9d54c9a66c
have resulted in stack corruption. A patch has been sent to the ntp author for inclusion in next version. Obtained from: peter
2168 lines
56 KiB
C
2168 lines
56 KiB
C
/*
|
|
* ntp_proto.c - NTP version 4 protocol machinery
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
#include <sys/time.h>
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "ntp_unixtime.h"
|
|
#include "ntp_control.h"
|
|
#include "ntp_string.h"
|
|
|
|
#if defined(VMS) && defined(VMS_LOCALUNIT) /*wjm*/
|
|
#include "ntp_refclock.h"
|
|
#endif
|
|
|
|
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
|
|
/*
|
|
* System variables are declared here. See Section 3.2 of the
|
|
* specification.
|
|
*/
|
|
u_char sys_leap; /* system leap indicator */
|
|
u_char sys_stratum; /* stratum of system */
|
|
s_char sys_precision; /* local clock precision */
|
|
double sys_rootdelay; /* distance to current sync source */
|
|
double sys_rootdispersion; /* dispersion of system clock */
|
|
u_int32 sys_refid; /* reference source for local clock */
|
|
static double sys_offset; /* current local clock offset */
|
|
l_fp sys_reftime; /* time we were last updated */
|
|
struct peer *sys_peer; /* our current peer */
|
|
u_long sys_automax; /* maximum session key lifetime */
|
|
|
|
/*
|
|
* Nonspecified system state variables.
|
|
*/
|
|
int sys_bclient; /* we set our time to broadcasts */
|
|
double sys_bdelay; /* broadcast client default delay */
|
|
int sys_authenticate; /* requre authentication for config */
|
|
l_fp sys_authdelay; /* authentication delay */
|
|
static u_long sys_authdly[2]; /* authentication delay shift reg */
|
|
static u_char leap_consensus; /* consensus of survivor leap bits */
|
|
static double sys_maxd; /* select error (squares) */
|
|
static double sys_epsil; /* system error (squares) */
|
|
u_long sys_private; /* private value for session seed */
|
|
int sys_manycastserver; /* 1 => respond to manycast client pkts */
|
|
|
|
/*
|
|
* Statistics counters
|
|
*/
|
|
u_long sys_stattime; /* time when we started recording */
|
|
u_long sys_badstratum; /* packets with invalid stratum */
|
|
u_long sys_oldversionpkt; /* old version packets received */
|
|
u_long sys_newversionpkt; /* new version packets received */
|
|
u_long sys_unknownversion; /* don't know version packets */
|
|
u_long sys_badlength; /* packets with bad length */
|
|
u_long sys_processed; /* packets processed */
|
|
u_long sys_badauth; /* packets dropped because of auth */
|
|
u_long sys_limitrejected; /* pkts rejected due to client count per net */
|
|
|
|
static double root_distance P((struct peer *));
|
|
static double clock_combine P((struct peer **, int));
|
|
static void peer_xmit P((struct peer *));
|
|
static void fast_xmit P((struct recvbuf *, int, u_long));
|
|
static void clock_update P((void));
|
|
#ifdef MD5
|
|
static void make_keylist P((struct peer *));
|
|
#endif /* MD5 */
|
|
|
|
/*
|
|
* transmit - Transmit Procedure. See Section 3.4.2 of the
|
|
* specification.
|
|
*/
|
|
void
|
|
transmit(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
int hpoll;
|
|
|
|
hpoll = peer->hpoll;
|
|
if (peer->burst == 0) {
|
|
u_char oreach;
|
|
|
|
/*
|
|
* Determine reachability and diddle things if we
|
|
* haven't heard from the host for a while. If the peer
|
|
* is not configured and not likely to stay around,
|
|
* we exhaust it.
|
|
*/
|
|
oreach = peer->reach;
|
|
if (oreach & 0x01)
|
|
peer->valid++;
|
|
if (oreach & 0x80)
|
|
peer->valid--;
|
|
if (!(peer->flags & FLAG_CONFIG) &&
|
|
peer->valid > NTP_SHIFT / 2 && (peer->reach & 0x80) &&
|
|
peer->status < CTL_PST_SEL_SYNCCAND)
|
|
peer->reach = 0;
|
|
peer->reach <<= 1;
|
|
if (peer->reach == 0) {
|
|
|
|
/*
|
|
* If this is an uncofigured association and
|
|
* has become unreachable, demobilize it.
|
|
*/
|
|
if (oreach != 0) {
|
|
report_event(EVNT_UNREACH, peer);
|
|
peer->timereachable = current_time;
|
|
peer_clear(peer);
|
|
if (!(peer->flags & FLAG_CONFIG)) {
|
|
unpeer(peer);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We would like to respond quickly when the
|
|
* peer comes back to life. If the probes since
|
|
* becoming unreachable are less than
|
|
* NTP_UNREACH, clamp the poll interval to the
|
|
* minimum. In order to minimize the network
|
|
* traffic, the interval gradually ramps up the
|
|
* the maximum after that.
|
|
*/
|
|
peer->ppoll = peer->maxpoll;
|
|
if (peer->unreach < NTP_UNREACH) {
|
|
if (peer->hmode == MODE_CLIENT)
|
|
peer->unreach++;
|
|
hpoll = peer->minpoll;
|
|
} else {
|
|
hpoll++;
|
|
}
|
|
if (peer->flags & FLAG_BURST)
|
|
peer->burst = 2;
|
|
|
|
} else {
|
|
|
|
/*
|
|
* Here the peer is reachable. If there is no
|
|
* system peer or if the stratum of the system
|
|
* peer is greater than this peer, clamp the
|
|
* poll interval to the minimum. If less than
|
|
* two samples are in the reachability register,
|
|
* reduce the interval; if more than six samples
|
|
* are in the register, increase the interval.
|
|
*/
|
|
peer->unreach = 0;
|
|
if (sys_peer == 0)
|
|
hpoll = peer->minpoll;
|
|
else if (sys_peer->stratum > peer->stratum)
|
|
hpoll = peer->minpoll;
|
|
if ((peer->reach & 0x03) == 0) {
|
|
clock_filter(peer, 0., 0., MAXDISPERSE);
|
|
clock_select();
|
|
}
|
|
if (peer->valid <= 2)
|
|
hpoll--;
|
|
else if (peer->valid >= NTP_SHIFT - 2)
|
|
hpoll++;
|
|
if (peer->flags & FLAG_BURST)
|
|
peer->burst = NTP_SHIFT;
|
|
}
|
|
} else {
|
|
peer->burst--;
|
|
if (peer->burst == 0) {
|
|
if (peer->flags & FLAG_MCAST2) {
|
|
peer->flags &= ~FLAG_BURST;
|
|
peer->hmode = MODE_BCLIENT;
|
|
}
|
|
clock_select();
|
|
poll_update(peer, hpoll);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We need to be very careful about honking uncivilized time. If
|
|
* not operating in broadcast mode, honk in all except broadcast
|
|
* client mode. If operating in broadcast mode and synchronized
|
|
* to a real source, honk except when the peer is the local-
|
|
* clock driver and the prefer flag is not set. In other words,
|
|
* in broadcast mode we never honk unless known to be
|
|
* synchronized to real time.
|
|
*/
|
|
if (peer->hmode != MODE_BROADCAST) {
|
|
if (peer->hmode != MODE_BCLIENT)
|
|
peer_xmit(peer);
|
|
} else if (sys_peer != 0 && sys_leap != LEAP_NOTINSYNC) {
|
|
if (!(sys_peer->refclktype == REFCLK_LOCALCLOCK &&
|
|
!(sys_peer->flags & FLAG_PREFER)))
|
|
peer_xmit(peer);
|
|
}
|
|
peer->outdate = current_time;
|
|
poll_update(peer, hpoll);
|
|
}
|
|
|
|
/*
|
|
* receive - Receive Procedure. See section 3.4.3 in the specification.
|
|
*/
|
|
void
|
|
receive(
|
|
struct recvbuf *rbufp
|
|
)
|
|
{
|
|
register struct peer *peer;
|
|
register struct pkt *pkt;
|
|
int hismode;
|
|
int oflags;
|
|
int restrict_mask;
|
|
int has_mac; /* has MAC field */
|
|
int authlen; /* length of MAC field */
|
|
int is_authentic; /* cryptosum ok */
|
|
int is_mystic; /* session key exists */
|
|
int is_error; /* parse error */
|
|
/* u_long pkeyid; */
|
|
u_long skeyid, tkeyid;
|
|
struct peer *peer2;
|
|
int retcode = AM_NOMATCH;
|
|
|
|
/*
|
|
* Monitor the packet and get restrictions
|
|
*/
|
|
ntp_monitor(rbufp);
|
|
restrict_mask = restrictions(&rbufp->recv_srcadr);
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("receive: from %s restrict %02x\n",
|
|
ntoa(&rbufp->recv_srcadr), restrict_mask);
|
|
#endif
|
|
if (restrict_mask & RES_IGNORE)
|
|
return;
|
|
|
|
/*
|
|
* Discard packets with invalid version number.
|
|
*/
|
|
pkt = &rbufp->recv_pkt;
|
|
if (PKT_VERSION(pkt->li_vn_mode) >= NTP_VERSION)
|
|
sys_newversionpkt++;
|
|
else if (PKT_VERSION(pkt->li_vn_mode) >= NTP_OLDVERSION)
|
|
sys_oldversionpkt++;
|
|
else {
|
|
sys_unknownversion++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Restrict control/private mode packets. Note that packet
|
|
* length has to be checked in the control/private mode protocol
|
|
* module.
|
|
*/
|
|
if (PKT_MODE(pkt->li_vn_mode) == MODE_PRIVATE) {
|
|
if (restrict_mask & RES_NOQUERY)
|
|
return;
|
|
process_private(rbufp, ((restrict_mask & RES_NOMODIFY) ==
|
|
0));
|
|
return;
|
|
}
|
|
if (PKT_MODE(pkt->li_vn_mode) == MODE_CONTROL) {
|
|
if (restrict_mask & RES_NOQUERY)
|
|
return;
|
|
process_control(rbufp, restrict_mask);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Restrict revenue packets.
|
|
*/
|
|
if (restrict_mask & RES_DONTSERVE)
|
|
return;
|
|
|
|
/*
|
|
* See if we only accept limited number of clients from the net
|
|
* this guy is from. Note: the flag is determined dynamically
|
|
* within restrictions()
|
|
*/
|
|
if (restrict_mask & RES_LIMITED) {
|
|
sys_limitrejected++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we are not a broadcast client, ignore broadcast packets.
|
|
*/
|
|
if ((PKT_MODE(pkt->li_vn_mode) == MODE_BROADCAST && !sys_bclient))
|
|
return;
|
|
|
|
/*
|
|
* This is really awful ugly. We figure out whether an extension
|
|
* field is present and then measure the MAC size. If the number
|
|
* of words following the packet header is less than or equal to
|
|
* 5, no extension field is present and these words constitute the
|
|
* MAC. If the number of words is greater than 5, an extension
|
|
* field is present and the first word contains the length of
|
|
* the extension field and the MAC follows that.
|
|
*/
|
|
has_mac = 0;
|
|
/* pkeyid = 0; */
|
|
skeyid = tkeyid = 0;
|
|
authlen = LEN_PKT_NOMAC;
|
|
has_mac = rbufp->recv_length - authlen;
|
|
if (has_mac <= 5 * sizeof(u_int32)) {
|
|
skeyid = (u_long)ntohl(pkt->keyid1) & 0xffffffff;
|
|
} else {
|
|
authlen += (u_long)ntohl(pkt->keyid1) & 0xffffffff;
|
|
has_mac = rbufp->recv_length - authlen;
|
|
if (authlen <= 0) {
|
|
sys_badlength++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Note that keyid3 is actually the key ident of the
|
|
* MAC itself.
|
|
*/
|
|
/* pkeyid = (u_long)ntohl(pkt->keyid2) & 0xffffffff; */
|
|
skeyid = tkeyid = (u_long)ntohl(pkt->keyid3) & 0xffffffff;
|
|
}
|
|
|
|
/*
|
|
* Figure out his mode and validate it.
|
|
*/
|
|
hismode = (int)PKT_MODE(pkt->li_vn_mode);
|
|
if (PKT_VERSION(pkt->li_vn_mode) == NTP_OLDVERSION && hismode ==
|
|
0) {
|
|
/*
|
|
* Easy. If it is from the NTP port it is
|
|
* a sym act, else client.
|
|
*/
|
|
if (SRCPORT(&rbufp->recv_srcadr) == NTP_PORT)
|
|
hismode = MODE_ACTIVE;
|
|
else
|
|
hismode = MODE_CLIENT;
|
|
} else {
|
|
if (hismode != MODE_ACTIVE && hismode != MODE_PASSIVE &&
|
|
hismode != MODE_SERVER && hismode != MODE_CLIENT &&
|
|
hismode != MODE_BROADCAST)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If he included a mac field, decrypt it to see if it is
|
|
* authentic.
|
|
*/
|
|
is_authentic = is_mystic = 0;
|
|
if (has_mac == 0) {
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("receive: at %ld from %s mode %d\n",
|
|
current_time, ntoa(&rbufp->recv_srcadr),
|
|
hismode);
|
|
#endif
|
|
} else {
|
|
is_mystic = authistrusted(skeyid);
|
|
#ifdef MD5
|
|
if (skeyid > NTP_MAXKEY && !is_mystic) {
|
|
|
|
/*
|
|
* For multicast mode, generate the session key
|
|
* and install in the key cache. For client mode,
|
|
* generate the session key for the unicast
|
|
* address. For server mode, the session key should
|
|
* already be in the key cache, since it was
|
|
* generated when the last request was sent.
|
|
*/
|
|
if (hismode == MODE_BROADCAST) {
|
|
tkeyid = session_key(
|
|
ntohl((&rbufp->recv_srcadr)->sin_addr.s_addr),
|
|
ntohl(rbufp->dstadr->bcast.sin_addr.s_addr),
|
|
skeyid, (u_long)(4 * (1 << pkt->ppoll)));
|
|
} else if (hismode != MODE_SERVER) {
|
|
tkeyid = session_key(
|
|
ntohl((&rbufp->recv_srcadr)->sin_addr.s_addr),
|
|
ntohl(rbufp->dstadr->sin.sin_addr.s_addr),
|
|
skeyid, (u_long)(4 * (1 << pkt->ppoll)));
|
|
}
|
|
|
|
}
|
|
#endif /* MD5 */
|
|
|
|
/*
|
|
* Compute the cryptosum. Note a clogging attack may
|
|
* succceed in bloating the key cache.
|
|
*/
|
|
if (authdecrypt(skeyid, (u_int32 *)pkt, authlen, has_mac))
|
|
is_authentic = 1;
|
|
else
|
|
sys_badauth++;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf(
|
|
"receive: at %ld %s mode %d keyid %08lx mac %d auth %d\n",
|
|
current_time, ntoa(&rbufp->recv_srcadr),
|
|
hismode, skeyid, has_mac, is_authentic);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Find the peer. This will return a null if this guy isn't in
|
|
* the database.
|
|
*/
|
|
peer = findpeer(&rbufp->recv_srcadr, rbufp->dstadr, rbufp->fd,
|
|
hismode, &retcode);
|
|
/*
|
|
* The new association matching rules are driven by a table specified
|
|
* in ntp.h. We have replaced the *default* behaviour of replying
|
|
* to bogus packets in server mode in this version.
|
|
* A packet must now match an association in order to be processed.
|
|
* In the event that no association exists, then an association is
|
|
* mobilized if need be. Two different associations can be mobilized
|
|
* a) passive associations
|
|
* b) client associations due to broadcasts or manycasts.
|
|
*/
|
|
is_error = 0;
|
|
switch (retcode) {
|
|
case AM_FXMIT:
|
|
/*
|
|
* If the client is configured purely as a broadcast client and
|
|
* not as an manycast server, it has no business being a server.
|
|
* Simply go home. Otherwise, send a MODE_SERVER response and go
|
|
* home. Note that we don't do a authentication check here,
|
|
* since we can't set the system clock; but, we do set the
|
|
* key ID to zero to tell the caller about this.
|
|
*/
|
|
if (!sys_bclient || sys_manycastserver) {
|
|
if (is_authentic)
|
|
fast_xmit(rbufp, MODE_SERVER, skeyid);
|
|
else
|
|
fast_xmit(rbufp, MODE_SERVER, 0);
|
|
}
|
|
|
|
/*
|
|
* We can't get here if an association is mobilized, so just
|
|
* toss the key, if appropriate.
|
|
*/
|
|
if (!is_mystic && skeyid > NTP_MAXKEY)
|
|
authtrust(skeyid, 0);
|
|
return;
|
|
|
|
case AM_MANYCAST:
|
|
/*
|
|
* This could be in response to a multicast packet sent by
|
|
* the "manycast" mode association. Find peer based on the
|
|
* originate timestamp in the packet. Note that we don't
|
|
* mobilize a new association, unless the packet is properly
|
|
* authenticated. The response must be properly authenticated
|
|
* and it's darn funny of the manycaster isn't around now.
|
|
*/
|
|
if ((sys_authenticate && !is_authentic)) {
|
|
is_error = 1;
|
|
break;
|
|
}
|
|
peer2 = (struct peer *)findmanycastpeer(&pkt->org);
|
|
if (peer2 == 0) {
|
|
is_error = 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Create a new association and copy the peer variables to it.
|
|
* If something goes wrong, carefully pry the new association
|
|
* away and return its marbles to the candy store.
|
|
*/
|
|
peer = newpeer(&rbufp->recv_srcadr,
|
|
rbufp->dstadr, MODE_CLIENT, PKT_VERSION(pkt->li_vn_mode),
|
|
NTP_MINDPOLL, NTP_MAXDPOLL, 0, skeyid);
|
|
if (peer == 0) {
|
|
is_error = 1;
|
|
break;
|
|
}
|
|
peer_config_manycast(peer2, peer);
|
|
break;
|
|
|
|
case AM_ERR:
|
|
/*
|
|
* Something bad happened. Dirty floor will be mopped by the
|
|
* code at the end of this adventure.
|
|
*/
|
|
is_error = 1;
|
|
break;
|
|
|
|
case AM_NEWPASS:
|
|
/*
|
|
* Okay, we're going to keep him around. Allocate him some
|
|
* memory. But, don't do that unless the packet is properly
|
|
* authenticated.
|
|
*/
|
|
if ((sys_authenticate && !is_authentic)) {
|
|
is_error = 1;
|
|
break;
|
|
}
|
|
peer = newpeer(&rbufp->recv_srcadr,
|
|
rbufp->dstadr, MODE_PASSIVE, PKT_VERSION(pkt->li_vn_mode),
|
|
NTP_MINDPOLL, NTP_MAXDPOLL, 0, skeyid);
|
|
break;
|
|
|
|
case AM_NEWBCL:
|
|
/*
|
|
* Broadcast client being set up now. Do this only if the
|
|
* packet is properly authenticated.
|
|
*/
|
|
if ((restrict_mask & RES_NOPEER) || !sys_bclient ||
|
|
(sys_authenticate && !is_authentic)) {
|
|
is_error = 1;
|
|
break;
|
|
}
|
|
peer = newpeer(&rbufp->recv_srcadr,
|
|
rbufp->dstadr, MODE_MCLIENT, PKT_VERSION(pkt->li_vn_mode),
|
|
NTP_MINDPOLL, NTP_MAXDPOLL, 0, skeyid);
|
|
if (peer == 0)
|
|
break;
|
|
peer->flags |= FLAG_MCAST1 | FLAG_MCAST2 | FLAG_BURST;
|
|
peer->hmode = MODE_CLIENT;
|
|
break;
|
|
|
|
case AM_POSSBCL:
|
|
case AM_PROCPKT:
|
|
/*
|
|
* It seems like it is okay to process the packet now
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* shouldn't be getting here, but simply return anyway!
|
|
*/
|
|
is_error = 1;
|
|
}
|
|
if (is_error) {
|
|
|
|
/*
|
|
* Error stub. If we get here, something broke. We scuttle
|
|
* the autokey if necessary and sink the ship. This can
|
|
* occur only upon mobilization, so we can throw the
|
|
* structure away without fear of breaking anything.
|
|
*/
|
|
if (!is_mystic && skeyid > NTP_MAXKEY)
|
|
authtrust(skeyid, 0);
|
|
if (peer != 0)
|
|
if (!(peer->flags & FLAG_CONFIG))
|
|
unpeer(peer);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("match error code %d assoc %d\n", retcode,
|
|
peer_associations);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the peer isn't configured, set his keyid and authenable
|
|
* status based on the packet.
|
|
*/
|
|
oflags = peer->flags;
|
|
peer->timereceived = current_time;
|
|
if (!(peer->flags & FLAG_CONFIG) && has_mac) {
|
|
peer->flags |= FLAG_AUTHENABLE;
|
|
if (skeyid > NTP_MAXKEY) {
|
|
if (peer->flags & FLAG_MCAST2)
|
|
peer->keyid = skeyid;
|
|
else
|
|
peer->flags |= FLAG_SKEY;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine if this guy is basically trustable. If not, flush
|
|
* the bugger. If this is the first packet that is authenticated,
|
|
* flush the clock filter. This is to foil clogging attacks that
|
|
* might starve the poor dear.
|
|
*/
|
|
peer->flash = 0;
|
|
if (is_authentic)
|
|
peer->flags |= FLAG_AUTHENTIC;
|
|
else
|
|
peer->flags &= ~FLAG_AUTHENTIC;
|
|
if (peer->hmode == MODE_BROADCAST && (restrict_mask & RES_DONTTRUST))
|
|
peer->flash |= TEST10; /* access denied */
|
|
if (peer->flags & FLAG_AUTHENABLE) {
|
|
if (!(peer->flags & FLAG_AUTHENTIC))
|
|
peer->flash |= TEST5; /* authentication failed */
|
|
else if (skeyid == 0)
|
|
peer->flash |= TEST9; /* peer not authenticated */
|
|
else if (!(oflags & FLAG_AUTHENABLE)) {
|
|
peer_clear(peer);
|
|
report_event(EVNT_PEERAUTH, peer);
|
|
}
|
|
}
|
|
if ((peer->flash & ~(u_int)TEST9) != 0) {
|
|
|
|
/*
|
|
* The packet is bogus, so we throw it away before becoming
|
|
* a denial-of-service hazard. We don't throw the current
|
|
* association away if it is configured or if it has prior
|
|
* reachable friends.
|
|
*/
|
|
if (!is_mystic && skeyid > NTP_MAXKEY)
|
|
authtrust(skeyid, 0);
|
|
if (!(peer->flags & FLAG_CONFIG) && peer->reach == 0)
|
|
unpeer(peer);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf(
|
|
"invalid packet 0x%02x code %d assoc %d\n",
|
|
peer->flash, retcode, peer_associations);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
#ifdef MD5
|
|
/*
|
|
* The autokey dance. The cha-cha requires that the hash of the
|
|
* current session key matches the previous key identifier. Heaps
|
|
* of trouble if the steps falter.
|
|
*/
|
|
if (skeyid > NTP_MAXKEY) {
|
|
int i;
|
|
|
|
/*
|
|
* In the case of a new autokey, verify the hash matches
|
|
* one of the previous four hashes. If not, raise the
|
|
* authentication flasher and hope the next one works.
|
|
*/
|
|
if (hismode == MODE_SERVER) {
|
|
peer->pkeyid = peer->keyid;
|
|
} else if (peer->flags & FLAG_MCAST2) {
|
|
if (peer->pkeyid > NTP_MAXKEY)
|
|
authtrust(peer->pkeyid, 0);
|
|
for (i = 0; i < 4 && tkeyid != peer->pkeyid; i++) {
|
|
tkeyid = session_key(
|
|
ntohl((&rbufp->recv_srcadr)->sin_addr.s_addr),
|
|
ntohl(rbufp->dstadr->bcast.sin_addr.s_addr),
|
|
tkeyid, 0);
|
|
}
|
|
} else {
|
|
if (peer->pkeyid > NTP_MAXKEY)
|
|
authtrust(peer->pkeyid, 0);
|
|
for (i = 0; i < 4 && tkeyid != peer->pkeyid; i++) {
|
|
tkeyid = session_key(
|
|
ntohl((&rbufp->recv_srcadr)->sin_addr.s_addr),
|
|
ntohl(rbufp->dstadr->sin.sin_addr.s_addr),
|
|
tkeyid, 0);
|
|
}
|
|
}
|
|
#ifdef XXX /* temp until certificate code is mplemented */
|
|
if (tkeyid != peer->pkeyid)
|
|
peer->flash |= TEST9; /* peer not authentic */
|
|
#endif
|
|
peer->pkeyid = skeyid;
|
|
}
|
|
#endif /* MD5 */
|
|
|
|
/*
|
|
* Gawdz, it's come to this. Process the dang packet. If something
|
|
* breaks and the association doesn't deserve to live, toss it.
|
|
* Be careful in active mode and return a packet anyway.
|
|
*/
|
|
process_packet(peer, pkt, &(rbufp->recv_time));
|
|
if (!(peer->flags & FLAG_CONFIG) && peer->reach == 0) {
|
|
if (peer->hmode == MODE_PASSIVE) {
|
|
if (is_authentic)
|
|
fast_xmit(rbufp, MODE_PASSIVE, skeyid);
|
|
else
|
|
fast_xmit(rbufp, MODE_PASSIVE, 0);
|
|
}
|
|
unpeer(peer);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* process_packet - Packet Procedure, a la Section 3.4.4 of the
|
|
* specification. Or almost, at least. If we're in here we have a
|
|
* reasonable expectation that we will be having a long term
|
|
* relationship with this host.
|
|
*/
|
|
int
|
|
process_packet(
|
|
register struct peer *peer,
|
|
register struct pkt *pkt,
|
|
l_fp *recv_ts
|
|
)
|
|
{
|
|
l_fp t10, t23;
|
|
double p_offset, p_del, p_disp;
|
|
double dtemp;
|
|
l_fp p_rec, p_xmt, p_org, p_reftime;
|
|
l_fp ci;
|
|
int pmode;
|
|
|
|
/*
|
|
* Swap header fields and keep the books.
|
|
*/
|
|
sys_processed++;
|
|
peer->processed++;
|
|
p_del = FPTOD(NTOHS_FP(pkt->rootdelay));
|
|
p_disp = FPTOD(NTOHS_FP(pkt->rootdispersion));
|
|
NTOHL_FP(&pkt->reftime, &p_reftime);
|
|
NTOHL_FP(&pkt->rec, &p_rec);
|
|
NTOHL_FP(&pkt->xmt, &p_xmt);
|
|
if (PKT_MODE(pkt->li_vn_mode) != MODE_BROADCAST)
|
|
NTOHL_FP(&pkt->org, &p_org);
|
|
else
|
|
p_org = peer->rec;
|
|
peer->rec = *recv_ts;
|
|
peer->ppoll = pkt->ppoll;
|
|
pmode = PKT_MODE(pkt->li_vn_mode);
|
|
|
|
/*
|
|
* Test for old or duplicate packets (tests 1 through 3).
|
|
*/
|
|
if (L_ISHIS(&peer->org, &p_xmt)) /* count old packets */
|
|
peer->oldpkt++;
|
|
if (L_ISEQU(&peer->org, &p_xmt)) /* test 1 */
|
|
peer->flash |= TEST1; /* duplicate packet */
|
|
if (PKT_MODE(pkt->li_vn_mode) != MODE_BROADCAST) {
|
|
if (!L_ISEQU(&peer->xmt, &p_org)) { /* test 2 */
|
|
peer->bogusorg++;
|
|
peer->flash |= TEST2; /* bogus packet */
|
|
}
|
|
if (L_ISZERO(&p_rec) || L_ISZERO(&p_org))
|
|
peer->flash |= TEST3; /* unsynchronized */
|
|
} else {
|
|
if (L_ISZERO(&p_org))
|
|
peer->flash |= TEST3; /* unsynchronized */
|
|
}
|
|
peer->org = p_xmt;
|
|
|
|
/*
|
|
* Test for valid header (tests 5 through 10)
|
|
*/
|
|
ci = p_xmt;
|
|
L_SUB(&ci, &p_reftime);
|
|
LFPTOD(&ci, dtemp);
|
|
if (PKT_LEAP(pkt->li_vn_mode) == LEAP_NOTINSYNC || /* test 6 */
|
|
PKT_TO_STRATUM(pkt->stratum) >= NTP_MAXSTRATUM ||
|
|
dtemp < 0)
|
|
peer->flash |= TEST6; /* peer clock unsynchronized */
|
|
if (!(peer->flags & FLAG_CONFIG) && sys_peer != 0) { /* test 7 */
|
|
if (PKT_TO_STRATUM(pkt->stratum) > sys_stratum) {
|
|
peer->flash |= TEST7; /* peer stratum too high */
|
|
sys_badstratum++;
|
|
}
|
|
}
|
|
if (fabs(p_del) >= MAXDISPERSE /* test 8 */
|
|
|| p_disp >= MAXDISPERSE)
|
|
peer->flash |= TEST8; /* delay/dispersion too high */
|
|
|
|
/*
|
|
* If the packet header is invalid (tests 5 through 10), exit.
|
|
* XXX we let TEST9 sneak by until the certificate code is
|
|
* implemented, but only to mobilize the association.
|
|
*/
|
|
if (peer->flash & (TEST5 | TEST6 | TEST7 | TEST8 | TEST10)) {
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf(
|
|
"invalid packet header 0x%02x mode %d\n",
|
|
peer->flash, pmode);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Valid header; update our state.
|
|
*/
|
|
record_raw_stats(&peer->srcadr, &peer->dstadr->sin,
|
|
&p_org, &p_rec, &p_xmt, &peer->rec);
|
|
|
|
peer->leap = PKT_LEAP(pkt->li_vn_mode);
|
|
peer->pmode = pmode; /* unspec */
|
|
peer->stratum = PKT_TO_STRATUM(pkt->stratum);
|
|
peer->precision = pkt->precision;
|
|
peer->rootdelay = p_del;
|
|
peer->rootdispersion = p_disp;
|
|
peer->refid = pkt->refid;
|
|
peer->reftime = p_reftime;
|
|
if (peer->reach == 0) {
|
|
report_event(EVNT_REACH, peer);
|
|
peer->timereachable = current_time;
|
|
}
|
|
peer->reach |= 1;
|
|
poll_update(peer, peer->hpoll);
|
|
|
|
/*
|
|
* If running in a client/server association, calculate the
|
|
* clock offset c, roundtrip delay d and dispersion e. We use
|
|
* the equations (reordered from those in the spec). Note that,
|
|
* in a broadcast association, org has been set to the time of
|
|
* last reception. Note the computation of dispersion includes
|
|
* the system precision plus that due to the frequency error
|
|
* since the originate time.
|
|
*
|
|
* c = ((t2 - t3) + (t1 - t0)) / 2
|
|
* d = (t2 - t3) - (t1 - t0)
|
|
* e = (org - rec) (seconds only)
|
|
*/
|
|
t10 = p_xmt; /* compute t1 - t0 */
|
|
L_SUB(&t10, &peer->rec);
|
|
t23 = p_rec; /* compute t2 - t3 */
|
|
L_SUB(&t23, &p_org);
|
|
ci = t10;
|
|
p_disp = CLOCK_PHI * (peer->rec.l_ui - p_org.l_ui);
|
|
|
|
/*
|
|
* If running in a broadcast association, the clock offset is (t1
|
|
* - t0) corrected by the one-way delay, but we can't measure
|
|
* that directly; therefore, we start up in client/server mode,
|
|
* calculate the clock offset, using the engineered refinement
|
|
* algorithms, while also receiving broadcasts. When a broadcast
|
|
* is received in client/server mode, we calculate a correction
|
|
* factor to use after switching back to broadcast mode. We know
|
|
* NTP_SKEWFACTOR == 16, which accounts for the simplified ei
|
|
* calculation.
|
|
*
|
|
* If FLAG_MCAST2 is set, we are a broadcast/multicast client.
|
|
* If FLAG_MCAST1 is set, we haven't calculated the propagation
|
|
* delay. If hmode is MODE_CLIENT, we haven't set the local
|
|
* clock in client/server mode. Initially, we come up
|
|
* MODE_CLIENT. When the clock is first updated and FLAG_MCAST2
|
|
* is set, we switch from MODE_CLIENT to MODE_BCLIENT.
|
|
*/
|
|
if (pmode == MODE_BROADCAST) {
|
|
if (peer->flags & FLAG_MCAST1) {
|
|
if (peer->hmode == MODE_BCLIENT)
|
|
peer->flags &= ~FLAG_MCAST1;
|
|
LFPTOD(&ci, p_offset);
|
|
peer->estbdelay = peer->offset - p_offset;
|
|
return (1);
|
|
|
|
}
|
|
DTOLFP(peer->estbdelay, &t10);
|
|
L_ADD(&ci, &t10);
|
|
p_del = peer->delay;
|
|
} else {
|
|
L_ADD(&ci, &t23);
|
|
L_RSHIFT(&ci);
|
|
L_SUB(&t23, &t10);
|
|
LFPTOD(&t23, p_del);
|
|
}
|
|
LFPTOD(&ci, p_offset);
|
|
if (fabs(p_del) >= MAXDISPERSE || p_disp >= MAXDISPERSE) /* test 4 */
|
|
peer->flash |= TEST4; /* delay/dispersion too big */
|
|
|
|
/*
|
|
* If the packet data are invalid (tests 1 through 4), exit.
|
|
*/
|
|
if (peer->flash) {
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("invalid packet data 0x%02x mode %d\n",
|
|
peer->flash, pmode);
|
|
#endif
|
|
return(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* This one is valid. Mark it so, give it to clock_filter().
|
|
*/
|
|
clock_filter(peer, p_offset, p_del, fabs(p_disp));
|
|
clock_select();
|
|
record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
|
|
peer->offset, peer->delay, peer->disp, SQRT(peer->variance));
|
|
return(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* clock_update - Called at system process update intervals.
|
|
*/
|
|
static void
|
|
clock_update(void)
|
|
{
|
|
u_char oleap;
|
|
u_char ostratum;
|
|
int i;
|
|
struct peer *peer;
|
|
|
|
/*
|
|
* Reset/adjust the system clock. Do this only if there is a
|
|
* system peer and we haven't seen that peer lately. Watch for
|
|
* timewarps here.
|
|
*/
|
|
if (sys_peer == 0)
|
|
return;
|
|
if (sys_peer->pollsw == FALSE || sys_peer->burst > 0)
|
|
return;
|
|
sys_peer->pollsw = FALSE;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("clock_update: at %ld assoc %d \n", current_time,
|
|
peer_associations);
|
|
#endif
|
|
oleap = sys_leap;
|
|
ostratum = sys_stratum;
|
|
switch (local_clock(sys_peer, sys_offset, sys_epsil)) {
|
|
|
|
case -1:
|
|
/*
|
|
* Clock is too screwed up. Just exit for now.
|
|
*/
|
|
report_event(EVNT_SYSFAULT, (struct peer *)0);
|
|
exit(1);
|
|
/*NOTREACHED*/
|
|
|
|
case 1:
|
|
/*
|
|
* Clock was stepped. Clear filter registers
|
|
* of all peers.
|
|
*/
|
|
for (i = 0; i < HASH_SIZE; i++) {
|
|
for (peer = peer_hash[i]; peer != 0;
|
|
peer =peer->next)
|
|
peer_clear(peer);
|
|
}
|
|
NLOG(NLOG_SYNCSTATUS)
|
|
msyslog(LOG_INFO, "synchronisation lost");
|
|
sys_peer = 0;
|
|
sys_stratum = STRATUM_UNSPEC;
|
|
report_event(EVNT_CLOCKRESET, (struct peer *)0);
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* Update the system stratum, leap bits, root delay,
|
|
* root dispersion, reference ID and reference time. We
|
|
* also update select dispersion and max frequency
|
|
* error.
|
|
*/
|
|
sys_stratum = sys_peer->stratum + 1;
|
|
if (sys_stratum == 1)
|
|
sys_refid = sys_peer->refid;
|
|
else
|
|
sys_refid = sys_peer->srcadr.sin_addr.s_addr;
|
|
sys_reftime = sys_peer->rec;
|
|
sys_rootdelay = sys_peer->rootdelay + fabs(sys_peer->delay);
|
|
sys_leap = leap_consensus;
|
|
}
|
|
if (oleap != sys_leap)
|
|
report_event(EVNT_SYNCCHG, (struct peer *)0);
|
|
if (ostratum != sys_stratum)
|
|
report_event(EVNT_PEERSTCHG, (struct peer *)0);
|
|
}
|
|
|
|
|
|
/*
|
|
* poll_update - update peer poll interval. See Section 3.4.9 of the
|
|
* spec.
|
|
*/
|
|
void
|
|
poll_update(
|
|
struct peer *peer,
|
|
int hpoll
|
|
)
|
|
{
|
|
long update;
|
|
|
|
/*
|
|
* The wiggle-the-poll-interval dance. Broadcasters dance only
|
|
* the minpoll beat. Reference clock partners sit this one out.
|
|
* Dancers surviving the clustering algorithm beat to the system
|
|
* clock. Broadcast clients are usually lead by their broadcast
|
|
* partner, but faster in the initial mating dance.
|
|
*/
|
|
if (peer->hmode == MODE_BROADCAST) {
|
|
peer->hpoll = peer->minpoll;
|
|
} else if (peer->flags & FLAG_SYSPEER) {
|
|
peer->hpoll = sys_poll;
|
|
} else {
|
|
if (hpoll > peer->maxpoll)
|
|
peer->hpoll = peer->maxpoll;
|
|
else if (hpoll < peer->minpoll)
|
|
peer->hpoll = peer->minpoll;
|
|
else
|
|
peer->hpoll = hpoll;
|
|
}
|
|
if (peer->burst > 0) {
|
|
if (peer->nextdate != current_time)
|
|
return;
|
|
if (peer->flags & FLAG_REFCLOCK)
|
|
peer->nextdate++;
|
|
else if (peer->reach & 0x1)
|
|
peer->nextdate += RANDPOLL(BURST_INTERVAL2);
|
|
else
|
|
peer->nextdate += RANDPOLL(BURST_INTERVAL1);
|
|
} else {
|
|
update = max(min(peer->ppoll, peer->hpoll), peer->minpoll);
|
|
peer->nextdate = peer->outdate + RANDPOLL(update);
|
|
}
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("poll_update: at %lu %s poll %d burst %d last %lu next %lu\n",
|
|
current_time, ntoa(&peer->srcadr), hpoll, peer->burst,
|
|
peer->outdate, peer->nextdate);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* clear - clear peer filter registers. See Section 3.4.8 of the spec.
|
|
*/
|
|
void
|
|
peer_clear(
|
|
register struct peer *peer
|
|
)
|
|
{
|
|
register int i;
|
|
|
|
memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO);
|
|
peer->estbdelay = sys_bdelay;
|
|
peer->hpoll = peer->minpoll;
|
|
peer->pollsw = FALSE;
|
|
peer->variance = MAXDISPERSE;
|
|
peer->epoch = current_time;
|
|
for (i = 0; i < NTP_SHIFT; i++) {
|
|
peer->filter_order[i] = i;
|
|
peer->filter_disp[i] = MAXDISPERSE;
|
|
peer->filter_epoch[i] = current_time;
|
|
}
|
|
poll_update(peer, peer->minpoll);
|
|
|
|
/*
|
|
* Since we have a chance to correct possible funniness in
|
|
* our selection of interfaces on a multihomed host, do so
|
|
* by setting us to no particular interface.
|
|
* WARNING: do so only in non-broadcast mode!
|
|
*/
|
|
if (peer->hmode != MODE_BROADCAST)
|
|
peer->dstadr = any_interface;
|
|
}
|
|
|
|
|
|
/*
|
|
* clock_filter - add incoming clock sample to filter register and run
|
|
* the filter procedure to find the best sample.
|
|
*/
|
|
void
|
|
clock_filter(
|
|
register struct peer *peer,
|
|
double sample_offset,
|
|
double sample_delay,
|
|
double sample_disp
|
|
)
|
|
{
|
|
register int i, j, k, n = 0;
|
|
register u_char *ord;
|
|
double distance[NTP_SHIFT];
|
|
double x, y, z, off;
|
|
|
|
/*
|
|
* Update error bounds and calculate distances. Also initialize
|
|
* sort index vector.
|
|
*/
|
|
x = CLOCK_PHI * (current_time - peer->update);
|
|
peer->update = current_time;
|
|
ord = peer->filter_order;
|
|
j = peer->filter_nextpt;
|
|
for (i = 0; i < NTP_SHIFT; i++) {
|
|
peer->filter_disp[j] += x;
|
|
if (peer->filter_disp[j] > MAXDISPERSE)
|
|
peer->filter_disp[j] = MAXDISPERSE;
|
|
distance[i] = fabs(peer->filter_delay[j]) / 2 +
|
|
peer->filter_disp[j];
|
|
ord[i] = j;
|
|
if (--j < 0)
|
|
j += NTP_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* Insert the new sample at the beginning of the register.
|
|
*/
|
|
peer->filter_offset[peer->filter_nextpt] = sample_offset;
|
|
peer->filter_delay[peer->filter_nextpt] = sample_delay;
|
|
x = LOGTOD(peer->precision) + LOGTOD(sys_precision) + sample_disp;
|
|
peer->filter_disp[peer->filter_nextpt] = min(x, MAXDISPERSE);
|
|
peer->filter_epoch[peer->filter_nextpt] = current_time;
|
|
distance[0] = min(x + fabs(sample_delay) / 2, MAXDISTANCE);
|
|
peer->filter_nextpt++;
|
|
if (peer->filter_nextpt >= NTP_SHIFT)
|
|
peer->filter_nextpt = 0;
|
|
|
|
/*
|
|
* Sort the samples in the register by distance. The winning
|
|
* sample will be in ord[0]. Sort the samples only if they
|
|
* are younger than the Allen intercept.
|
|
*/
|
|
y = min(allan_xpt, NTP_SHIFT * ULOGTOD(sys_poll));
|
|
for (n = 0; n < NTP_SHIFT && current_time -
|
|
peer->filter_epoch[ord[n]] <= y; n++) {
|
|
for (j = 0; j < n; j++) {
|
|
if (distance[j] > distance[n]) {
|
|
x = distance[j];
|
|
k = ord[j];
|
|
distance[j] = distance[n];
|
|
ord[j] = ord[n];
|
|
distance[n] = x;
|
|
ord[n] = k;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the error bound and standard error.
|
|
*/
|
|
x = y = z = off = 0.;
|
|
for (i = NTP_SHIFT - 1; i >= 0; i--) {
|
|
x = NTP_FWEIGHT * (x + peer->filter_disp[ord[i]]);
|
|
if (i < n) {
|
|
z += 1. / distance[i];
|
|
off += peer->filter_offset[ord[i]] / distance[i];
|
|
y += DIFF(peer->filter_offset[ord[i]],
|
|
peer->filter_offset[ord[0]]);
|
|
}
|
|
}
|
|
peer->delay = peer->filter_delay[ord[0]];
|
|
peer->variance = min(y / n, MAXDISPERSE);
|
|
peer->disp = min(x, MAXDISPERSE);
|
|
peer->epoch = current_time;
|
|
x = peer->offset;
|
|
if (peer->flags & FLAG_BURST)
|
|
peer->offset = off / z;
|
|
else
|
|
peer->offset = peer->filter_offset[ord[0]];
|
|
|
|
/*
|
|
* A new sample is useful only if it is younger than the last
|
|
* one used.
|
|
*/
|
|
if (peer->filter_epoch[ord[0]] > peer->epoch) {
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("clock_filter: discard %lu\n",
|
|
peer->filter_epoch[ord[0]] - peer->epoch);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the offset exceeds the dispersion by CLOCK_SGATE and the
|
|
* interval since the last update is less than twice the system
|
|
* poll interval, consider the update a popcorn spike and ignore
|
|
* it.
|
|
*/
|
|
if (fabs(x - peer->offset) > CLOCK_SGATE &&
|
|
peer->filter_epoch[ord[0]] - peer->epoch < (1 <<
|
|
(sys_poll + 1))) {
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("clock_filter: popcorn spike %.6f\n", x);
|
|
#endif
|
|
return;
|
|
}
|
|
peer->epoch = peer->filter_epoch[ord[0]];
|
|
peer->pollsw = TRUE;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf(
|
|
"clock_filter: offset %.6f delay %.6f disp %.6f std %.6f, age %lu\n",
|
|
peer->offset, peer->delay, peer->disp,
|
|
SQRT(peer->variance), current_time - peer->epoch);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* clock_select - find the pick-of-the-litter clock
|
|
*/
|
|
void
|
|
clock_select(void)
|
|
{
|
|
register struct peer *peer;
|
|
int i;
|
|
int nlist, nl3;
|
|
double d, e, f;
|
|
int j;
|
|
int n;
|
|
int allow, found, k;
|
|
double high, low;
|
|
double synch[NTP_MAXCLOCK], error[NTP_MAXCLOCK];
|
|
struct peer *osys_peer;
|
|
struct peer *typeacts = 0;
|
|
struct peer *typelocal = 0;
|
|
struct peer *typepps = 0;
|
|
struct peer *typeprefer = 0;
|
|
struct peer *typesystem = 0;
|
|
|
|
static int list_alloc = 0;
|
|
static struct endpoint *endpoint = NULL;
|
|
static int *index = NULL;
|
|
static struct peer **peer_list = NULL;
|
|
static u_int endpoint_size = 0;
|
|
static u_int index_size = 0;
|
|
static u_int peer_list_size = 0;
|
|
|
|
/*
|
|
* Initialize. If a prefer peer does not survive this thing,
|
|
* the pps_update switch will remain zero.
|
|
*/
|
|
pps_update = 0;
|
|
nlist = 0;
|
|
low = 1e9;
|
|
high = -1e9;
|
|
for (n = 0; n < HASH_SIZE; n++)
|
|
nlist += peer_hash_count[n];
|
|
if (nlist > list_alloc) {
|
|
if (list_alloc > 0) {
|
|
free(endpoint);
|
|
free(index);
|
|
free(peer_list);
|
|
}
|
|
while (list_alloc < nlist) {
|
|
list_alloc += 5;
|
|
endpoint_size += 5 * 3 * sizeof *endpoint;
|
|
index_size += 5 * 3 * sizeof *index;
|
|
peer_list_size += 5 * sizeof *peer_list;
|
|
}
|
|
endpoint = (struct endpoint *)emalloc(endpoint_size);
|
|
index = (int *)emalloc(index_size);
|
|
peer_list = (struct peer **)emalloc(peer_list_size);
|
|
}
|
|
|
|
/*
|
|
* This first chunk of code is supposed to go through all
|
|
* peers we know about to find the peers which are most likely
|
|
* to succeed. We run through the list doing the sanity checks
|
|
* and trying to insert anyone who looks okay.
|
|
*/
|
|
nlist = nl3 = 0; /* none yet */
|
|
for (n = 0; n < HASH_SIZE; n++) {
|
|
for (peer = peer_hash[n]; peer != 0; peer = peer->next) {
|
|
peer->flags &= ~FLAG_SYSPEER;
|
|
peer->status = CTL_PST_SEL_REJECT;
|
|
if (peer->flags & FLAG_NOSELECT)
|
|
continue; /* noselect (survey only) */
|
|
if (peer->reach == 0)
|
|
continue; /* unreachable */
|
|
if (peer->stratum > 1 && peer->refid ==
|
|
peer->dstadr->sin.sin_addr.s_addr)
|
|
continue; /* sync loop */
|
|
if (root_distance(peer) >= MAXDISTANCE + 2 *
|
|
CLOCK_PHI * ULOGTOD(sys_poll)) {
|
|
peer->seldisptoolarge++;
|
|
continue; /* too noisy or broken */
|
|
}
|
|
|
|
/*
|
|
* Don't allow the local-clock or acts drivers
|
|
* in the kitchen at this point, unless the
|
|
* prefer peer. Do that later, but only if
|
|
* nobody else is around.
|
|
*/
|
|
if (peer->refclktype == REFCLK_LOCALCLOCK
|
|
#if defined(VMS) && defined(VMS_LOCALUNIT)
|
|
/* wjm: local unit VMS_LOCALUNIT taken seriously */
|
|
&& REFCLOCKUNIT(&peer->srcadr) != VMS_LOCALUNIT
|
|
#endif /* VMS && VMS_LOCALUNIT */
|
|
) {
|
|
typelocal = peer;
|
|
if (!(peer->flags & FLAG_PREFER))
|
|
continue; /* no local clock */
|
|
}
|
|
if (peer->sstclktype == CTL_SST_TS_TELEPHONE) {
|
|
typeacts = peer;
|
|
if (!(peer->flags & FLAG_PREFER))
|
|
continue; /* no acts */
|
|
}
|
|
|
|
/*
|
|
* If we get this far, we assume the peer is
|
|
* acceptable.
|
|
*/
|
|
peer->status = CTL_PST_SEL_SANE;
|
|
peer_list[nlist++] = peer;
|
|
|
|
/*
|
|
* Insert each interval endpoint on the sorted
|
|
* list.
|
|
*/
|
|
e = peer->offset; /* Upper end */
|
|
f = root_distance(peer);
|
|
e = e + f;
|
|
for (i = nl3 - 1; i >= 0; i--) {
|
|
if (e >= endpoint[index[i]].val)
|
|
break;
|
|
index[i + 3] = index[i];
|
|
}
|
|
index[i + 3] = nl3;
|
|
endpoint[nl3].type = 1;
|
|
endpoint[nl3++].val = e;
|
|
|
|
e = e - f; /* Center point */
|
|
for ( ; i >= 0; i--) {
|
|
if (e >= endpoint[index[i]].val)
|
|
break;
|
|
index[i + 2] = index[i];
|
|
}
|
|
index[i + 2] = nl3;
|
|
endpoint[nl3].type = 0;
|
|
endpoint[nl3++].val = e;
|
|
|
|
e = e - f; /* Lower end */
|
|
for ( ; i >= 0; i--) {
|
|
if (e >= endpoint[index[i]].val)
|
|
break;
|
|
index[i + 1] = index[i];
|
|
}
|
|
index[i + 1] = nl3;
|
|
endpoint[nl3].type = -1;
|
|
endpoint[nl3++].val = e;
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
for (i = 0; i < nl3; i++)
|
|
printf("select: endpoint %2d %.6f\n",
|
|
endpoint[index[i]].type, endpoint[index[i]].val);
|
|
#endif
|
|
i = 0;
|
|
j = nl3 - 1;
|
|
allow = nlist; /* falsetickers assumed */
|
|
found = 0;
|
|
while (allow > 0) {
|
|
allow--;
|
|
for (n = 0; i <= j; i++) {
|
|
n += endpoint[index[i]].type;
|
|
if (n < 0)
|
|
break;
|
|
if (endpoint[index[i]].type == 0)
|
|
found++;
|
|
}
|
|
for (n = 0; i <= j; j--) {
|
|
n += endpoint[index[j]].type;
|
|
if (n > 0)
|
|
break;
|
|
if (endpoint[index[j]].type == 0)
|
|
found++;
|
|
}
|
|
if (found > allow)
|
|
break;
|
|
low = endpoint[index[i++]].val;
|
|
high = endpoint[index[j--]].val;
|
|
}
|
|
|
|
/*
|
|
* If no survivors remain at this point, check if the acts or
|
|
* local clock drivers have been found. If so, nominate one of
|
|
* them as the only survivor. Otherwise, give up and declare us
|
|
* unsynchronized.
|
|
*/
|
|
if ((allow << 1) >= nlist) {
|
|
if (typeacts != 0) {
|
|
typeacts->status = CTL_PST_SEL_SANE;
|
|
peer_list[0] = typeacts;
|
|
nlist = 1;
|
|
} else if (typelocal != 0) {
|
|
typelocal->status = CTL_PST_SEL_SANE;
|
|
peer_list[0] = typelocal;
|
|
nlist = 1;
|
|
} else {
|
|
if (sys_peer != 0) {
|
|
report_event(EVNT_PEERSTCHG,
|
|
(struct peer *)0);
|
|
NLOG(NLOG_SYNCSTATUS)
|
|
msyslog(LOG_INFO, "synchronisation lost");
|
|
}
|
|
sys_peer = 0;
|
|
return;
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("select: low %.6f high %.6f\n", low, high);
|
|
#endif
|
|
|
|
/*
|
|
* Clustering algorithm. Process intersection list to discard
|
|
* outlyers. Construct candidate list in cluster order
|
|
* determined by the sum of peer synchronization distance plus
|
|
* scaled stratum. We must find at least one peer.
|
|
*/
|
|
j = 0;
|
|
for (i = 0; i < nlist; i++) {
|
|
peer = peer_list[i];
|
|
if (nlist > 1 && (low >= peer->offset ||
|
|
peer->offset >= high))
|
|
continue;
|
|
peer->status = CTL_PST_SEL_CORRECT;
|
|
d = root_distance(peer) + peer->stratum * MAXDISPERSE;
|
|
if (j >= NTP_MAXCLOCK) {
|
|
if (d >= synch[j - 1])
|
|
continue;
|
|
else
|
|
j--;
|
|
}
|
|
for (k = j; k > 0; k--) {
|
|
if (d >= synch[k - 1])
|
|
break;
|
|
synch[k] = synch[k - 1];
|
|
peer_list[k] = peer_list[k - 1];
|
|
}
|
|
peer_list[k] = peer;
|
|
synch[k] = d;
|
|
j++;
|
|
}
|
|
nlist = j;
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
for (i = 0; i < nlist; i++)
|
|
printf("select: %s distance %.6f\n",
|
|
ntoa(&peer_list[i]->srcadr), synch[i]);
|
|
#endif
|
|
|
|
/*
|
|
* Now, prune outlyers by root dispersion. Continue as long as
|
|
* there are more than NTP_MINCLOCK survivors and the minimum
|
|
* select dispersion is greater than the maximum peer
|
|
* dispersion. Stop if we are about to discard a prefer peer.
|
|
*/
|
|
for (i = 0; i < nlist; i++) {
|
|
peer = peer_list[i];
|
|
error[i] = peer->variance;
|
|
if (i < NTP_CANCLOCK)
|
|
peer->status = CTL_PST_SEL_SELCAND;
|
|
else
|
|
peer->status = CTL_PST_SEL_DISTSYSPEER;
|
|
}
|
|
while (1) {
|
|
sys_maxd = 0;
|
|
d = error[0];
|
|
for (k = i = nlist - 1; i >= 0; i--) {
|
|
double sdisp = 0;
|
|
|
|
for (j = nlist - 1; j > 0; j--) {
|
|
sdisp = NTP_SWEIGHT * (sdisp +
|
|
DIFF(peer_list[i]->offset,
|
|
peer_list[j]->offset));
|
|
}
|
|
if (sdisp > sys_maxd) {
|
|
sys_maxd = sdisp;
|
|
k = i;
|
|
}
|
|
if (error[i] < d)
|
|
d = error[i];
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf(
|
|
"select: survivors %d select %.6f peer %.6f\n",
|
|
nlist, SQRT(sys_maxd), SQRT(d));
|
|
#endif
|
|
if (nlist <= NTP_MINCLOCK || sys_maxd <= d ||
|
|
peer_list[k]->flags & FLAG_PREFER)
|
|
break;
|
|
for (j = k + 1; j < nlist; j++) {
|
|
peer_list[j - 1] = peer_list[j];
|
|
error[j - 1] = error[j];
|
|
}
|
|
nlist--;
|
|
}
|
|
#ifdef DEBUG
|
|
if (debug > 1) {
|
|
for (i = 0; i < nlist; i++)
|
|
printf(
|
|
"select: %s offset %.6f, distance %.6f poll %d\n",
|
|
ntoa(&peer_list[i]->srcadr), peer_list[i]->offset,
|
|
synch[i], peer_list[i]->pollsw);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* What remains is a list of not greater than NTP_MINCLOCK
|
|
* peers. We want only a peer at the lowest stratum to become
|
|
* the system peer, although all survivors are eligible for the
|
|
* combining algorithm. First record their order, diddle the
|
|
* flags and clamp the poll intervals. Then, consider the peers
|
|
* at the lowest stratum. Of these, OR the leap bits on the
|
|
* assumption that, if some of them honk nonzero bits, they must
|
|
* know what they are doing. Also, check for prefer and pps
|
|
* peers. If a prefer peer is found within clock_max, update the
|
|
* pps switch. Of the other peers not at the lowest stratum,
|
|
* check if the system peer is among them and, if found, zap
|
|
* him. We note that the head of the list is at the lowest
|
|
* stratum and that unsynchronized peers cannot survive this
|
|
* far.
|
|
*/
|
|
leap_consensus = 0;
|
|
for (i = nlist - 1; i >= 0; i--) {
|
|
peer_list[i]->status = CTL_PST_SEL_SYNCCAND;
|
|
peer_list[i]->flags |= FLAG_SYSPEER;
|
|
poll_update(peer_list[i], peer_list[i]->hpoll);
|
|
if (peer_list[i]->stratum == peer_list[0]->stratum) {
|
|
leap_consensus |= peer_list[i]->leap;
|
|
if (peer_list[i]->refclktype == REFCLK_ATOM_PPS)
|
|
typepps = peer_list[i];
|
|
if (peer_list[i] == sys_peer)
|
|
typesystem = peer_list[i];
|
|
if (peer_list[i]->flags & FLAG_PREFER) {
|
|
typeprefer = peer_list[i];
|
|
if (fabs(typeprefer->offset) < clock_max)
|
|
pps_update = 1;
|
|
}
|
|
} else {
|
|
if (peer_list[i] == sys_peer)
|
|
sys_peer = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mitigation rules of the game. There are several types of
|
|
* peers that make a difference here: (1) prefer local peers
|
|
* (type REFCLK_LOCALCLOCK with FLAG_PREFER) or prefer modem
|
|
* peers (type REFCLK_NIST_ATOM etc with FLAG_PREFER), (2) pps peers
|
|
* (type REFCLK_ATOM_PPS), (3) remaining prefer peers (flag
|
|
* FLAG_PREFER), (4) the existing system peer, if any, (5) the
|
|
* head of the survivor list. Note that only one peer can be
|
|
* declared prefer. The order of preference is in the order
|
|
* stated. Note that all of these must be at the lowest stratum,
|
|
* i.e., the stratum of the head of the survivor list.
|
|
*/
|
|
osys_peer = sys_peer;
|
|
if (typeprefer && (typeprefer->refclktype == REFCLK_LOCALCLOCK ||
|
|
typeprefer->sstclktype == CTL_SST_TS_TELEPHONE || !typepps)) {
|
|
sys_peer = typeprefer;
|
|
sys_peer->status = CTL_PST_SEL_SYSPEER;
|
|
sys_offset = sys_peer->offset;
|
|
sys_epsil = sys_peer->variance;
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("select: prefer offset %.6f\n", sys_offset);
|
|
#endif
|
|
} else if (typepps && pps_update) {
|
|
sys_peer = typepps;
|
|
sys_peer->status = CTL_PST_SEL_PPS;
|
|
sys_offset = sys_peer->offset;
|
|
sys_epsil = sys_peer->variance;
|
|
if (!pps_control)
|
|
NLOG(NLOG_SYSEVENT) /* conditional syslog */
|
|
msyslog(LOG_INFO, "pps sync enabled");
|
|
pps_control = current_time;
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("select: pps offset %.6f\n", sys_offset);
|
|
#endif
|
|
} else {
|
|
if (!typesystem)
|
|
sys_peer = peer_list[0];
|
|
sys_peer->status = CTL_PST_SEL_SYSPEER;
|
|
sys_offset = clock_combine(peer_list, nlist);
|
|
sys_epsil = sys_peer->variance + sys_maxd;
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("select: combine offset %.6f\n",
|
|
sys_offset);
|
|
#endif
|
|
}
|
|
if (osys_peer != sys_peer)
|
|
report_event(EVNT_PEERSTCHG, (struct peer *)0);
|
|
clock_update();
|
|
}
|
|
|
|
/*
|
|
* clock_combine - combine offsets from selected peers
|
|
*/
|
|
static double
|
|
clock_combine(
|
|
struct peer **peers,
|
|
int npeers
|
|
)
|
|
{
|
|
int i;
|
|
double x, y, z;
|
|
y = z = 0;
|
|
for (i = 0; i < npeers; i++) {
|
|
x = root_distance(peers[i]);
|
|
y += 1. / x;
|
|
z += peers[i]->offset / x;
|
|
}
|
|
return (z / y);
|
|
}
|
|
|
|
/*
|
|
* root_distance - compute synchronization distance from peer to root
|
|
*/
|
|
static double
|
|
root_distance(
|
|
struct peer *peer
|
|
)
|
|
{
|
|
return ((fabs(peer->delay) + peer->rootdelay) / 2 +
|
|
peer->rootdispersion + peer->disp +
|
|
SQRT(peer->variance) + CLOCK_PHI * (current_time -
|
|
peer->update));
|
|
}
|
|
|
|
/*
|
|
* peer_xmit - send packet for persistent association.
|
|
*/
|
|
static void
|
|
peer_xmit(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct pkt xpkt;
|
|
int find_rtt = (peer->cast_flags & MDF_MCAST) &&
|
|
peer->hmode != MODE_BROADCAST;
|
|
int sendlen;
|
|
|
|
/*
|
|
* Initialize protocol fields.
|
|
*/
|
|
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap,
|
|
peer->version, peer->hmode);
|
|
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
|
|
xpkt.ppoll = peer->hpoll;
|
|
xpkt.precision = sys_precision;
|
|
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
|
|
xpkt.rootdispersion = HTONS_FP(DTOUFP(sys_rootdispersion +
|
|
LOGTOD(sys_precision)));
|
|
xpkt.refid = sys_refid;
|
|
HTONL_FP(&sys_reftime, &xpkt.reftime);
|
|
HTONL_FP(&peer->org, &xpkt.org);
|
|
HTONL_FP(&peer->rec, &xpkt.rec);
|
|
|
|
/*
|
|
* Authenticate the packet if enabled and either configured or
|
|
* the previous packet was authenticated. If for some reason the
|
|
* key associated with the key identifier is not in the key
|
|
* cache, then honk key zero.
|
|
*/
|
|
sendlen = LEN_PKT_NOMAC;
|
|
if (peer->flags & FLAG_AUTHENABLE) {
|
|
u_long xkeyid;
|
|
l_fp xmt_tx;
|
|
|
|
/*
|
|
* Transmit encrypted packet compensated for the
|
|
* encryption delay.
|
|
*/
|
|
#ifdef MD5
|
|
if (peer->flags & FLAG_SKEY) {
|
|
|
|
/*
|
|
* In SKEY mode, allocate and initialize a key list if
|
|
* not already done. Then, use the list in inverse
|
|
* order, discarding keys once used. Keep the latest
|
|
* key around until the next one, so clients can use
|
|
* client/server packets to compute propagation delay.
|
|
* Note we have to wait until the receive side of the
|
|
* socket is bound and the server address confirmed.
|
|
*/
|
|
if (ntohl(peer->dstadr->sin.sin_addr.s_addr) == 0 &&
|
|
ntohl(peer->dstadr->bcast.sin_addr.s_addr) == 0)
|
|
peer->keyid = 0;
|
|
else {
|
|
if (peer->keylist == 0) {
|
|
make_keylist(peer);
|
|
} else {
|
|
authtrust(peer->keylist[peer->keynumber], 0);
|
|
if (peer->keynumber == 0)
|
|
make_keylist(peer);
|
|
else {
|
|
peer->keynumber--;
|
|
xkeyid = peer->keylist[peer->keynumber];
|
|
if (!authistrusted(xkeyid))
|
|
make_keylist(peer);
|
|
}
|
|
}
|
|
peer->keyid = peer->keylist[peer->keynumber];
|
|
xpkt.keyid1 = htonl(2 * sizeof(u_int32));
|
|
xpkt.keyid2 = htonl(sys_private);
|
|
sendlen += 2 * sizeof(u_int32);
|
|
}
|
|
}
|
|
#endif /* MD5 */
|
|
xkeyid = peer->keyid;
|
|
get_systime(&peer->xmt);
|
|
L_ADD(&peer->xmt, &sys_authdelay);
|
|
HTONL_FP(&peer->xmt, &xpkt.xmt);
|
|
sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
|
|
get_systime(&xmt_tx);
|
|
sendpkt(&peer->srcadr, find_rtt ? any_interface :
|
|
peer->dstadr,
|
|
((peer->cast_flags & MDF_MCAST) && !find_rtt) ?
|
|
((peer->cast_flags & MDF_ACAST) ? -7 : peer->ttl) : -7,
|
|
&xpkt, sendlen);
|
|
|
|
/*
|
|
* Calculate the encryption delay. Keep the minimum over
|
|
* the latest two samples.
|
|
*/
|
|
L_SUB(&xmt_tx, &peer->xmt);
|
|
L_ADD(&xmt_tx, &sys_authdelay);
|
|
sys_authdly[1] = sys_authdly[0];
|
|
sys_authdly[0] = xmt_tx.l_uf;
|
|
if (sys_authdly[0] < sys_authdly[1])
|
|
sys_authdelay.l_uf = sys_authdly[0];
|
|
else
|
|
sys_authdelay.l_uf = sys_authdly[1];
|
|
peer->sent++;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf(
|
|
"transmit: at %ld to %s mode %d keyid %08lx index %d\n",
|
|
current_time, ntoa(&peer->srcadr),
|
|
peer->hmode, xkeyid, peer->keynumber);
|
|
#endif
|
|
} else {
|
|
/*
|
|
* Transmit non-authenticated packet.
|
|
*/
|
|
get_systime(&(peer->xmt));
|
|
HTONL_FP(&peer->xmt, &xpkt.xmt);
|
|
sendpkt(&(peer->srcadr), find_rtt ? any_interface :
|
|
peer->dstadr,
|
|
((peer->cast_flags & MDF_MCAST) && !find_rtt) ?
|
|
((peer->cast_flags & MDF_ACAST) ? -7 : peer->ttl) : -8,
|
|
&xpkt, sendlen);
|
|
peer->sent++;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("transmit: at %ld to %s mode %d\n",
|
|
current_time, ntoa(&peer->srcadr),
|
|
peer->hmode);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fast_xmit - Send packet for nonpersistent association.
|
|
*/
|
|
static void
|
|
fast_xmit(
|
|
struct recvbuf *rbufp, /* receive packet pointer */
|
|
int xmode, /* transmit mode */
|
|
u_long xkeyid /* transmit key ID */
|
|
)
|
|
{
|
|
struct pkt xpkt;
|
|
struct pkt *rpkt;
|
|
int sendlen;
|
|
l_fp xmt_ts;
|
|
|
|
/*
|
|
* Initialize transmit packet header fields in the receive
|
|
* buffer provided. We leave some fields intact as received.
|
|
*/
|
|
rpkt = &rbufp->recv_pkt;
|
|
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap,
|
|
PKT_VERSION(rpkt->li_vn_mode), xmode);
|
|
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
|
|
xpkt.ppoll = rpkt->ppoll;
|
|
xpkt.precision = sys_precision;
|
|
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
|
|
xpkt.rootdispersion = HTONS_FP(DTOUFP(sys_rootdispersion +
|
|
LOGTOD(sys_precision)));
|
|
xpkt.refid = sys_refid;
|
|
HTONL_FP(&sys_reftime, &xpkt.reftime);
|
|
xpkt.org = rpkt->xmt;
|
|
HTONL_FP(&rbufp->recv_time, &xpkt.rec);
|
|
sendlen = LEN_PKT_NOMAC;
|
|
if (rbufp->recv_length > sendlen) {
|
|
l_fp xmt_tx;
|
|
|
|
/*
|
|
* Transmit encrypted packet compensated for the
|
|
* encryption delay.
|
|
*/
|
|
if (xkeyid > NTP_MAXKEY) {
|
|
xpkt.keyid1 = htonl(2 * sizeof(u_int32));
|
|
xpkt.keyid2 = htonl(sys_private);
|
|
sendlen += 2 * sizeof(u_int32);
|
|
}
|
|
get_systime(&xmt_ts);
|
|
L_ADD(&xmt_ts, &sys_authdelay);
|
|
HTONL_FP(&xmt_ts, &xpkt.xmt);
|
|
sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
|
|
get_systime(&xmt_tx);
|
|
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, -9, &xpkt,
|
|
sendlen);
|
|
|
|
/*
|
|
* Calculate the encryption delay. Keep the minimum over
|
|
* the latest two samples.
|
|
*/
|
|
L_SUB(&xmt_tx, &xmt_ts);
|
|
L_ADD(&xmt_tx, &sys_authdelay);
|
|
sys_authdly[1] = sys_authdly[0];
|
|
sys_authdly[0] = xmt_tx.l_uf;
|
|
if (sys_authdly[0] < sys_authdly[1])
|
|
sys_authdelay.l_uf = sys_authdly[0];
|
|
else
|
|
sys_authdelay.l_uf = sys_authdly[1];
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf(
|
|
"transmit: at %ld to %s mode %d keyid %08lx\n",
|
|
current_time, ntoa(&rbufp->recv_srcadr),
|
|
xmode, xkeyid);
|
|
#endif
|
|
} else {
|
|
|
|
/*
|
|
* Transmit non-authenticated packet.
|
|
*/
|
|
get_systime(&xmt_ts);
|
|
HTONL_FP(&xmt_ts, &xpkt.xmt);
|
|
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, -10, &xpkt,
|
|
sendlen);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("transmit: at %ld to %s mode %d\n",
|
|
current_time, ntoa(&rbufp->recv_srcadr),
|
|
xmode);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef MD5
|
|
/*
|
|
* Compute key list
|
|
*/
|
|
static void
|
|
make_keylist(
|
|
struct peer *peer
|
|
)
|
|
{
|
|
int i;
|
|
u_long keyid;
|
|
u_long ltemp;
|
|
|
|
/*
|
|
* Allocate the key list if necessary.
|
|
*/
|
|
if (peer->keylist == 0)
|
|
peer->keylist = (u_long *)emalloc(sizeof(u_long) *
|
|
NTP_MAXSESSION);
|
|
|
|
/*
|
|
* Generate an initial key ID which is unique and greater than
|
|
* NTP_MAXKEY.
|
|
*/
|
|
while (1) {
|
|
keyid = (u_long)RANDOM & 0xffffffff;
|
|
if (keyid <= NTP_MAXKEY)
|
|
continue;
|
|
if (authhavekey(keyid))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Generate up to NTP_MAXSESSION session keys. Stop if the
|
|
* next one would not be unique or not a session key ID or if
|
|
* it would expire before the next poll.
|
|
*/
|
|
ltemp = sys_automax;
|
|
for (i = 0; i < NTP_MAXSESSION; i++) {
|
|
peer->keylist[i] = keyid;
|
|
peer->keynumber = i;
|
|
keyid = session_key(
|
|
ntohl(peer->dstadr->sin.sin_addr.s_addr),
|
|
(peer->hmode == MODE_BROADCAST || (peer->flags &
|
|
FLAG_MCAST2)) ?
|
|
ntohl(peer->dstadr->bcast.sin_addr.s_addr):
|
|
ntohl(peer->srcadr.sin_addr.s_addr),
|
|
keyid, ltemp);
|
|
ltemp -= 1 << peer->hpoll;
|
|
if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
|
|
ltemp <= (1 << (peer->hpoll + 1)))
|
|
break;
|
|
}
|
|
}
|
|
#endif /* MD5 */
|
|
|
|
/*
|
|
* Find the precision of this particular machine
|
|
*/
|
|
#define DUSECS 1000000 /* us in a s */
|
|
#define HUSECS (1 << 20) /* approx DUSECS for shifting etc */
|
|
#define MINSTEP 5 /* minimum clock increment (us) */
|
|
#define MAXSTEP 20000 /* maximum clock increment (us) */
|
|
#define MINLOOPS 5 /* minimum number of step samples */
|
|
|
|
/*
|
|
* This routine calculates the differences between successive calls to
|
|
* gettimeofday(). If a difference is less than zero, the us field
|
|
* has rolled over to the next second, so we add a second in us. If
|
|
* the difference is greater than zero and less than MINSTEP, the
|
|
* clock has been advanced by a small amount to avoid standing still.
|
|
* If the clock has advanced by a greater amount, then a timer interrupt
|
|
* has occurred and this amount represents the precision of the clock.
|
|
* In order to guard against spurious values, which could occur if we
|
|
* happen to hit a fat interrupt, we do this for MINLOOPS times and
|
|
* keep the minimum value obtained.
|
|
*/
|
|
int
|
|
default_get_precision(void)
|
|
{
|
|
struct timeval tp;
|
|
#if !defined(SYS_WINNT) && !defined(VMS) && !defined(_SEQUENT_)
|
|
struct timezone tzp;
|
|
#elif defined(VMS) || defined(_SEQUENT_)
|
|
struct timezone {
|
|
int tz_minuteswest;
|
|
int tz_dsttime;
|
|
} tzp;
|
|
#endif /* defined(VMS) || defined(_SEQUENT_) */
|
|
long last;
|
|
int i;
|
|
long diff;
|
|
long val;
|
|
long usec;
|
|
#ifdef HAVE_GETCLOCK
|
|
struct timespec ts;
|
|
#endif
|
|
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
|
|
u_long freq;
|
|
size_t j;
|
|
|
|
/* Try to see if we can find the frequency of of the counter
|
|
* which drives our timekeeping
|
|
*/
|
|
j = sizeof freq;
|
|
i = sysctlbyname("kern.timecounter.frequency",
|
|
&freq, &j , 0, 0);
|
|
if (i)
|
|
i = sysctlbyname("machdep.tsc_freq",
|
|
&freq, &j , 0, 0);
|
|
if (i)
|
|
i = sysctlbyname("machdep.i586_freq",
|
|
&freq, &j , 0, 0);
|
|
if (i)
|
|
i = sysctlbyname("machdep.i8254_freq",
|
|
&freq, &j , 0, 0);
|
|
if (!i) {
|
|
for (i = 1; freq ; i--)
|
|
freq >>= 1;
|
|
return (i);
|
|
}
|
|
#endif
|
|
usec = 0;
|
|
val = MAXSTEP;
|
|
#ifdef HAVE_GETCLOCK
|
|
(void) getclock(TIMEOFDAY, &ts);
|
|
tp.tv_sec = ts.tv_sec;
|
|
tp.tv_usec = ts.tv_nsec / 1000;
|
|
#else /* not HAVE_GETCLOCK */
|
|
GETTIMEOFDAY(&tp, &tzp);
|
|
#endif /* not HAVE_GETCLOCK */
|
|
last = tp.tv_usec;
|
|
for (i = 0; i < MINLOOPS && usec < HUSECS;) {
|
|
#ifdef HAVE_GETCLOCK
|
|
(void) getclock(TIMEOFDAY, &ts);
|
|
tp.tv_sec = ts.tv_sec;
|
|
tp.tv_usec = ts.tv_nsec / 1000;
|
|
#else /* not HAVE_GETCLOCK */
|
|
GETTIMEOFDAY(&tp, &tzp);
|
|
#endif /* not HAVE_GETCLOCK */
|
|
diff = tp.tv_usec - last;
|
|
last = tp.tv_usec;
|
|
if (diff < 0)
|
|
diff += DUSECS;
|
|
usec += diff;
|
|
if (diff > MINSTEP) {
|
|
i++;
|
|
if (diff < val)
|
|
val = diff;
|
|
}
|
|
}
|
|
NLOG(NLOG_SYSINFO) /* conditional if clause for conditional syslog */
|
|
msyslog(LOG_INFO, "precision = %ld usec", val);
|
|
if (usec >= HUSECS)
|
|
val = MINSTEP; /* val <= MINSTEP; fast machine */
|
|
diff = HUSECS;
|
|
for (i = 0; diff > val; i--)
|
|
diff >>= 1;
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* init_proto - initialize the protocol module's data
|
|
*/
|
|
void
|
|
init_proto(void)
|
|
{
|
|
l_fp dummy;
|
|
|
|
/*
|
|
* Fill in the sys_* stuff. Default is don't listen to
|
|
* broadcasting, authenticate.
|
|
*/
|
|
sys_leap = LEAP_NOTINSYNC;
|
|
sys_stratum = STRATUM_UNSPEC;
|
|
sys_precision = (s_char)default_get_precision();
|
|
sys_rootdelay = 0;
|
|
sys_rootdispersion = 0;
|
|
sys_refid = 0;
|
|
L_CLR(&sys_reftime);
|
|
sys_peer = 0;
|
|
get_systime(&dummy);
|
|
sys_bclient = 0;
|
|
sys_bdelay = DEFBROADDELAY;
|
|
#if defined(DES) || defined(MD5)
|
|
sys_authenticate = 1;
|
|
#else
|
|
sys_authenticate = 0;
|
|
#endif
|
|
L_CLR(&sys_authdelay);
|
|
sys_authdly[0] = sys_authdly[1] = 0;
|
|
sys_stattime = 0;
|
|
sys_badstratum = 0;
|
|
sys_oldversionpkt = 0;
|
|
sys_newversionpkt = 0;
|
|
sys_badlength = 0;
|
|
sys_unknownversion = 0;
|
|
sys_processed = 0;
|
|
sys_badauth = 0;
|
|
sys_manycastserver = 0;
|
|
sys_automax = 1 << NTP_AUTOMAX;
|
|
|
|
/*
|
|
* Default these to enable
|
|
*/
|
|
ntp_enable = 1;
|
|
#ifndef KERNEL_FLL_BUG
|
|
kern_enable = 1;
|
|
#endif
|
|
msyslog(LOG_DEBUG, "kern_enable is %d", kern_enable);
|
|
stats_control = 1;
|
|
|
|
/*
|
|
* Some system clocks should only be adjusted in 10ms increments.
|
|
*/
|
|
#if defined RELIANTUNIX_CLOCK
|
|
systime_10ms_ticks = 1; /* Reliant UNIX */
|
|
#elif defined SCO5_CLOCK
|
|
if (sys_precision >= (s_char)-10) /* pre- SCO OpenServer 5.0.6 */
|
|
systime_10ms_ticks = 1;
|
|
#endif
|
|
if (systime_10ms_ticks)
|
|
msyslog(LOG_INFO, "using 10ms tick adjustments");
|
|
}
|
|
|
|
|
|
/*
|
|
* proto_config - configure the protocol module
|
|
*/
|
|
void
|
|
proto_config(
|
|
int item,
|
|
u_long value,
|
|
double dvalue
|
|
)
|
|
{
|
|
/*
|
|
* Figure out what he wants to change, then do it
|
|
*/
|
|
switch (item) {
|
|
case PROTO_KERNEL:
|
|
/*
|
|
* Turn on/off kernel discipline
|
|
*/
|
|
kern_enable = (int)value;
|
|
break;
|
|
|
|
case PROTO_NTP:
|
|
/*
|
|
* Turn on/off clock discipline
|
|
*/
|
|
ntp_enable = (int)value;
|
|
break;
|
|
|
|
case PROTO_MONITOR:
|
|
/*
|
|
* Turn on/off monitoring
|
|
*/
|
|
if (value)
|
|
mon_start(MON_ON);
|
|
else
|
|
mon_stop(MON_ON);
|
|
break;
|
|
|
|
case PROTO_FILEGEN:
|
|
/*
|
|
* Turn on/off statistics
|
|
*/
|
|
stats_control = (int)value;
|
|
break;
|
|
|
|
case PROTO_BROADCLIENT:
|
|
/*
|
|
* Turn on/off facility to listen to broadcasts
|
|
*/
|
|
sys_bclient = (int)value;
|
|
if (value)
|
|
io_setbclient();
|
|
else
|
|
io_unsetbclient();
|
|
break;
|
|
|
|
case PROTO_MULTICAST_ADD:
|
|
/*
|
|
* Add muliticast group address
|
|
*/
|
|
io_multicast_add(value);
|
|
break;
|
|
|
|
case PROTO_MULTICAST_DEL:
|
|
/*
|
|
* Delete multicast group address
|
|
*/
|
|
io_multicast_del(value);
|
|
break;
|
|
|
|
case PROTO_BROADDELAY:
|
|
/*
|
|
* Set default broadcast delay
|
|
*/
|
|
sys_bdelay = dvalue;
|
|
break;
|
|
|
|
case PROTO_AUTHENTICATE:
|
|
/*
|
|
* Specify the use of authenticated data
|
|
*/
|
|
sys_authenticate = (int)value;
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* Log this error
|
|
*/
|
|
msyslog(LOG_ERR, "proto_config: illegal item %d, value %ld",
|
|
item, value);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* proto_clr_stats - clear protocol stat counters
|
|
*/
|
|
void
|
|
proto_clr_stats(void)
|
|
{
|
|
sys_badstratum = 0;
|
|
sys_oldversionpkt = 0;
|
|
sys_newversionpkt = 0;
|
|
sys_unknownversion = 0;
|
|
sys_badlength = 0;
|
|
sys_processed = 0;
|
|
sys_badauth = 0;
|
|
sys_stattime = current_time;
|
|
sys_limitrejected = 0;
|
|
}
|