices[voice].env_phase = 2; /* Will be incremented by step_envelope */
voices[voice].current_volume =
voices[voice].initial_volume =
gus_read16 (0x09) >> 4; /* Get current volume */
voices[voice].mode &= ~WAVE_SUSTAIN_ON;
gus_rampoff ();
RESTORE_INTR (flags);
step_envelope (voice);
}
static void
gus_voice_fade (int voice)
{
int instr_no = sample_map[voice], is16bits;
long int flags;
DISABLE_INTR (flags);
gus_select_voice (voice);
if (instr_no < 0 || instr_no > MAX_SAMPLE)
{
gus_write8 (0x00, 0x03); /* Hard stop */
voice_alloc->map[voice] = 0;
RESTORE_INTR (flags);
return;
}
is16bits = (samples[instr_no].mode & WAVE_16_BITS) ? 1 : 0; /* 8 or 16 bits */
if (voices[voice].mode & WAVE_ENVELOPES)
{
start_release (voice, flags);
return;
}
/*
* Ramp the volume down but not too quickly.
*/
if ((int) (gus_read16 (0x09) >> 4) < 100) /* Get current volume */
{
gus_voice_off ();
gus_rampoff ();
gus_voice_init (voice);
return;
}
gus_ramp_range (65, 4030);
gus_ramp_rate (2, 4);
gus_rampon (0x40 | 0x20); /* Down, once, with IRQ */
voices[voice].volume_irq_mode = VMODE_HALT;
RESTORE_INTR (flags);
}
static void
gus_reset (void)
{
int i;
gus_select_max_voices (24);
volume_base = 3071;
volume_scale = 4;
volume_method = VOL_METHOD_ADAGIO;
for (i = 0; i < 32; i++)
{
gus_voice_init (i); /* Turn voice off */
gus_voice_init2 (i);
}
INB (u_Status); /* Touch the status register */
gus_look8 (0x41); /* Clear any pending DMA IRQs */
gus_look8 (0x49); /* Clear any pending sample IRQs */
gus_read8 (0x0f); /* Clear pending IRQs */
}
static void
gus_initialize (void)
{
unsigned long flags;
unsigned char dma_image, irq_image, tmp;
static unsigned char gus_irq_map[16] =
{0, 0, 0, 3, 0, 2, 0, 4, 0, 1, 0, 5, 6, 0, 0, 7};
static unsigned char gus_dma_map[8] =
{0, 1, 0, 2, 0, 3, 4, 5};
DISABLE_INTR (flags);
gus_write8 (0x4c, 0); /* Reset GF1 */
gus_delay ();
gus_delay ();
gus_write8 (0x4c, 1); /* Release Reset */
gus_delay ();
gus_delay ();
/*
* Clear all interrupts
*/
gus_write8 (0x41, 0); /* DMA control */
gus_write8 (0x45, 0); /* Timer control */
gus_write8 (0x49, 0); /* Sample control */
gus_select_max_voices (24);
INB (u_Status); /* Touch the status register */
gus_look8 (0x41); /* Clear any pending DMA IRQs */
gus_look8 (0x49); /* Clear any pending sample IRQs */
gus_read8 (0x0f); /* Clear pending IRQs */
gus_reset (); /* Resets all voices */
gus_look8 (0x41); /* Clear any pending DMA IRQs */
gus_look8 (0x49); /* Clear any pending sample IRQs */
gus_read8 (0x0f); /* Clear pending IRQs */
gus_write8 (0x4c, 7); /* Master reset | DAC enable | IRQ enable */
/*
* Set up for Digital ASIC
*/
OUTB (0x05, gus_base + 0x0f);
mix_image |= 0x02; /* Disable line out */
OUTB (mix_image, u_Mixer);
OUTB (0x00, u_IRQDMAControl);
OUTB (0x00, gus_base + 0x0f);
/*
* Now set up the DMA and IRQ interface
*
* The GUS supports two IRQs and two DMAs.
*
* Just one DMA channel is used. This prevents simultaneous ADC and DAC.
* Adding this support requires significant changes to the dmabuf.c, dsp.c
* and audio.c also.
*/
irq_image = 0;
tmp = gus_irq_map[gus_irq];
if (!tmp)
printk ("Warning! GUS IRQ not selected\n");
irq_image |= tmp;
irq_image |= 0x40; /* Combine IRQ1 (GF1) and IRQ2 (Midi) */
dma_image = gus_dma_map[gus_dma_read] << 3;
if(!dma_image)
printk ("Warning! GUS DMA read channel not selected.\n");
if(gus_dma_read == gus_dma)
{
dma_image = 0x40; /* dual dma inhibited
Combine DMA1 (DRAM) and IRQ2 (ADC) */
}
tmp = gus_dma_map[gus_dma];
if (!tmp)
printk ("Warning! GUS DMA not selected\n");
dma_image |= tmp;
/*
* For some reason the IRQ and DMA addresses must be written twice
*/
/*
* Doing it first time
*/
OUTB (mix_image, u_Mixer); /* Select DMA control */
OUTB (dma_image | 0x80, u_IRQDMAControl); /* Set DMA address */
OUTB (mix_image | 0x40, u_Mixer); /* Select IRQ control */
OUTB (irq_image, u_IRQDMAControl); /* Set IRQ address */
/*
* Doing it second time
*/
OUTB (mix_image, u_Mixer); /* Select DMA control */
OUTB (dma_image, u_IRQDMAControl); /* Set DMA address */
OUTB (mix_image | 0x40, u_Mixer); /* Select IRQ control */
OUTB (irq_image, u_IRQDMAControl); /* Set IRQ address */
gus_select_voice (0); /* This disables writes to IRQ/DMA reg */
mix_image &= ~0x02; /* Enable line out */
mix_image |= 0x08; /* Enable IRQ */
OUTB (mix_image, u_Mixer); /*
* Turn mixer channels on
* Note! Mic in is left off.
*/
gus_select_voice (0); /* This disables writes to IRQ/DMA reg */
gusintr (INT_HANDLER_CALL (0)); /* Serve pending interrupts */
RESTORE_INTR (flags);
}
int
gus_wave_detect (int baseaddr)
{
unsigned long i;
unsigned long loc;
gus_base = baseaddr;
gus_write8 (0x4c, 0); /* Reset GF1 */
gus_delay ();
gus_delay ();
gus_write8 (0x4c, 1); /* Release Reset */
gus_delay ();
gus_delay ();
/* See if there is first block there.... */
gus_poke (0L, 0xaa);
if (gus_peek (0L) != 0xaa)
return (0);
/* Now zero it out so that I can check for mirroring .. */
gus_poke (0L, 0x00);
for (i = 1L; i < 1024L; i++)
{
int n, failed;
/* check for mirroring ... */
if (gus_peek (0L) != 0)
break;
loc = i << 10;
for (n = loc - 1, failed = 0; n <= loc; n++)
{
gus_poke (loc, 0xaa);
if (gus_peek (loc) != 0xaa)
failed = 1;
gus_poke (loc, 0x55);
if (gus_peek (loc) != 0x55)
failed = 1;
}
if (failed)
break;
}
gus_mem_size = i << 10;
return 1;
}
static int
guswave_ioctl (int dev,
unsigned int cmd, unsigned int arg)
{
switch (cmd)
{
case SNDCTL_SYNTH_INFO:
gus_info.nr_voices = nr_voices;
IOCTL_TO_USER ((char *) arg, 0, &gus_info, sizeof (gus_info));
return 0;
break;
case SNDCTL_SEQ_RESETSAMPLES:
reset_sample_memory ();
return 0;
break;
case SNDCTL_SEQ_PERCMODE:
return 0;
break;
case SNDCTL_SYNTH_MEMAVL:
return gus_mem_size - free_mem_ptr - 32;
default:
return RET_ERROR (EINVAL);
}
}
static int
guswave_set_instr (int dev, int voice, int instr_no)
{
int sample_no;
if (instr_no < 0 || instr_no > MAX_PATCH)
return RET_ERROR (EINVAL);
if (voice < 0 || voice > 31)
return RET_ERROR (EINVAL);
if (voices[voice].volume_irq_mode == VMODE_START_NOTE)
{
voices[voice].sample_pending = instr_no;
return 0;
}
sample_no = patch_table[instr_no];
patch_map[voice] = -1;
if (sample_no < 0)
{
printk ("GUS: Undefined patch %d for voice %d\n", instr_no, voice);
return RET_ERROR (EINVAL); /* Patch not defined */
}
if (sample_ptrs[sample_no] == -1) /* Sample not loaded */
{
printk ("GUS: Sample #%d not loaded for patch %d (voice %d)\n",
sample_no, instr_no, voice);
return RET_ERROR (EINVAL);
}
sample_map[voice] = sample_no;
patch_map[voice] = instr_no;
return 0;
}
static int
guswave_kill_note (int dev, int voice, int note, int velocity)
{
unsigned long flags;
DISABLE_INTR (flags);
/* voice_alloc->map[voice] = 0xffff; */
if (voices[voice].volume_irq_mode == VMODE_START_NOTE)
{
voices[voice].kill_pending = 1;
RESTORE_INTR (flags);
}
else
{
RESTORE_INTR (flags);
gus_voice_fade (voice);
}
RESTORE_INTR (flags);
return 0;
}
static void
guswave_aftertouch (int dev, int voice, int pressure)
{
#if 0
short lo_limit, hi_limit;
unsigned long flags;
if (voice < 0 || voice > 31)
return;
if (voices[voice].mode & WAVE_ENVELOPES && voices[voice].env_phase != 2)
return; /* Don't mix with envelopes */
if (pressure < 32)
{
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_rampoff ();
compute_and_set_volume (voice, 255, 0); /* Back to original volume */
RESTORE_INTR (flags);
return;
}
hi_limit = voices[voice].current_volume;
lo_limit = hi_limit * 99 / 100;
if (lo_limit < 65)
lo_limit = 65;
DISABLE_INTR (flags);
gus_select_voice (voice);
if (hi_limit > (4095 - 65))
{
hi_limit = 4095 - 65;
gus_voice_volume (hi_limit);
}
gus_ramp_range (lo_limit, hi_limit);
gus_ramp_rate (3, 8);
gus_rampon (0x58); /* Bidirectional, dow, loop */
RESTORE_INTR (flags);
#endif /* 0 */
}
static void
guswave_panning (int dev, int voice, int value)
{
if (voice >= 0 || voice < 32)
voices[voice].panning = value;
}
static void
guswave_volume_method (int dev, int mode)
{
if (mode == VOL_METHOD_LINEAR || mode == VOL_METHOD_ADAGIO)
volume_method = mode;
}
static void
compute_volume (int voice, int volume)
{
if (volume < 128)
voices[voice].midi_volume = volume;
switch (volume_method)
{
case VOL_METHOD_ADAGIO:
voices[voice].initial_volume =
gus_adagio_vol (voices[voice].midi_volume, voices[voice].main_vol,
voices[voice].expression_vol,
voices[voice].patch_vol);
break;
case VOL_METHOD_LINEAR: /* Totally ignores patch-volume and expression */
voices[voice].initial_volume =
gus_linear_vol (volume, voices[voice].main_vol);
break;
default:
voices[voice].initial_volume = volume_base +
(voices[voice].midi_volume * volume_scale);
}
if (voices[voice].initial_volume > 4030)
voices[voice].initial_volume = 4030;
}
static void
compute_and_set_volume (int voice, int volume, int ramp_time)
{
int current, target, rate;
unsigned long flags;
compute_volume (voice, volume);
voices[voice].current_volume = voices[voice].initial_volume;
DISABLE_INTR (flags);
/*
* CAUTION! Interrupts disabled. Enable them before returning
*/
gus_select_voice (voice);
current = gus_read16 (0x09) >> 4;
target = voices[voice].initial_volume;
if (ramp_time == INSTANT_RAMP)
{
gus_rampoff ();
gus_voice_volume (target);
RESTORE_INTR (flags);
return;
}
if (ramp_time == FAST_RAMP)
rate = 63;
else
rate = 16;
gus_ramp_rate (0, rate);
if ((target - current) / 64 == 0) /* Close enough to target. */
{
gus_rampoff ();
gus_voice_volume (target);
RESTORE_INTR (flags);
return;
}
if (target > current)
{
if (target > (4095 - 65))
target = 4095 - 65;
gus_ramp_range (current, target);
gus_rampon (0x00); /* Ramp up, once, no IRQ */
}
else
{
if (target < 65)
target = 65;
gus_ramp_range (target, current);
gus_rampon (0x40); /* Ramp down, once, no irq */
}
RESTORE_INTR (flags);
}
static void
dynamic_volume_change (int voice)
{
unsigned char status;
unsigned long flags;
DISABLE_INTR (flags);
gus_select_voice (voice);
status = gus_read8 (0x00); /* Get voice status */
RESTORE_INTR (flags);
if (status & 0x03)
return; /* Voice was not running */
if (!(voices[voice].mode & WAVE_ENVELOPES))
{
compute_and_set_volume (voice, voices[voice].midi_volume, 1);
return;
}
/*
* Voice is running and has envelopes.
*/
DISABLE_INTR (flags);
gus_select_voice (voice);
status = gus_read8 (0x0d); /* Ramping status */
RESTORE_INTR (flags);
if (status & 0x03) /* Sustain phase? */
{
compute_and_set_volume (voice, voices[voice].midi_volume, 1);
return;
}
if (voices[voice].env_phase < 0)
return;
compute_volume (voice, voices[voice].midi_volume);
}
static void
guswave_controller (int dev, int voice, int ctrl_num, int value)
{
unsigned long flags;
unsigned long freq;
if (voice < 0 || voice > 31)
return;
switch (ctrl_num)
{
case CTRL_PITCH_BENDER:
voices[voice].bender = value;
if (voices[voice].volume_irq_mode != VMODE_START_NOTE)
{
freq = compute_finetune (voices[voice].orig_freq, value,
voices[voice].bender_range);
voices[voice].current_freq = freq;
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_voice_freq (freq);
RESTORE_INTR (flags);
}
break;
case CTRL_PITCH_BENDER_RANGE:
voices[voice].bender_range = value;
break;
case CTL_EXPRESSION:
value /= 128;
case CTRL_EXPRESSION:
if (volume_method == VOL_METHOD_ADAGIO)
{
voices[voice].expression_vol = value;
if (voices[voice].volume_irq_mode != VMODE_START_NOTE)
dynamic_volume_change (voice);
}
break;
case CTL_PAN:
voices[voice].panning = (value * 2) - 128;
break;
case CTL_MAIN_VOLUME:
value = (value * 100) / 16383;
case CTRL_MAIN_VOLUME:
voices[voice].main_vol = value;
if (voices[voice].volume_irq_mode != VMODE_START_NOTE)
dynamic_volume_change (voice);
break;
default:
break;
}
}
static int
guswave_start_note2 (int dev, int voice, int note_num, int volume)
{
int sample, best_sample, best_delta, delta_freq;
int is16bits, samplep, patch, pan;
unsigned long note_freq, base_note, freq, flags;
unsigned char mode = 0;
if (voice < 0 || voice > 31)
{
printk ("GUS: Invalid voice\n");
return RET_ERROR (EINVAL);
}
if (note_num == 255)
{
if (voices[voice].mode & WAVE_ENVELOPES)
{
voices[voice].midi_volume = volume;
dynamic_volume_change (voice);
return 0;
}
compute_and_set_volume (voice, volume, 1);
return 0;
}
if ((patch = patch_map[voice]) == -1)
{
return RET_ERROR (EINVAL);
}
if ((samplep = patch_table[patch]) == -1)
{
return RET_ERROR (EINVAL);
}
note_freq = note_to_freq (note_num);
/*
* Find a sample within a patch so that the note_freq is between low_note
* and high_note.
*/
sample = -1;
best_sample = samplep;
best_delta = 1000000;
while (samplep >= 0 && sample == -1)
{
delta_freq = note_freq - samples[samplep].base_note;
if (delta_freq < 0)
delta_freq = -delta_freq;
if (delta_freq < best_delta)
{
best_sample = samplep;
best_delta = delta_freq;
}
if (samples[samplep].low_note <= note_freq &&
note_freq <= samples[samplep].high_note)
sample = samplep;
else
samplep = samples[samplep].key; /*
* Follow link
*/
}
if (sample == -1)
sample = best_sample;
if (sample == -1)
{
printk ("GUS: Patch %d not defined for note %d\n", patch, note_num);
return 0; /* Should play default patch ??? */
}
is16bits = (samples[sample].mode & WAVE_16_BITS) ? 1 : 0;
voices[voice].mode = samples[sample].mode;
voices[voice].patch_vol = samples[sample].volume;
if (voices[voice].mode & WAVE_ENVELOPES)
{
int i;
for (i = 0; i < 6; i++)
{
voices[voice].env_rate[i] = samples[sample].env_rate[i];
voices[voice].env_offset[i] = samples[sample].env_offset[i];
}
}
sample_map[voice] = sample;
base_note = samples[sample].base_note / 100; /* Try to avoid overflows */
note_freq /= 100;
freq = samples[sample].base_freq * note_freq / base_note;
voices[voice].orig_freq = freq;
/*
* Since the pitch bender may have been set before playing the note, we
* have to calculate the bending now.
*/
freq = compute_finetune (voices[voice].orig_freq, voices[voice].bender,
voices[voice].bender_range);
voices[voice].current_freq = freq;
pan = (samples[sample].panning + voices[voice].panning) / 32;
pan += 7;
if (pan < 0)
pan = 0;
if (pan > 15)
pan = 15;
if (samples[sample].mode & WAVE_16_BITS)
{
mode |= 0x04; /* 16 bits */
if ((sample_ptrs[sample] >> 18) !=
((sample_ptrs[sample] + samples[sample].len) >> 18))
printk ("GUS: Sample address error\n");
}
/*************************************************************************
* CAUTION! Interrupts disabled. Don't return before enabling
*************************************************************************/
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_voice_off ();
gus_rampoff ();
RESTORE_INTR (flags);
if (voices[voice].mode & WAVE_ENVELOPES)
{
compute_volume (voice, volume);
init_envelope (voice);
}
else
compute_and_set_volume (voice, volume, 0);
DISABLE_INTR (flags);
gus_select_voice (voice);
if (samples[sample].mode & WAVE_LOOP_BACK)
gus_write_addr (0x0a, sample_ptrs[sample] + samples[sample].len -
voices[voice].offset_pending, is16bits); /* start=end */
else
gus_write_addr (0x0a, sample_ptrs[sample] + voices[voice].offset_pending,
is16bits); /* Sample start=begin */
if (samples[sample].mode & WAVE_LOOPING)
{
mode |= 0x08;
if (samples[sample].mode & WAVE_BIDIR_LOOP)
mode |= 0x10;
if (samples[sample].mode & WAVE_LOOP_BACK)
{
gus_write_addr (0x0a,
sample_ptrs[sample] + samples[sample].loop_end -
voices[voice].offset_pending, is16bits);
mode |= 0x40;
}
gus_write_addr (0x02, sample_ptrs[sample] + samples[sample].loop_start,
is16bits); /* Loop start location */
gus_write_addr (0x04, sample_ptrs[sample] + samples[sample].loop_end,
is16bits); /* Loop end location */
}
else
{
mode |= 0x20; /* Loop IRQ at the end */
voices[voice].loop_irq_mode = LMODE_FINISH; /* Ramp down at the end */
voices[voice].loop_irq_parm = 1;
gus_write_addr (0x02, sample_ptrs[sample],
is16bits); /* Loop start location */
gus_write_addr (0x04, sample_ptrs[sample] + samples[sample].len - 1,
is16bits); /* Loop end location */
}
gus_voice_freq (freq);
gus_voice_balance (pan);
gus_voice_on (mode);
RESTORE_INTR (flags);
return 0;
}
/*
* New guswave_start_note by Andrew J. Robinson attempts to minimize clicking
* when the note playing on the voice is changed. It uses volume
* ramping.
*/
static int
guswave_start_note (int dev, int voice, int note_num, int volume)
{
long int flags;
int mode;
int ret_val = 0;
DISABLE_INTR (flags);
if (note_num == 255)
{
if (voices[voice].volume_irq_mode == VMODE_START_NOTE)
voices[voice].volume_pending = volume;
else
{
ret_val = guswave_start_note2 (gus_devnum, voice, note_num, volume);
}
}
else
{
gus_select_voice (voice);
mode = gus_read8 (0x00);
if (mode & 0x20)
gus_write8 (0x00, mode & 0xdf); /* No interrupt! */
voices[voice].offset_pending = 0;
voices[voice].kill_pending = 0;
voices[voice].volume_irq_mode = 0;
voices[voice].loop_irq_mode = 0;
if (voices[voice].sample_pending >= 0)
{
RESTORE_INTR (flags); /* Run temporarily with interrupts enabled */
guswave_set_instr (voices[voice].dev_pending, voice,
voices[voice].sample_pending);
voices[voice].sample_pending = -1;
DISABLE_INTR (flags);
gus_select_voice (voice); /* Reselect the voice (just to be sure) */
}
if ((mode & 0x01) || (int) ((gus_read16 (0x09) >> 4) < 2065))
{
ret_val = guswave_start_note2 (gus_devnum, voice, note_num, volume);
}
else
{
voices[voice].dev_pending = gus_devnum;
voices[voice].note_pending = note_num;
voices[voice].volume_pending = volume;
voices[voice].volume_irq_mode = VMODE_START_NOTE;
gus_rampoff ();
gus_ramp_range (2000, 4065);
gus_ramp_rate (0, 63); /* Fastest possible rate */
gus_rampon (0x20 | 0x40); /* Ramp down, once, irq */
}
}
RESTORE_INTR (flags);
return ret_val;
}
static void
guswave_reset (int dev)
{
int i;
for (i = 0; i < 32; i++)
{
gus_voice_init (i);
gus_voice_init2 (i);
}
}
static int
guswave_open (int dev, int mode)
{
int err;
if (mode & OPEN_WRITE && gus_busy[gus_devnum] ||
mode & OPEN_READ && gus_busy[gus_dspnum])
return RET_ERROR (EBUSY);
if(gus_busy[gus_devnum] == 0 && gus_busy[gus_dspnum] == 0)
gus_initialize ();
voice_alloc->timestamp = 0;
if ((err = DMAbuf_open_dma (gus_devnum)) < 0)
return err;
RESET_WAIT_QUEUE (dram_sleeper, dram_sleep_flag);
gus_busy[gus_devnum] = 1;
active_device = GUS_DEV_WAVE;
gus_reset ();
return 0;
}
static void
guswave_close (int dev)
{
gus_busy[gus_devnum] = 0;
active_device = 0;
gus_reset ();
DMAbuf_close_dma (gus_devnum);
}
static int
guswave_load_patch (int dev, int format, snd_rw_buf * addr,
int offs, int count, int pmgr_flag)
{
struct patch_info patch;
int instr;
long sizeof_patch;
unsigned long blk_size, blk_end, left, src_offs, target;
sizeof_patch = (long) &patch.data[0] - (long) &patch; /* Header size */
if (format != GUS_PATCH)
{
printk ("GUS Error: Invalid patch format (key) 0x%x\n", format);
return RET_ERROR (EINVAL);
}
if (count < sizeof_patch)
{
printk ("GUS Error: Patch header too short\n");
return RET_ERROR (EINVAL);
}
count -= sizeof_patch;
if (free_sample >= MAX_SAMPLE)
{
printk ("GUS: Sample table full\n");
return RET_ERROR (ENOSPC);
}
/*
* Copy the header from user space but ignore the first bytes which have
* been transferred already.
*/
COPY_FROM_USER (&((char *) &patch)[offs], addr, offs, sizeof_patch - offs);
instr = patch.instr_no;
if (instr < 0 || instr > MAX_PATCH)
{
printk ("GUS: Invalid patch number %d\n", instr);
return RET_ERROR (EINVAL);
}
if (count < patch.len)
{
printk ("GUS Warning: Patch record too short (%d<%d)\n",
count, (int) patch.len);
patch.len = count;
}
if (patch.len <= 0 || patch.len > gus_mem_size)
{
printk ("GUS: Invalid sample length %d\n", (int) patch.len);
return RET_ERROR (EINVAL);
}
if (patch.mode & WAVE_LOOPING)
{
if (patch.loop_start < 0 || patch.loop_start >= patch.len)
{
printk ("GUS: Invalid loop start\n");
return RET_ERROR (EINVAL);
}
if (patch.loop_end < patch.loop_start || patch.loop_end > patch.len)
{
printk ("GUS: Invalid loop end\n");
return RET_ERROR (EINVAL);
}
}
free_mem_ptr = (free_mem_ptr + 31) & ~31; /* 32 byte alignment */
#define GUS_BANK_SIZE (256*1024)
if (patch.mode & WAVE_16_BITS)
{
/*
* 16 bit samples must fit one 256k bank.
*/
if (patch.len >= GUS_BANK_SIZE)
{
printk ("GUS: Sample (16 bit) too long %d\n", (int) patch.len);
return RET_ERROR (ENOSPC);
}
if ((free_mem_ptr / GUS_BANK_SIZE) !=
((free_mem_ptr + patch.len) / GUS_BANK_SIZE))
{
unsigned long tmp_mem = /* Aling to 256K */
((free_mem_ptr / GUS_BANK_SIZE) + 1) * GUS_BANK_SIZE;
if ((tmp_mem + patch.len) > gus_mem_size)
return RET_ERROR (ENOSPC);
free_mem_ptr = tmp_mem; /* This leaves unusable memory */
}
}
if ((free_mem_ptr + patch.len) > gus_mem_size)
return RET_ERROR (ENOSPC);
sample_ptrs[free_sample] = free_mem_ptr;
/*
* Tremolo is not possible with envelopes
*/
if (patch.mode & WAVE_ENVELOPES)
patch.mode &= ~WAVE_TREMOLO;
memcpy ((char *) &samples[free_sample], &patch, sizeof_patch);
/*
* Link this_one sample to the list of samples for patch 'instr'.
*/
samples[free_sample].key = patch_table[instr];
patch_table[instr] = free_sample;
/*
* Use DMA to transfer the wave data to the DRAM
*/
left = patch.len;
src_offs = 0;
target = free_mem_ptr;
while (left) /* Not completely transferred yet */
{
blk_size = audio_devs[gus_devnum]->buffsize;
if (blk_size > left)
blk_size = left;
/*
* DMA cannot cross 256k bank boundaries. Check for that.
*/
blk_end = target + blk_size;
if ((target >> 18) != (blk_end >> 18))
{ /* Split the block */
blk_end &= ~(256 * 1024 - 1);
blk_size = blk_end - target;
}
#if defined(GUS_NO_DMA) || defined(GUS_PATCH_NO_DMA)
/*
* For some reason the DMA is not possible. We have to use PIO.
*/
{
long i;
unsigned char data;
for (i = 0; i < blk_size; i++)
{
GET_BYTE_FROM_USER (data, addr, sizeof_patch + i);
if (patch.mode & WAVE_UNSIGNED)
if (!(patch.mode & WAVE_16_BITS) || (i & 0x01))
data ^= 0x80; /* Convert to signed */
gus_poke (target + i, data);
}
}
#else /* GUS_NO_DMA */
{
unsigned long address, hold_address;
unsigned char dma_command;
unsigned long flags;
/*
* OK, move now. First in and then out.
*/
COPY_FROM_USER (audio_devs[gus_devnum]->dmap->raw_buf[0],
addr, sizeof_patch + src_offs,
blk_size);
DISABLE_INTR (flags);
/******** INTERRUPTS DISABLED NOW ********/
gus_write8 (0x41, 0); /* Disable GF1 DMA */
DMAbuf_start_dma (gus_devnum,
audio_devs[gus_devnum]->dmap->raw_buf_phys[0],
blk_size, DMA_MODE_WRITE);
/*
* Set the DRAM address for the wave data
*/
address = target;
if (audio_devs[gus_devnum]->dmachan > 3)
{
hold_address = address;
address = address >> 1;
address &= 0x0001ffffL;
address |= (hold_address & 0x000c0000L);
}
gus_write16 (0x42, (address >> 4) & 0xffff); /* DRAM DMA address */
/*
* Start the DMA transfer
*/
dma_command = 0x21; /* IRQ enable, DMA start */
if (patch.mode & WAVE_UNSIGNED)
dma_command |= 0x80; /* Invert MSB */
if (patch.mode & WAVE_16_BITS)
dma_command |= 0x40; /* 16 bit _DATA_ */
if (audio_devs[gus_devnum]->dmachan > 3)
dma_command |= 0x04; /* 16 bit DMA _channel_ */
gus_write8 (0x41, dma_command); /* Lets bo luteet (=bugs) */
/*
* Sleep here until the DRAM DMA done interrupt is served
*/
active_device = GUS_DEV_WAVE;
DO_SLEEP (dram_sleeper, dram_sleep_flag, HZ);
if (TIMED_OUT (dram_sleeper, dram_sleep_flag))
printk ("GUS: DMA Transfer timed out\n");
RESTORE_INTR (flags);
}
#endif /* GUS_NO_DMA */
/*
* Now the next part
*/
left -= blk_size;
src_offs += blk_size;
target += blk_size;
gus_write8 (0x41, 0); /* Stop DMA */
}
free_mem_ptr += patch.len;
if (!pmgr_flag)
pmgr_inform (gus_devnum, PM_E_PATCH_LOADED, instr, free_sample, 0, 0);
free_sample++;
return 0;
}
static void
guswave_hw_control (int dev, unsigned char *event)
{
int voice, cmd;
unsigned short p1, p2;
unsigned long plong, flags;
cmd = event[2];
voice = event[3];
p1 = *(unsigned short *) &event[4];
p2 = *(unsigned short *) &event[6];
plong = *(unsigned long *) &event[4];
if ((voices[voice].volume_irq_mode == VMODE_START_NOTE) &&
(cmd != _GUS_VOICESAMPLE) && (cmd != _GUS_VOICE_POS))
do_volume_irq (voice);
switch (cmd)
{
case _GUS_NUMVOICES:
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_select_max_voices (p1);
RESTORE_INTR (flags);
break;
case _GUS_VOICESAMPLE:
guswave_set_instr (dev, voice, p1);
break;
case _GUS_VOICEON:
DISABLE_INTR (flags);
gus_select_voice (voice);
p1 &= ~0x20; /* Don't allow interrupts */
gus_voice_on (p1);
RESTORE_INTR (flags);
break;
case _GUS_VOICEOFF:
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_voice_off ();
RESTORE_INTR (flags);
break;
case _GUS_VOICEFADE:
gus_voice_fade (voice);
break;
case _GUS_VOICEMODE:
DISABLE_INTR (flags);
gus_select_voice (voice);
p1 &= ~0x20; /* Don't allow interrupts */
gus_voice_mode (p1);
RESTORE_INTR (flags);
break;
case _GUS_VOICEBALA:
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_voice_balance (p1);
RESTORE_INTR (flags);
break;
case _GUS_VOICEFREQ:
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_voice_freq (plong);
RESTORE_INTR (flags);
break;
case _GUS_VOICEVOL:
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_voice_volume (p1);
RESTORE_INTR (flags);
break;
case _GUS_VOICEVOL2: /* Just update the software voice level */
voices[voice].initial_volume =
voices[voice].current_volume = p1;
break;
case _GUS_RAMPRANGE:
if (voices[voice].mode & WAVE_ENVELOPES)
break; /* NO-NO */
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_ramp_range (p1, p2);
RESTORE_INTR (flags);
break;
case _GUS_RAMPRATE:
if (voices[voice].mode & WAVE_ENVELOPES)
break; /* NJET-NJET */
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_ramp_rate (p1, p2);
RESTORE_INTR (flags);
break;
case _GUS_RAMPMODE:
if (voices[voice].mode & WAVE_ENVELOPES)
break; /* NO-NO */
DISABLE_INTR (flags);
gus_select_voice (voice);
p1 &= ~0x20; /* Don't allow interrupts */
gus_ramp_mode (p1);
RESTORE_INTR (flags);
break;
case _GUS_RAMPON:
if (voices[voice].mode & WAVE_ENVELOPES)
break; /* EI-EI */
DISABLE_INTR (flags);
gus_select_voice (voice);
p1 &= ~0x20; /* Don't allow interrupts */
gus_rampon (p1);
RESTORE_INTR (flags);
break;
case _GUS_RAMPOFF:
if (voices[voice].mode & WAVE_ENVELOPES)
break; /* NEJ-NEJ */
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_rampoff ();
RESTORE_INTR (flags);
break;
case _GUS_VOLUME_SCALE:
volume_base = p1;
volume_scale = p2;
break;
case _GUS_VOICE_POS:
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_set_voice_pos (voice, plong);
RESTORE_INTR (flags);
break;
default:;
}
}
static int
gus_sampling_set_speed (int speed)
{
if (speed <= 0)
speed = gus_sampling_speed;
if (speed < 4000)
speed = 4000;
if (speed > 44100)
speed = 44100;
gus_sampling_speed = speed;
if (only_read_access)
{
/* Compute nearest valid recording speed and return it */
speed = (9878400 / (gus_sampling_speed + 2)) / 16;
speed = (9878400 / (speed * 16)) - 2;
}
return speed;
}
static int
gus_sampling_set_channels (int channels)
{
if (!channels)
return gus_sampling_channels;
if (channels > 2)
channels = 2;
if (channels < 1)
channels = 1;
gus_sampling_channels = channels;
return channels;
}
static int
gus_sampling_set_bits (int bits)
{
if (!bits)
return gus_sampling_bits;
if (bits != 8 && bits != 16)
bits = 8;
gus_sampling_bits = bits;
return bits;
}
static int
gus_sampling_ioctl (int dev, unsigned int cmd, unsigned int arg, int local)
{
switch (cmd)
{
case SOUND_PCM_WRITE_RATE:
if (local)
return gus_sampling_set_speed (arg);
return IOCTL_OUT (arg, gus_sampling_set_speed (IOCTL_IN (arg)));
break;
case SOUND_PCM_READ_RATE:
if (local)
return gus_sampling_speed;
return IOCTL_OUT (arg, gus_sampling_speed);
break;
case SNDCTL_DSP_STEREO:
if (local)
return gus_sampling_set_channels (arg + 1) - 1;
return IOCTL_OUT (arg, gus_sampling_set_channels (IOCTL_IN (arg) + 1) - 1);
break;
case SOUND_PCM_WRITE_CHANNELS:
if (local)
return gus_sampling_set_channels (arg);
return IOCTL_OUT (arg, gus_sampling_set_channels (IOCTL_IN (arg)));
break;
case SOUND_PCM_READ_CHANNELS:
if (local)
return gus_sampling_channels;
return IOCTL_OUT (arg, gus_sampling_channels);
break;
case SNDCTL_DSP_SETFMT:
if (local)
return gus_sampling_set_bits (arg);
return IOCTL_OUT (arg, gus_sampling_set_bits (IOCTL_IN (arg)));
break;
case SOUND_PCM_READ_BITS:
if (local)
return gus_sampling_bits;
return IOCTL_OUT (arg, gus_sampling_bits);
case SOUND_PCM_WRITE_FILTER: /* NOT POSSIBLE */
return IOCTL_OUT (arg, RET_ERROR (EINVAL));
break;
case SOUND_PCM_READ_FILTER:
return IOCTL_OUT (arg, RET_ERROR (EINVAL));
break;
}
return RET_ERROR (EINVAL);
}
static void
gus_sampling_reset (int dev)
{
}
static int
gus_sampling_open (int dev, int mode)
{
int dev_flag;
int init_flag;
#ifdef GUS_NO_DMA
printk ("GUS: DMA mode not enabled. Device not supported\n");
return RET_ERROR (ENXIO);
#endif
dev_flag = 0;
init_flag = (gus_busy[gus_devnum] == 0 && gus_busy[gus_dspnum] == 0);
if(mode & OPEN_WRITE)
{
if (gus_busy[gus_devnum])
return RET_ERROR(EBUSY);
if(dev != gus_devnum)
return RET_ERROR(ENXIO);
dev_flag = gus_busy[gus_devnum] = 1;
}
if(mode & OPEN_READ)
{
if(gus_busy[gus_dspnum]) {
if (dev_flag) gus_busy[gus_devnum] = 0;
return RET_ERROR(EBUSY);
}
if(dev != gus_dspnum) {
if (dev_flag) gus_busy[gus_devnum] = 0;
return RET_ERROR(ENXIO);
}
}
if(init_flag)
{
gus_initialize ();
active_device = 0;
gus_reset ();
reset_sample_memory ();
gus_select_max_voices (14);
pcm_active = 0;
dma_active = 0;
pcm_opened = 1;
}
if (mode & OPEN_READ)
{
recording_active = 1;
set_input_volumes ();
}
only_read_access = !(mode & OPEN_WRITE);
return 0;
}
static void
gus_sampling_close (int dev)
{
gus_busy[dev] = 0;
if (gus_busy[gus_devnum] == 0 && gus_busy[gus_dspnum] == 0) {
active_device = 0;
gus_reset();
pcm_opened = 0;
}
if (recording_active)
set_input_volumes ();
recording_active = 0;
}
static void
gus_sampling_update_volume (void)
{
unsigned long flags;
int voice;
if (pcm_active && pcm_opened)
for (voice = 0; voice < gus_sampling_channels; voice++)
{
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_rampoff ();
gus_voice_volume (1530 + (25 * gus_pcm_volume));
gus_ramp_range (65, 1530 + (25 * gus_pcm_volume));
RESTORE_INTR (flags);
}
}
static void
play_next_pcm_block (void)
{
unsigned long flags;
int speed = gus_sampling_speed;
int this_one, is16bits, chn;
unsigned long dram_loc;
unsigned char mode[2], ramp_mode[2];
if (!pcm_qlen)
return;
this_one = pcm_head;
for (chn = 0; chn < gus_sampling_channels; chn++)
{
mode[chn] = 0x00;
ramp_mode[chn] = 0x03; /* Ramping and rollover off */
if (chn == 0)
{
mode[chn] |= 0x20; /* Loop IRQ */
voices[chn].loop_irq_mode = LMODE_PCM;
}
if (gus_sampling_bits != 8)
{
is16bits = 1;
mode[chn] |= 0x04; /* 16 bit data */
}
else
is16bits = 0;
dram_loc = this_one * pcm_bsize;
dram_loc += chn * pcm_banksize;
if (this_one == (pcm_nblk - 1)) /* Last fragment of the DRAM buffer */
{
mode[chn] |= 0x08; /* Enable loop */
ramp_mode[chn] = 0x03; /* Disable rollover bit */
}
else
{
if (chn == 0)
ramp_mode[chn] = 0x04; /* Enable rollover bit */
}
DISABLE_INTR (flags);
gus_select_voice (chn);
gus_voice_freq (speed);
if (gus_sampling_channels == 1)
gus_voice_balance (7); /* mono */
else if (chn == 0)
gus_voice_balance (0); /* left */
else
gus_voice_balance (15); /* right */
if (!pcm_active) /* Playback not already active */
{
/*
* The playback was not started yet (or there has been a pause).
* Start the voice (again) and ask for a rollover irq at the end of
* this_one block. If this_one one is last of the buffers, use just
* the normal loop with irq.
*/
gus_voice_off ();
gus_rampoff ();
gus_voice_volume (1530 + (25 * gus_pcm_volume));
gus_ramp_range (65, 1530 + (25 * gus_pcm_volume));
gus_write_addr (0x0a, dram_loc, is16bits); /* Starting position */
gus_write_addr (0x02, chn * pcm_banksize, is16bits); /* Loop start */
if (chn != 0)
gus_write_addr (0x04, pcm_banksize + (pcm_bsize * pcm_nblk) - 1,
is16bits); /* Loop end location */
}
if (chn == 0)
gus_write_addr (0x04, dram_loc + pcm_datasize[this_one] - 1,
is16bits); /* Loop end location */
else
mode[chn] |= 0x08; /* Enable looping */
if (pcm_datasize[this_one] != pcm_bsize)
{
/*
* Incompletely filled block. Possibly the last one.
*/
if (chn == 0)
{
mode[chn] &= ~0x08; /* Disable looping */
mode[chn] |= 0x20; /* Enable IRQ at the end */
voices[0].loop_irq_mode = LMODE_PCM_STOP;
ramp_mode[chn] = 0x03; /* No rollover bit */
}
else
{
gus_write_addr (0x04, dram_loc + pcm_datasize[this_one],
is16bits); /* Loop end location */
mode[chn] &= ~0x08; /* Disable looping */
}
}
RESTORE_INTR (flags);
}
for (chn = 0; chn < gus_sampling_channels; chn++)
{
DISABLE_INTR (flags);
gus_select_voice (chn);
gus_write8 (0x0d, ramp_mode[chn]);
gus_voice_on (mode[chn]);
RESTORE_INTR (flags);
}
pcm_active = 1;
}
static void
gus_transfer_output_block (int dev, unsigned long buf,
int total_count, int intrflag, int chn)
{
/*
* This routine transfers one block of audio data to the DRAM. In mono mode
* it's called just once. When in stereo mode, this_one routine is called
* once for both channels.
*
* The left/mono channel data is transferred to the beginning of dram and the
* right data to the area pointed by gus_page_size.
*/
int this_one, count;
unsigned long flags;
unsigned char dma_command;
unsigned long address, hold_address;
DISABLE_INTR (flags);
count = total_count / gus_sampling_channels;
if (chn == 0)
{
if (pcm_qlen >= pcm_nblk)
printk ("GUS Warning: PCM buffers out of sync\n");
this_one = pcm_current_block = pcm_tail;
pcm_qlen++;
pcm_tail = (pcm_tail + 1) % pcm_nblk;
pcm_datasize[this_one] = count;
}
else
this_one = pcm_current_block;
gus_write8 (0x41, 0); /* Disable GF1 DMA */
DMAbuf_start_dma (gus_devnum, buf + (chn * count), count, DMA_MODE_WRITE);
address = this_one * pcm_bsize;
address += chn * pcm_banksize;
if (audio_devs[gus_devnum]->dmachan > 3)
{
hold_address = address;
address = address >> 1;
address &= 0x0001ffffL;
address |= (hold_address & 0x000c0000L);
}
gus_write16 (0x42, (address >> 4) & 0xffff); /* DRAM DMA address */
dma_command = 0x21; /* IRQ enable, DMA start */
if (gus_sampling_bits != 8)
dma_command |= 0x40; /* 16 bit _DATA_ */
else
dma_command |= 0x80; /* Invert MSB */
if (audio_devs[gus_devnum]->dmachan > 3)
dma_command |= 0x04; /* 16 bit DMA channel */
gus_write8 (0x41, dma_command); /* Kickstart */
if (chn == (gus_sampling_channels - 1)) /* Last channel */
{
/*
* Last (right or mono) channel data
*/
dma_active = 1; /* DMA started. There is a unacknowledged buffer */
active_device = GUS_DEV_PCM_DONE;
if (!pcm_active && (pcm_qlen > 0 || count < pcm_bsize))
{
play_next_pcm_block ();
}
}
else
{
/*
* Left channel data. The right channel
* is transferred after DMA interrupt
*/
active_device = GUS_DEV_PCM_CONTINUE;
}
RESTORE_INTR (flags);
}
static void
gus_sampling_output_block (int dev, unsigned long buf, int total_count,
int intrflag, int restart_dma)
{
pcm_current_buf = buf;
pcm_current_count = total_count;
pcm_current_intrflag = intrflag;
pcm_current_dev = gus_devnum;
gus_transfer_output_block (gus_devnum, buf, total_count, intrflag, 0);
}
static void
gus_sampling_start_input (int dev, unsigned long buf, int count,
int intrflag, int restart_dma)
{
unsigned long flags;
unsigned char mode;
DISABLE_INTR (flags);
DMAbuf_start_dma (gus_dspnum, buf, count, DMA_MODE_READ);
mode = 0xa0; /* DMA IRQ enabled, invert MSB */
if (audio_devs[gus_dspnum]->dmachan > 3)
mode |= 0x04; /* 16 bit DMA channel */
if (gus_sampling_channels > 1)
mode |= 0x02; /* Stereo */
mode |= 0x01; /* DMA enable */
gus_write8 (0x49, mode);
RESTORE_INTR (flags);
}
static int
gus_sampling_prepare_for_input (int dev, int bsize, int bcount)
{
unsigned int rate;
rate = (9878400 / (gus_sampling_speed + 2)) / 16;
gus_write8 (0x48, rate & 0xff); /* Set sampling rate */
if (gus_sampling_bits != 8)
{
printk ("GUS Error: 16 bit recording not supported\n");
return RET_ERROR (EINVAL);
}
return 0;
}
static int
gus_sampling_prepare_for_output (int dev, int bsize, int bcount)
{
int i;
long mem_ptr, mem_size;
mem_ptr = 0;
mem_size = gus_mem_size / gus_sampling_channels;
if (mem_size > (256 * 1024))
mem_size = 256 * 1024;
pcm_bsize = bsize / gus_sampling_channels;
pcm_head = pcm_tail = pcm_qlen = 0;
pcm_nblk = MAX_PCM_BUFFERS;
if ((pcm_bsize * pcm_nblk) > mem_size)
pcm_nblk = mem_size / pcm_bsize;
for (i = 0; i < pcm_nblk; i++)
pcm_datasize[i] = 0;
pcm_banksize = pcm_nblk * pcm_bsize;
if (gus_sampling_bits != 8 && pcm_banksize == (256 * 1024))
pcm_nblk--;
return 0;
}
static int
gus_local_qlen (int dev)
{
return pcm_qlen;
}
static void
gus_copy_from_user (int dev, char *localbuf, int localoffs,
snd_rw_buf * userbuf, int useroffs, int len)
{
if (gus_sampling_channels == 1)
{
COPY_FROM_USER (&localbuf[localoffs], userbuf, useroffs, len);
}
else if (gus_sampling_bits == 8)
#if defined(__FreeBSD__)
{
char *in_left = gus_copy_buf;
char *in_right = in_left + 1;
char *out_left = localbuf + (localoffs / 2);
char *out_right = out_left + pcm_bsize;
int i;
COPY_FROM_USER (gus_copy_buf, userbuf, useroffs, len);
len /= 2;
for (i = 0; i < len; i++)
{
*out_left++ = *in_left++;
in_left++;
*out_right++ = *in_right++;
in_right++;
}
}
else
{
short *in_left = (short *)gus_copy_buf;
short *in_right = in_left + 1;
short *out_left = (short *)localbuf + (localoffs / 4);
short *out_right = out_left + (pcm_bsize / 2);
int i;
COPY_FROM_USER (gus_copy_buf, userbuf, useroffs, len);
len /= 4;
for (i = 0; i < len; i++)
{
*out_left++ = *in_left++;
in_left++;
*out_right++ = *in_right++;
in_right++;
}
}
#else
{
int in_left = useroffs;
int in_right = useroffs + 1;
char *out_left, *out_right;
int i;
len /= 2;
localoffs /= 2;
out_left = &localbuf[localoffs];
out_right = out_left + pcm_bsize;
for (i = 0; i < len; i++)
{
GET_BYTE_FROM_USER (*out_left++, userbuf, in_left);
in_left += 2;
GET_BYTE_FROM_USER (*out_right++, userbuf, in_right);
in_right += 2;
}
}
else
{
int in_left = useroffs / 2;
int in_right = useroffs / 2 + 1;
short *out_left, *out_right;
int i;
len /= 4;
localoffs /= 2;
out_left = (short *) &localbuf[localoffs];
out_right = out_left + (pcm_bsize / 2);
for (i = 0; i < len; i++)
{
#ifdef __FreeBSD__
GET_SHORT_FROM_USER (*out_left++, userbuf, in_left);
in_left += 2;
GET_SHORT_FROM_USER (*out_right++, userbuf, in_right);
in_right += 2;
#else
GET_SHORT_FROM_USER (*out_left++, (short *) userbuf, in_left);
in_left += 2;
GET_SHORT_FROM_USER (*out_right++, (short *) userbuf, in_right);
in_right += 2;
#endif
}
}
#endif
}
static struct audio_operations gus_sampling_operations =
{
"Gravis UltraSound",
NEEDS_RESTART,
AFMT_U8 | AFMT_S16_LE,
NULL,
gus_sampling_open,
gus_sampling_close,
gus_sampling_output_block,
gus_sampling_start_input,
gus_sampling_ioctl,
gus_sampling_prepare_for_input,
gus_sampling_prepare_for_output,
gus_sampling_reset,
gus_sampling_reset,
gus_local_qlen,
gus_copy_from_user
};
static struct audio_operations gus_sampling_operations_read =
{
"Gravis UltraSound - read only",
NEEDS_RESTART,
AFMT_U8 | AFMT_S16_LE,
NULL,
gus_sampling_open,
gus_sampling_close,
gus_sampling_output_block,
gus_sampling_start_input,
gus_sampling_ioctl,
gus_sampling_prepare_for_input,
gus_sampling_prepare_for_output,
gus_sampling_reset,
gus_sampling_reset,
gus_local_qlen,
gus_copy_from_user
};
static void
guswave_setup_voice (int dev, int voice, int chn)
{
struct channel_info *info =
&synth_devs[gus_devnum]->chn_info[chn];
guswave_set_instr (gus_devnum, voice, info->pgm_num);
voices[voice].expression_vol =
info->controllers[CTL_EXPRESSION]; /* Just msb */
voices[voice].main_vol =
(info->controllers[CTL_MAIN_VOLUME] * 100) / 128;
voices[voice].panning =
(info->controllers[CTL_PAN] * 2) - 128;
voices[voice].bender = info->bender_value;
}
static void
guswave_bender (int dev, int voice, int value)
{
int freq;
unsigned long flags;
voices[voice].bender = value - 8192;
freq = compute_finetune (voices[voice].orig_freq, value,
voices[voice].bender_range);
voices[voice].current_freq = freq;
DISABLE_INTR (flags);
gus_select_voice (voice);
gus_voice_freq (freq);
RESTORE_INTR (flags);
}
static int
guswave_patchmgr (int dev, struct patmgr_info *rec)
{
int i, n;
switch (rec->command)
{
case PM_GET_DEVTYPE:
rec->parm1 = PMTYPE_WAVE;
return 0;
break;
case PM_GET_NRPGM:
rec->parm1 = MAX_PATCH;
return 0;
break;
case PM_GET_PGMMAP:
rec->parm1 = MAX_PATCH;
for (i = 0; i < MAX_PATCH; i++)
{
int ptr = patch_table[i];
rec->data.data8[i] = 0;
while (ptr >= 0 && ptr < free_sample)
{
rec->data.data8[i]++;
ptr = samples[ptr].key; /* Follow link */
}
}
return 0;
break;
case PM_GET_PGM_PATCHES:
{
int ptr = patch_table[rec->parm1];
n = 0;
while (ptr >= 0 && ptr < free_sample)
{
rec->data.data32[n++] = ptr;
ptr = samples[ptr].key; /* Follow link */
}
}
rec->parm1 = n;
return 0;
break;
case PM_GET_PATCH:
{
int ptr = rec->parm1;
struct patch_info *pat;
if (ptr < 0 || ptr >= free_sample)
return RET_ERROR (EINVAL);
memcpy (rec->data.data8, (char *) &samples[ptr],
sizeof (struct patch_info));
pat = (struct patch_info *) rec->data.data8;
pat->key = GUS_PATCH; /* Restore patch type */
rec->parm1 = sample_ptrs[ptr]; /* DRAM location */
rec->parm2 = sizeof (struct patch_info);
}
return 0;
break;
case PM_SET_PATCH:
{
int ptr = rec->parm1;
struct patch_info *pat;
if (ptr < 0 || ptr >= free_sample)
return RET_ERROR (EINVAL);
pat = (struct patch_info *) rec->data.data8;
if (pat->len > samples[ptr].len) /* Cannot expand sample */
return RET_ERROR (EINVAL);
pat->key = samples[ptr].key; /* Ensure the link is correct */
memcpy ((char *) &samples[ptr], rec->data.data8,
sizeof (struct patch_info));
pat->key = GUS_PATCH;
}
return 0;
break;
case PM_READ_PATCH: /* Returns a block of wave data from the DRAM */
{
int sample = rec->parm1;
int n;
long offs = rec->parm2;
int l = rec->parm3;
if (sample < 0 || sample >= free_sample)
return RET_ERROR (EINVAL);
if (offs < 0 || offs >= samples[sample].len)
return RET_ERROR (EINVAL); /* Invalid offset */
n = samples[sample].len - offs; /* Num of bytes left */
if (l > n)
l = n;
if (l > sizeof (rec->data.data8))
l = sizeof (rec->data.data8);
if (l <= 0)
return RET_ERROR (EINVAL); /*
* Was there a bug?
*/
offs += sample_ptrs[sample]; /*
* Begin offsess + offset to DRAM
*/
for (n = 0; n < l; n++)
rec->data.data8[n] = gus_peek (offs++);
rec->parm1 = n; /*
* Nr of bytes copied
*/
}
return 0;
break;
case PM_WRITE_PATCH: /*
* Writes a block of wave data to the DRAM
*/
{
int sample = rec->parm1;
int n;
long offs = rec->parm2;
int l = rec->parm3;
if (sample < 0 || sample >= free_sample)
return RET_ERROR (EINVAL);
if (offs < 0 || offs >= samples[sample].len)
return RET_ERROR (EINVAL); /*
* Invalid offset
*/
n = samples[sample].len - offs; /*
* Nr of bytes left
*/
if (l > n)
l = n;
if (l > sizeof (rec->data.data8))
l = sizeof (rec->data.data8);
if (l <= 0)
return RET_ERROR (EINVAL); /*
* Was there a bug?
*/
offs += sample_ptrs[sample]; /*
* Begin offsess + offset to DRAM
*/
for (n = 0; n < l; n++)
gus_poke (offs++, rec->data.data8[n]);
rec->parm1 = n; /*
* Nr of bytes copied
*/
}
return 0;
break;
default:
return RET_ERROR (EINVAL);
}
}
static int
guswave_alloc (int dev, int chn, int note, struct voice_alloc_info *alloc)
{
int i, p, best = -1, best_time = 0x7fffffff;
p = alloc->ptr;
/*
* First look for a completely stopped voice
*/
for (i = 0; i < alloc->max_voice; i++)
{
if (alloc->map[p] == 0)
{
alloc->ptr = p;
return p;
}
if (alloc->alloc_times[p] < best_time)
{
best = p;
best_time = alloc->alloc_times[p];
}
p = (p + 1) % alloc->max_voice;
}
/*
* Then look for a releasing voice
*/
for (i = 0; i < alloc->max_voice; i++)
{
if (alloc->map[p] == 0xffff)
{
alloc->ptr = p;
return p;
}
p = (p + 1) % alloc->max_voice;
}
if (best >= 0)
p = best;
alloc->ptr = p;
return p;
}
static struct synth_operations guswave_operations =
{
&gus_info,
0,
SYNTH_TYPE_SAMPLE,
SAMPLE_TYPE_GUS,
guswave_open,
guswave_close,
guswave_ioctl,
guswave_kill_note,
guswave_start_note,
guswave_set_instr,
guswave_reset,
guswave_hw_control,
guswave_load_patch,
guswave_aftertouch,
guswave_controller,
guswave_panning,
guswave_volume_method,
guswave_patchmgr,
guswave_bender,
guswave_alloc,
guswave_setup_voice
};
static void
set_input_volumes (void)
{
unsigned long flags;
unsigned char mask = 0xff & ~0x06; /* Just line out enabled */
DISABLE_INTR (flags);
/*
* Enable channels having vol > 10%
* Note! bit 0x01 means line in DISABLED while 0x04 means
* mic in ENABLED.
*/
if (gus_line_vol > 10)
mask &= ~0x01;
if (gus_mic_vol > 10)
mask |= 0x04;
if (recording_active)
{
/*
* Disable channel, if not selected for recording
*/
if (!(gus_recmask & SOUND_MASK_LINE))
mask |= 0x01;
if (!(gus_recmask & SOUND_MASK_MIC))
mask &= ~0x04;
}
mix_image &= ~0x07;
mix_image |= mask & 0x07;
OUTB (mix_image, u_Mixer);
RESTORE_INTR (flags);
}
int
gus_default_mixer_ioctl (int dev, unsigned int cmd, unsigned int arg)
{
#define MIX_DEVS (SOUND_MASK_MIC|SOUND_MASK_LINE| \
SOUND_MASK_SYNTH|SOUND_MASK_PCM)
if (((cmd >> 8) & 0xff) == 'M')
{
if (cmd & IOC_IN)
switch (cmd & 0xff)
{
case SOUND_MIXER_RECSRC:
gus_recmask = IOCTL_IN (arg) & MIX_DEVS;
if (!(gus_recmask & (SOUND_MASK_MIC | SOUND_MASK_LINE)))
gus_recmask = SOUND_MASK_MIC;
/* Note! Input volumes are updated during next open for recording */
return IOCTL_OUT (arg, gus_recmask);
break;
case SOUND_MIXER_MIC:
{
int vol = IOCTL_IN (arg) & 0xff;
if (vol < 0)
vol = 0;
if (vol > 100)
vol = 100;
gus_mic_vol = vol;
set_input_volumes ();
return IOCTL_OUT (arg, vol | (vol << 8));
}
break;
case SOUND_MIXER_LINE:
{
int vol = IOCTL_IN (arg) & 0xff;
if (vol < 0)
vol = 0;
if (vol > 100)
vol = 100;
gus_line_vol = vol;
set_input_volumes ();
return IOCTL_OUT (arg, vol | (vol << 8));
}
break;
case SOUND_MIXER_PCM:
gus_pcm_volume = IOCTL_IN (arg) & 0xff;
if (gus_pcm_volume < 0)
gus_pcm_volume = 0;
if (gus_pcm_volume > 100)
gus_pcm_volume = 100;
gus_sampling_update_volume ();
return IOCTL_OUT (arg, gus_pcm_volume | (gus_pcm_volume << 8));
break;
case SOUND_MIXER_SYNTH:
{
int voice;
gus_wave_volume = IOCTL_IN (arg) & 0xff;
if (gus_wave_volume < 0)
gus_wave_volume = 0;
if (gus_wave_volume > 100)
gus_wave_volume = 100;
if (active_device == GUS_DEV_WAVE)
for (voice = 0; voice < nr_voices; voice++)
dynamic_volume_change (voice); /* Apply the new vol */
return IOCTL_OUT (arg, gus_wave_volume | (gus_wave_volume << 8));
}
break;
default:
return RET_ERROR (EINVAL);
}
else
switch (cmd & 0xff) /*
* Return parameters
*/
{
case SOUND_MIXER_RECSRC:
return IOCTL_OUT (arg, gus_recmask);
break;
case SOUND_MIXER_DEVMASK:
return IOCTL_OUT (arg, MIX_DEVS);
break;
case SOUND_MIXER_STEREODEVS:
return IOCTL_OUT (arg, 0);
break;
case SOUND_MIXER_RECMASK:
return IOCTL_OUT (arg, SOUND_MASK_MIC | SOUND_MASK_LINE);
break;
case SOUND_MIXER_CAPS:
return IOCTL_OUT (arg, 0);
break;
case SOUND_MIXER_MIC:
return IOCTL_OUT (arg, gus_mic_vol | (gus_mic_vol << 8));
break;
case SOUND_MIXER_LINE:
return IOCTL_OUT (arg, gus_line_vol | (gus_line_vol << 8));
break;
case SOUND_MIXER_PCM:
return IOCTL_OUT (arg, gus_pcm_volume | (gus_pcm_volume << 8));
break;
case SOUND_MIXER_SYNTH:
return IOCTL_OUT (arg, gus_wave_volume | (gus_wave_volume << 8));
break;
default:
return RET_ERROR (EINVAL);
}
}
else
return RET_ERROR (EINVAL);
}
static struct mixer_operations gus_mixer_operations =
{
"Gravis Ultrasound",
gus_default_mixer_ioctl
};
static long
gus_default_mixer_init (long mem_start)
{
if (num_mixers < MAX_MIXER_DEV) /*
* Don't install if there is another
* mixer
*/
mixer_devs[num_mixers++] = &gus_mixer_operations;
return mem_start;
}
long
gus_wave_init (long mem_start, int irq, int dma, int dma_read)
{
unsigned long flags;
unsigned char val;
char *model_num = "2.4";
int gus_type = 0x24; /* 2.4 */
int mixer_type = 0;
if (irq < 0 || irq > 15)
{
printk ("ERROR! Invalid IRQ#%d. GUS Disabled", irq);
return mem_start;
}
if (dma < 0 || dma > 7)
{
printk ("ERROR! Invalid DMA#%d. GUS Disabled", dma);
return mem_start;
}
if (dma_read == 0) dma_read = dma;
if (dma_read < 0 || dma_read > 7)
{
printk ("ERROR! Invalid DMA#%d. GUS DMA-read disabled", dma_read);
dma_read = dma;
}
/*
* Try to identify the GUS model.
*
* Versions < 3.6 don't have the digital ASIC. Try to probe it first.
*/
DISABLE_INTR (flags);
OUTB (0x20, gus_base + 0x0f);
val = INB (gus_base + 0x0f);
RESTORE_INTR (flags);
if (val != 0xff && (val & 0x06)) /* Should be 0x02?? */
{
/*
* It has the digital ASIC so the card is at least v3.4.
* Next try to detect the true model.
*/
val = INB (u_MixSelect);
/*
* Value 255 means pre-3.7 which don't have mixer.
* Values 5 thru 9 mean v3.7 which has a ICS2101 mixer.
* 10 and above is GUS MAX which has the CS4231 codec/mixer.
*
* Sorry. No GUS max support yet but it should be available
* soon after the SDK for GUS MAX is available.
*/
if (val == 255 || val < 5)
{
model_num = "3.4";
gus_type = 0x34;
}
else if (val < 10)
{
model_num = "3.7";
gus_type = 0x37;
mixer_type = ICS2101;
}
else
{
model_num = "MAX";
gus_type = 0x40;
mixer_type = CS4231;
}
}
else
{
/*
* ASIC not detected so the card must be 2.2 or 2.4.
* There could still be the 16-bit/mixer daughter card.
* It has the same codec/mixer than MAX.
* At this time there is no support for it but it will appear soon.
*/
}
#if defined(__FreeBSD__)
printk ("gus0: <Gravis UltraSound %s (%dk)>", model_num,
(int) gus_mem_size / 1024);
#else
printk (" <Gravis UltraSound %s (%dk)>", model_num, (int) gus_mem_size / 1024);
#endif
sprintf (gus_info.name, "Gravis UltraSound %s (%dk)", model_num, (int) gus_mem_size / 1024);
gus_irq = irq;
gus_dma = dma;
gus_dma_read = dma_read;
if (num_synths >= MAX_SYNTH_DEV)
printk ("GUS Error: Too many synthesizers\n");
else
{
voice_alloc = &guswave_operations.alloc;
synth_devs[num_synths++] = &guswave_operations;
}
#if defined(__FreeBSD__)
PERMANENT_MALLOC (char *, gus_copy_buf, DSP_BUFFSIZE, mem_start);
#endif
PERMANENT_MALLOC (struct patch_info *, samples,
(MAX_SAMPLE + 1) * sizeof (*samples), mem_start);
reset_sample_memory ();
gus_initialize ();
if (num_audiodevs < MAX_AUDIO_DEV)
{
audio_devs[gus_devnum = num_audiodevs++] = &gus_sampling_operations;
audio_devs[gus_devnum]->dmachan = dma;
audio_devs[gus_devnum]->buffcount = 1;
audio_devs[gus_devnum]->buffsize = DSP_BUFFSIZE;
gus_dspnum = gus_devnum;
gus_busy[gus_devnum] = 0;
gus_busy[gus_dspnum] = 0;
}
else
printk ("GUS: Too many PCM devices available\n");
if (num_audiodevs < MAX_AUDIO_DEV)
{
if(dma_read && dma != dma_read)
{
audio_devs[gus_dspnum = num_audiodevs++]= &gus_sampling_operations_read;
audio_devs[gus_dspnum]->dmachan = gus_dma_read;
audio_devs[gus_dspnum]->buffcount = 1;
audio_devs[gus_dspnum]->buffsize = DSP_BUFFSIZE;
gus_busy[gus_dspnum] = 0;
}
else
{
gus_dspnum = gus_devnum;
}
}
else
printk ("GUS READ: Too many PCM devices available\n");
/*
* Mixer dependent initialization.
*/
switch (mixer_type)
{
case ICS2101:
gus_mic_vol = gus_line_vol = gus_pcm_volume = 100;
gus_wave_volume = 90;
return ics2101_mixer_init (mem_start);
case CS4231:
/* Initialized elsewhere (ad1848.c) */
#ifndef EXCLUDE_GUSMAX
{
unsigned char max_config = 0x40; /* Codec enable */
long mixer_init_return;
if (dma > 3)
max_config |= 0x30; /* 16 bit playback and capture DMAs */
max_config |= (gus_base >> 4) & 0x0f; /* Extract the X from 2X0 */
OUTB (max_config, gus_base + 0x106); /* UltraMax control */
mixer_init_return = gus_default_mixer_init(mem_start);
if (ad1848_detect (gus_base + 0x10c))
{
gus_mic_vol = gus_line_vol = gus_pcm_volume = 100;
gus_wave_volume = 90;
have_gus_max = 1;
ad1848_init ("GUS MAX", gus_base + 0x10c,
-irq,
dma_read, /* read write reversed */
dma);
}
else
printk ("[Where's the CS4231?]");
return mixer_init_return;
}
#endif
default:
return gus_default_mixer_init (mem_start);
}
}
static void
do_loop_irq (int voice)
{
unsigned char tmp;
int mode, parm;
unsigned long flags;
DISABLE_INTR (flags);
gus_select_voice (voice);
tmp = gus_read8 (0x00);
tmp &= ~0x20; /*
* Disable wave IRQ for this_one voice
*/
gus_write8 (0x00, tmp);
if (tmp & 0x03) /* Voice stopped */
voice_alloc->map[voice] = 0;
mode = voices[voice].loop_irq_mode;
voices[voice].loop_irq_mode = 0;
parm = voices[voice].loop_irq_parm;
switch (mode)
{
case LMODE_FINISH: /*
* Final loop finished, shoot volume down
*/
if ((int) (gus_read16 (0x09) >> 4) < 100) /*
* Get current volume
*/
{
gus_voice_off ();
gus_rampoff ();
gus_voice_init (voice);
break;
}
gus_ramp_range (65, 4065);
gus_ramp_rate (0, 63); /*
* Fastest possible rate
*/
gus_rampon (0x20 | 0x40); /*
* Ramp down, once, irq
*/
voices[voice].volume_irq_mode = VMODE_HALT;
break;
case LMODE_PCM_STOP:
pcm_active = 0; /* Signal to the play_next_pcm_block routine */
case LMODE_PCM:
{
int flag; /* 0 or 2 */
pcm_qlen--;
pcm_head = (pcm_head + 1) % pcm_nblk;
if (pcm_qlen && pcm_active)
{
play_next_pcm_block ();
}
else
{ /* Underrun. Just stop the voice */
gus_select_voice (0); /* Left channel */
gus_voice_off ();
gus_rampoff ();
gus_select_voice (1); /* Right channel */
gus_voice_off ();
gus_rampoff ();
pcm_active = 0;
}
/*
* If the queue was full before this interrupt, the DMA transfer was
* suspended. Let it continue now.
*/
if (dma_active)
{
if (pcm_qlen == 0)
flag = 1; /* Underflow */
else
flag = 0;
dma_active = 0;
}
else
flag = 2; /* Just notify the dmabuf.c */
DMAbuf_outputintr (gus_devnum, flag);
}
break;
default:;
}
RESTORE_INTR (flags);
}
static void
do_volume_irq (int voice)
{
unsigned char tmp;
int mode, parm;
unsigned long flags;
DISABLE_INTR (flags);
gus_select_voice (voice);
tmp = gus_read8 (0x0d);
tmp &= ~0x20; /*
* Disable volume ramp IRQ
*/
gus_write8 (0x0d, tmp);
mode = voices[voice].volume_irq_mode;
voices[voice].volume_irq_mode = 0;
parm = voices[voice].volume_irq_parm;
switch (mode)
{
case VMODE_HALT: /*
* Decay phase finished
*/
RESTORE_INTR (flags);
gus_voice_init (voice);
break;
case VMODE_ENVELOPE:
gus_rampoff ();
RESTORE_INTR (flags);
step_envelope (voice);
break;
case VMODE_START_NOTE:
RESTORE_INTR (flags);
guswave_start_note2 (voices[voice].dev_pending, voice,
voices[voice].note_pending, voices[voice].volume_pending);
if (voices[voice].kill_pending)
guswave_kill_note (voices[voice].dev_pending, voice,
voices[voice].note_pending, 0);
if (voices[voice].sample_pending >= 0)
{
guswave_set_instr (voices[voice].dev_pending, voice,
voices[voice].sample_pending);
voices[voice].sample_pending = -1;
}
break;
default:;
}
}
void
gus_voice_irq (void)
{
unsigned long wave_ignore = 0, volume_ignore = 0;
unsigned long voice_bit;
unsigned char src, voice;
while (1)
{
src = gus_read8 (0x0f); /*
* Get source info
*/
voice = src & 0x1f;
src &= 0xc0;
if (src == (0x80 | 0x40))
return; /*
* No interrupt
*/
voice_bit = 1 << voice;
if (!(src & 0x80)) /*
* Wave IRQ pending
*/
if (!(wave_ignore & voice_bit) && (int) voice < nr_voices) /*
* Not done
* yet
*/
{
wave_ignore |= voice_bit;
do_loop_irq (voice);
}
if (!(src & 0x40)) /*
* Volume IRQ pending
*/
if (!(volume_ignore & voice_bit) && (int) voice < nr_voices) /*
* Not done
* yet
*/
{
volume_ignore |= voice_bit;
do_volume_irq (voice);
}
}
}
void
guswave_dma_irq (void)
{
unsigned char status;
status = gus_look8 (0x41); /* Get DMA IRQ Status */
if (status & 0x40) /* DMA interrupt pending */
switch (active_device)
{
case GUS_DEV_WAVE:
if (SOMEONE_WAITING (dram_sleeper, dram_sleep_flag))
WAKE_UP (dram_sleeper, dram_sleep_flag);
break;
case GUS_DEV_PCM_CONTINUE: /* Left channel data transferred */
gus_transfer_output_block (pcm_current_dev, pcm_current_buf,
pcm_current_count,
pcm_current_intrflag, 1);
break;
case GUS_DEV_PCM_DONE: /* Right or mono channel data transferred */
if (pcm_qlen < pcm_nblk)
{
int flag = (1 - dma_active) * 2; /* 0 or 2 */
if (pcm_qlen == 0)
flag = 1; /* Underrun */
dma_active = 0;
DMAbuf_outputintr (gus_devnum, flag);
}
break;
default:;
}
status = gus_look8 (0x49); /*
* Get Sampling IRQ Status
*/
if (status & 0x40) /*
* Sampling Irq pending
*/
{
if (gus_dma_read && gus_dma_read != gus_dma)
DMAbuf_inputintr (gus_dspnum);
else
DMAbuf_inputintr (gus_devnum);
}
}
#endif