freebsd-skq/sys/powerpc/pseries/phyp_vscsi.c
Alan Somers 4195c7de24 Always null-terminate ccb_pathinq.(sim_vid|hba_vid|dev_name)
The sim_vid, hba_vid, and dev_name fields of struct ccb_pathinq are
fixed-length strings. AFAICT the only place they're read is in
sbin/camcontrol/camcontrol.c, which assumes they'll be null-terminated.
However, the kernel doesn't null-terminate them. A bunch of copy-pasted code
uses strncpy to write them, and doesn't guarantee null-termination. For at
least 4 drivers (mpr, mps, ciss, and hyperv), the hba_vid field actually
overflows. You can see the result by doing "camcontrol negotiate da0 -v".

This change null-terminates those fields everywhere they're set in the
kernel. It also shortens a few strings to ensure they'll fit within the
16-character field.

PR:		215474
Reported by:	Coverity
CID:		1009997 1010000 1010001 1010002 1010003 1010004 1010005
CID:		1331519 1010006 1215097 1010007 1288967 1010008 1306000
CID:		1211924 1010009 1010010 1010011 1010012 1010013 1010014
CID:		1147190 1010017 1010016 1010018 1216435 1010020 1010021
CID:		1010022 1009666 1018185 1010023 1010025 1010026 1010027
CID:		1010028 1010029 1010030 1010031 1010033 1018186 1018187
CID:		1010035 1010036 1010042 1010041 1010040 1010039
Reviewed by:	imp, sephe, slm
MFC after:	4 weeks
Sponsored by:	Spectra Logic Corp
Differential Revision:	https://reviews.freebsd.org/D9037
Differential Revision:	https://reviews.freebsd.org/D9038
2017-01-04 20:26:42 +00:00

994 lines
26 KiB
C

/*-
* Copyright 2013 Nathan Whitehorn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/selinfo.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/eventhandler.h>
#include <sys/rman.h>
#include <sys/bus_dma.h>
#include <sys/bio.h>
#include <sys/ioccom.h>
#include <sys/uio.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <sys/vmem.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <powerpc/pseries/phyp-hvcall.h>
struct vscsi_softc;
/* VSCSI CRQ format from table 260 of PAPR spec 2.4 (page 760) */
struct vscsi_crq {
uint8_t valid;
uint8_t format;
uint8_t reserved;
uint8_t status;
uint16_t timeout;
uint16_t iu_length;
uint64_t iu_data;
};
struct vscsi_xfer {
TAILQ_ENTRY(vscsi_xfer) queue;
struct vscsi_softc *sc;
union ccb *ccb;
bus_dmamap_t dmamap;
uint64_t tag;
vmem_addr_t srp_iu_offset;
vmem_size_t srp_iu_size;
};
TAILQ_HEAD(vscsi_xferq, vscsi_xfer);
struct vscsi_softc {
device_t dev;
struct cam_devq *devq;
struct cam_sim *sim;
struct cam_path *path;
struct mtx io_lock;
cell_t unit;
int bus_initialized;
int bus_logged_in;
int max_transactions;
int irqid;
struct resource *irq;
void *irq_cookie;
bus_dma_tag_t crq_tag;
struct vscsi_crq *crq_queue;
int n_crqs, cur_crq;
bus_dmamap_t crq_map;
bus_addr_t crq_phys;
vmem_t *srp_iu_arena;
void *srp_iu_queue;
bus_addr_t srp_iu_phys;
bus_dma_tag_t data_tag;
struct vscsi_xfer loginxp;
struct vscsi_xfer *xfer;
struct vscsi_xferq active_xferq;
struct vscsi_xferq free_xferq;
};
struct srp_login {
uint8_t type;
uint8_t reserved[7];
uint64_t tag;
uint64_t max_cmd_length;
uint32_t reserved2;
uint16_t buffer_formats;
uint8_t flags;
uint8_t reserved3[5];
uint8_t initiator_port_id[16];
uint8_t target_port_id[16];
} __packed;
struct srp_login_rsp {
uint8_t type;
uint8_t reserved[3];
uint32_t request_limit_delta;
uint8_t tag;
uint32_t max_i_to_t_len;
uint32_t max_t_to_i_len;
uint16_t buffer_formats;
uint8_t flags;
/* Some reserved bits follow */
} __packed;
struct srp_cmd {
uint8_t type;
uint8_t flags1;
uint8_t reserved[3];
uint8_t formats;
uint8_t out_buffer_count;
uint8_t in_buffer_count;
uint64_t tag;
uint32_t reserved2;
uint64_t lun;
uint8_t reserved3[3];
uint8_t additional_cdb;
uint8_t cdb[16];
uint8_t data_payload[0];
} __packed;
struct srp_rsp {
uint8_t type;
uint8_t reserved[3];
uint32_t request_limit_delta;
uint64_t tag;
uint16_t reserved2;
uint8_t flags;
uint8_t status;
uint32_t data_out_resid;
uint32_t data_in_resid;
uint32_t sense_data_len;
uint32_t response_data_len;
uint8_t data_payload[0];
} __packed;
struct srp_tsk_mgmt {
uint8_t type;
uint8_t reserved[7];
uint64_t tag;
uint32_t reserved2;
uint64_t lun;
uint8_t reserved3[2];
uint8_t function;
uint8_t reserved4;
uint64_t manage_tag;
uint64_t reserved5;
} __packed;
/* Message code type */
#define SRP_LOGIN_REQ 0x00
#define SRP_TSK_MGMT 0x01
#define SRP_CMD 0x02
#define SRP_I_LOGOUT 0x03
#define SRP_LOGIN_RSP 0xC0
#define SRP_RSP 0xC1
#define SRP_LOGIN_REJ 0xC2
#define SRP_T_LOGOUT 0x80
#define SRP_CRED_REQ 0x81
#define SRP_AER_REQ 0x82
#define SRP_CRED_RSP 0x41
#define SRP_AER_RSP 0x41
/* Flags for srp_rsp flags field */
#define SRP_RSPVALID 0x01
#define SRP_SNSVALID 0x02
#define SRP_DOOVER 0x04
#define SRP_DOUNDER 0x08
#define SRP_DIOVER 0x10
#define SRP_DIUNDER 0x20
#define MAD_SUCESS 0x00
#define MAD_NOT_SUPPORTED 0xf1
#define MAD_FAILED 0xf7
#define MAD_EMPTY_IU 0x01
#define MAD_ERROR_LOGGING_REQUEST 0x02
#define MAD_ADAPTER_INFO_REQUEST 0x03
#define MAD_CAPABILITIES_EXCHANGE 0x05
#define MAD_PHYS_ADAP_INFO_REQUEST 0x06
#define MAD_TAPE_PASSTHROUGH_REQUEST 0x07
#define MAD_ENABLE_FAST_FAIL 0x08
static int vscsi_probe(device_t);
static int vscsi_attach(device_t);
static int vscsi_detach(device_t);
static void vscsi_cam_action(struct cam_sim *, union ccb *);
static void vscsi_cam_poll(struct cam_sim *);
static void vscsi_intr(void *arg);
static void vscsi_check_response_queue(struct vscsi_softc *sc);
static void vscsi_setup_bus(struct vscsi_softc *sc);
static void vscsi_srp_login(struct vscsi_softc *sc);
static void vscsi_crq_load_cb(void *, bus_dma_segment_t *, int, int);
static void vscsi_scsi_command(void *xxp, bus_dma_segment_t *segs,
int nsegs, int err);
static void vscsi_task_management(struct vscsi_softc *sc, union ccb *ccb);
static void vscsi_srp_response(struct vscsi_xfer *, struct vscsi_crq *);
static devclass_t vscsi_devclass;
static device_method_t vscsi_methods[] = {
DEVMETHOD(device_probe, vscsi_probe),
DEVMETHOD(device_attach, vscsi_attach),
DEVMETHOD(device_detach, vscsi_detach),
DEVMETHOD_END
};
static driver_t vscsi_driver = {
"vscsi",
vscsi_methods,
sizeof(struct vscsi_softc)
};
DRIVER_MODULE(vscsi, vdevice, vscsi_driver, vscsi_devclass, 0, 0);
MALLOC_DEFINE(M_VSCSI, "vscsi", "CAM device queue for VSCSI");
static int
vscsi_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "IBM,v-scsi"))
return (ENXIO);
device_set_desc(dev, "POWER Hypervisor Virtual SCSI Bus");
return (0);
}
static int
vscsi_attach(device_t dev)
{
struct vscsi_softc *sc;
struct vscsi_xfer *xp;
int error, i;
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
sc->dev = dev;
mtx_init(&sc->io_lock, "vscsi", NULL, MTX_DEF);
/* Get properties */
OF_getencprop(ofw_bus_get_node(dev), "reg", &sc->unit,
sizeof(sc->unit));
/* Setup interrupt */
sc->irqid = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irqid,
RF_ACTIVE);
if (!sc->irq) {
device_printf(dev, "Could not allocate IRQ\n");
mtx_destroy(&sc->io_lock);
return (ENXIO);
}
bus_setup_intr(dev, sc->irq, INTR_TYPE_CAM | INTR_MPSAFE |
INTR_ENTROPY, NULL, vscsi_intr, sc, &sc->irq_cookie);
/* Data DMA */
error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
256, BUS_SPACE_MAXSIZE_32BIT, 0, busdma_lock_mutex, &sc->io_lock,
&sc->data_tag);
TAILQ_INIT(&sc->active_xferq);
TAILQ_INIT(&sc->free_xferq);
/* First XFER for login data */
sc->loginxp.sc = sc;
bus_dmamap_create(sc->data_tag, 0, &sc->loginxp.dmamap);
TAILQ_INSERT_TAIL(&sc->free_xferq, &sc->loginxp, queue);
/* CRQ area */
error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 8*PAGE_SIZE,
1, BUS_SPACE_MAXSIZE, 0, NULL, NULL, &sc->crq_tag);
error = bus_dmamem_alloc(sc->crq_tag, (void **)&sc->crq_queue,
BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->crq_map);
sc->crq_phys = 0;
sc->n_crqs = 0;
error = bus_dmamap_load(sc->crq_tag, sc->crq_map, sc->crq_queue,
8*PAGE_SIZE, vscsi_crq_load_cb, sc, 0);
mtx_lock(&sc->io_lock);
vscsi_setup_bus(sc);
sc->xfer = malloc(sizeof(sc->xfer[0])*sc->max_transactions, M_VSCSI,
M_NOWAIT);
for (i = 0; i < sc->max_transactions; i++) {
xp = &sc->xfer[i];
xp->sc = sc;
error = bus_dmamap_create(sc->data_tag, 0, &xp->dmamap);
if (error) {
device_printf(dev, "Could not create DMA map (%d)\n",
error);
break;
}
TAILQ_INSERT_TAIL(&sc->free_xferq, xp, queue);
}
mtx_unlock(&sc->io_lock);
/* Allocate CAM bits */
if ((sc->devq = cam_simq_alloc(sc->max_transactions)) == NULL)
return (ENOMEM);
sc->sim = cam_sim_alloc(vscsi_cam_action, vscsi_cam_poll, "vscsi", sc,
device_get_unit(dev), &sc->io_lock,
sc->max_transactions, sc->max_transactions,
sc->devq);
if (sc->sim == NULL) {
cam_simq_free(sc->devq);
sc->devq = NULL;
device_printf(dev, "CAM SIM attach failed\n");
return (EINVAL);
}
mtx_lock(&sc->io_lock);
if (xpt_bus_register(sc->sim, dev, 0) != 0) {
device_printf(dev, "XPT bus registration failed\n");
cam_sim_free(sc->sim, FALSE);
sc->sim = NULL;
cam_simq_free(sc->devq);
sc->devq = NULL;
mtx_unlock(&sc->io_lock);
return (EINVAL);
}
mtx_unlock(&sc->io_lock);
return (0);
}
static int
vscsi_detach(device_t dev)
{
struct vscsi_softc *sc;
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
if (sc->sim != NULL) {
mtx_lock(&sc->io_lock);
xpt_bus_deregister(cam_sim_path(sc->sim));
cam_sim_free(sc->sim, FALSE);
sc->sim = NULL;
mtx_unlock(&sc->io_lock);
}
if (sc->devq != NULL) {
cam_simq_free(sc->devq);
sc->devq = NULL;
}
mtx_destroy(&sc->io_lock);
return (0);
}
static void
vscsi_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct vscsi_softc *sc = cam_sim_softc(sim);
mtx_assert(&sc->io_lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->hba_misc = PIM_EXTLUNS;
cpi->target_sprt = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 0;
cpi->max_lun = 0;
cpi->initiator_id = ~0;
strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strlcpy(cpi->hba_vid, "IBM", HBA_IDLEN);
strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 150000;
cpi->transport = XPORT_SRP;
cpi->transport_version = 0;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_SPC4;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_RESET_BUS:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_RESET_DEV:
ccb->ccb_h.status = CAM_REQ_INPROG;
vscsi_task_management(sc, ccb);
return;
case XPT_GET_TRAN_SETTINGS:
ccb->cts.protocol = PROTO_SCSI;
ccb->cts.protocol_version = SCSI_REV_SPC4;
ccb->cts.transport = XPORT_SRP;
ccb->cts.transport_version = 0;
ccb->cts.proto_specific.valid = 0;
ccb->cts.xport_specific.valid = 0;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_SET_TRAN_SETTINGS:
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
break;
case XPT_SCSI_IO:
{
struct vscsi_xfer *xp;
ccb->ccb_h.status = CAM_REQ_INPROG;
xp = TAILQ_FIRST(&sc->free_xferq);
if (xp == NULL)
panic("SCSI queue flooded");
xp->ccb = ccb;
TAILQ_REMOVE(&sc->free_xferq, xp, queue);
TAILQ_INSERT_TAIL(&sc->active_xferq, xp, queue);
bus_dmamap_load_ccb(sc->data_tag, xp->dmamap,
ccb, vscsi_scsi_command, xp, 0);
return;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
static void
vscsi_srp_login(struct vscsi_softc *sc)
{
struct vscsi_xfer *xp;
struct srp_login *login;
struct vscsi_crq crq;
int err;
mtx_assert(&sc->io_lock, MA_OWNED);
xp = TAILQ_FIRST(&sc->free_xferq);
if (xp == NULL)
panic("SCSI queue flooded");
xp->ccb = NULL;
TAILQ_REMOVE(&sc->free_xferq, xp, queue);
TAILQ_INSERT_TAIL(&sc->active_xferq, xp, queue);
/* Set up command */
xp->srp_iu_size = crq.iu_length = 64;
err = vmem_alloc(xp->sc->srp_iu_arena, xp->srp_iu_size,
M_BESTFIT | M_NOWAIT, &xp->srp_iu_offset);
if (err)
panic("Error during VMEM allocation (%d)", err);
login = (struct srp_login *)((uint8_t *)xp->sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
bzero(login, xp->srp_iu_size);
login->type = SRP_LOGIN_REQ;
login->tag = (uint64_t)(xp);
login->max_cmd_length = htobe64(256);
login->buffer_formats = htobe16(0x1 | 0x2); /* Direct and indirect */
login->flags = 0;
/* Create CRQ entry */
crq.valid = 0x80;
crq.format = 0x01;
crq.iu_data = xp->sc->srp_iu_phys + xp->srp_iu_offset;
bus_dmamap_sync(sc->crq_tag, sc->crq_map, BUS_DMASYNC_PREWRITE);
err = phyp_hcall(H_SEND_CRQ, xp->sc->unit, ((uint64_t *)(&crq))[0],
((uint64_t *)(&crq))[1]);
if (err != 0)
panic("CRQ send failure (%d)", err);
}
static void
vscsi_task_management(struct vscsi_softc *sc, union ccb *ccb)
{
struct srp_tsk_mgmt *cmd;
struct vscsi_xfer *xp;
struct vscsi_crq crq;
int err;
mtx_assert(&sc->io_lock, MA_OWNED);
xp = TAILQ_FIRST(&sc->free_xferq);
if (xp == NULL)
panic("SCSI queue flooded");
xp->ccb = ccb;
TAILQ_REMOVE(&sc->free_xferq, xp, queue);
TAILQ_INSERT_TAIL(&sc->active_xferq, xp, queue);
xp->srp_iu_size = crq.iu_length = sizeof(*cmd);
err = vmem_alloc(xp->sc->srp_iu_arena, xp->srp_iu_size,
M_BESTFIT | M_NOWAIT, &xp->srp_iu_offset);
if (err)
panic("Error during VMEM allocation (%d)", err);
cmd = (struct srp_tsk_mgmt *)((uint8_t *)xp->sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
bzero(cmd, xp->srp_iu_size);
cmd->type = SRP_TSK_MGMT;
cmd->tag = (uint64_t)xp;
cmd->lun = htobe64(CAM_EXTLUN_BYTE_SWIZZLE(ccb->ccb_h.target_lun));
switch (ccb->ccb_h.func_code) {
case XPT_RESET_DEV:
cmd->function = 0x08;
break;
default:
panic("Unimplemented code %d", ccb->ccb_h.func_code);
break;
}
bus_dmamap_sync(xp->sc->crq_tag, xp->sc->crq_map, BUS_DMASYNC_PREWRITE);
/* Create CRQ entry */
crq.valid = 0x80;
crq.format = 0x01;
crq.iu_data = xp->sc->srp_iu_phys + xp->srp_iu_offset;
err = phyp_hcall(H_SEND_CRQ, xp->sc->unit, ((uint64_t *)(&crq))[0],
((uint64_t *)(&crq))[1]);
if (err != 0)
panic("CRQ send failure (%d)", err);
}
static void
vscsi_scsi_command(void *xxp, bus_dma_segment_t *segs, int nsegs, int err)
{
struct vscsi_xfer *xp = xxp;
uint8_t *cdb;
union ccb *ccb = xp->ccb;
struct srp_cmd *cmd;
uint64_t chunk_addr;
uint32_t chunk_size;
int desc_start, i;
struct vscsi_crq crq;
KASSERT(err == 0, ("DMA error %d\n", err));
mtx_assert(&xp->sc->io_lock, MA_OWNED);
cdb = (ccb->ccb_h.flags & CAM_CDB_POINTER) ?
ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes;
/* Command format from Table 20, page 37 of SRP spec */
crq.iu_length = 48 + ((nsegs > 1) ? 20 : 16) +
((ccb->csio.cdb_len > 16) ? (ccb->csio.cdb_len - 16) : 0);
xp->srp_iu_size = crq.iu_length;
if (nsegs > 1)
xp->srp_iu_size += nsegs*16;
xp->srp_iu_size = roundup(xp->srp_iu_size, 16);
err = vmem_alloc(xp->sc->srp_iu_arena, xp->srp_iu_size,
M_BESTFIT | M_NOWAIT, &xp->srp_iu_offset);
if (err)
panic("Error during VMEM allocation (%d)", err);
cmd = (struct srp_cmd *)((uint8_t *)xp->sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
bzero(cmd, xp->srp_iu_size);
cmd->type = SRP_CMD;
if (ccb->csio.cdb_len > 16)
cmd->additional_cdb = (ccb->csio.cdb_len - 16) << 2;
memcpy(cmd->cdb, cdb, ccb->csio.cdb_len);
cmd->tag = (uint64_t)(xp); /* Let the responder find this again */
cmd->lun = htobe64(CAM_EXTLUN_BYTE_SWIZZLE(ccb->ccb_h.target_lun));
if (nsegs > 1) {
/* Use indirect descriptors */
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_OUT:
cmd->formats = (2 << 4);
break;
case CAM_DIR_IN:
cmd->formats = 2;
break;
default:
panic("Does not support bidirectional commands (%d)",
ccb->ccb_h.flags & CAM_DIR_MASK);
break;
}
desc_start = ((ccb->csio.cdb_len > 16) ?
ccb->csio.cdb_len - 16 : 0);
chunk_addr = xp->sc->srp_iu_phys + xp->srp_iu_offset + 20 +
desc_start + sizeof(*cmd);
chunk_size = 16*nsegs;
memcpy(&cmd->data_payload[desc_start], &chunk_addr, 8);
memcpy(&cmd->data_payload[desc_start+12], &chunk_size, 4);
chunk_size = 0;
for (i = 0; i < nsegs; i++)
chunk_size += segs[i].ds_len;
memcpy(&cmd->data_payload[desc_start+16], &chunk_size, 4);
desc_start += 20;
for (i = 0; i < nsegs; i++) {
chunk_addr = segs[i].ds_addr;
chunk_size = segs[i].ds_len;
memcpy(&cmd->data_payload[desc_start + 16*i],
&chunk_addr, 8);
/* Set handle tag to 0 */
memcpy(&cmd->data_payload[desc_start + 16*i + 12],
&chunk_size, 4);
}
} else if (nsegs == 1) {
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_OUT:
cmd->formats = (1 << 4);
break;
case CAM_DIR_IN:
cmd->formats = 1;
break;
default:
panic("Does not support bidirectional commands (%d)",
ccb->ccb_h.flags & CAM_DIR_MASK);
break;
}
/*
* Memory descriptor:
* 8 byte address
* 4 byte handle
* 4 byte length
*/
chunk_addr = segs[0].ds_addr;
chunk_size = segs[0].ds_len;
desc_start = ((ccb->csio.cdb_len > 16) ?
ccb->csio.cdb_len - 16 : 0);
memcpy(&cmd->data_payload[desc_start], &chunk_addr, 8);
/* Set handle tag to 0 */
memcpy(&cmd->data_payload[desc_start+12], &chunk_size, 4);
KASSERT(xp->srp_iu_size >= 48 + ((ccb->csio.cdb_len > 16) ?
ccb->csio.cdb_len : 16), ("SRP IU command length"));
} else {
cmd->formats = 0;
}
bus_dmamap_sync(xp->sc->crq_tag, xp->sc->crq_map, BUS_DMASYNC_PREWRITE);
/* Create CRQ entry */
crq.valid = 0x80;
crq.format = 0x01;
crq.iu_data = xp->sc->srp_iu_phys + xp->srp_iu_offset;
err = phyp_hcall(H_SEND_CRQ, xp->sc->unit, ((uint64_t *)(&crq))[0],
((uint64_t *)(&crq))[1]);
if (err != 0)
panic("CRQ send failure (%d)", err);
}
static void
vscsi_crq_load_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int err)
{
struct vscsi_softc *sc = xsc;
sc->crq_phys = segs[0].ds_addr;
sc->n_crqs = PAGE_SIZE/sizeof(struct vscsi_crq);
sc->srp_iu_queue = (uint8_t *)(sc->crq_queue);
sc->srp_iu_phys = segs[0].ds_addr;
sc->srp_iu_arena = vmem_create("VSCSI SRP IU", PAGE_SIZE,
segs[0].ds_len - PAGE_SIZE, 16, 0, M_BESTFIT | M_NOWAIT);
}
static void
vscsi_setup_bus(struct vscsi_softc *sc)
{
struct vscsi_crq crq;
struct vscsi_xfer *xp;
int error;
struct {
uint32_t type;
uint16_t status;
uint16_t length;
uint64_t tag;
uint64_t buffer;
struct {
char srp_version[8];
char partition_name[96];
uint32_t partition_number;
uint32_t mad_version;
uint32_t os_type;
uint32_t port_max_txu[8];
} payload;
} mad_adapter_info;
bzero(&crq, sizeof(crq));
/* Init message */
crq.valid = 0xc0;
crq.format = 0x01;
do {
error = phyp_hcall(H_FREE_CRQ, sc->unit);
} while (error == H_BUSY);
/* See initialization sequence page 757 */
bzero(sc->crq_queue, sc->n_crqs*sizeof(sc->crq_queue[0]));
sc->cur_crq = 0;
sc->bus_initialized = 0;
sc->bus_logged_in = 0;
bus_dmamap_sync(sc->crq_tag, sc->crq_map, BUS_DMASYNC_PREWRITE);
error = phyp_hcall(H_REG_CRQ, sc->unit, sc->crq_phys,
sc->n_crqs*sizeof(sc->crq_queue[0]));
KASSERT(error == 0, ("CRQ registration success"));
error = phyp_hcall(H_SEND_CRQ, sc->unit, ((uint64_t *)(&crq))[0],
((uint64_t *)(&crq))[1]);
if (error != 0)
panic("CRQ setup failure (%d)", error);
while (sc->bus_initialized == 0)
vscsi_check_response_queue(sc);
/* Send MAD adapter info */
mad_adapter_info.type = MAD_ADAPTER_INFO_REQUEST;
mad_adapter_info.status = 0;
mad_adapter_info.length = sizeof(mad_adapter_info.payload);
strcpy(mad_adapter_info.payload.srp_version, "16.a");
strcpy(mad_adapter_info.payload.partition_name, "UNKNOWN");
mad_adapter_info.payload.partition_number = -1;
mad_adapter_info.payload.mad_version = 1;
mad_adapter_info.payload.os_type = 2; /* Claim we are Linux */
mad_adapter_info.payload.port_max_txu[0] = 0;
/* If this fails, we get the defaults above */
OF_getprop(OF_finddevice("/"), "ibm,partition-name",
mad_adapter_info.payload.partition_name,
sizeof(mad_adapter_info.payload.partition_name));
OF_getprop(OF_finddevice("/"), "ibm,partition-no",
&mad_adapter_info.payload.partition_number,
sizeof(mad_adapter_info.payload.partition_number));
xp = TAILQ_FIRST(&sc->free_xferq);
xp->ccb = NULL;
TAILQ_REMOVE(&sc->free_xferq, xp, queue);
TAILQ_INSERT_TAIL(&sc->active_xferq, xp, queue);
xp->srp_iu_size = crq.iu_length = sizeof(mad_adapter_info);
vmem_alloc(xp->sc->srp_iu_arena, xp->srp_iu_size,
M_BESTFIT | M_NOWAIT, &xp->srp_iu_offset);
mad_adapter_info.buffer = xp->sc->srp_iu_phys + xp->srp_iu_offset + 24;
mad_adapter_info.tag = (uint64_t)xp;
memcpy((uint8_t *)xp->sc->srp_iu_queue + (uintptr_t)xp->srp_iu_offset,
&mad_adapter_info, sizeof(mad_adapter_info));
crq.valid = 0x80;
crq.format = 0x02;
crq.iu_data = xp->sc->srp_iu_phys + xp->srp_iu_offset;
bus_dmamap_sync(sc->crq_tag, sc->crq_map, BUS_DMASYNC_PREWRITE);
phyp_hcall(H_SEND_CRQ, xp->sc->unit, ((uint64_t *)(&crq))[0],
((uint64_t *)(&crq))[1]);
while (TAILQ_EMPTY(&sc->free_xferq))
vscsi_check_response_queue(sc);
/* Send SRP login */
vscsi_srp_login(sc);
while (sc->bus_logged_in == 0)
vscsi_check_response_queue(sc);
error = phyp_hcall(H_VIO_SIGNAL, sc->unit, 1); /* Enable interrupts */
}
static void
vscsi_intr(void *xsc)
{
struct vscsi_softc *sc = xsc;
mtx_lock(&sc->io_lock);
vscsi_check_response_queue(sc);
mtx_unlock(&sc->io_lock);
}
static void
vscsi_srp_response(struct vscsi_xfer *xp, struct vscsi_crq *crq)
{
union ccb *ccb = xp->ccb;
struct vscsi_softc *sc = xp->sc;
struct srp_rsp *rsp;
uint32_t sense_len;
/* SRP response packet in original request */
rsp = (struct srp_rsp *)((uint8_t *)sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
ccb->csio.scsi_status = rsp->status;
if (ccb->csio.scsi_status == SCSI_STATUS_OK)
ccb->ccb_h.status = CAM_REQ_CMP;
else
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
#ifdef NOTYET
/* Collect fast fail codes */
if (crq->status != 0)
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
#endif
if (ccb->ccb_h.status != CAM_REQ_CMP) {
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
}
if (!(rsp->flags & SRP_RSPVALID))
rsp->response_data_len = 0;
if (!(rsp->flags & SRP_SNSVALID))
rsp->sense_data_len = 0;
if (!(rsp->flags & (SRP_DOOVER | SRP_DOUNDER)))
rsp->data_out_resid = 0;
if (!(rsp->flags & (SRP_DIOVER | SRP_DIUNDER)))
rsp->data_in_resid = 0;
if (rsp->flags & SRP_SNSVALID) {
bzero(&ccb->csio.sense_data, sizeof(struct scsi_sense_data));
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
sense_len = min(be32toh(rsp->sense_data_len),
ccb->csio.sense_len);
memcpy(&ccb->csio.sense_data,
&rsp->data_payload[be32toh(rsp->response_data_len)],
sense_len);
ccb->csio.sense_resid = ccb->csio.sense_len -
be32toh(rsp->sense_data_len);
}
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_OUT:
ccb->csio.resid = rsp->data_out_resid;
break;
case CAM_DIR_IN:
ccb->csio.resid = rsp->data_in_resid;
break;
}
bus_dmamap_sync(sc->data_tag, xp->dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->data_tag, xp->dmamap);
xpt_done(ccb);
xp->ccb = NULL;
}
static void
vscsi_login_response(struct vscsi_xfer *xp, struct vscsi_crq *crq)
{
struct vscsi_softc *sc = xp->sc;
struct srp_login_rsp *rsp;
/* SRP response packet in original request */
rsp = (struct srp_login_rsp *)((uint8_t *)sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
KASSERT(be16toh(rsp->buffer_formats) & 0x3, ("Both direct and indirect "
"buffers supported"));
sc->max_transactions = be32toh(rsp->request_limit_delta);
device_printf(sc->dev, "Queue depth %d commands\n",
sc->max_transactions);
sc->bus_logged_in = 1;
}
static void
vscsi_cam_poll(struct cam_sim *sim)
{
struct vscsi_softc *sc = cam_sim_softc(sim);
vscsi_check_response_queue(sc);
}
static void
vscsi_check_response_queue(struct vscsi_softc *sc)
{
struct vscsi_crq *crq;
struct vscsi_xfer *xp;
int code;
mtx_assert(&sc->io_lock, MA_OWNED);
while (sc->crq_queue[sc->cur_crq].valid != 0) {
/* The hypercalls at both ends of this are not optimal */
phyp_hcall(H_VIO_SIGNAL, sc->unit, 0);
bus_dmamap_sync(sc->crq_tag, sc->crq_map, BUS_DMASYNC_POSTREAD);
crq = &sc->crq_queue[sc->cur_crq];
switch (crq->valid) {
case 0xc0:
if (crq->format == 0x02)
sc->bus_initialized = 1;
break;
case 0x80:
/* IU data is set to tag pointer (the XP) */
xp = (struct vscsi_xfer *)crq->iu_data;
switch (crq->format) {
case 0x01:
code = *((uint8_t *)sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
switch (code) {
case SRP_RSP:
vscsi_srp_response(xp, crq);
break;
case SRP_LOGIN_RSP:
vscsi_login_response(xp, crq);
break;
default:
device_printf(sc->dev, "Unknown SRP "
"response code %d\n", code);
break;
}
break;
case 0x02:
/* Ignore management datagrams */
break;
default:
panic("Unknown CRQ format %d\n", crq->format);
break;
}
vmem_free(sc->srp_iu_arena, xp->srp_iu_offset,
xp->srp_iu_size);
TAILQ_REMOVE(&sc->active_xferq, xp, queue);
TAILQ_INSERT_TAIL(&sc->free_xferq, xp, queue);
break;
default:
device_printf(sc->dev,
"Unknown CRQ message type %d\n", crq->valid);
break;
}
crq->valid = 0;
sc->cur_crq = (sc->cur_crq + 1) % sc->n_crqs;
bus_dmamap_sync(sc->crq_tag, sc->crq_map, BUS_DMASYNC_PREWRITE);
phyp_hcall(H_VIO_SIGNAL, sc->unit, 1);
}
}