freebsd-skq/sys/cam/scsi/scsi_pass.c
scottl e437fbd6d8 Return a C errno for cam_periph_acquire().
There's no compelling reason to return a cam_status type for this
function and doing so only creates confusion with normal C
coding practices. It's technically an API change, but the periph API
isn't widely used. No efffective change to operation.

Reviewed by:	imp, mav, ken
Sponsored by:	Netflix
Differential Revision:	D14063
2018-02-06 06:42:25 +00:00

2275 lines
59 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/types.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/devicestat.h>
#include <sys/errno.h>
#include <sys/fcntl.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/poll.h>
#include <sys/selinfo.h>
#include <sys/sdt.h>
#include <sys/taskqueue.h>
#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <machine/bus.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_queue.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_debug.h>
#include <cam/cam_compat.h>
#include <cam/cam_xpt_periph.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_pass.h>
typedef enum {
PASS_FLAG_OPEN = 0x01,
PASS_FLAG_LOCKED = 0x02,
PASS_FLAG_INVALID = 0x04,
PASS_FLAG_INITIAL_PHYSPATH = 0x08,
PASS_FLAG_ZONE_INPROG = 0x10,
PASS_FLAG_ZONE_VALID = 0x20,
PASS_FLAG_UNMAPPED_CAPABLE = 0x40,
PASS_FLAG_ABANDONED_REF_SET = 0x80
} pass_flags;
typedef enum {
PASS_STATE_NORMAL
} pass_state;
typedef enum {
PASS_CCB_BUFFER_IO,
PASS_CCB_QUEUED_IO
} pass_ccb_types;
#define ccb_type ppriv_field0
#define ccb_ioreq ppriv_ptr1
/*
* The maximum number of memory segments we preallocate.
*/
#define PASS_MAX_SEGS 16
typedef enum {
PASS_IO_NONE = 0x00,
PASS_IO_USER_SEG_MALLOC = 0x01,
PASS_IO_KERN_SEG_MALLOC = 0x02,
PASS_IO_ABANDONED = 0x04
} pass_io_flags;
struct pass_io_req {
union ccb ccb;
union ccb *alloced_ccb;
union ccb *user_ccb_ptr;
camq_entry user_periph_links;
ccb_ppriv_area user_periph_priv;
struct cam_periph_map_info mapinfo;
pass_io_flags flags;
ccb_flags data_flags;
int num_user_segs;
bus_dma_segment_t user_segs[PASS_MAX_SEGS];
int num_kern_segs;
bus_dma_segment_t kern_segs[PASS_MAX_SEGS];
bus_dma_segment_t *user_segptr;
bus_dma_segment_t *kern_segptr;
int num_bufs;
uint32_t dirs[CAM_PERIPH_MAXMAPS];
uint32_t lengths[CAM_PERIPH_MAXMAPS];
uint8_t *user_bufs[CAM_PERIPH_MAXMAPS];
uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS];
struct bintime start_time;
TAILQ_ENTRY(pass_io_req) links;
};
struct pass_softc {
pass_state state;
pass_flags flags;
u_int8_t pd_type;
union ccb saved_ccb;
int open_count;
u_int maxio;
struct devstat *device_stats;
struct cdev *dev;
struct cdev *alias_dev;
struct task add_physpath_task;
struct task shutdown_kqueue_task;
struct selinfo read_select;
TAILQ_HEAD(, pass_io_req) incoming_queue;
TAILQ_HEAD(, pass_io_req) active_queue;
TAILQ_HEAD(, pass_io_req) abandoned_queue;
TAILQ_HEAD(, pass_io_req) done_queue;
struct cam_periph *periph;
char zone_name[12];
char io_zone_name[12];
uma_zone_t pass_zone;
uma_zone_t pass_io_zone;
size_t io_zone_size;
};
static d_open_t passopen;
static d_close_t passclose;
static d_ioctl_t passioctl;
static d_ioctl_t passdoioctl;
static d_poll_t passpoll;
static d_kqfilter_t passkqfilter;
static void passreadfiltdetach(struct knote *kn);
static int passreadfilt(struct knote *kn, long hint);
static periph_init_t passinit;
static periph_ctor_t passregister;
static periph_oninv_t passoninvalidate;
static periph_dtor_t passcleanup;
static periph_start_t passstart;
static void pass_shutdown_kqueue(void *context, int pending);
static void pass_add_physpath(void *context, int pending);
static void passasync(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
static void passdone(struct cam_periph *periph,
union ccb *done_ccb);
static int passcreatezone(struct cam_periph *periph);
static void passiocleanup(struct pass_softc *softc,
struct pass_io_req *io_req);
static int passcopysglist(struct cam_periph *periph,
struct pass_io_req *io_req,
ccb_flags direction);
static int passmemsetup(struct cam_periph *periph,
struct pass_io_req *io_req);
static int passmemdone(struct cam_periph *periph,
struct pass_io_req *io_req);
static int passerror(union ccb *ccb, u_int32_t cam_flags,
u_int32_t sense_flags);
static int passsendccb(struct cam_periph *periph, union ccb *ccb,
union ccb *inccb);
static struct periph_driver passdriver =
{
passinit, "pass",
TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
};
PERIPHDRIVER_DECLARE(pass, passdriver);
static struct cdevsw pass_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_TRACKCLOSE,
.d_open = passopen,
.d_close = passclose,
.d_ioctl = passioctl,
.d_poll = passpoll,
.d_kqfilter = passkqfilter,
.d_name = "pass",
};
static struct filterops passread_filtops = {
.f_isfd = 1,
.f_detach = passreadfiltdetach,
.f_event = passreadfilt
};
static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
static void
passinit(void)
{
cam_status status;
/*
* Install a global async callback. This callback will
* receive async callbacks like "new device found".
*/
status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
if (status != CAM_REQ_CMP) {
printf("pass: Failed to attach master async callback "
"due to status 0x%x!\n", status);
}
}
static void
passrejectios(struct cam_periph *periph)
{
struct pass_io_req *io_req, *io_req2;
struct pass_softc *softc;
softc = (struct pass_softc *)periph->softc;
/*
* The user can no longer get status for I/O on the done queue, so
* clean up all outstanding I/O on the done queue.
*/
TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
TAILQ_REMOVE(&softc->done_queue, io_req, links);
passiocleanup(softc, io_req);
uma_zfree(softc->pass_zone, io_req);
}
/*
* The underlying device is gone, so we can't issue these I/Os.
* The devfs node has been shut down, so we can't return status to
* the user. Free any I/O left on the incoming queue.
*/
TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
passiocleanup(softc, io_req);
uma_zfree(softc->pass_zone, io_req);
}
/*
* Normally we would put I/Os on the abandoned queue and acquire a
* reference when we saw the final close. But, the device went
* away and devfs may have moved everything off to deadfs by the
* time the I/O done callback is called; as a result, we won't see
* any more closes. So, if we have any active I/Os, we need to put
* them on the abandoned queue. When the abandoned queue is empty,
* we'll release the remaining reference (see below) to the peripheral.
*/
TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
TAILQ_REMOVE(&softc->active_queue, io_req, links);
io_req->flags |= PASS_IO_ABANDONED;
TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
}
/*
* If we put any I/O on the abandoned queue, acquire a reference.
*/
if ((!TAILQ_EMPTY(&softc->abandoned_queue))
&& ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
cam_periph_doacquire(periph);
softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
}
}
static void
passdevgonecb(void *arg)
{
struct cam_periph *periph;
struct mtx *mtx;
struct pass_softc *softc;
int i;
periph = (struct cam_periph *)arg;
mtx = cam_periph_mtx(periph);
mtx_lock(mtx);
softc = (struct pass_softc *)periph->softc;
KASSERT(softc->open_count >= 0, ("Negative open count %d",
softc->open_count));
/*
* When we get this callback, we will get no more close calls from
* devfs. So if we have any dangling opens, we need to release the
* reference held for that particular context.
*/
for (i = 0; i < softc->open_count; i++)
cam_periph_release_locked(periph);
softc->open_count = 0;
/*
* Release the reference held for the device node, it is gone now.
* Accordingly, inform all queued I/Os of their fate.
*/
cam_periph_release_locked(periph);
passrejectios(periph);
/*
* We reference the SIM lock directly here, instead of using
* cam_periph_unlock(). The reason is that the final call to
* cam_periph_release_locked() above could result in the periph
* getting freed. If that is the case, dereferencing the periph
* with a cam_periph_unlock() call would cause a page fault.
*/
mtx_unlock(mtx);
/*
* We have to remove our kqueue context from a thread because it
* may sleep. It would be nice if we could get a callback from
* kqueue when it is done cleaning up resources.
*/
taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
}
static void
passoninvalidate(struct cam_periph *periph)
{
struct pass_softc *softc;
softc = (struct pass_softc *)periph->softc;
/*
* De-register any async callbacks.
*/
xpt_register_async(0, passasync, periph, periph->path);
softc->flags |= PASS_FLAG_INVALID;
/*
* Tell devfs this device has gone away, and ask for a callback
* when it has cleaned up its state.
*/
destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
}
static void
passcleanup(struct cam_periph *periph)
{
struct pass_softc *softc;
softc = (struct pass_softc *)periph->softc;
cam_periph_assert(periph, MA_OWNED);
KASSERT(TAILQ_EMPTY(&softc->active_queue),
("%s called when there are commands on the active queue!\n",
__func__));
KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
("%s called when there are commands on the abandoned queue!\n",
__func__));
KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
("%s called when there are commands on the incoming queue!\n",
__func__));
KASSERT(TAILQ_EMPTY(&softc->done_queue),
("%s called when there are commands on the done queue!\n",
__func__));
devstat_remove_entry(softc->device_stats);
cam_periph_unlock(periph);
/*
* We call taskqueue_drain() for the physpath task to make sure it
* is complete. We drop the lock because this can potentially
* sleep. XXX KDM that is bad. Need a way to get a callback when
* a taskqueue is drained.
*
* Note that we don't drain the kqueue shutdown task queue. This
* is because we hold a reference on the periph for kqueue, and
* release that reference from the kqueue shutdown task queue. So
* we cannot come into this routine unless we've released that
* reference. Also, because that could be the last reference, we
* could be called from the cam_periph_release() call in
* pass_shutdown_kqueue(). In that case, the taskqueue_drain()
* would deadlock. It would be preferable if we had a way to
* get a callback when a taskqueue is done.
*/
taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
cam_periph_lock(periph);
free(softc, M_DEVBUF);
}
static void
pass_shutdown_kqueue(void *context, int pending)
{
struct cam_periph *periph;
struct pass_softc *softc;
periph = context;
softc = periph->softc;
knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
knlist_destroy(&softc->read_select.si_note);
/*
* Release the reference we held for kqueue.
*/
cam_periph_release(periph);
}
static void
pass_add_physpath(void *context, int pending)
{
struct cam_periph *periph;
struct pass_softc *softc;
struct mtx *mtx;
char *physpath;
/*
* If we have one, create a devfs alias for our
* physical path.
*/
periph = context;
softc = periph->softc;
physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
mtx = cam_periph_mtx(periph);
mtx_lock(mtx);
if (periph->flags & CAM_PERIPH_INVALID)
goto out;
if (xpt_getattr(physpath, MAXPATHLEN,
"GEOM::physpath", periph->path) == 0
&& strlen(physpath) != 0) {
mtx_unlock(mtx);
make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
softc->dev, softc->alias_dev, physpath);
mtx_lock(mtx);
}
out:
/*
* Now that we've made our alias, we no longer have to have a
* reference to the device.
*/
if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
/*
* We always acquire a reference to the periph before queueing this
* task queue function, so it won't go away before we run.
*/
while (pending-- > 0)
cam_periph_release_locked(periph);
mtx_unlock(mtx);
free(physpath, M_DEVBUF);
}
static void
passasync(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg)
{
struct cam_periph *periph;
periph = (struct cam_periph *)callback_arg;
switch (code) {
case AC_FOUND_DEVICE:
{
struct ccb_getdev *cgd;
cam_status status;
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL)
break;
/*
* Allocate a peripheral instance for
* this device and start the probe
* process.
*/
status = cam_periph_alloc(passregister, passoninvalidate,
passcleanup, passstart, "pass",
CAM_PERIPH_BIO, path,
passasync, AC_FOUND_DEVICE, cgd);
if (status != CAM_REQ_CMP
&& status != CAM_REQ_INPROG) {
const struct cam_status_entry *entry;
entry = cam_fetch_status_entry(status);
printf("passasync: Unable to attach new device "
"due to status %#x: %s\n", status, entry ?
entry->status_text : "Unknown");
}
break;
}
case AC_ADVINFO_CHANGED:
{
uintptr_t buftype;
buftype = (uintptr_t)arg;
if (buftype == CDAI_TYPE_PHYS_PATH) {
struct pass_softc *softc;
softc = (struct pass_softc *)periph->softc;
/*
* Acquire a reference to the periph before we
* start the taskqueue, so that we don't run into
* a situation where the periph goes away before
* the task queue has a chance to run.
*/
if (cam_periph_acquire(periph) != 0)
break;
taskqueue_enqueue(taskqueue_thread,
&softc->add_physpath_task);
}
break;
}
default:
cam_periph_async(periph, code, path, arg);
break;
}
}
static cam_status
passregister(struct cam_periph *periph, void *arg)
{
struct pass_softc *softc;
struct ccb_getdev *cgd;
struct ccb_pathinq cpi;
struct make_dev_args args;
int error, no_tags;
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL) {
printf("%s: no getdev CCB, can't register device\n", __func__);
return(CAM_REQ_CMP_ERR);
}
softc = (struct pass_softc *)malloc(sizeof(*softc),
M_DEVBUF, M_NOWAIT);
if (softc == NULL) {
printf("%s: Unable to probe new device. "
"Unable to allocate softc\n", __func__);
return(CAM_REQ_CMP_ERR);
}
bzero(softc, sizeof(*softc));
softc->state = PASS_STATE_NORMAL;
if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
softc->pd_type = SID_TYPE(&cgd->inq_data);
else if (cgd->protocol == PROTO_SATAPM)
softc->pd_type = T_ENCLOSURE;
else
softc->pd_type = T_DIRECT;
periph->softc = softc;
softc->periph = periph;
TAILQ_INIT(&softc->incoming_queue);
TAILQ_INIT(&softc->active_queue);
TAILQ_INIT(&softc->abandoned_queue);
TAILQ_INIT(&softc->done_queue);
snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
periph->periph_name, periph->unit_number);
snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
periph->periph_name, periph->unit_number);
softc->io_zone_size = MAXPHYS;
knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
xpt_path_inq(&cpi, periph->path);
if (cpi.maxio == 0)
softc->maxio = DFLTPHYS; /* traditional default */
else if (cpi.maxio > MAXPHYS)
softc->maxio = MAXPHYS; /* for safety */
else
softc->maxio = cpi.maxio; /* real value */
if (cpi.hba_misc & PIM_UNMAPPED)
softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
/*
* We pass in 0 for a blocksize, since we don't
* know what the blocksize of this device is, if
* it even has a blocksize.
*/
cam_periph_unlock(periph);
no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
softc->device_stats = devstat_new_entry("pass",
periph->unit_number, 0,
DEVSTAT_NO_BLOCKSIZE
| (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
softc->pd_type |
XPORT_DEVSTAT_TYPE(cpi.transport) |
DEVSTAT_TYPE_PASS,
DEVSTAT_PRIORITY_PASS);
/*
* Initialize the taskqueue handler for shutting down kqueue.
*/
TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
pass_shutdown_kqueue, periph);
/*
* Acquire a reference to the periph that we can release once we've
* cleaned up the kqueue.
*/
if (cam_periph_acquire(periph) != 0) {
xpt_print(periph->path, "%s: lost periph during "
"registration!\n", __func__);
cam_periph_lock(periph);
return (CAM_REQ_CMP_ERR);
}
/*
* Acquire a reference to the periph before we create the devfs
* instance for it. We'll release this reference once the devfs
* instance has been freed.
*/
if (cam_periph_acquire(periph) != 0) {
xpt_print(periph->path, "%s: lost periph during "
"registration!\n", __func__);
cam_periph_lock(periph);
return (CAM_REQ_CMP_ERR);
}
/* Register the device */
make_dev_args_init(&args);
args.mda_devsw = &pass_cdevsw;
args.mda_unit = periph->unit_number;
args.mda_uid = UID_ROOT;
args.mda_gid = GID_OPERATOR;
args.mda_mode = 0600;
args.mda_si_drv1 = periph;
error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
periph->unit_number);
if (error != 0) {
cam_periph_lock(periph);
cam_periph_release_locked(periph);
return (CAM_REQ_CMP_ERR);
}
/*
* Hold a reference to the periph before we create the physical
* path alias so it can't go away.
*/
if (cam_periph_acquire(periph) != 0) {
xpt_print(periph->path, "%s: lost periph during "
"registration!\n", __func__);
cam_periph_lock(periph);
return (CAM_REQ_CMP_ERR);
}
cam_periph_lock(periph);
TASK_INIT(&softc->add_physpath_task, /*priority*/0,
pass_add_physpath, periph);
/*
* See if physical path information is already available.
*/
taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
/*
* Add an async callback so that we get notified if
* this device goes away or its physical path
* (stored in the advanced info data of the EDT) has
* changed.
*/
xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
passasync, periph, periph->path);
if (bootverbose)
xpt_announce_periph(periph, NULL);
return(CAM_REQ_CMP);
}
static int
passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct cam_periph *periph;
struct pass_softc *softc;
int error;
periph = (struct cam_periph *)dev->si_drv1;
if (cam_periph_acquire(periph) != 0)
return (ENXIO);
cam_periph_lock(periph);
softc = (struct pass_softc *)periph->softc;
if (softc->flags & PASS_FLAG_INVALID) {
cam_periph_release_locked(periph);
cam_periph_unlock(periph);
return(ENXIO);
}
/*
* Don't allow access when we're running at a high securelevel.
*/
error = securelevel_gt(td->td_ucred, 1);
if (error) {
cam_periph_release_locked(periph);
cam_periph_unlock(periph);
return(error);
}
/*
* Only allow read-write access.
*/
if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
cam_periph_release_locked(periph);
cam_periph_unlock(periph);
return(EPERM);
}
/*
* We don't allow nonblocking access.
*/
if ((flags & O_NONBLOCK) != 0) {
xpt_print(periph->path, "can't do nonblocking access\n");
cam_periph_release_locked(periph);
cam_periph_unlock(periph);
return(EINVAL);
}
softc->open_count++;
cam_periph_unlock(periph);
return (error);
}
static int
passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
{
struct cam_periph *periph;
struct pass_softc *softc;
struct mtx *mtx;
periph = (struct cam_periph *)dev->si_drv1;
mtx = cam_periph_mtx(periph);
mtx_lock(mtx);
softc = periph->softc;
softc->open_count--;
if (softc->open_count == 0) {
struct pass_io_req *io_req, *io_req2;
TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
TAILQ_REMOVE(&softc->done_queue, io_req, links);
passiocleanup(softc, io_req);
uma_zfree(softc->pass_zone, io_req);
}
TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
io_req2) {
TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
passiocleanup(softc, io_req);
uma_zfree(softc->pass_zone, io_req);
}
/*
* If there are any active I/Os, we need to forcibly acquire a
* reference to the peripheral so that we don't go away
* before they complete. We'll release the reference when
* the abandoned queue is empty.
*/
io_req = TAILQ_FIRST(&softc->active_queue);
if ((io_req != NULL)
&& (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
cam_periph_doacquire(periph);
softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
}
/*
* Since the I/O in the active queue is not under our
* control, just set a flag so that we can clean it up when
* it completes and put it on the abandoned queue. This
* will prevent our sending spurious completions in the
* event that the device is opened again before these I/Os
* complete.
*/
TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
io_req2) {
TAILQ_REMOVE(&softc->active_queue, io_req, links);
io_req->flags |= PASS_IO_ABANDONED;
TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
links);
}
}
cam_periph_release_locked(periph);
/*
* We reference the lock directly here, instead of using
* cam_periph_unlock(). The reason is that the call to
* cam_periph_release_locked() above could result in the periph
* getting freed. If that is the case, dereferencing the periph
* with a cam_periph_unlock() call would cause a page fault.
*
* cam_periph_release() avoids this problem using the same method,
* but we're manually acquiring and dropping the lock here to
* protect the open count and avoid another lock acquisition and
* release.
*/
mtx_unlock(mtx);
return (0);
}
static void
passstart(struct cam_periph *periph, union ccb *start_ccb)
{
struct pass_softc *softc;
softc = (struct pass_softc *)periph->softc;
switch (softc->state) {
case PASS_STATE_NORMAL: {
struct pass_io_req *io_req;
/*
* Check for any queued I/O requests that require an
* allocated slot.
*/
io_req = TAILQ_FIRST(&softc->incoming_queue);
if (io_req == NULL) {
xpt_release_ccb(start_ccb);
break;
}
TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
/*
* Merge the user's CCB into the allocated CCB.
*/
xpt_merge_ccb(start_ccb, &io_req->ccb);
start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
start_ccb->ccb_h.ccb_ioreq = io_req;
start_ccb->ccb_h.cbfcnp = passdone;
io_req->alloced_ccb = start_ccb;
binuptime(&io_req->start_time);
devstat_start_transaction(softc->device_stats,
&io_req->start_time);
xpt_action(start_ccb);
/*
* If we have any more I/O waiting, schedule ourselves again.
*/
if (!TAILQ_EMPTY(&softc->incoming_queue))
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
break;
}
default:
break;
}
}
static void
passdone(struct cam_periph *periph, union ccb *done_ccb)
{
struct pass_softc *softc;
struct ccb_scsiio *csio;
softc = (struct pass_softc *)periph->softc;
cam_periph_assert(periph, MA_OWNED);
csio = &done_ccb->csio;
switch (csio->ccb_h.ccb_type) {
case PASS_CCB_QUEUED_IO: {
struct pass_io_req *io_req;
io_req = done_ccb->ccb_h.ccb_ioreq;
#if 0
xpt_print(periph->path, "%s: called for user CCB %p\n",
__func__, io_req->user_ccb_ptr);
#endif
if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
&& (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
&& ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
int error;
error = passerror(done_ccb, CAM_RETRY_SELTO,
SF_RETRY_UA | SF_NO_PRINT);
if (error == ERESTART) {
/*
* A retry was scheduled, so
* just return.
*/
return;
}
}
/*
* Copy the allocated CCB contents back to the malloced CCB
* so we can give status back to the user when he requests it.
*/
bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
/*
* Log data/transaction completion with devstat(9).
*/
switch (done_ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
devstat_end_transaction(softc->device_stats,
done_ccb->csio.dxfer_len - done_ccb->csio.resid,
done_ccb->csio.tag_action & 0x3,
((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
(done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
DEVSTAT_WRITE : DEVSTAT_READ, NULL,
&io_req->start_time);
break;
case XPT_ATA_IO:
devstat_end_transaction(softc->device_stats,
done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
0, /* Not used in ATA */
((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
(done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
DEVSTAT_WRITE : DEVSTAT_READ, NULL,
&io_req->start_time);
break;
case XPT_SMP_IO:
/*
* XXX KDM this isn't quite right, but there isn't
* currently an easy way to represent a bidirectional
* transfer in devstat. The only way to do it
* and have the byte counts come out right would
* mean that we would have to record two
* transactions, one for the request and one for the
* response. For now, so that we report something,
* just treat the entire thing as a read.
*/
devstat_end_transaction(softc->device_stats,
done_ccb->smpio.smp_request_len +
done_ccb->smpio.smp_response_len,
DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
&io_req->start_time);
break;
default:
devstat_end_transaction(softc->device_stats, 0,
DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
&io_req->start_time);
break;
}
/*
* In the normal case, take the completed I/O off of the
* active queue and put it on the done queue. Notitfy the
* user that we have a completed I/O.
*/
if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
TAILQ_REMOVE(&softc->active_queue, io_req, links);
TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
selwakeuppri(&softc->read_select, PRIBIO);
KNOTE_LOCKED(&softc->read_select.si_note, 0);
} else {
/*
* In the case of an abandoned I/O (final close
* without fetching the I/O), take it off of the
* abandoned queue and free it.
*/
TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
passiocleanup(softc, io_req);
uma_zfree(softc->pass_zone, io_req);
/*
* Release the done_ccb here, since we may wind up
* freeing the peripheral when we decrement the
* reference count below.
*/
xpt_release_ccb(done_ccb);
/*
* If the abandoned queue is empty, we can release
* our reference to the periph since we won't have
* any more completions coming.
*/
if ((TAILQ_EMPTY(&softc->abandoned_queue))
&& (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
cam_periph_release_locked(periph);
}
/*
* We have already released the CCB, so we can
* return.
*/
return;
}
break;
}
}
xpt_release_ccb(done_ccb);
}
static int
passcreatezone(struct cam_periph *periph)
{
struct pass_softc *softc;
int error;
error = 0;
softc = (struct pass_softc *)periph->softc;
cam_periph_assert(periph, MA_OWNED);
KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
("%s called when the pass(4) zone is valid!\n", __func__));
KASSERT((softc->pass_zone == NULL),
("%s called when the pass(4) zone is allocated!\n", __func__));
if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
/*
* We're the first context through, so we need to create
* the pass(4) UMA zone for I/O requests.
*/
softc->flags |= PASS_FLAG_ZONE_INPROG;
/*
* uma_zcreate() does a blocking (M_WAITOK) allocation,
* so we cannot hold a mutex while we call it.
*/
cam_periph_unlock(periph);
softc->pass_zone = uma_zcreate(softc->zone_name,
sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
/*align*/ 0, /*flags*/ 0);
softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
softc->io_zone_size, NULL, NULL, NULL, NULL,
/*align*/ 0, /*flags*/ 0);
cam_periph_lock(periph);
if ((softc->pass_zone == NULL)
|| (softc->pass_io_zone == NULL)) {
if (softc->pass_zone == NULL)
xpt_print(periph->path, "unable to allocate "
"IO Req UMA zone\n");
else
xpt_print(periph->path, "unable to allocate "
"IO UMA zone\n");
softc->flags &= ~PASS_FLAG_ZONE_INPROG;
goto bailout;
}
/*
* Set the flags appropriately and notify any other waiters.
*/
softc->flags &= PASS_FLAG_ZONE_INPROG;
softc->flags |= PASS_FLAG_ZONE_VALID;
wakeup(&softc->pass_zone);
} else {
/*
* In this case, the UMA zone has not yet been created, but
* another context is in the process of creating it. We
* need to sleep until the creation is either done or has
* failed.
*/
while ((softc->flags & PASS_FLAG_ZONE_INPROG)
&& ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
error = msleep(&softc->pass_zone,
cam_periph_mtx(periph), PRIBIO,
"paszon", 0);
if (error != 0)
goto bailout;
}
/*
* If the zone creation failed, no luck for the user.
*/
if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
error = ENOMEM;
goto bailout;
}
}
bailout:
return (error);
}
static void
passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
{
union ccb *ccb;
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
int i, numbufs;
ccb = &io_req->ccb;
switch (ccb->ccb_h.func_code) {
case XPT_DEV_MATCH:
numbufs = min(io_req->num_bufs, 2);
if (numbufs == 1) {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
} else {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
}
break;
case XPT_SCSI_IO:
case XPT_CONT_TARGET_IO:
data_ptrs[0] = &ccb->csio.data_ptr;
numbufs = min(io_req->num_bufs, 1);
break;
case XPT_ATA_IO:
data_ptrs[0] = &ccb->ataio.data_ptr;
numbufs = min(io_req->num_bufs, 1);
break;
case XPT_SMP_IO:
numbufs = min(io_req->num_bufs, 2);
data_ptrs[0] = &ccb->smpio.smp_request;
data_ptrs[1] = &ccb->smpio.smp_response;
break;
case XPT_DEV_ADVINFO:
numbufs = min(io_req->num_bufs, 1);
data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
break;
case XPT_NVME_IO:
case XPT_NVME_ADMIN:
data_ptrs[0] = &ccb->nvmeio.data_ptr;
numbufs = min(io_req->num_bufs, 1);
break;
default:
/* allow ourselves to be swapped once again */
return;
break; /* NOTREACHED */
}
if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
free(io_req->user_segptr, M_SCSIPASS);
io_req->user_segptr = NULL;
}
/*
* We only want to free memory we malloced.
*/
if (io_req->data_flags == CAM_DATA_VADDR) {
for (i = 0; i < io_req->num_bufs; i++) {
if (io_req->kern_bufs[i] == NULL)
continue;
free(io_req->kern_bufs[i], M_SCSIPASS);
io_req->kern_bufs[i] = NULL;
}
} else if (io_req->data_flags == CAM_DATA_SG) {
for (i = 0; i < io_req->num_kern_segs; i++) {
if ((uint8_t *)(uintptr_t)
io_req->kern_segptr[i].ds_addr == NULL)
continue;
uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
io_req->kern_segptr[i].ds_addr);
io_req->kern_segptr[i].ds_addr = 0;
}
}
if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
free(io_req->kern_segptr, M_SCSIPASS);
io_req->kern_segptr = NULL;
}
if (io_req->data_flags != CAM_DATA_PADDR) {
for (i = 0; i < numbufs; i++) {
/*
* Restore the user's buffer pointers to their
* previous values.
*/
if (io_req->user_bufs[i] != NULL)
*data_ptrs[i] = io_req->user_bufs[i];
}
}
}
static int
passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
ccb_flags direction)
{
bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
bus_dma_segment_t *user_sglist, *kern_sglist;
int i, j, error;
error = 0;
kern_watermark = 0;
user_watermark = 0;
len_to_copy = 0;
len_copied = 0;
user_sglist = io_req->user_segptr;
kern_sglist = io_req->kern_segptr;
for (i = 0, j = 0; i < io_req->num_user_segs &&
j < io_req->num_kern_segs;) {
uint8_t *user_ptr, *kern_ptr;
len_to_copy = min(user_sglist[i].ds_len -user_watermark,
kern_sglist[j].ds_len - kern_watermark);
user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
user_ptr = user_ptr + user_watermark;
kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
kern_ptr = kern_ptr + kern_watermark;
user_watermark += len_to_copy;
kern_watermark += len_to_copy;
if (!useracc(user_ptr, len_to_copy,
(direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
xpt_print(periph->path, "%s: unable to access user "
"S/G list element %p len %zu\n", __func__,
user_ptr, len_to_copy);
error = EFAULT;
goto bailout;
}
if (direction == CAM_DIR_IN) {
error = copyout(kern_ptr, user_ptr, len_to_copy);
if (error != 0) {
xpt_print(periph->path, "%s: copyout of %u "
"bytes from %p to %p failed with "
"error %d\n", __func__, len_to_copy,
kern_ptr, user_ptr, error);
goto bailout;
}
} else {
error = copyin(user_ptr, kern_ptr, len_to_copy);
if (error != 0) {
xpt_print(periph->path, "%s: copyin of %u "
"bytes from %p to %p failed with "
"error %d\n", __func__, len_to_copy,
user_ptr, kern_ptr, error);
goto bailout;
}
}
len_copied += len_to_copy;
if (user_sglist[i].ds_len == user_watermark) {
i++;
user_watermark = 0;
}
if (kern_sglist[j].ds_len == kern_watermark) {
j++;
kern_watermark = 0;
}
}
bailout:
return (error);
}
static int
passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
{
union ccb *ccb;
struct pass_softc *softc;
int numbufs, i;
uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
uint32_t lengths[CAM_PERIPH_MAXMAPS];
uint32_t dirs[CAM_PERIPH_MAXMAPS];
uint32_t num_segs;
uint16_t *seg_cnt_ptr;
size_t maxmap;
int error;
cam_periph_assert(periph, MA_NOTOWNED);
softc = periph->softc;
error = 0;
ccb = &io_req->ccb;
maxmap = 0;
num_segs = 0;
seg_cnt_ptr = NULL;
switch(ccb->ccb_h.func_code) {
case XPT_DEV_MATCH:
if (ccb->cdm.match_buf_len == 0) {
printf("%s: invalid match buffer length 0\n", __func__);
return(EINVAL);
}
if (ccb->cdm.pattern_buf_len > 0) {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
lengths[0] = ccb->cdm.pattern_buf_len;
dirs[0] = CAM_DIR_OUT;
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
lengths[1] = ccb->cdm.match_buf_len;
dirs[1] = CAM_DIR_IN;
numbufs = 2;
} else {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
lengths[0] = ccb->cdm.match_buf_len;
dirs[0] = CAM_DIR_IN;
numbufs = 1;
}
io_req->data_flags = CAM_DATA_VADDR;
break;
case XPT_SCSI_IO:
case XPT_CONT_TARGET_IO:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return(0);
/*
* The user shouldn't be able to supply a bio.
*/
if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
return (EINVAL);
io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
data_ptrs[0] = &ccb->csio.data_ptr;
lengths[0] = ccb->csio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
num_segs = ccb->csio.sglist_cnt;
seg_cnt_ptr = &ccb->csio.sglist_cnt;
numbufs = 1;
maxmap = softc->maxio;
break;
case XPT_ATA_IO:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return(0);
/*
* We only support a single virtual address for ATA I/O.
*/
if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
return (EINVAL);
io_req->data_flags = CAM_DATA_VADDR;
data_ptrs[0] = &ccb->ataio.data_ptr;
lengths[0] = ccb->ataio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
maxmap = softc->maxio;
break;
case XPT_SMP_IO:
io_req->data_flags = CAM_DATA_VADDR;
data_ptrs[0] = &ccb->smpio.smp_request;
lengths[0] = ccb->smpio.smp_request_len;
dirs[0] = CAM_DIR_OUT;
data_ptrs[1] = &ccb->smpio.smp_response;
lengths[1] = ccb->smpio.smp_response_len;
dirs[1] = CAM_DIR_IN;
numbufs = 2;
maxmap = softc->maxio;
break;
case XPT_DEV_ADVINFO:
if (ccb->cdai.bufsiz == 0)
return (0);
io_req->data_flags = CAM_DATA_VADDR;
data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
lengths[0] = ccb->cdai.bufsiz;
dirs[0] = CAM_DIR_IN;
numbufs = 1;
break;
case XPT_NVME_ADMIN:
case XPT_NVME_IO:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return (0);
io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
data_ptrs[0] = &ccb->nvmeio.data_ptr;
lengths[0] = ccb->nvmeio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
num_segs = ccb->nvmeio.sglist_cnt;
seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
numbufs = 1;
maxmap = softc->maxio;
break;
default:
return(EINVAL);
break; /* NOTREACHED */
}
io_req->num_bufs = numbufs;
/*
* If there is a maximum, check to make sure that the user's
* request fits within the limit. In general, we should only have
* a maximum length for requests that go to hardware. Otherwise it
* is whatever we're able to malloc.
*/
for (i = 0; i < numbufs; i++) {
io_req->user_bufs[i] = *data_ptrs[i];
io_req->dirs[i] = dirs[i];
io_req->lengths[i] = lengths[i];
if (maxmap == 0)
continue;
if (lengths[i] <= maxmap)
continue;
xpt_print(periph->path, "%s: data length %u > max allowed %u "
"bytes\n", __func__, lengths[i], maxmap);
error = EINVAL;
goto bailout;
}
switch (io_req->data_flags) {
case CAM_DATA_VADDR:
/* Map or copy the buffer into kernel address space */
for (i = 0; i < numbufs; i++) {
uint8_t *tmp_buf;
/*
* If for some reason no length is specified, we
* don't need to allocate anything.
*/
if (io_req->lengths[i] == 0)
continue;
/*
* Make sure that the user's buffer is accessible
* to that process.
*/
if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
(io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
VM_PROT_READ)) {
xpt_print(periph->path, "%s: user address %p "
"length %u is not accessible\n", __func__,
io_req->user_bufs[i], io_req->lengths[i]);
error = EFAULT;
goto bailout;
}
tmp_buf = malloc(lengths[i], M_SCSIPASS,
M_WAITOK | M_ZERO);
io_req->kern_bufs[i] = tmp_buf;
*data_ptrs[i] = tmp_buf;
#if 0
xpt_print(periph->path, "%s: malloced %p len %u, user "
"buffer %p, operation: %s\n", __func__,
tmp_buf, lengths[i], io_req->user_bufs[i],
(dirs[i] == CAM_DIR_IN) ? "read" : "write");
#endif
/*
* We only need to copy in if the user is writing.
*/
if (dirs[i] != CAM_DIR_OUT)
continue;
error = copyin(io_req->user_bufs[i],
io_req->kern_bufs[i], lengths[i]);
if (error != 0) {
xpt_print(periph->path, "%s: copy of user "
"buffer from %p to %p failed with "
"error %d\n", __func__,
io_req->user_bufs[i],
io_req->kern_bufs[i], error);
goto bailout;
}
}
break;
case CAM_DATA_PADDR:
/* Pass down the pointer as-is */
break;
case CAM_DATA_SG: {
size_t sg_length, size_to_go, alloc_size;
uint32_t num_segs_needed;
/*
* Copy the user S/G list in, and then copy in the
* individual segments.
*/
/*
* We shouldn't see this, but check just in case.
*/
if (numbufs != 1) {
xpt_print(periph->path, "%s: cannot currently handle "
"more than one S/G list per CCB\n", __func__);
error = EINVAL;
goto bailout;
}
/*
* We have to have at least one segment.
*/
if (num_segs == 0) {
xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
"but sglist_cnt=0!\n", __func__);
error = EINVAL;
goto bailout;
}
/*
* Make sure the user specified the total length and didn't
* just leave it to us to decode the S/G list.
*/
if (lengths[0] == 0) {
xpt_print(periph->path, "%s: no dxfer_len specified, "
"but CAM_DATA_SG flag is set!\n", __func__);
error = EINVAL;
goto bailout;
}
/*
* We allocate buffers in io_zone_size increments for an
* S/G list. This will generally be MAXPHYS.
*/
if (lengths[0] <= softc->io_zone_size)
num_segs_needed = 1;
else {
num_segs_needed = lengths[0] / softc->io_zone_size;
if ((lengths[0] % softc->io_zone_size) != 0)
num_segs_needed++;
}
/* Figure out the size of the S/G list */
sg_length = num_segs * sizeof(bus_dma_segment_t);
io_req->num_user_segs = num_segs;
io_req->num_kern_segs = num_segs_needed;
/* Save the user's S/G list pointer for later restoration */
io_req->user_bufs[0] = *data_ptrs[0];
/*
* If we have enough segments allocated by default to handle
* the length of the user's S/G list,
*/
if (num_segs > PASS_MAX_SEGS) {
io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
io_req->flags |= PASS_IO_USER_SEG_MALLOC;
} else
io_req->user_segptr = io_req->user_segs;
if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
xpt_print(periph->path, "%s: unable to access user "
"S/G list at %p\n", __func__, *data_ptrs[0]);
error = EFAULT;
goto bailout;
}
error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
if (error != 0) {
xpt_print(periph->path, "%s: copy of user S/G list "
"from %p to %p failed with error %d\n",
__func__, *data_ptrs[0], io_req->user_segptr,
error);
goto bailout;
}
if (num_segs_needed > PASS_MAX_SEGS) {
io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
} else {
io_req->kern_segptr = io_req->kern_segs;
}
/*
* Allocate the kernel S/G list.
*/
for (size_to_go = lengths[0], i = 0;
size_to_go > 0 && i < num_segs_needed;
i++, size_to_go -= alloc_size) {
uint8_t *kern_ptr;
alloc_size = min(size_to_go, softc->io_zone_size);
kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
io_req->kern_segptr[i].ds_addr =
(bus_addr_t)(uintptr_t)kern_ptr;
io_req->kern_segptr[i].ds_len = alloc_size;
}
if (size_to_go > 0) {
printf("%s: size_to_go = %zu, software error!\n",
__func__, size_to_go);
error = EINVAL;
goto bailout;
}
*data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
*seg_cnt_ptr = io_req->num_kern_segs;
/*
* We only need to copy data here if the user is writing.
*/
if (dirs[0] == CAM_DIR_OUT)
error = passcopysglist(periph, io_req, dirs[0]);
break;
}
case CAM_DATA_SG_PADDR: {
size_t sg_length;
/*
* We shouldn't see this, but check just in case.
*/
if (numbufs != 1) {
printf("%s: cannot currently handle more than one "
"S/G list per CCB\n", __func__);
error = EINVAL;
goto bailout;
}
/*
* We have to have at least one segment.
*/
if (num_segs == 0) {
xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
"set, but sglist_cnt=0!\n", __func__);
error = EINVAL;
goto bailout;
}
/*
* Make sure the user specified the total length and didn't
* just leave it to us to decode the S/G list.
*/
if (lengths[0] == 0) {
xpt_print(periph->path, "%s: no dxfer_len specified, "
"but CAM_DATA_SG flag is set!\n", __func__);
error = EINVAL;
goto bailout;
}
/* Figure out the size of the S/G list */
sg_length = num_segs * sizeof(bus_dma_segment_t);
io_req->num_user_segs = num_segs;
io_req->num_kern_segs = io_req->num_user_segs;
/* Save the user's S/G list pointer for later restoration */
io_req->user_bufs[0] = *data_ptrs[0];
if (num_segs > PASS_MAX_SEGS) {
io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
io_req->flags |= PASS_IO_USER_SEG_MALLOC;
} else
io_req->user_segptr = io_req->user_segs;
io_req->kern_segptr = io_req->user_segptr;
error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
if (error != 0) {
xpt_print(periph->path, "%s: copy of user S/G list "
"from %p to %p failed with error %d\n",
__func__, *data_ptrs[0], io_req->user_segptr,
error);
goto bailout;
}
break;
}
default:
case CAM_DATA_BIO:
/*
* A user shouldn't be attaching a bio to the CCB. It
* isn't a user-accessible structure.
*/
error = EINVAL;
break;
}
bailout:
if (error != 0)
passiocleanup(softc, io_req);
return (error);
}
static int
passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
{
struct pass_softc *softc;
int error;
int i;
error = 0;
softc = (struct pass_softc *)periph->softc;
switch (io_req->data_flags) {
case CAM_DATA_VADDR:
/*
* Copy back to the user buffer if this was a read.
*/
for (i = 0; i < io_req->num_bufs; i++) {
if (io_req->dirs[i] != CAM_DIR_IN)
continue;
error = copyout(io_req->kern_bufs[i],
io_req->user_bufs[i], io_req->lengths[i]);
if (error != 0) {
xpt_print(periph->path, "Unable to copy %u "
"bytes from %p to user address %p\n",
io_req->lengths[i],
io_req->kern_bufs[i],
io_req->user_bufs[i]);
goto bailout;
}
}
break;
case CAM_DATA_PADDR:
/* Do nothing. The pointer is a physical address already */
break;
case CAM_DATA_SG:
/*
* Copy back to the user buffer if this was a read.
* Restore the user's S/G list buffer pointer.
*/
if (io_req->dirs[0] == CAM_DIR_IN)
error = passcopysglist(periph, io_req, io_req->dirs[0]);
break;
case CAM_DATA_SG_PADDR:
/*
* Restore the user's S/G list buffer pointer. No need to
* copy.
*/
break;
default:
case CAM_DATA_BIO:
error = EINVAL;
break;
}
bailout:
/*
* Reset the user's pointers to their original values and free
* allocated memory.
*/
passiocleanup(softc, io_req);
return (error);
}
static int
passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
{
int error;
if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
}
return (error);
}
static int
passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
{
struct cam_periph *periph;
struct pass_softc *softc;
int error;
uint32_t priority;
periph = (struct cam_periph *)dev->si_drv1;
cam_periph_lock(periph);
softc = (struct pass_softc *)periph->softc;
error = 0;
switch (cmd) {
case CAMIOCOMMAND:
{
union ccb *inccb;
union ccb *ccb;
int ccb_malloced;
inccb = (union ccb *)addr;
#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
if (inccb->ccb_h.func_code == XPT_SCSI_IO)
inccb->csio.bio = NULL;
#endif
if (inccb->ccb_h.flags & CAM_UNLOCKED) {
error = EINVAL;
break;
}
/*
* Some CCB types, like scan bus and scan lun can only go
* through the transport layer device.
*/
if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
xpt_print(periph->path, "CCB function code %#x is "
"restricted to the XPT device\n",
inccb->ccb_h.func_code);
error = ENODEV;
break;
}
/* Compatibility for RL/priority-unaware code. */
priority = inccb->ccb_h.pinfo.priority;
if (priority <= CAM_PRIORITY_OOB)
priority += CAM_PRIORITY_OOB + 1;
/*
* Non-immediate CCBs need a CCB from the per-device pool
* of CCBs, which is scheduled by the transport layer.
* Immediate CCBs and user-supplied CCBs should just be
* malloced.
*/
if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
&& ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
ccb = cam_periph_getccb(periph, priority);
ccb_malloced = 0;
} else {
ccb = xpt_alloc_ccb_nowait();
if (ccb != NULL)
xpt_setup_ccb(&ccb->ccb_h, periph->path,
priority);
ccb_malloced = 1;
}
if (ccb == NULL) {
xpt_print(periph->path, "unable to allocate CCB\n");
error = ENOMEM;
break;
}
error = passsendccb(periph, ccb, inccb);
if (ccb_malloced)
xpt_free_ccb(ccb);
else
xpt_release_ccb(ccb);
break;
}
case CAMIOQUEUE:
{
struct pass_io_req *io_req;
union ccb **user_ccb, *ccb;
xpt_opcode fc;
if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
error = passcreatezone(periph);
if (error != 0)
goto bailout;
}
/*
* We're going to do a blocking allocation for this I/O
* request, so we have to drop the lock.
*/
cam_periph_unlock(periph);
io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
ccb = &io_req->ccb;
user_ccb = (union ccb **)addr;
/*
* Unlike the CAMIOCOMMAND ioctl above, we only have a
* pointer to the user's CCB, so we have to copy the whole
* thing in to a buffer we have allocated (above) instead
* of allowing the ioctl code to malloc a buffer and copy
* it in.
*
* This is an advantage for this asynchronous interface,
* since we don't want the memory to get freed while the
* CCB is outstanding.
*/
#if 0
xpt_print(periph->path, "Copying user CCB %p to "
"kernel address %p\n", *user_ccb, ccb);
#endif
error = copyin(*user_ccb, ccb, sizeof(*ccb));
if (error != 0) {
xpt_print(periph->path, "Copy of user CCB %p to "
"kernel address %p failed with error %d\n",
*user_ccb, ccb, error);
goto camioqueue_error;
}
#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
if (ccb->ccb_h.func_code == XPT_SCSI_IO)
ccb->csio.bio = NULL;
#endif
if (ccb->ccb_h.flags & CAM_UNLOCKED) {
error = EINVAL;
goto camioqueue_error;
}
if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
if (ccb->csio.cdb_len > IOCDBLEN) {
error = EINVAL;
goto camioqueue_error;
}
error = copyin(ccb->csio.cdb_io.cdb_ptr,
ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
if (error != 0)
goto camioqueue_error;
ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
}
/*
* Some CCB types, like scan bus and scan lun can only go
* through the transport layer device.
*/
if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
xpt_print(periph->path, "CCB function code %#x is "
"restricted to the XPT device\n",
ccb->ccb_h.func_code);
error = ENODEV;
goto camioqueue_error;
}
/*
* Save the user's CCB pointer as well as his linked list
* pointers and peripheral private area so that we can
* restore these later.
*/
io_req->user_ccb_ptr = *user_ccb;
io_req->user_periph_links = ccb->ccb_h.periph_links;
io_req->user_periph_priv = ccb->ccb_h.periph_priv;
/*
* Now that we've saved the user's values, we can set our
* own peripheral private entry.
*/
ccb->ccb_h.ccb_ioreq = io_req;
/* Compatibility for RL/priority-unaware code. */
priority = ccb->ccb_h.pinfo.priority;
if (priority <= CAM_PRIORITY_OOB)
priority += CAM_PRIORITY_OOB + 1;
/*
* Setup fields in the CCB like the path and the priority.
* The path in particular cannot be done in userland, since
* it is a pointer to a kernel data structure.
*/
xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
ccb->ccb_h.flags);
/*
* Setup our done routine. There is no way for the user to
* have a valid pointer here.
*/
ccb->ccb_h.cbfcnp = passdone;
fc = ccb->ccb_h.func_code;
/*
* If this function code has memory that can be mapped in
* or out, we need to call passmemsetup().
*/
if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
|| (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
|| (fc == XPT_DEV_ADVINFO)
|| (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
error = passmemsetup(periph, io_req);
if (error != 0)
goto camioqueue_error;
} else
io_req->mapinfo.num_bufs_used = 0;
cam_periph_lock(periph);
/*
* Everything goes on the incoming queue initially.
*/
TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
/*
* If the CCB is queued, and is not a user CCB, then
* we need to allocate a slot for it. Call xpt_schedule()
* so that our start routine will get called when a CCB is
* available.
*/
if ((fc & XPT_FC_QUEUED)
&& ((fc & XPT_FC_USER_CCB) == 0)) {
xpt_schedule(periph, priority);
break;
}
/*
* At this point, the CCB in question is either an
* immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
* and therefore should be malloced, not allocated via a slot.
* Remove the CCB from the incoming queue and add it to the
* active queue.
*/
TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
xpt_action(ccb);
/*
* If this is not a queued CCB (i.e. it is an immediate CCB),
* then it is already done. We need to put it on the done
* queue for the user to fetch.
*/
if ((fc & XPT_FC_QUEUED) == 0) {
TAILQ_REMOVE(&softc->active_queue, io_req, links);
TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
}
break;
camioqueue_error:
uma_zfree(softc->pass_zone, io_req);
cam_periph_lock(periph);
break;
}
case CAMIOGET:
{
union ccb **user_ccb;
struct pass_io_req *io_req;
int old_error;
user_ccb = (union ccb **)addr;
old_error = 0;
io_req = TAILQ_FIRST(&softc->done_queue);
if (io_req == NULL) {
error = ENOENT;
break;
}
/*
* Remove the I/O from the done queue.
*/
TAILQ_REMOVE(&softc->done_queue, io_req, links);
/*
* We have to drop the lock during the copyout because the
* copyout can result in VM faults that require sleeping.
*/
cam_periph_unlock(periph);
/*
* Do any needed copies (e.g. for reads) and revert the
* pointers in the CCB back to the user's pointers.
*/
error = passmemdone(periph, io_req);
old_error = error;
io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
#if 0
xpt_print(periph->path, "Copying to user CCB %p from "
"kernel address %p\n", *user_ccb, &io_req->ccb);
#endif
error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
if (error != 0) {
xpt_print(periph->path, "Copy to user CCB %p from "
"kernel address %p failed with error %d\n",
*user_ccb, &io_req->ccb, error);
}
/*
* Prefer the first error we got back, and make sure we
* don't overwrite bad status with good.
*/
if (old_error != 0)
error = old_error;
cam_periph_lock(periph);
/*
* At this point, if there was an error, we could potentially
* re-queue the I/O and try again. But why? The error
* would almost certainly happen again. We might as well
* not leak memory.
*/
uma_zfree(softc->pass_zone, io_req);
break;
}
default:
error = cam_periph_ioctl(periph, cmd, addr, passerror);
break;
}
bailout:
cam_periph_unlock(periph);
return(error);
}
static int
passpoll(struct cdev *dev, int poll_events, struct thread *td)
{
struct cam_periph *periph;
struct pass_softc *softc;
int revents;
periph = (struct cam_periph *)dev->si_drv1;
softc = (struct pass_softc *)periph->softc;
revents = poll_events & (POLLOUT | POLLWRNORM);
if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
cam_periph_lock(periph);
if (!TAILQ_EMPTY(&softc->done_queue)) {
revents |= poll_events & (POLLIN | POLLRDNORM);
}
cam_periph_unlock(periph);
if (revents == 0)
selrecord(td, &softc->read_select);
}
return (revents);
}
static int
passkqfilter(struct cdev *dev, struct knote *kn)
{
struct cam_periph *periph;
struct pass_softc *softc;
periph = (struct cam_periph *)dev->si_drv1;
softc = (struct pass_softc *)periph->softc;
kn->kn_hook = (caddr_t)periph;
kn->kn_fop = &passread_filtops;
knlist_add(&softc->read_select.si_note, kn, 0);
return (0);
}
static void
passreadfiltdetach(struct knote *kn)
{
struct cam_periph *periph;
struct pass_softc *softc;
periph = (struct cam_periph *)kn->kn_hook;
softc = (struct pass_softc *)periph->softc;
knlist_remove(&softc->read_select.si_note, kn, 0);
}
static int
passreadfilt(struct knote *kn, long hint)
{
struct cam_periph *periph;
struct pass_softc *softc;
int retval;
periph = (struct cam_periph *)kn->kn_hook;
softc = (struct pass_softc *)periph->softc;
cam_periph_assert(periph, MA_OWNED);
if (TAILQ_EMPTY(&softc->done_queue))
retval = 0;
else
retval = 1;
return (retval);
}
/*
* Generally, "ccb" should be the CCB supplied by the kernel. "inccb"
* should be the CCB that is copied in from the user.
*/
static int
passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
{
struct pass_softc *softc;
struct cam_periph_map_info mapinfo;
uint8_t *cmd;
xpt_opcode fc;
int error;
softc = (struct pass_softc *)periph->softc;
/*
* There are some fields in the CCB header that need to be
* preserved, the rest we get from the user.
*/
xpt_merge_ccb(ccb, inccb);
if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
cmd = __builtin_alloca(ccb->csio.cdb_len);
error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
if (error)
return (error);
ccb->csio.cdb_io.cdb_ptr = cmd;
}
/*
*/
ccb->ccb_h.cbfcnp = passdone;
/*
* Let cam_periph_mapmem do a sanity check on the data pointer format.
* Even if no data transfer is needed, it's a cheap check and it
* simplifies the code.
*/
fc = ccb->ccb_h.func_code;
if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
|| (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
|| (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
bzero(&mapinfo, sizeof(mapinfo));
/*
* cam_periph_mapmem calls into proc and vm functions that can
* sleep as well as trigger I/O, so we can't hold the lock.
* Dropping it here is reasonably safe.
*/
cam_periph_unlock(periph);
error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
cam_periph_lock(periph);
/*
* cam_periph_mapmem returned an error, we can't continue.
* Return the error to the user.
*/
if (error)
return(error);
} else
/* Ensure that the unmap call later on is a no-op. */
mapinfo.num_bufs_used = 0;
/*
* If the user wants us to perform any error recovery, then honor
* that request. Otherwise, it's up to the user to perform any
* error recovery.
*/
cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ?
passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO,
/* sense_flags */ SF_RETRY_UA | SF_NO_PRINT,
softc->device_stats);
cam_periph_unmapmem(ccb, &mapinfo);
ccb->ccb_h.cbfcnp = NULL;
ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
bcopy(ccb, inccb, sizeof(union ccb));
return(0);
}
static int
passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
{
struct cam_periph *periph;
struct pass_softc *softc;
periph = xpt_path_periph(ccb->ccb_h.path);
softc = (struct pass_softc *)periph->softc;
return(cam_periph_error(ccb, cam_flags, sense_flags));
}