freebsd-skq/sys/dev/mps/mps_user.c
Stephen McConnell ef065d89e9 - Updated all files with 2015 Avago copyright, and updated LSI's copyright
dates.

- Changed all of the PCI device strings from LSI to Avago Technologies (LSI).

- Added a sysctl variable to control how StartStopUnit behavior works. User can
  select to spin down disks based on if disk is SSD or HDD.

- Inquiry data is required to tell if a disk will support SSU at shutdown or
  not. Due to the addition of mpssas_async, which gets Advanced Info but not
  Inquiry data, the setting of supports_SSU was moved to the
  mpssas_scsiio_complete function, which snoops for any Inquiry commands. And,
  since disks are shutdown as a target and not a LUN, this process was
  simplified by basing it on targets and not LUNs.

- Added a sysctl variable that sets the amount of time to retry after sending a
  failed SATA ID command. This helps with some bad disks and large disks that
  require a lot of time to spin up. Part of this change was to add a callout to
  handle timeouts with the SATA ID command. The callout function is called
  mpssas_ata_id_timeout(). (Fixes PR 191348)

- Changed the way resets work by allowing I/O to continue to devices that are
  not currently under a reset condition. This uses devq's instead of simq's and
  makes use of the MPSSAS_TARGET_INRESET flag. This change also adds a function
  called mpssas_prepare_tm().

- Some changes were made to reduce code duplication when getting a SAS address
  for a SATA disk.

- Fixed some formatting and whitespace.

- Bump version of mps driver to 20.00.00.00-fbsd

PR:		191348
Reviewed by:	ken, scottl
Approved by:	ken, scottl
MFC after:	2 weeks
2015-02-24 22:07:42 +00:00

2443 lines
66 KiB
C

/*-
* Copyright (c) 2008 Yahoo!, Inc.
* All rights reserved.
* Written by: John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
*/
/*-
* Copyright (c) 2011-2015 LSI Corp.
* Copyright (c) 2013-2015 Avago Technologies
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
/* TODO Move headers to mpsvar */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/selinfo.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/uio.h>
#include <sys/sysctl.h>
#include <sys/ioccom.h>
#include <sys/endian.h>
#include <sys/queue.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/proc.h>
#include <sys/sysent.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/scsi/scsi_all.h>
#include <dev/mps/mpi/mpi2_type.h>
#include <dev/mps/mpi/mpi2.h>
#include <dev/mps/mpi/mpi2_ioc.h>
#include <dev/mps/mpi/mpi2_cnfg.h>
#include <dev/mps/mpi/mpi2_init.h>
#include <dev/mps/mpi/mpi2_tool.h>
#include <dev/mps/mps_ioctl.h>
#include <dev/mps/mpsvar.h>
#include <dev/mps/mps_table.h>
#include <dev/mps/mps_sas.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
static d_open_t mps_open;
static d_close_t mps_close;
static d_ioctl_t mps_ioctl_devsw;
static struct cdevsw mps_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = mps_open,
.d_close = mps_close,
.d_ioctl = mps_ioctl_devsw,
.d_name = "mps",
};
typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *);
static mps_user_f mpi_pre_ioc_facts;
static mps_user_f mpi_pre_port_facts;
static mps_user_f mpi_pre_fw_download;
static mps_user_f mpi_pre_fw_upload;
static mps_user_f mpi_pre_sata_passthrough;
static mps_user_f mpi_pre_smp_passthrough;
static mps_user_f mpi_pre_config;
static mps_user_f mpi_pre_sas_io_unit_control;
static int mps_user_read_cfg_header(struct mps_softc *,
struct mps_cfg_page_req *);
static int mps_user_read_cfg_page(struct mps_softc *,
struct mps_cfg_page_req *, void *);
static int mps_user_read_extcfg_header(struct mps_softc *,
struct mps_ext_cfg_page_req *);
static int mps_user_read_extcfg_page(struct mps_softc *,
struct mps_ext_cfg_page_req *, void *);
static int mps_user_write_cfg_page(struct mps_softc *,
struct mps_cfg_page_req *, void *);
static int mps_user_setup_request(struct mps_command *,
struct mps_usr_command *);
static int mps_user_command(struct mps_softc *, struct mps_usr_command *);
static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data);
static void mps_user_get_adapter_data(struct mps_softc *sc,
mps_adapter_data_t *data);
static void mps_user_read_pci_info(struct mps_softc *sc,
mps_pci_info_t *data);
static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc,
uint32_t unique_id);
static int mps_post_fw_diag_buffer(struct mps_softc *sc,
mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
static int mps_release_fw_diag_buffer(struct mps_softc *sc,
mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
uint32_t diag_type);
static int mps_diag_register(struct mps_softc *sc,
mps_fw_diag_register_t *diag_register, uint32_t *return_code);
static int mps_diag_unregister(struct mps_softc *sc,
mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query,
uint32_t *return_code);
static int mps_diag_read_buffer(struct mps_softc *sc,
mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
uint32_t *return_code);
static int mps_diag_release(struct mps_softc *sc,
mps_fw_diag_release_t *diag_release, uint32_t *return_code);
static int mps_do_diag_action(struct mps_softc *sc, uint32_t action,
uint8_t *diag_action, uint32_t length, uint32_t *return_code);
static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data);
static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data);
static void mps_user_event_enable(struct mps_softc *sc,
mps_event_enable_t *data);
static int mps_user_event_report(struct mps_softc *sc,
mps_event_report_t *data);
static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data);
static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data);
static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls");
/* Macros from compat/freebsd32/freebsd32.h */
#define PTRIN(v) (void *)(uintptr_t)(v)
#define PTROUT(v) (uint32_t)(uintptr_t)(v)
#define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
#define PTRIN_CP(src,dst,fld) \
do { (dst).fld = PTRIN((src).fld); } while (0)
#define PTROUT_CP(src,dst,fld) \
do { (dst).fld = PTROUT((src).fld); } while (0)
int
mps_attach_user(struct mps_softc *sc)
{
int unit;
unit = device_get_unit(sc->mps_dev);
sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
"mps%d", unit);
if (sc->mps_cdev == NULL) {
return (ENOMEM);
}
sc->mps_cdev->si_drv1 = sc;
return (0);
}
void
mps_detach_user(struct mps_softc *sc)
{
/* XXX: do a purge of pending requests? */
if (sc->mps_cdev != NULL)
destroy_dev(sc->mps_cdev);
}
static int
mps_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
return (0);
}
static int
mps_close(struct cdev *dev, int flags, int fmt, struct thread *td)
{
return (0);
}
static int
mps_user_read_cfg_header(struct mps_softc *sc,
struct mps_cfg_page_req *page_req)
{
MPI2_CONFIG_PAGE_HEADER *hdr;
struct mps_config_params params;
int error;
hdr = &params.hdr.Struct;
params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
params.page_address = le32toh(page_req->page_address);
hdr->PageVersion = 0;
hdr->PageLength = 0;
hdr->PageNumber = page_req->header.PageNumber;
hdr->PageType = page_req->header.PageType;
params.buffer = NULL;
params.length = 0;
params.callback = NULL;
if ((error = mps_read_config_page(sc, &params)) != 0) {
/*
* Leave the request. Without resetting the chip, it's
* still owned by it and we'll just get into trouble
* freeing it now. Mark it as abandoned so that if it
* shows up later it can be freed.
*/
mps_printf(sc, "read_cfg_header timed out\n");
return (ETIMEDOUT);
}
page_req->ioc_status = htole16(params.status);
if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
MPI2_IOCSTATUS_SUCCESS) {
bcopy(hdr, &page_req->header, sizeof(page_req->header));
}
return (0);
}
static int
mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req,
void *buf)
{
MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
struct mps_config_params params;
int error;
reqhdr = buf;
hdr = &params.hdr.Struct;
hdr->PageVersion = reqhdr->PageVersion;
hdr->PageLength = reqhdr->PageLength;
hdr->PageNumber = reqhdr->PageNumber;
hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
params.page_address = le32toh(page_req->page_address);
params.buffer = buf;
params.length = le32toh(page_req->len);
params.callback = NULL;
if ((error = mps_read_config_page(sc, &params)) != 0) {
mps_printf(sc, "mps_user_read_cfg_page timed out\n");
return (ETIMEDOUT);
}
page_req->ioc_status = htole16(params.status);
return (0);
}
static int
mps_user_read_extcfg_header(struct mps_softc *sc,
struct mps_ext_cfg_page_req *ext_page_req)
{
MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
struct mps_config_params params;
int error;
hdr = &params.hdr.Ext;
params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
hdr->PageVersion = ext_page_req->header.PageVersion;
hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
hdr->ExtPageLength = 0;
hdr->PageNumber = ext_page_req->header.PageNumber;
hdr->ExtPageType = ext_page_req->header.ExtPageType;
params.page_address = le32toh(ext_page_req->page_address);
params.buffer = NULL;
params.length = 0;
params.callback = NULL;
if ((error = mps_read_config_page(sc, &params)) != 0) {
/*
* Leave the request. Without resetting the chip, it's
* still owned by it and we'll just get into trouble
* freeing it now. Mark it as abandoned so that if it
* shows up later it can be freed.
*/
mps_printf(sc, "mps_user_read_extcfg_header timed out\n");
return (ETIMEDOUT);
}
ext_page_req->ioc_status = htole16(params.status);
if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
MPI2_IOCSTATUS_SUCCESS) {
ext_page_req->header.PageVersion = hdr->PageVersion;
ext_page_req->header.PageNumber = hdr->PageNumber;
ext_page_req->header.PageType = hdr->PageType;
ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
ext_page_req->header.ExtPageType = hdr->ExtPageType;
}
return (0);
}
static int
mps_user_read_extcfg_page(struct mps_softc *sc,
struct mps_ext_cfg_page_req *ext_page_req, void *buf)
{
MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
struct mps_config_params params;
int error;
reqhdr = buf;
hdr = &params.hdr.Ext;
params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
params.page_address = le32toh(ext_page_req->page_address);
hdr->PageVersion = reqhdr->PageVersion;
hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
hdr->PageNumber = reqhdr->PageNumber;
hdr->ExtPageType = reqhdr->ExtPageType;
hdr->ExtPageLength = reqhdr->ExtPageLength;
params.buffer = buf;
params.length = le32toh(ext_page_req->len);
params.callback = NULL;
if ((error = mps_read_config_page(sc, &params)) != 0) {
mps_printf(sc, "mps_user_read_extcfg_page timed out\n");
return (ETIMEDOUT);
}
ext_page_req->ioc_status = htole16(params.status);
return (0);
}
static int
mps_user_write_cfg_page(struct mps_softc *sc,
struct mps_cfg_page_req *page_req, void *buf)
{
MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
struct mps_config_params params;
u_int hdr_attr;
int error;
reqhdr = buf;
hdr = &params.hdr.Struct;
hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
mps_printf(sc, "page type 0x%x not changeable\n",
reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
return (EINVAL);
}
/*
* There isn't any point in restoring stripped out attributes
* if you then mask them going down to issue the request.
*/
hdr->PageVersion = reqhdr->PageVersion;
hdr->PageLength = reqhdr->PageLength;
hdr->PageNumber = reqhdr->PageNumber;
hdr->PageType = reqhdr->PageType;
params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
params.page_address = le32toh(page_req->page_address);
params.buffer = buf;
params.length = le32toh(page_req->len);
params.callback = NULL;
if ((error = mps_write_config_page(sc, &params)) != 0) {
mps_printf(sc, "mps_write_cfg_page timed out\n");
return (ETIMEDOUT);
}
page_req->ioc_status = htole16(params.status);
return (0);
}
void
mpi_init_sge(struct mps_command *cm, void *req, void *sge)
{
int off, space;
space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
off = (uintptr_t)sge - (uintptr_t)req;
KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
req, sge, off, space));
cm->cm_sge = sge;
cm->cm_sglsize = space - off;
}
/*
* Prepare the mps_command for an IOC_FACTS request.
*/
static int
mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd)
{
MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
MPI2_IOC_FACTS_REPLY *rpl;
if (cmd->req_len != sizeof *req)
return (EINVAL);
if (cmd->rpl_len != sizeof *rpl)
return (EINVAL);
cm->cm_sge = NULL;
cm->cm_sglsize = 0;
return (0);
}
/*
* Prepare the mps_command for a PORT_FACTS request.
*/
static int
mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd)
{
MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
MPI2_PORT_FACTS_REPLY *rpl;
if (cmd->req_len != sizeof *req)
return (EINVAL);
if (cmd->rpl_len != sizeof *rpl)
return (EINVAL);
cm->cm_sge = NULL;
cm->cm_sglsize = 0;
return (0);
}
/*
* Prepare the mps_command for a FW_DOWNLOAD request.
*/
static int
mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd)
{
MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
MPI2_FW_DOWNLOAD_REPLY *rpl;
MPI2_FW_DOWNLOAD_TCSGE tc;
int error;
/*
* This code assumes there is room in the request's SGL for
* the TransactionContext plus at least a SGL chain element.
*/
CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE);
if (cmd->req_len != sizeof *req)
return (EINVAL);
if (cmd->rpl_len != sizeof *rpl)
return (EINVAL);
if (cmd->len == 0)
return (EINVAL);
error = copyin(cmd->buf, cm->cm_data, cmd->len);
if (error != 0)
return (error);
mpi_init_sge(cm, req, &req->SGL);
bzero(&tc, sizeof tc);
/*
* For now, the F/W image must be provided in a single request.
*/
if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
return (EINVAL);
if (req->TotalImageSize != cmd->len)
return (EINVAL);
/*
* The value of the first two elements is specified in the
* Fusion-MPT Message Passing Interface document.
*/
tc.ContextSize = 0;
tc.DetailsLength = 12;
tc.ImageOffset = 0;
tc.ImageSize = cmd->len;
cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
return (mps_push_sge(cm, &tc, sizeof tc, 0));
}
/*
* Prepare the mps_command for a FW_UPLOAD request.
*/
static int
mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd)
{
MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
MPI2_FW_UPLOAD_REPLY *rpl;
MPI2_FW_UPLOAD_TCSGE tc;
/*
* This code assumes there is room in the request's SGL for
* the TransactionContext plus at least a SGL chain element.
*/
CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE);
if (cmd->req_len != sizeof *req)
return (EINVAL);
if (cmd->rpl_len != sizeof *rpl)
return (EINVAL);
mpi_init_sge(cm, req, &req->SGL);
bzero(&tc, sizeof tc);
/*
* The value of the first two elements is specified in the
* Fusion-MPT Message Passing Interface document.
*/
tc.ContextSize = 0;
tc.DetailsLength = 12;
/*
* XXX Is there any reason to fetch a partial image? I.e. to
* set ImageOffset to something other than 0?
*/
tc.ImageOffset = 0;
tc.ImageSize = cmd->len;
cm->cm_flags |= MPS_CM_FLAGS_DATAIN;
return (mps_push_sge(cm, &tc, sizeof tc, 0));
}
/*
* Prepare the mps_command for a SATA_PASSTHROUGH request.
*/
static int
mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd)
{
MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
MPI2_SATA_PASSTHROUGH_REPLY *rpl;
if (cmd->req_len != sizeof *req)
return (EINVAL);
if (cmd->rpl_len != sizeof *rpl)
return (EINVAL);
mpi_init_sge(cm, req, &req->SGL);
return (0);
}
/*
* Prepare the mps_command for a SMP_PASSTHROUGH request.
*/
static int
mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd)
{
MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
MPI2_SMP_PASSTHROUGH_REPLY *rpl;
if (cmd->req_len != sizeof *req)
return (EINVAL);
if (cmd->rpl_len != sizeof *rpl)
return (EINVAL);
mpi_init_sge(cm, req, &req->SGL);
return (0);
}
/*
* Prepare the mps_command for a CONFIG request.
*/
static int
mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd)
{
MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
MPI2_CONFIG_REPLY *rpl;
if (cmd->req_len != sizeof *req)
return (EINVAL);
if (cmd->rpl_len != sizeof *rpl)
return (EINVAL);
mpi_init_sge(cm, req, &req->PageBufferSGE);
return (0);
}
/*
* Prepare the mps_command for a SAS_IO_UNIT_CONTROL request.
*/
static int
mpi_pre_sas_io_unit_control(struct mps_command *cm,
struct mps_usr_command *cmd)
{
cm->cm_sge = NULL;
cm->cm_sglsize = 0;
return (0);
}
/*
* A set of functions to prepare an mps_command for the various
* supported requests.
*/
struct mps_user_func {
U8 Function;
mps_user_f *f_pre;
} mps_user_func_list[] = {
{ MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts },
{ MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts },
{ MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download },
{ MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload },
{ MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough },
{ MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough},
{ MPI2_FUNCTION_CONFIG, mpi_pre_config},
{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control },
{ 0xFF, NULL } /* list end */
};
static int
mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd)
{
MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
struct mps_user_func *f;
for (f = mps_user_func_list; f->f_pre != NULL; f++) {
if (hdr->Function == f->Function)
return (f->f_pre(cm, cmd));
}
return (EINVAL);
}
static int
mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd)
{
MPI2_REQUEST_HEADER *hdr;
MPI2_DEFAULT_REPLY *rpl;
void *buf = NULL;
struct mps_command *cm = NULL;
int err = 0;
int sz;
mps_lock(sc);
cm = mps_alloc_command(sc);
if (cm == NULL) {
mps_printf(sc, "%s: no mps requests\n", __func__);
err = ENOMEM;
goto Ret;
}
mps_unlock(sc);
hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__,
cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) {
err = EINVAL;
goto RetFreeUnlocked;
}
err = copyin(cmd->req, hdr, cmd->req_len);
if (err != 0)
goto RetFreeUnlocked;
mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
hdr->Function, hdr->MsgFlags);
if (cmd->len > 0) {
buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO);
if(!buf) {
mps_printf(sc, "Cannot allocate memory %s %d\n",
__func__, __LINE__);
return (ENOMEM);
}
cm->cm_data = buf;
cm->cm_length = cmd->len;
} else {
cm->cm_data = NULL;
cm->cm_length = 0;
}
cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
err = mps_user_setup_request(cm, cmd);
if (err == EINVAL) {
mps_printf(sc, "%s: unsupported parameter or unsupported "
"function in request (function = 0x%X)\n", __func__,
hdr->Function);
}
if (err != 0)
goto RetFreeUnlocked;
mps_lock(sc);
err = mps_wait_command(sc, cm, 60, CAN_SLEEP);
if (err) {
mps_printf(sc, "%s: invalid request: error %d\n",
__func__, err);
goto Ret;
}
rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
if (rpl != NULL)
sz = rpl->MsgLength * 4;
else
sz = 0;
if (sz > cmd->rpl_len) {
mps_printf(sc, "%s: user reply buffer (%d) smaller than "
"returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
sz = cmd->rpl_len;
}
mps_unlock(sc);
copyout(rpl, cmd->rpl, sz);
if (buf != NULL)
copyout(buf, cmd->buf, cmd->len);
mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz);
RetFreeUnlocked:
mps_lock(sc);
if (cm != NULL)
mps_free_command(sc, cm);
Ret:
mps_unlock(sc);
if (buf != NULL)
free(buf, M_MPSUSER);
return (err);
}
static int
mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data)
{
MPI2_REQUEST_HEADER *hdr, tmphdr;
MPI2_DEFAULT_REPLY *rpl;
struct mps_command *cm = NULL;
int err = 0, dir = 0, sz;
uint8_t function = 0;
u_int sense_len;
struct mpssas_target *targ = NULL;
/*
* Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY
* bit to denote that a passthru is being processed.
*/
mps_lock(sc);
if (sc->mps_flags & MPS_FLAGS_BUSY) {
mps_dprint(sc, MPS_USER, "%s: Only one passthru command "
"allowed at a single time.", __func__);
mps_unlock(sc);
return (EBUSY);
}
sc->mps_flags |= MPS_FLAGS_BUSY;
mps_unlock(sc);
/*
* Do some validation on data direction. Valid cases are:
* 1) DataSize is 0 and direction is NONE
* 2) DataSize is non-zero and one of:
* a) direction is READ or
* b) direction is WRITE or
* c) direction is BOTH and DataOutSize is non-zero
* If valid and the direction is BOTH, change the direction to READ.
* if valid and the direction is not BOTH, make sure DataOutSize is 0.
*/
if (((data->DataSize == 0) &&
(data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) ||
((data->DataSize != 0) &&
((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) ||
(data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) ||
((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) &&
(data->DataOutSize != 0))))) {
if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH)
data->DataDirection = MPS_PASS_THRU_DIRECTION_READ;
else
data->DataOutSize = 0;
} else
return (EINVAL);
mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d "
"data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
data->PtrRequest, data->RequestSize, data->PtrReply,
data->ReplySize, data->PtrData, data->DataSize,
data->PtrDataOut, data->DataOutSize, data->DataDirection);
/*
* copy in the header so we know what we're dealing with before we
* commit to allocating a command for it.
*/
err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
if (err != 0)
goto RetFreeUnlocked;
if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) {
err = EINVAL;
goto RetFreeUnlocked;
}
function = tmphdr.Function;
mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
function, tmphdr.MsgFlags);
/*
* Handle a passthru TM request.
*/
if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
MPI2_SCSI_TASK_MANAGE_REQUEST *task;
mps_lock(sc);
cm = mpssas_alloc_tm(sc);
if (cm == NULL) {
err = EINVAL;
goto Ret;
}
/* Copy the header in. Only a small fixup is needed. */
task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
bcopy(&tmphdr, task, data->RequestSize);
task->TaskMID = cm->cm_desc.Default.SMID;
cm->cm_data = NULL;
cm->cm_desc.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
cm->cm_complete = NULL;
cm->cm_complete_data = NULL;
targ = mpssas_find_target_by_handle(sc->sassc, 0,
task->DevHandle);
if (targ == NULL) {
mps_dprint(sc, MPS_INFO,
"%s %d : invalid handle for requested TM 0x%x \n",
__func__, __LINE__, task->DevHandle);
err = 1;
} else {
mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
err = mps_wait_command(sc, cm, 30, CAN_SLEEP);
}
if (err != 0) {
err = EIO;
mps_dprint(sc, MPS_FAULT, "%s: task management failed",
__func__);
}
/*
* Copy the reply data and sense data to user space.
*/
if (cm->cm_reply != NULL) {
rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
sz = rpl->MsgLength * 4;
if (sz > data->ReplySize) {
mps_printf(sc, "%s: user reply buffer (%d) "
"smaller than returned buffer (%d)\n",
__func__, data->ReplySize, sz);
}
mps_unlock(sc);
copyout(cm->cm_reply, PTRIN(data->PtrReply),
data->ReplySize);
mps_lock(sc);
}
mpssas_free_tm(sc, cm);
goto Ret;
}
mps_lock(sc);
cm = mps_alloc_command(sc);
if (cm == NULL) {
mps_printf(sc, "%s: no mps requests\n", __func__);
err = ENOMEM;
goto Ret;
}
mps_unlock(sc);
hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
bcopy(&tmphdr, hdr, data->RequestSize);
/*
* Do some checking to make sure the IOCTL request contains a valid
* request. Then set the SGL info.
*/
mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
/*
* Set up for read, write or both. From check above, DataOutSize will
* be 0 if direction is READ or WRITE, but it will have some non-zero
* value if the direction is BOTH. So, just use the biggest size to get
* the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set
* up; the first is for the request and the second will contain the
* response data. cm_out_len needs to be set here and this will be used
* when the SGLs are set up.
*/
cm->cm_data = NULL;
cm->cm_length = MAX(data->DataSize, data->DataOutSize);
cm->cm_out_len = data->DataOutSize;
cm->cm_flags = 0;
if (cm->cm_length != 0) {
cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK |
M_ZERO);
if (cm->cm_data == NULL) {
mps_dprint(sc, MPS_FAULT, "%s: alloc failed for IOCTL "
"passthru length %d\n", __func__, cm->cm_length);
} else {
cm->cm_flags = MPS_CM_FLAGS_DATAIN;
if (data->DataOutSize) {
cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
err = copyin(PTRIN(data->PtrDataOut),
cm->cm_data, data->DataOutSize);
} else if (data->DataDirection ==
MPS_PASS_THRU_DIRECTION_WRITE) {
cm->cm_flags = MPS_CM_FLAGS_DATAOUT;
err = copyin(PTRIN(data->PtrData),
cm->cm_data, data->DataSize);
}
if (err != 0)
mps_dprint(sc, MPS_FAULT, "%s: failed to copy "
"IOCTL data from user space\n", __func__);
}
}
cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
/*
* Set up Sense buffer and SGL offset for IO passthru. SCSI IO request
* uses SCSI IO descriptor.
*/
if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
(function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
MPI2_SCSI_IO_REQUEST *scsi_io_req;
scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
/*
* Put SGE for data and data_out buffer at the end of
* scsi_io_request message header (64 bytes in total).
* Following above SGEs, the residual space will be used by
* sense data.
*/
scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
64);
scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr);
/*
* Set SGLOffset0 value. This is the number of dwords that SGL
* is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
*/
scsi_io_req->SGLOffset0 = 24;
/*
* Setup descriptor info. RAID passthrough must use the
* default request descriptor which is already set, so if this
* is a SCSI IO request, change the descriptor to SCSI IO.
* Also, if this is a SCSI IO request, handle the reply in the
* mpssas_scsio_complete function.
*/
if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
cm->cm_desc.SCSIIO.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle;
/*
* Make sure the DevHandle is not 0 because this is a
* likely error.
*/
if (scsi_io_req->DevHandle == 0) {
err = EINVAL;
goto RetFreeUnlocked;
}
}
}
mps_lock(sc);
err = mps_wait_command(sc, cm, 30, CAN_SLEEP);
if (err) {
mps_printf(sc, "%s: invalid request: error %d\n", __func__,
err);
mps_unlock(sc);
goto RetFreeUnlocked;
}
/*
* Sync the DMA data, if any. Then copy the data to user space.
*/
if (cm->cm_data != NULL) {
if (cm->cm_flags & MPS_CM_FLAGS_DATAIN)
dir = BUS_DMASYNC_POSTREAD;
else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT)
dir = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
mps_unlock(sc);
err = copyout(cm->cm_data,
PTRIN(data->PtrData), data->DataSize);
mps_lock(sc);
if (err != 0)
mps_dprint(sc, MPS_FAULT, "%s: failed to copy "
"IOCTL data to user space\n", __func__);
}
}
/*
* Copy the reply data and sense data to user space.
*/
if (cm->cm_reply != NULL) {
rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
sz = rpl->MsgLength * 4;
if (sz > data->ReplySize) {
mps_printf(sc, "%s: user reply buffer (%d) smaller "
"than returned buffer (%d)\n", __func__,
data->ReplySize, sz);
}
mps_unlock(sc);
copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
mps_lock(sc);
if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
(function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
MPI2_SCSI_STATE_AUTOSENSE_VALID) {
sense_len =
MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount)),
sizeof(struct scsi_sense_data));
mps_unlock(sc);
copyout(cm->cm_sense, cm->cm_req + 64, sense_len);
mps_lock(sc);
}
}
}
mps_unlock(sc);
RetFreeUnlocked:
mps_lock(sc);
if (cm != NULL) {
if (cm->cm_data)
free(cm->cm_data, M_MPSUSER);
mps_free_command(sc, cm);
}
Ret:
sc->mps_flags &= ~MPS_FLAGS_BUSY;
mps_unlock(sc);
return (err);
}
static void
mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data)
{
Mpi2ConfigReply_t mpi_reply;
Mpi2BiosPage3_t config_page;
/*
* Use the PCI interface functions to get the Bus, Device, and Function
* information.
*/
data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev);
data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev);
data->PciInformation.u.bits.FunctionNumber =
pci_get_function(sc->mps_dev);
/*
* Get the FW version that should already be saved in IOC Facts.
*/
data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
/*
* General device info.
*/
data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2;
if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE)
data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200;
data->PCIDeviceHwId = pci_get_device(sc->mps_dev);
data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1);
data->SubSystemId = pci_get_subdevice(sc->mps_dev);
data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev);
/*
* Get the driver version.
*/
strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION);
/*
* Need to get BIOS Config Page 3 for the BIOS Version.
*/
data->BiosVersion = 0;
mps_lock(sc);
if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page))
printf("%s: Error while retrieving BIOS Version\n", __func__);
else
data->BiosVersion = config_page.BiosVersion;
mps_unlock(sc);
}
static void
mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data)
{
int i;
/*
* Use the PCI interface functions to get the Bus, Device, and Function
* information.
*/
data->BusNumber = pci_get_bus(sc->mps_dev);
data->DeviceNumber = pci_get_slot(sc->mps_dev);
data->FunctionNumber = pci_get_function(sc->mps_dev);
/*
* Now get the interrupt vector and the pci header. The vector can
* only be 0 right now. The header is the first 256 bytes of config
* space.
*/
data->InterruptVector = 0;
for (i = 0; i < sizeof (data->PciHeader); i++) {
data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1);
}
}
static uint8_t
mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id)
{
uint8_t index;
for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
return (index);
}
}
return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND);
}
static int
mps_post_fw_diag_buffer(struct mps_softc *sc,
mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
{
MPI2_DIAG_BUFFER_POST_REQUEST *req;
MPI2_DIAG_BUFFER_POST_REPLY *reply;
struct mps_command *cm = NULL;
int i, status;
/*
* If buffer is not enabled, just leave.
*/
*return_code = MPS_FW_DIAG_ERROR_POST_FAILED;
if (!pBuffer->enabled) {
return (MPS_DIAG_FAILURE);
}
/*
* Clear some flags initially.
*/
pBuffer->force_release = FALSE;
pBuffer->valid_data = FALSE;
pBuffer->owned_by_firmware = FALSE;
/*
* Get a command.
*/
cm = mps_alloc_command(sc);
if (cm == NULL) {
mps_printf(sc, "%s: no mps requests\n", __func__);
return (MPS_DIAG_FAILURE);
}
/*
* Build the request for releasing the FW Diag Buffer and send it.
*/
req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
req->BufferType = pBuffer->buffer_type;
req->ExtendedType = pBuffer->extended_type;
req->BufferLength = pBuffer->size;
for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
req->ProductSpecific[i] = pBuffer->product_specific[i];
mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
cm->cm_data = NULL;
cm->cm_length = 0;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_complete_data = NULL;
/*
* Send command synchronously.
*/
status = mps_wait_command(sc, cm, 30, CAN_SLEEP);
if (status) {
mps_printf(sc, "%s: invalid request: error %d\n", __func__,
status);
status = MPS_DIAG_FAILURE;
goto done;
}
/*
* Process POST reply.
*/
reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) {
status = MPS_DIAG_FAILURE;
mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed "
"with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
"TransferLength = 0x%x\n", __func__, reply->IOCStatus,
reply->IOCLogInfo, reply->TransferLength);
goto done;
}
/*
* Post was successful.
*/
pBuffer->valid_data = TRUE;
pBuffer->owned_by_firmware = TRUE;
*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
status = MPS_DIAG_SUCCESS;
done:
mps_free_command(sc, cm);
return (status);
}
static int
mps_release_fw_diag_buffer(struct mps_softc *sc,
mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
uint32_t diag_type)
{
MPI2_DIAG_RELEASE_REQUEST *req;
MPI2_DIAG_RELEASE_REPLY *reply;
struct mps_command *cm = NULL;
int status;
/*
* If buffer is not enabled, just leave.
*/
*return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED;
if (!pBuffer->enabled) {
mps_dprint(sc, MPS_USER, "%s: This buffer type is not "
"supported by the IOC", __func__);
return (MPS_DIAG_FAILURE);
}
/*
* Clear some flags initially.
*/
pBuffer->force_release = FALSE;
pBuffer->valid_data = FALSE;
pBuffer->owned_by_firmware = FALSE;
/*
* Get a command.
*/
cm = mps_alloc_command(sc);
if (cm == NULL) {
mps_printf(sc, "%s: no mps requests\n", __func__);
return (MPS_DIAG_FAILURE);
}
/*
* Build the request for releasing the FW Diag Buffer and send it.
*/
req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
req->Function = MPI2_FUNCTION_DIAG_RELEASE;
req->BufferType = pBuffer->buffer_type;
cm->cm_data = NULL;
cm->cm_length = 0;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_complete_data = NULL;
/*
* Send command synchronously.
*/
status = mps_wait_command(sc, cm, 30, CAN_SLEEP);
if (status) {
mps_printf(sc, "%s: invalid request: error %d\n", __func__,
status);
status = MPS_DIAG_FAILURE;
goto done;
}
/*
* Process RELEASE reply.
*/
reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
if ((reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) ||
pBuffer->owned_by_firmware) {
status = MPS_DIAG_FAILURE;
mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer "
"failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
__func__, reply->IOCStatus, reply->IOCLogInfo);
goto done;
}
/*
* Release was successful.
*/
*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
status = MPS_DIAG_SUCCESS;
/*
* If this was for an UNREGISTER diag type command, clear the unique ID.
*/
if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) {
pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID;
}
done:
return (status);
}
static int
mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register,
uint32_t *return_code)
{
mps_fw_diagnostic_buffer_t *pBuffer;
uint8_t extended_type, buffer_type, i;
uint32_t buffer_size;
uint32_t unique_id;
int status;
extended_type = diag_register->ExtendedType;
buffer_type = diag_register->BufferType;
buffer_size = diag_register->RequestedBufferSize;
unique_id = diag_register->UniqueId;
/*
* Check for valid buffer type
*/
if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
return (MPS_DIAG_FAILURE);
}
/*
* Get the current buffer and look up the unique ID. The unique ID
* should not be found. If it is, the ID is already in use.
*/
i = mps_get_fw_diag_buffer_number(sc, unique_id);
pBuffer = &sc->fw_diag_buffer_list[buffer_type];
if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
return (MPS_DIAG_FAILURE);
}
/*
* The buffer's unique ID should not be registered yet, and the given
* unique ID cannot be 0.
*/
if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) ||
(unique_id == MPS_FW_DIAG_INVALID_UID)) {
*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
return (MPS_DIAG_FAILURE);
}
/*
* If this buffer is already posted as immediate, just change owner.
*/
if (pBuffer->immediate && pBuffer->owned_by_firmware &&
(pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) {
pBuffer->immediate = FALSE;
pBuffer->unique_id = unique_id;
return (MPS_DIAG_SUCCESS);
}
/*
* Post a new buffer after checking if it's enabled. The DMA buffer
* that is allocated will be contiguous (nsegments = 1).
*/
if (!pBuffer->enabled) {
*return_code = MPS_FW_DIAG_ERROR_NO_BUFFER;
return (MPS_DIAG_FAILURE);
}
if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
buffer_size, /* maxsize */
1, /* nsegments */
buffer_size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->fw_diag_dmat)) {
device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA "
"tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
device_printf(sc->mps_dev, "Cannot allocate FW diag buffer "
"memory\n");
return (ENOMEM);
}
bzero(sc->fw_diag_buffer, buffer_size);
bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer,
buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0);
pBuffer->size = buffer_size;
/*
* Copy the given info to the diag buffer and post the buffer.
*/
pBuffer->buffer_type = buffer_type;
pBuffer->immediate = FALSE;
if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
i++) {
pBuffer->product_specific[i] =
diag_register->ProductSpecific[i];
}
}
pBuffer->extended_type = extended_type;
pBuffer->unique_id = unique_id;
status = mps_post_fw_diag_buffer(sc, pBuffer, return_code);
/*
* In case there was a failure, free the DMA buffer.
*/
if (status == MPS_DIAG_FAILURE) {
if (sc->fw_diag_busaddr != 0)
bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
if (sc->fw_diag_buffer != NULL)
bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
sc->fw_diag_map);
if (sc->fw_diag_dmat != NULL)
bus_dma_tag_destroy(sc->fw_diag_dmat);
}
return (status);
}
static int
mps_diag_unregister(struct mps_softc *sc,
mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
{
mps_fw_diagnostic_buffer_t *pBuffer;
uint8_t i;
uint32_t unique_id;
int status;
unique_id = diag_unregister->UniqueId;
/*
* Get the current buffer and look up the unique ID. The unique ID
* should be there.
*/
i = mps_get_fw_diag_buffer_number(sc, unique_id);
if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
return (MPS_DIAG_FAILURE);
}
pBuffer = &sc->fw_diag_buffer_list[i];
/*
* Try to release the buffer from FW before freeing it. If release
* fails, don't free the DMA buffer in case FW tries to access it
* later. If buffer is not owned by firmware, can't release it.
*/
if (!pBuffer->owned_by_firmware) {
status = MPS_DIAG_SUCCESS;
} else {
status = mps_release_fw_diag_buffer(sc, pBuffer, return_code,
MPS_FW_DIAG_TYPE_UNREGISTER);
}
/*
* At this point, return the current status no matter what happens with
* the DMA buffer.
*/
pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID;
if (status == MPS_DIAG_SUCCESS) {
if (sc->fw_diag_busaddr != 0)
bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
if (sc->fw_diag_buffer != NULL)
bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
sc->fw_diag_map);
if (sc->fw_diag_dmat != NULL)
bus_dma_tag_destroy(sc->fw_diag_dmat);
}
return (status);
}
static int
mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query,
uint32_t *return_code)
{
mps_fw_diagnostic_buffer_t *pBuffer;
uint8_t i;
uint32_t unique_id;
unique_id = diag_query->UniqueId;
/*
* If ID is valid, query on ID.
* If ID is invalid, query on buffer type.
*/
if (unique_id == MPS_FW_DIAG_INVALID_UID) {
i = diag_query->BufferType;
if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
return (MPS_DIAG_FAILURE);
}
} else {
i = mps_get_fw_diag_buffer_number(sc, unique_id);
if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
return (MPS_DIAG_FAILURE);
}
}
/*
* Fill query structure with the diag buffer info.
*/
pBuffer = &sc->fw_diag_buffer_list[i];
diag_query->BufferType = pBuffer->buffer_type;
diag_query->ExtendedType = pBuffer->extended_type;
if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
i++) {
diag_query->ProductSpecific[i] =
pBuffer->product_specific[i];
}
}
diag_query->TotalBufferSize = pBuffer->size;
diag_query->DriverAddedBufferSize = 0;
diag_query->UniqueId = pBuffer->unique_id;
diag_query->ApplicationFlags = 0;
diag_query->DiagnosticFlags = 0;
/*
* Set/Clear application flags
*/
if (pBuffer->immediate) {
diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED;
} else {
diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED;
}
if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID;
} else {
diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID;
}
if (pBuffer->owned_by_firmware) {
diag_query->ApplicationFlags |=
MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
} else {
diag_query->ApplicationFlags &=
~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
}
return (MPS_DIAG_SUCCESS);
}
static int
mps_diag_read_buffer(struct mps_softc *sc,
mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
uint32_t *return_code)
{
mps_fw_diagnostic_buffer_t *pBuffer;
uint8_t i, *pData;
uint32_t unique_id;
int status;
unique_id = diag_read_buffer->UniqueId;
/*
* Get the current buffer and look up the unique ID. The unique ID
* should be there.
*/
i = mps_get_fw_diag_buffer_number(sc, unique_id);
if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
return (MPS_DIAG_FAILURE);
}
pBuffer = &sc->fw_diag_buffer_list[i];
/*
* Make sure requested read is within limits
*/
if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
pBuffer->size) {
*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
return (MPS_DIAG_FAILURE);
}
/*
* Copy the requested data from DMA to the diag_read_buffer. The DMA
* buffer that was allocated is one contiguous buffer.
*/
pData = (uint8_t *)(sc->fw_diag_buffer +
diag_read_buffer->StartingOffset);
if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
return (MPS_DIAG_FAILURE);
diag_read_buffer->Status = 0;
/*
* Set or clear the Force Release flag.
*/
if (pBuffer->force_release) {
diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE;
} else {
diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE;
}
/*
* If buffer is to be reregistered, make sure it's not already owned by
* firmware first.
*/
status = MPS_DIAG_SUCCESS;
if (!pBuffer->owned_by_firmware) {
if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) {
status = mps_post_fw_diag_buffer(sc, pBuffer,
return_code);
}
}
return (status);
}
static int
mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release,
uint32_t *return_code)
{
mps_fw_diagnostic_buffer_t *pBuffer;
uint8_t i;
uint32_t unique_id;
int status;
unique_id = diag_release->UniqueId;
/*
* Get the current buffer and look up the unique ID. The unique ID
* should be there.
*/
i = mps_get_fw_diag_buffer_number(sc, unique_id);
if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
return (MPS_DIAG_FAILURE);
}
pBuffer = &sc->fw_diag_buffer_list[i];
/*
* If buffer is not owned by firmware, it's already been released.
*/
if (!pBuffer->owned_by_firmware) {
*return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED;
return (MPS_DIAG_FAILURE);
}
/*
* Release the buffer.
*/
status = mps_release_fw_diag_buffer(sc, pBuffer, return_code,
MPS_FW_DIAG_TYPE_RELEASE);
return (status);
}
static int
mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action,
uint32_t length, uint32_t *return_code)
{
mps_fw_diag_register_t diag_register;
mps_fw_diag_unregister_t diag_unregister;
mps_fw_diag_query_t diag_query;
mps_diag_read_buffer_t diag_read_buffer;
mps_fw_diag_release_t diag_release;
int status = MPS_DIAG_SUCCESS;
uint32_t original_return_code;
original_return_code = *return_code;
*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
switch (action) {
case MPS_FW_DIAG_TYPE_REGISTER:
if (!length) {
*return_code =
MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = MPS_DIAG_FAILURE;
break;
}
if (copyin(diag_action, &diag_register,
sizeof(diag_register)) != 0)
return (MPS_DIAG_FAILURE);
status = mps_diag_register(sc, &diag_register,
return_code);
break;
case MPS_FW_DIAG_TYPE_UNREGISTER:
if (length < sizeof(diag_unregister)) {
*return_code =
MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = MPS_DIAG_FAILURE;
break;
}
if (copyin(diag_action, &diag_unregister,
sizeof(diag_unregister)) != 0)
return (MPS_DIAG_FAILURE);
status = mps_diag_unregister(sc, &diag_unregister,
return_code);
break;
case MPS_FW_DIAG_TYPE_QUERY:
if (length < sizeof (diag_query)) {
*return_code =
MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = MPS_DIAG_FAILURE;
break;
}
if (copyin(diag_action, &diag_query, sizeof(diag_query))
!= 0)
return (MPS_DIAG_FAILURE);
status = mps_diag_query(sc, &diag_query, return_code);
if (status == MPS_DIAG_SUCCESS)
if (copyout(&diag_query, diag_action,
sizeof (diag_query)) != 0)
return (MPS_DIAG_FAILURE);
break;
case MPS_FW_DIAG_TYPE_READ_BUFFER:
if (copyin(diag_action, &diag_read_buffer,
sizeof(diag_read_buffer)) != 0)
return (MPS_DIAG_FAILURE);
if (length < diag_read_buffer.BytesToRead) {
*return_code =
MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = MPS_DIAG_FAILURE;
break;
}
status = mps_diag_read_buffer(sc, &diag_read_buffer,
PTRIN(diag_read_buffer.PtrDataBuffer),
return_code);
if (status == MPS_DIAG_SUCCESS) {
if (copyout(&diag_read_buffer, diag_action,
sizeof(diag_read_buffer) -
sizeof(diag_read_buffer.PtrDataBuffer)) !=
0)
return (MPS_DIAG_FAILURE);
}
break;
case MPS_FW_DIAG_TYPE_RELEASE:
if (length < sizeof(diag_release)) {
*return_code =
MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = MPS_DIAG_FAILURE;
break;
}
if (copyin(diag_action, &diag_release,
sizeof(diag_release)) != 0)
return (MPS_DIAG_FAILURE);
status = mps_diag_release(sc, &diag_release,
return_code);
break;
default:
*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = MPS_DIAG_FAILURE;
break;
}
if ((status == MPS_DIAG_FAILURE) &&
(original_return_code == MPS_FW_DIAG_NEW) &&
(*return_code != MPS_FW_DIAG_ERROR_SUCCESS))
status = MPS_DIAG_SUCCESS;
return (status);
}
static int
mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data)
{
int status;
/*
* Only allow one diag action at one time.
*/
if (sc->mps_flags & MPS_FLAGS_BUSY) {
mps_dprint(sc, MPS_USER, "%s: Only one FW diag command "
"allowed at a single time.", __func__);
return (EBUSY);
}
sc->mps_flags |= MPS_FLAGS_BUSY;
/*
* Send diag action request
*/
if (data->Action == MPS_FW_DIAG_TYPE_REGISTER ||
data->Action == MPS_FW_DIAG_TYPE_UNREGISTER ||
data->Action == MPS_FW_DIAG_TYPE_QUERY ||
data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER ||
data->Action == MPS_FW_DIAG_TYPE_RELEASE) {
status = mps_do_diag_action(sc, data->Action,
PTRIN(data->PtrDiagAction), data->Length,
&data->ReturnCode);
} else
status = EINVAL;
sc->mps_flags &= ~MPS_FLAGS_BUSY;
return (status);
}
/*
* Copy the event recording mask and the event queue size out. For
* clarification, the event recording mask (events_to_record) is not the same
* thing as the event mask (event_mask). events_to_record has a bit set for
* every event type that is to be recorded by the driver, and event_mask has a
* bit cleared for every event that is allowed into the driver from the IOC.
* They really have nothing to do with each other.
*/
static void
mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data)
{
uint8_t i;
mps_lock(sc);
data->Entries = MPS_EVENT_QUEUE_SIZE;
for (i = 0; i < 4; i++) {
data->Types[i] = sc->events_to_record[i];
}
mps_unlock(sc);
}
/*
* Set the driver's event mask according to what's been given. See
* mps_user_event_query for explanation of the event recording mask and the IOC
* event mask. It's the app's responsibility to enable event logging by setting
* the bits in events_to_record. Initially, no events will be logged.
*/
static void
mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data)
{
uint8_t i;
mps_lock(sc);
for (i = 0; i < 4; i++) {
sc->events_to_record[i] = data->Types[i];
}
mps_unlock(sc);
}
/*
* Copy out the events that have been recorded, up to the max events allowed.
*/
static int
mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data)
{
int status = 0;
uint32_t size;
mps_lock(sc);
size = data->Size;
if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
mps_unlock(sc);
if (copyout((void *)sc->recorded_events,
PTRIN(data->PtrEvents), size) != 0)
status = EFAULT;
mps_lock(sc);
} else {
/*
* data->Size value is not large enough to copy event data.
*/
status = EFAULT;
}
/*
* Change size value to match the number of bytes that were copied.
*/
if (status == 0)
data->Size = sizeof(sc->recorded_events);
mps_unlock(sc);
return (status);
}
/*
* Record events into the driver from the IOC if they are not masked.
*/
void
mpssas_record_event(struct mps_softc *sc,
MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
{
uint32_t event;
int i, j;
uint16_t event_data_len;
boolean_t sendAEN = FALSE;
event = event_reply->Event;
/*
* Generate a system event to let anyone who cares know that a
* LOG_ENTRY_ADDED event has occurred. This is sent no matter what the
* event mask is set to.
*/
if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
sendAEN = TRUE;
}
/*
* Record the event only if its corresponding bit is set in
* events_to_record. event_index is the index into recorded_events and
* event_number is the overall number of an event being recorded since
* start-of-day. event_index will roll over; event_number will never
* roll over.
*/
i = (uint8_t)(event / 32);
j = (uint8_t)(event % 32);
if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
i = sc->event_index;
sc->recorded_events[i].Type = event;
sc->recorded_events[i].Number = ++sc->event_number;
bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH *
4);
event_data_len = event_reply->EventDataLength;
if (event_data_len > 0) {
/*
* Limit data to size in m_event entry
*/
if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) {
event_data_len = MPS_MAX_EVENT_DATA_LENGTH;
}
for (j = 0; j < event_data_len; j++) {
sc->recorded_events[i].Data[j] =
event_reply->EventData[j];
}
/*
* check for index wrap-around
*/
if (++i == MPS_EVENT_QUEUE_SIZE) {
i = 0;
}
sc->event_index = (uint8_t)i;
/*
* Set flag to send the event.
*/
sendAEN = TRUE;
}
}
/*
* Generate a system event if flag is set to let anyone who cares know
* that an event has occurred.
*/
if (sendAEN) {
//SLM-how to send a system event (see kqueue, kevent)
// (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
// "SAS", NULL, NULL, DDI_NOSLEEP);
}
}
static int
mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data)
{
int status = 0;
switch (data->Command) {
/*
* IO access is not supported.
*/
case REG_IO_READ:
case REG_IO_WRITE:
mps_dprint(sc, MPS_USER, "IO access is not supported. "
"Use memory access.");
status = EINVAL;
break;
case REG_MEM_READ:
data->RegData = mps_regread(sc, data->RegOffset);
break;
case REG_MEM_WRITE:
mps_regwrite(sc, data->RegOffset, data->RegData);
break;
default:
status = EINVAL;
break;
}
return (status);
}
static int
mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data)
{
uint8_t bt2dh = FALSE;
uint8_t dh2bt = FALSE;
uint16_t dev_handle, bus, target;
bus = data->Bus;
target = data->TargetID;
dev_handle = data->DevHandle;
/*
* When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
* Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is
* not 0xFFFF, use DevHandle to get Bus/Target. Anything else is
* invalid.
*/
if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
dh2bt = TRUE;
if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
bt2dh = TRUE;
if (!dh2bt && !bt2dh)
return (EINVAL);
/*
* Only handle bus of 0. Make sure target is within range.
*/
if (bt2dh) {
if (bus != 0)
return (EINVAL);
if (target > sc->max_devices) {
mps_dprint(sc, MPS_FAULT, "Target ID is out of range "
"for Bus/Target to DevHandle mapping.");
return (EINVAL);
}
dev_handle = sc->mapping_table[target].dev_handle;
if (dev_handle)
data->DevHandle = dev_handle;
} else {
bus = 0;
target = mps_mapping_get_sas_id_from_handle(sc, dev_handle);
data->Bus = bus;
data->TargetID = target;
}
return (0);
}
static int
mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
struct thread *td)
{
struct mps_softc *sc;
struct mps_cfg_page_req *page_req;
struct mps_ext_cfg_page_req *ext_page_req;
void *mps_page;
int error, msleep_ret;
mps_page = NULL;
sc = dev->si_drv1;
page_req = (void *)arg;
ext_page_req = (void *)arg;
switch (cmd) {
case MPSIO_READ_CFG_HEADER:
mps_lock(sc);
error = mps_user_read_cfg_header(sc, page_req);
mps_unlock(sc);
break;
case MPSIO_READ_CFG_PAGE:
mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO);
if(!mps_page) {
mps_printf(sc, "Cannot allocate memory %s %d\n",
__func__, __LINE__);
return (ENOMEM);
}
error = copyin(page_req->buf, mps_page,
sizeof(MPI2_CONFIG_PAGE_HEADER));
if (error)
break;
mps_lock(sc);
error = mps_user_read_cfg_page(sc, page_req, mps_page);
mps_unlock(sc);
if (error)
break;
error = copyout(mps_page, page_req->buf, page_req->len);
break;
case MPSIO_READ_EXT_CFG_HEADER:
mps_lock(sc);
error = mps_user_read_extcfg_header(sc, ext_page_req);
mps_unlock(sc);
break;
case MPSIO_READ_EXT_CFG_PAGE:
mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO);
if(!mps_page) {
mps_printf(sc, "Cannot allocate memory %s %d\n",
__func__, __LINE__);
return (ENOMEM);
}
error = copyin(ext_page_req->buf, mps_page,
sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
if (error)
break;
mps_lock(sc);
error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page);
mps_unlock(sc);
if (error)
break;
error = copyout(mps_page, ext_page_req->buf, ext_page_req->len);
break;
case MPSIO_WRITE_CFG_PAGE:
mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO);
if(!mps_page) {
mps_printf(sc, "Cannot allocate memory %s %d\n",
__func__, __LINE__);
return (ENOMEM);
}
error = copyin(page_req->buf, mps_page, page_req->len);
if (error)
break;
mps_lock(sc);
error = mps_user_write_cfg_page(sc, page_req, mps_page);
mps_unlock(sc);
break;
case MPSIO_MPS_COMMAND:
error = mps_user_command(sc, (struct mps_usr_command *)arg);
break;
case MPTIOCTL_PASS_THRU:
/*
* The user has requested to pass through a command to be
* executed by the MPT firmware. Call our routine which does
* this. Only allow one passthru IOCTL at one time.
*/
error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg);
break;
case MPTIOCTL_GET_ADAPTER_DATA:
/*
* The user has requested to read adapter data. Call our
* routine which does this.
*/
error = 0;
mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg);
break;
case MPTIOCTL_GET_PCI_INFO:
/*
* The user has requested to read pci info. Call
* our routine which does this.
*/
mps_lock(sc);
error = 0;
mps_user_read_pci_info(sc, (mps_pci_info_t *)arg);
mps_unlock(sc);
break;
case MPTIOCTL_RESET_ADAPTER:
mps_lock(sc);
sc->port_enable_complete = 0;
uint32_t reinit_start = time_uptime;
error = mps_reinit(sc);
/* Sleep for 300 second. */
msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO,
"mps_porten", 300 * hz);
mps_unlock(sc);
if (msleep_ret)
printf("Port Enable did not complete after Diag "
"Reset msleep error %d.\n", msleep_ret);
else
mps_dprint(sc, MPS_USER,
"Hard Reset with Port Enable completed in %d seconds.\n",
(uint32_t) (time_uptime - reinit_start));
break;
case MPTIOCTL_DIAG_ACTION:
/*
* The user has done a diag buffer action. Call our routine
* which does this. Only allow one diag action at one time.
*/
mps_lock(sc);
error = mps_user_diag_action(sc, (mps_diag_action_t *)arg);
mps_unlock(sc);
break;
case MPTIOCTL_EVENT_QUERY:
/*
* The user has done an event query. Call our routine which does
* this.
*/
error = 0;
mps_user_event_query(sc, (mps_event_query_t *)arg);
break;
case MPTIOCTL_EVENT_ENABLE:
/*
* The user has done an event enable. Call our routine which
* does this.
*/
error = 0;
mps_user_event_enable(sc, (mps_event_enable_t *)arg);
break;
case MPTIOCTL_EVENT_REPORT:
/*
* The user has done an event report. Call our routine which
* does this.
*/
error = mps_user_event_report(sc, (mps_event_report_t *)arg);
break;
case MPTIOCTL_REG_ACCESS:
/*
* The user has requested register access. Call our routine
* which does this.
*/
mps_lock(sc);
error = mps_user_reg_access(sc, (mps_reg_access_t *)arg);
mps_unlock(sc);
break;
case MPTIOCTL_BTDH_MAPPING:
/*
* The user has requested to translate a bus/target to a
* DevHandle or a DevHandle to a bus/target. Call our routine
* which does this.
*/
error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg);
break;
default:
error = ENOIOCTL;
break;
}
if (mps_page != NULL)
free(mps_page, M_MPSUSER);
return (error);
}
#ifdef COMPAT_FREEBSD32
struct mps_cfg_page_req32 {
MPI2_CONFIG_PAGE_HEADER header;
uint32_t page_address;
uint32_t buf;
int len;
uint16_t ioc_status;
};
struct mps_ext_cfg_page_req32 {
MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
uint32_t page_address;
uint32_t buf;
int len;
uint16_t ioc_status;
};
struct mps_raid_action32 {
uint8_t action;
uint8_t volume_bus;
uint8_t volume_id;
uint8_t phys_disk_num;
uint32_t action_data_word;
uint32_t buf;
int len;
uint32_t volume_status;
uint32_t action_data[4];
uint16_t action_status;
uint16_t ioc_status;
uint8_t write;
};
struct mps_usr_command32 {
uint32_t req;
uint32_t req_len;
uint32_t rpl;
uint32_t rpl_len;
uint32_t buf;
int len;
uint32_t flags;
};
#define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32)
#define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32)
#define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32)
#define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32)
#define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32)
#define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32)
#define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32)
static int
mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
struct thread *td)
{
struct mps_cfg_page_req32 *page32 = _arg;
struct mps_ext_cfg_page_req32 *ext32 = _arg;
struct mps_raid_action32 *raid32 = _arg;
struct mps_usr_command32 *user32 = _arg;
union {
struct mps_cfg_page_req page;
struct mps_ext_cfg_page_req ext;
struct mps_raid_action raid;
struct mps_usr_command user;
} arg;
u_long cmd;
int error;
switch (cmd32) {
case MPSIO_READ_CFG_HEADER32:
case MPSIO_READ_CFG_PAGE32:
case MPSIO_WRITE_CFG_PAGE32:
if (cmd32 == MPSIO_READ_CFG_HEADER32)
cmd = MPSIO_READ_CFG_HEADER;
else if (cmd32 == MPSIO_READ_CFG_PAGE32)
cmd = MPSIO_READ_CFG_PAGE;
else
cmd = MPSIO_WRITE_CFG_PAGE;
CP(*page32, arg.page, header);
CP(*page32, arg.page, page_address);
PTRIN_CP(*page32, arg.page, buf);
CP(*page32, arg.page, len);
CP(*page32, arg.page, ioc_status);
break;
case MPSIO_READ_EXT_CFG_HEADER32:
case MPSIO_READ_EXT_CFG_PAGE32:
if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32)
cmd = MPSIO_READ_EXT_CFG_HEADER;
else
cmd = MPSIO_READ_EXT_CFG_PAGE;
CP(*ext32, arg.ext, header);
CP(*ext32, arg.ext, page_address);
PTRIN_CP(*ext32, arg.ext, buf);
CP(*ext32, arg.ext, len);
CP(*ext32, arg.ext, ioc_status);
break;
case MPSIO_RAID_ACTION32:
cmd = MPSIO_RAID_ACTION;
CP(*raid32, arg.raid, action);
CP(*raid32, arg.raid, volume_bus);
CP(*raid32, arg.raid, volume_id);
CP(*raid32, arg.raid, phys_disk_num);
CP(*raid32, arg.raid, action_data_word);
PTRIN_CP(*raid32, arg.raid, buf);
CP(*raid32, arg.raid, len);
CP(*raid32, arg.raid, volume_status);
bcopy(raid32->action_data, arg.raid.action_data,
sizeof arg.raid.action_data);
CP(*raid32, arg.raid, ioc_status);
CP(*raid32, arg.raid, write);
break;
case MPSIO_MPS_COMMAND32:
cmd = MPSIO_MPS_COMMAND;
PTRIN_CP(*user32, arg.user, req);
CP(*user32, arg.user, req_len);
PTRIN_CP(*user32, arg.user, rpl);
CP(*user32, arg.user, rpl_len);
PTRIN_CP(*user32, arg.user, buf);
CP(*user32, arg.user, len);
CP(*user32, arg.user, flags);
break;
default:
return (ENOIOCTL);
}
error = mps_ioctl(dev, cmd, &arg, flag, td);
if (error == 0 && (cmd32 & IOC_OUT) != 0) {
switch (cmd32) {
case MPSIO_READ_CFG_HEADER32:
case MPSIO_READ_CFG_PAGE32:
case MPSIO_WRITE_CFG_PAGE32:
CP(arg.page, *page32, header);
CP(arg.page, *page32, page_address);
PTROUT_CP(arg.page, *page32, buf);
CP(arg.page, *page32, len);
CP(arg.page, *page32, ioc_status);
break;
case MPSIO_READ_EXT_CFG_HEADER32:
case MPSIO_READ_EXT_CFG_PAGE32:
CP(arg.ext, *ext32, header);
CP(arg.ext, *ext32, page_address);
PTROUT_CP(arg.ext, *ext32, buf);
CP(arg.ext, *ext32, len);
CP(arg.ext, *ext32, ioc_status);
break;
case MPSIO_RAID_ACTION32:
CP(arg.raid, *raid32, action);
CP(arg.raid, *raid32, volume_bus);
CP(arg.raid, *raid32, volume_id);
CP(arg.raid, *raid32, phys_disk_num);
CP(arg.raid, *raid32, action_data_word);
PTROUT_CP(arg.raid, *raid32, buf);
CP(arg.raid, *raid32, len);
CP(arg.raid, *raid32, volume_status);
bcopy(arg.raid.action_data, raid32->action_data,
sizeof arg.raid.action_data);
CP(arg.raid, *raid32, ioc_status);
CP(arg.raid, *raid32, write);
break;
case MPSIO_MPS_COMMAND32:
PTROUT_CP(arg.user, *user32, req);
CP(arg.user, *user32, req_len);
PTROUT_CP(arg.user, *user32, rpl);
CP(arg.user, *user32, rpl_len);
PTROUT_CP(arg.user, *user32, buf);
CP(arg.user, *user32, len);
CP(arg.user, *user32, flags);
break;
}
}
return (error);
}
#endif /* COMPAT_FREEBSD32 */
static int
mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
struct thread *td)
{
#ifdef COMPAT_FREEBSD32
if (SV_CURPROC_FLAG(SV_ILP32))
return (mps_ioctl32(dev, com, arg, flag, td));
#endif
return (mps_ioctl(dev, com, arg, flag, td));
}