freebsd-skq/sys/dev/nvme/nvme.h
pfg 1537078d8f sys/dev: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 14:52:40 +00:00

1134 lines
28 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2012-2013 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef __NVME_H__
#define __NVME_H__
#ifdef _KERNEL
#include <sys/types.h>
#endif
#include <sys/param.h>
#define NVME_PASSTHROUGH_CMD _IOWR('n', 0, struct nvme_pt_command)
#define NVME_RESET_CONTROLLER _IO('n', 1)
#define NVME_IO_TEST _IOWR('n', 100, struct nvme_io_test)
#define NVME_BIO_TEST _IOWR('n', 101, struct nvme_io_test)
/*
* Macros to deal with NVME revisions, as defined VS register
*/
#define NVME_REV(x, y) (((x) << 16) | ((y) << 8))
#define NVME_MAJOR(r) (((r) >> 16) & 0xffff)
#define NVME_MINOR(r) (((r) >> 8) & 0xff)
/*
* Use to mark a command to apply to all namespaces, or to retrieve global
* log pages.
*/
#define NVME_GLOBAL_NAMESPACE_TAG ((uint32_t)0xFFFFFFFF)
/* Cap nvme to 1MB transfers driver explodes with larger sizes */
#define NVME_MAX_XFER_SIZE (MAXPHYS < (1<<20) ? MAXPHYS : (1<<20))
union cap_lo_register {
uint32_t raw;
struct {
/** maximum queue entries supported */
uint32_t mqes : 16;
/** contiguous queues required */
uint32_t cqr : 1;
/** arbitration mechanism supported */
uint32_t ams : 2;
uint32_t reserved1 : 5;
/** timeout */
uint32_t to : 8;
} bits __packed;
} __packed;
_Static_assert(sizeof(union cap_lo_register) == 4, "bad size for cap_lo_register");
union cap_hi_register {
uint32_t raw;
struct {
/** doorbell stride */
uint32_t dstrd : 4;
uint32_t reserved3 : 1;
/** command sets supported */
uint32_t css_nvm : 1;
uint32_t css_reserved : 3;
uint32_t reserved2 : 7;
/** memory page size minimum */
uint32_t mpsmin : 4;
/** memory page size maximum */
uint32_t mpsmax : 4;
uint32_t reserved1 : 8;
} bits __packed;
} __packed;
_Static_assert(sizeof(union cap_hi_register) == 4, "bad size of cap_hi_register");
union cc_register {
uint32_t raw;
struct {
/** enable */
uint32_t en : 1;
uint32_t reserved1 : 3;
/** i/o command set selected */
uint32_t css : 3;
/** memory page size */
uint32_t mps : 4;
/** arbitration mechanism selected */
uint32_t ams : 3;
/** shutdown notification */
uint32_t shn : 2;
/** i/o submission queue entry size */
uint32_t iosqes : 4;
/** i/o completion queue entry size */
uint32_t iocqes : 4;
uint32_t reserved2 : 8;
} bits __packed;
} __packed;
_Static_assert(sizeof(union cc_register) == 4, "bad size for cc_register");
enum shn_value {
NVME_SHN_NORMAL = 0x1,
NVME_SHN_ABRUPT = 0x2,
};
union csts_register {
uint32_t raw;
struct {
/** ready */
uint32_t rdy : 1;
/** controller fatal status */
uint32_t cfs : 1;
/** shutdown status */
uint32_t shst : 2;
uint32_t reserved1 : 28;
} bits __packed;
} __packed;
_Static_assert(sizeof(union csts_register) == 4, "bad size for csts_register");
enum shst_value {
NVME_SHST_NORMAL = 0x0,
NVME_SHST_OCCURRING = 0x1,
NVME_SHST_COMPLETE = 0x2,
};
union aqa_register {
uint32_t raw;
struct {
/** admin submission queue size */
uint32_t asqs : 12;
uint32_t reserved1 : 4;
/** admin completion queue size */
uint32_t acqs : 12;
uint32_t reserved2 : 4;
} bits __packed;
} __packed;
_Static_assert(sizeof(union aqa_register) == 4, "bad size for aqa_resgister");
struct nvme_registers
{
/** controller capabilities */
union cap_lo_register cap_lo;
union cap_hi_register cap_hi;
uint32_t vs; /* version */
uint32_t intms; /* interrupt mask set */
uint32_t intmc; /* interrupt mask clear */
/** controller configuration */
union cc_register cc;
uint32_t reserved1;
/** controller status */
union csts_register csts;
uint32_t reserved2;
/** admin queue attributes */
union aqa_register aqa;
uint64_t asq; /* admin submission queue base addr */
uint64_t acq; /* admin completion queue base addr */
uint32_t reserved3[0x3f2];
struct {
uint32_t sq_tdbl; /* submission queue tail doorbell */
uint32_t cq_hdbl; /* completion queue head doorbell */
} doorbell[1] __packed;
} __packed;
_Static_assert(sizeof(struct nvme_registers) == 0x1008, "bad size for nvme_registers");
struct nvme_command
{
/* dword 0 */
uint16_t opc : 8; /* opcode */
uint16_t fuse : 2; /* fused operation */
uint16_t rsvd1 : 6;
uint16_t cid; /* command identifier */
/* dword 1 */
uint32_t nsid; /* namespace identifier */
/* dword 2-3 */
uint32_t rsvd2;
uint32_t rsvd3;
/* dword 4-5 */
uint64_t mptr; /* metadata pointer */
/* dword 6-7 */
uint64_t prp1; /* prp entry 1 */
/* dword 8-9 */
uint64_t prp2; /* prp entry 2 */
/* dword 10-15 */
uint32_t cdw10; /* command-specific */
uint32_t cdw11; /* command-specific */
uint32_t cdw12; /* command-specific */
uint32_t cdw13; /* command-specific */
uint32_t cdw14; /* command-specific */
uint32_t cdw15; /* command-specific */
} __packed;
_Static_assert(sizeof(struct nvme_command) == 16 * 4, "bad size for nvme_command");
struct nvme_status {
uint16_t p : 1; /* phase tag */
uint16_t sc : 8; /* status code */
uint16_t sct : 3; /* status code type */
uint16_t rsvd2 : 2;
uint16_t m : 1; /* more */
uint16_t dnr : 1; /* do not retry */
} __packed;
_Static_assert(sizeof(struct nvme_status) == 2, "bad size for nvme_status");
struct nvme_completion {
/* dword 0 */
uint32_t cdw0; /* command-specific */
/* dword 1 */
uint32_t rsvd1;
/* dword 2 */
uint16_t sqhd; /* submission queue head pointer */
uint16_t sqid; /* submission queue identifier */
/* dword 3 */
uint16_t cid; /* command identifier */
struct nvme_status status;
} __packed;
_Static_assert(sizeof(struct nvme_completion) == 4 * 4, "bad size for nvme_completion");
struct nvme_dsm_range {
uint32_t attributes;
uint32_t length;
uint64_t starting_lba;
} __packed;
_Static_assert(sizeof(struct nvme_dsm_range) == 16, "bad size for nvme_dsm_ranage");
/* status code types */
enum nvme_status_code_type {
NVME_SCT_GENERIC = 0x0,
NVME_SCT_COMMAND_SPECIFIC = 0x1,
NVME_SCT_MEDIA_ERROR = 0x2,
/* 0x3-0x6 - reserved */
NVME_SCT_VENDOR_SPECIFIC = 0x7,
};
/* generic command status codes */
enum nvme_generic_command_status_code {
NVME_SC_SUCCESS = 0x00,
NVME_SC_INVALID_OPCODE = 0x01,
NVME_SC_INVALID_FIELD = 0x02,
NVME_SC_COMMAND_ID_CONFLICT = 0x03,
NVME_SC_DATA_TRANSFER_ERROR = 0x04,
NVME_SC_ABORTED_POWER_LOSS = 0x05,
NVME_SC_INTERNAL_DEVICE_ERROR = 0x06,
NVME_SC_ABORTED_BY_REQUEST = 0x07,
NVME_SC_ABORTED_SQ_DELETION = 0x08,
NVME_SC_ABORTED_FAILED_FUSED = 0x09,
NVME_SC_ABORTED_MISSING_FUSED = 0x0a,
NVME_SC_INVALID_NAMESPACE_OR_FORMAT = 0x0b,
NVME_SC_COMMAND_SEQUENCE_ERROR = 0x0c,
NVME_SC_LBA_OUT_OF_RANGE = 0x80,
NVME_SC_CAPACITY_EXCEEDED = 0x81,
NVME_SC_NAMESPACE_NOT_READY = 0x82,
};
/* command specific status codes */
enum nvme_command_specific_status_code {
NVME_SC_COMPLETION_QUEUE_INVALID = 0x00,
NVME_SC_INVALID_QUEUE_IDENTIFIER = 0x01,
NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED = 0x02,
NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED = 0x03,
/* 0x04 - reserved */
NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED = 0x05,
NVME_SC_INVALID_FIRMWARE_SLOT = 0x06,
NVME_SC_INVALID_FIRMWARE_IMAGE = 0x07,
NVME_SC_INVALID_INTERRUPT_VECTOR = 0x08,
NVME_SC_INVALID_LOG_PAGE = 0x09,
NVME_SC_INVALID_FORMAT = 0x0a,
NVME_SC_FIRMWARE_REQUIRES_RESET = 0x0b,
NVME_SC_CONFLICTING_ATTRIBUTES = 0x80,
NVME_SC_INVALID_PROTECTION_INFO = 0x81,
NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE = 0x82,
};
/* media error status codes */
enum nvme_media_error_status_code {
NVME_SC_WRITE_FAULTS = 0x80,
NVME_SC_UNRECOVERED_READ_ERROR = 0x81,
NVME_SC_GUARD_CHECK_ERROR = 0x82,
NVME_SC_APPLICATION_TAG_CHECK_ERROR = 0x83,
NVME_SC_REFERENCE_TAG_CHECK_ERROR = 0x84,
NVME_SC_COMPARE_FAILURE = 0x85,
NVME_SC_ACCESS_DENIED = 0x86,
};
/* admin opcodes */
enum nvme_admin_opcode {
NVME_OPC_DELETE_IO_SQ = 0x00,
NVME_OPC_CREATE_IO_SQ = 0x01,
NVME_OPC_GET_LOG_PAGE = 0x02,
/* 0x03 - reserved */
NVME_OPC_DELETE_IO_CQ = 0x04,
NVME_OPC_CREATE_IO_CQ = 0x05,
NVME_OPC_IDENTIFY = 0x06,
/* 0x07 - reserved */
NVME_OPC_ABORT = 0x08,
NVME_OPC_SET_FEATURES = 0x09,
NVME_OPC_GET_FEATURES = 0x0a,
/* 0x0b - reserved */
NVME_OPC_ASYNC_EVENT_REQUEST = 0x0c,
NVME_OPC_NAMESPACE_MANAGEMENT = 0x0d,
/* 0x0e-0x0f - reserved */
NVME_OPC_FIRMWARE_ACTIVATE = 0x10,
NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD = 0x11,
NVME_OPC_NAMESPACE_ATTACHMENT = 0x15,
NVME_OPC_FORMAT_NVM = 0x80,
NVME_OPC_SECURITY_SEND = 0x81,
NVME_OPC_SECURITY_RECEIVE = 0x82,
};
/* nvme nvm opcodes */
enum nvme_nvm_opcode {
NVME_OPC_FLUSH = 0x00,
NVME_OPC_WRITE = 0x01,
NVME_OPC_READ = 0x02,
/* 0x03 - reserved */
NVME_OPC_WRITE_UNCORRECTABLE = 0x04,
NVME_OPC_COMPARE = 0x05,
/* 0x06-0x07 - reserved */
NVME_OPC_DATASET_MANAGEMENT = 0x09,
};
enum nvme_feature {
/* 0x00 - reserved */
NVME_FEAT_ARBITRATION = 0x01,
NVME_FEAT_POWER_MANAGEMENT = 0x02,
NVME_FEAT_LBA_RANGE_TYPE = 0x03,
NVME_FEAT_TEMPERATURE_THRESHOLD = 0x04,
NVME_FEAT_ERROR_RECOVERY = 0x05,
NVME_FEAT_VOLATILE_WRITE_CACHE = 0x06,
NVME_FEAT_NUMBER_OF_QUEUES = 0x07,
NVME_FEAT_INTERRUPT_COALESCING = 0x08,
NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION = 0x09,
NVME_FEAT_WRITE_ATOMICITY = 0x0A,
NVME_FEAT_ASYNC_EVENT_CONFIGURATION = 0x0B,
NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION = 0x0C,
NVME_FEAT_HOST_MEMORY_BUFFER = 0x0D,
NVME_FEAT_TIMESTAMP = 0x0E,
NVME_FEAT_KEEP_ALIVE_TIMER = 0x0F,
NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT = 0x10,
NVME_FEAT_NON_OP_POWER_STATE_CONFIG = 0x11,
/* 0x12-0x77 - reserved */
/* 0x78-0x7f - NVMe Management Interface */
NVME_FEAT_SOFTWARE_PROGRESS_MARKER = 0x80,
/* 0x81-0xBF - command set specific (reserved) */
/* 0xC0-0xFF - vendor specific */
};
enum nvme_dsm_attribute {
NVME_DSM_ATTR_INTEGRAL_READ = 0x1,
NVME_DSM_ATTR_INTEGRAL_WRITE = 0x2,
NVME_DSM_ATTR_DEALLOCATE = 0x4,
};
enum nvme_activate_action {
NVME_AA_REPLACE_NO_ACTIVATE = 0x0,
NVME_AA_REPLACE_ACTIVATE = 0x1,
NVME_AA_ACTIVATE = 0x2,
};
struct nvme_power_state {
/** Maximum Power */
uint16_t mp; /* Maximum Power */
uint8_t ps_rsvd1;
uint8_t mps : 1; /* Max Power Scale */
uint8_t nops : 1; /* Non-Operational State */
uint8_t ps_rsvd2 : 6;
uint32_t enlat; /* Entry Latency */
uint32_t exlat; /* Exit Latency */
uint8_t rrt : 5; /* Relative Read Throughput */
uint8_t ps_rsvd3 : 3;
uint8_t rrl : 5; /* Relative Read Latency */
uint8_t ps_rsvd4 : 3;
uint8_t rwt : 5; /* Relative Write Throughput */
uint8_t ps_rsvd5 : 3;
uint8_t rwl : 5; /* Relative Write Latency */
uint8_t ps_rsvd6 : 3;
uint16_t idlp; /* Idle Power */
uint8_t ps_rsvd7 : 6;
uint8_t ips : 2; /* Idle Power Scale */
uint8_t ps_rsvd8;
uint16_t actp; /* Active Power */
uint8_t apw : 3; /* Active Power Workload */
uint8_t ps_rsvd9 : 3;
uint8_t aps : 2; /* Active Power Scale */
uint8_t ps_rsvd10[9];
} __packed;
_Static_assert(sizeof(struct nvme_power_state) == 32, "bad size for nvme_power_state");
#define NVME_SERIAL_NUMBER_LENGTH 20
#define NVME_MODEL_NUMBER_LENGTH 40
#define NVME_FIRMWARE_REVISION_LENGTH 8
struct nvme_controller_data {
/* bytes 0-255: controller capabilities and features */
/** pci vendor id */
uint16_t vid;
/** pci subsystem vendor id */
uint16_t ssvid;
/** serial number */
uint8_t sn[NVME_SERIAL_NUMBER_LENGTH];
/** model number */
uint8_t mn[NVME_MODEL_NUMBER_LENGTH];
/** firmware revision */
uint8_t fr[NVME_FIRMWARE_REVISION_LENGTH];
/** recommended arbitration burst */
uint8_t rab;
/** ieee oui identifier */
uint8_t ieee[3];
/** multi-interface capabilities */
uint8_t mic;
/** maximum data transfer size */
uint8_t mdts;
/** Controller ID */
uint16_t ctrlr_id;
/** Version */
uint32_t ver;
/** RTD3 Resume Latency */
uint32_t rtd3r;
/** RTD3 Enter Latency */
uint32_t rtd3e;
/** Optional Asynchronous Events Supported */
uint32_t oaes; /* bitfield really */
/** Controller Attributes */
uint32_t ctratt; /* bitfield really */
uint8_t reserved1[12];
/** FRU Globally Unique Identifier */
uint8_t fguid[16];
uint8_t reserved2[128];
/* bytes 256-511: admin command set attributes */
/** optional admin command support */
struct {
/* supports security send/receive commands */
uint16_t security : 1;
/* supports format nvm command */
uint16_t format : 1;
/* supports firmware activate/download commands */
uint16_t firmware : 1;
/* supports namespace management commands */
uint16_t nsmgmt : 1;
uint16_t oacs_rsvd : 12;
} __packed oacs;
/** abort command limit */
uint8_t acl;
/** asynchronous event request limit */
uint8_t aerl;
/** firmware updates */
struct {
/* first slot is read-only */
uint8_t slot1_ro : 1;
/* number of firmware slots */
uint8_t num_slots : 3;
uint8_t frmw_rsvd : 4;
} __packed frmw;
/** log page attributes */
struct {
/* per namespace smart/health log page */
uint8_t ns_smart : 1;
uint8_t lpa_rsvd : 7;
} __packed lpa;
/** error log page entries */
uint8_t elpe;
/** number of power states supported */
uint8_t npss;
/** admin vendor specific command configuration */
struct {
/* admin vendor specific commands use spec format */
uint8_t spec_format : 1;
uint8_t avscc_rsvd : 7;
} __packed avscc;
/** Autonomous Power State Transition Attributes */
struct {
/* Autonmous Power State Transitions supported */
uint8_t apst_supp : 1;
uint8_t apsta_rsvd : 7;
} __packed apsta;
/** Warning Composite Temperature Threshold */
uint16_t wctemp;
/** Critical Composite Temperature Threshold */
uint16_t cctemp;
/** Maximum Time for Firmware Activation */
uint16_t mtfa;
/** Host Memory Buffer Preferred Size */
uint32_t hmpre;
/** Host Memory Buffer Minimum Size */
uint32_t hmmin;
/** Name space capabilities */
struct {
/* if nsmgmt, report tnvmcap and unvmcap */
uint8_t tnvmcap[16];
uint8_t unvmcap[16];
} __packed untncap;
/** Replay Protected Memory Block Support */
uint32_t rpmbs; /* Really a bitfield */
/** Extended Device Self-test Time */
uint16_t edstt;
/** Device Self-test Options */
uint8_t dsto; /* Really a bitfield */
/** Firmware Update Granularity */
uint8_t fwug;
/** Keep Alive Support */
uint16_t kas;
/** Host Controlled Thermal Management Attributes */
uint16_t hctma; /* Really a bitfield */
/** Minimum Thermal Management Temperature */
uint16_t mntmt;
/** Maximum Thermal Management Temperature */
uint16_t mxtmt;
/** Sanitize Capabilities */
uint32_t sanicap; /* Really a bitfield */
uint8_t reserved3[180];
/* bytes 512-703: nvm command set attributes */
/** submission queue entry size */
struct {
uint8_t min : 4;
uint8_t max : 4;
} __packed sqes;
/** completion queue entry size */
struct {
uint8_t min : 4;
uint8_t max : 4;
} __packed cqes;
/** Maximum Outstanding Commands */
uint16_t maxcmd;
/** number of namespaces */
uint32_t nn;
/** optional nvm command support */
struct {
uint16_t compare : 1;
uint16_t write_unc : 1;
uint16_t dsm: 1;
uint16_t reserved: 13;
} __packed oncs;
/** fused operation support */
uint16_t fuses;
/** format nvm attributes */
uint8_t fna;
/** volatile write cache */
struct {
uint8_t present : 1;
uint8_t reserved : 7;
} __packed vwc;
/* TODO: flesh out remaining nvm command set attributes */
uint8_t reserved5[178];
/* bytes 704-2047: i/o command set attributes */
uint8_t reserved6[1344];
/* bytes 2048-3071: power state descriptors */
struct nvme_power_state power_state[32];
/* bytes 3072-4095: vendor specific */
uint8_t vs[1024];
} __packed __aligned(4);
_Static_assert(sizeof(struct nvme_controller_data) == 4096, "bad size for nvme_controller_data");
struct nvme_namespace_data {
/** namespace size */
uint64_t nsze;
/** namespace capacity */
uint64_t ncap;
/** namespace utilization */
uint64_t nuse;
/** namespace features */
struct {
/** thin provisioning */
uint8_t thin_prov : 1;
uint8_t reserved1 : 7;
} __packed nsfeat;
/** number of lba formats */
uint8_t nlbaf;
/** formatted lba size */
struct {
uint8_t format : 4;
uint8_t extended : 1;
uint8_t reserved2 : 3;
} __packed flbas;
/** metadata capabilities */
struct {
/* metadata can be transferred as part of data prp list */
uint8_t extended : 1;
/* metadata can be transferred with separate metadata pointer */
uint8_t pointer : 1;
uint8_t reserved3 : 6;
} __packed mc;
/** end-to-end data protection capabilities */
struct {
/* protection information type 1 */
uint8_t pit1 : 1;
/* protection information type 2 */
uint8_t pit2 : 1;
/* protection information type 3 */
uint8_t pit3 : 1;
/* first eight bytes of metadata */
uint8_t md_start : 1;
/* last eight bytes of metadata */
uint8_t md_end : 1;
} __packed dpc;
/** end-to-end data protection type settings */
struct {
/* protection information type */
uint8_t pit : 3;
/* 1 == protection info transferred at start of metadata */
/* 0 == protection info transferred at end of metadata */
uint8_t md_start : 1;
uint8_t reserved4 : 4;
} __packed dps;
uint8_t reserved5[98];
/** lba format support */
struct {
/** metadata size */
uint32_t ms : 16;
/** lba data size */
uint32_t lbads : 8;
/** relative performance */
uint32_t rp : 2;
uint32_t reserved6 : 6;
} __packed lbaf[16];
uint8_t reserved6[192];
uint8_t vendor_specific[3712];
} __packed __aligned(4);
_Static_assert(sizeof(struct nvme_namespace_data) == 4096, "bad size for nvme_namepsace_data");
enum nvme_log_page {
/* 0x00 - reserved */
NVME_LOG_ERROR = 0x01,
NVME_LOG_HEALTH_INFORMATION = 0x02,
NVME_LOG_FIRMWARE_SLOT = 0x03,
NVME_LOG_CHANGED_NAMESPACE = 0x04,
NVME_LOG_COMMAND_EFFECT = 0x05,
/* 0x06-0x7F - reserved */
/* 0x80-0xBF - I/O command set specific */
NVME_LOG_RES_NOTIFICATION = 0x80,
/* 0xC0-0xFF - vendor specific */
/*
* The following are Intel Specific log pages, but they seem
* to be widely implemented.
*/
INTEL_LOG_READ_LAT_LOG = 0xc1,
INTEL_LOG_WRITE_LAT_LOG = 0xc2,
INTEL_LOG_TEMP_STATS = 0xc5,
INTEL_LOG_ADD_SMART = 0xca,
INTEL_LOG_DRIVE_MKT_NAME = 0xdd,
/*
* HGST log page, with lots ofs sub pages.
*/
HGST_INFO_LOG = 0xc1,
};
struct nvme_error_information_entry {
uint64_t error_count;
uint16_t sqid;
uint16_t cid;
struct nvme_status status;
uint16_t error_location;
uint64_t lba;
uint32_t nsid;
uint8_t vendor_specific;
uint8_t reserved[35];
} __packed __aligned(4);
_Static_assert(sizeof(struct nvme_error_information_entry) == 64, "bad size for nvme_error_information_entry");
union nvme_critical_warning_state {
uint8_t raw;
struct {
uint8_t available_spare : 1;
uint8_t temperature : 1;
uint8_t device_reliability : 1;
uint8_t read_only : 1;
uint8_t volatile_memory_backup : 1;
uint8_t reserved : 3;
} __packed bits;
} __packed;
_Static_assert(sizeof(union nvme_critical_warning_state) == 1, "bad size for nvme_critical_warning_state");
struct nvme_health_information_page {
union nvme_critical_warning_state critical_warning;
uint16_t temperature;
uint8_t available_spare;
uint8_t available_spare_threshold;
uint8_t percentage_used;
uint8_t reserved[26];
/*
* Note that the following are 128-bit values, but are
* defined as an array of 2 64-bit values.
*/
/* Data Units Read is always in 512-byte units. */
uint64_t data_units_read[2];
/* Data Units Written is always in 512-byte units. */
uint64_t data_units_written[2];
/* For NVM command set, this includes Compare commands. */
uint64_t host_read_commands[2];
uint64_t host_write_commands[2];
/* Controller Busy Time is reported in minutes. */
uint64_t controller_busy_time[2];
uint64_t power_cycles[2];
uint64_t power_on_hours[2];
uint64_t unsafe_shutdowns[2];
uint64_t media_errors[2];
uint64_t num_error_info_log_entries[2];
uint32_t warning_temp_time;
uint32_t error_temp_time;
uint16_t temp_sensor[8];
uint8_t reserved2[296];
} __packed __aligned(4);
_Static_assert(sizeof(struct nvme_health_information_page) == 512, "bad size for nvme_health_information_page");
struct nvme_firmware_page {
struct {
uint8_t slot : 3; /* slot for current FW */
uint8_t reserved : 5;
} __packed afi;
uint8_t reserved[7];
uint64_t revision[7]; /* revisions for 7 slots */
uint8_t reserved2[448];
} __packed __aligned(4);
_Static_assert(sizeof(struct nvme_firmware_page) == 512, "bad size for nvme_firmware_page");
struct intel_log_temp_stats
{
uint64_t current;
uint64_t overtemp_flag_last;
uint64_t overtemp_flag_life;
uint64_t max_temp;
uint64_t min_temp;
uint64_t _rsvd[5];
uint64_t max_oper_temp;
uint64_t min_oper_temp;
uint64_t est_offset;
} __packed __aligned(4);
_Static_assert(sizeof(struct intel_log_temp_stats) == 13 * 8, "bad size for intel_log_temp_stats");
#define NVME_TEST_MAX_THREADS 128
struct nvme_io_test {
enum nvme_nvm_opcode opc;
uint32_t size;
uint32_t time; /* in seconds */
uint32_t num_threads;
uint32_t flags;
uint64_t io_completed[NVME_TEST_MAX_THREADS];
};
enum nvme_io_test_flags {
/*
* Specifies whether dev_refthread/dev_relthread should be
* called during NVME_BIO_TEST. Ignored for other test
* types.
*/
NVME_TEST_FLAG_REFTHREAD = 0x1,
};
struct nvme_pt_command {
/*
* cmd is used to specify a passthrough command to a controller or
* namespace.
*
* The following fields from cmd may be specified by the caller:
* * opc (opcode)
* * nsid (namespace id) - for admin commands only
* * cdw10-cdw15
*
* Remaining fields must be set to 0 by the caller.
*/
struct nvme_command cmd;
/*
* cpl returns completion status for the passthrough command
* specified by cmd.
*
* The following fields will be filled out by the driver, for
* consumption by the caller:
* * cdw0
* * status (except for phase)
*
* Remaining fields will be set to 0 by the driver.
*/
struct nvme_completion cpl;
/* buf is the data buffer associated with this passthrough command. */
void * buf;
/*
* len is the length of the data buffer associated with this
* passthrough command.
*/
uint32_t len;
/*
* is_read = 1 if the passthrough command will read data into the
* supplied buffer from the controller.
*
* is_read = 0 if the passthrough command will write data from the
* supplied buffer to the controller.
*/
uint32_t is_read;
/*
* driver_lock is used by the driver only. It must be set to 0
* by the caller.
*/
struct mtx * driver_lock;
};
#define nvme_completion_is_error(cpl) \
((cpl)->status.sc != 0 || (cpl)->status.sct != 0)
void nvme_strvis(uint8_t *dst, const uint8_t *src, int dstlen, int srclen);
#ifdef _KERNEL
struct bio;
struct nvme_namespace;
struct nvme_controller;
struct nvme_consumer;
typedef void (*nvme_cb_fn_t)(void *, const struct nvme_completion *);
typedef void *(*nvme_cons_ns_fn_t)(struct nvme_namespace *, void *);
typedef void *(*nvme_cons_ctrlr_fn_t)(struct nvme_controller *);
typedef void (*nvme_cons_async_fn_t)(void *, const struct nvme_completion *,
uint32_t, void *, uint32_t);
typedef void (*nvme_cons_fail_fn_t)(void *);
enum nvme_namespace_flags {
NVME_NS_DEALLOCATE_SUPPORTED = 0x1,
NVME_NS_FLUSH_SUPPORTED = 0x2,
};
int nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
struct nvme_pt_command *pt,
uint32_t nsid, int is_user_buffer,
int is_admin_cmd);
/* Admin functions */
void nvme_ctrlr_cmd_set_feature(struct nvme_controller *ctrlr,
uint8_t feature, uint32_t cdw11,
void *payload, uint32_t payload_size,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_get_feature(struct nvme_controller *ctrlr,
uint8_t feature, uint32_t cdw11,
void *payload, uint32_t payload_size,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_get_log_page(struct nvme_controller *ctrlr,
uint8_t log_page, uint32_t nsid,
void *payload, uint32_t payload_size,
nvme_cb_fn_t cb_fn, void *cb_arg);
/* NVM I/O functions */
int nvme_ns_cmd_write(struct nvme_namespace *ns, void *payload,
uint64_t lba, uint32_t lba_count, nvme_cb_fn_t cb_fn,
void *cb_arg);
int nvme_ns_cmd_write_bio(struct nvme_namespace *ns, struct bio *bp,
nvme_cb_fn_t cb_fn, void *cb_arg);
int nvme_ns_cmd_read(struct nvme_namespace *ns, void *payload,
uint64_t lba, uint32_t lba_count, nvme_cb_fn_t cb_fn,
void *cb_arg);
int nvme_ns_cmd_read_bio(struct nvme_namespace *ns, struct bio *bp,
nvme_cb_fn_t cb_fn, void *cb_arg);
int nvme_ns_cmd_deallocate(struct nvme_namespace *ns, void *payload,
uint8_t num_ranges, nvme_cb_fn_t cb_fn,
void *cb_arg);
int nvme_ns_cmd_flush(struct nvme_namespace *ns, nvme_cb_fn_t cb_fn,
void *cb_arg);
int nvme_ns_dump(struct nvme_namespace *ns, void *virt, off_t offset,
size_t len);
/* Registration functions */
struct nvme_consumer * nvme_register_consumer(nvme_cons_ns_fn_t ns_fn,
nvme_cons_ctrlr_fn_t ctrlr_fn,
nvme_cons_async_fn_t async_fn,
nvme_cons_fail_fn_t fail_fn);
void nvme_unregister_consumer(struct nvme_consumer *consumer);
/* Controller helper functions */
device_t nvme_ctrlr_get_device(struct nvme_controller *ctrlr);
const struct nvme_controller_data *
nvme_ctrlr_get_data(struct nvme_controller *ctrlr);
/* Namespace helper functions */
uint32_t nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns);
uint32_t nvme_ns_get_sector_size(struct nvme_namespace *ns);
uint64_t nvme_ns_get_num_sectors(struct nvme_namespace *ns);
uint64_t nvme_ns_get_size(struct nvme_namespace *ns);
uint32_t nvme_ns_get_flags(struct nvme_namespace *ns);
const char * nvme_ns_get_serial_number(struct nvme_namespace *ns);
const char * nvme_ns_get_model_number(struct nvme_namespace *ns);
const struct nvme_namespace_data *
nvme_ns_get_data(struct nvme_namespace *ns);
uint32_t nvme_ns_get_stripesize(struct nvme_namespace *ns);
int nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp,
nvme_cb_fn_t cb_fn);
/*
* Command building helper functions -- shared with CAM
* These functions assume allocator zeros out cmd structure
* CAM's xpt_get_ccb and the request allocator for nvme both
* do zero'd allocations.
*/
static inline
void nvme_ns_flush_cmd(struct nvme_command *cmd, uint32_t nsid)
{
cmd->opc = NVME_OPC_FLUSH;
cmd->nsid = nsid;
}
static inline
void nvme_ns_rw_cmd(struct nvme_command *cmd, uint32_t rwcmd, uint32_t nsid,
uint64_t lba, uint32_t count)
{
cmd->opc = rwcmd;
cmd->nsid = nsid;
cmd->cdw10 = lba & 0xffffffffu;
cmd->cdw11 = lba >> 32;
cmd->cdw12 = count-1;
}
static inline
void nvme_ns_write_cmd(struct nvme_command *cmd, uint32_t nsid,
uint64_t lba, uint32_t count)
{
nvme_ns_rw_cmd(cmd, NVME_OPC_WRITE, nsid, lba, count);
}
static inline
void nvme_ns_read_cmd(struct nvme_command *cmd, uint32_t nsid,
uint64_t lba, uint32_t count)
{
nvme_ns_rw_cmd(cmd, NVME_OPC_READ, nsid, lba, count);
}
static inline
void nvme_ns_trim_cmd(struct nvme_command *cmd, uint32_t nsid,
uint32_t num_ranges)
{
cmd->opc = NVME_OPC_DATASET_MANAGEMENT;
cmd->nsid = nsid;
cmd->cdw10 = num_ranges - 1;
cmd->cdw11 = NVME_DSM_ATTR_DEALLOCATE;
}
extern int nvme_use_nvd;
#endif /* _KERNEL */
#endif /* __NVME_H__ */