3f289c3fcf
userspace to control NUMA policy administratively and programmatically. Implement domainset based iterators in the page layer. Remove the now legacy numa_* syscalls. Cleanup some header polution created by having seq.h in proc.h. Reviewed by: markj, kib Discussed with: alc Tested by: pho Sponsored by: Netflix, Dell/EMC Isilon Differential Revision: https://reviews.freebsd.org/D13403
611 lines
14 KiB
C
611 lines
14 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_compat.h"
|
|
#include "opt_posix.h"
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/posix4.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/racct.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/ucontext.h>
|
|
#include <sys/thr.h>
|
|
#include <sys/rtprio.h>
|
|
#include <sys/umtx.h>
|
|
#include <sys/limits.h>
|
|
|
|
#include <machine/frame.h>
|
|
|
|
#include <security/audit/audit.h>
|
|
|
|
static SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0,
|
|
"thread allocation");
|
|
|
|
static int max_threads_per_proc = 1500;
|
|
SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
|
|
&max_threads_per_proc, 0, "Limit on threads per proc");
|
|
|
|
static int max_threads_hits;
|
|
SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
|
|
&max_threads_hits, 0, "kern.threads.max_threads_per_proc hit count");
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
|
|
static inline int
|
|
suword_lwpid(void *addr, lwpid_t lwpid)
|
|
{
|
|
int error;
|
|
|
|
if (SV_CURPROC_FLAG(SV_LP64))
|
|
error = suword(addr, lwpid);
|
|
else
|
|
error = suword32(addr, lwpid);
|
|
return (error);
|
|
}
|
|
|
|
#else
|
|
#define suword_lwpid suword
|
|
#endif
|
|
|
|
/*
|
|
* System call interface.
|
|
*/
|
|
|
|
struct thr_create_initthr_args {
|
|
ucontext_t ctx;
|
|
long *tid;
|
|
};
|
|
|
|
static int
|
|
thr_create_initthr(struct thread *td, void *thunk)
|
|
{
|
|
struct thr_create_initthr_args *args;
|
|
|
|
/* Copy out the child tid. */
|
|
args = thunk;
|
|
if (args->tid != NULL && suword_lwpid(args->tid, td->td_tid))
|
|
return (EFAULT);
|
|
|
|
return (set_mcontext(td, &args->ctx.uc_mcontext));
|
|
}
|
|
|
|
int
|
|
sys_thr_create(struct thread *td, struct thr_create_args *uap)
|
|
/* ucontext_t *ctx, long *id, int flags */
|
|
{
|
|
struct thr_create_initthr_args args;
|
|
int error;
|
|
|
|
if ((error = copyin(uap->ctx, &args.ctx, sizeof(args.ctx))))
|
|
return (error);
|
|
args.tid = uap->id;
|
|
return (thread_create(td, NULL, thr_create_initthr, &args));
|
|
}
|
|
|
|
int
|
|
sys_thr_new(struct thread *td, struct thr_new_args *uap)
|
|
/* struct thr_param * */
|
|
{
|
|
struct thr_param param;
|
|
int error;
|
|
|
|
if (uap->param_size < 0 || uap->param_size > sizeof(param))
|
|
return (EINVAL);
|
|
bzero(¶m, sizeof(param));
|
|
if ((error = copyin(uap->param, ¶m, uap->param_size)))
|
|
return (error);
|
|
return (kern_thr_new(td, ¶m));
|
|
}
|
|
|
|
static int
|
|
thr_new_initthr(struct thread *td, void *thunk)
|
|
{
|
|
stack_t stack;
|
|
struct thr_param *param;
|
|
|
|
/*
|
|
* Here we copy out tid to two places, one for child and one
|
|
* for parent, because pthread can create a detached thread,
|
|
* if parent wants to safely access child tid, it has to provide
|
|
* its storage, because child thread may exit quickly and
|
|
* memory is freed before parent thread can access it.
|
|
*/
|
|
param = thunk;
|
|
if ((param->child_tid != NULL &&
|
|
suword_lwpid(param->child_tid, td->td_tid)) ||
|
|
(param->parent_tid != NULL &&
|
|
suword_lwpid(param->parent_tid, td->td_tid)))
|
|
return (EFAULT);
|
|
|
|
/* Set up our machine context. */
|
|
stack.ss_sp = param->stack_base;
|
|
stack.ss_size = param->stack_size;
|
|
/* Set upcall address to user thread entry function. */
|
|
cpu_set_upcall(td, param->start_func, param->arg, &stack);
|
|
/* Setup user TLS address and TLS pointer register. */
|
|
return (cpu_set_user_tls(td, param->tls_base));
|
|
}
|
|
|
|
int
|
|
kern_thr_new(struct thread *td, struct thr_param *param)
|
|
{
|
|
struct rtprio rtp, *rtpp;
|
|
int error;
|
|
|
|
rtpp = NULL;
|
|
if (param->rtp != 0) {
|
|
error = copyin(param->rtp, &rtp, sizeof(struct rtprio));
|
|
if (error)
|
|
return (error);
|
|
rtpp = &rtp;
|
|
}
|
|
return (thread_create(td, rtpp, thr_new_initthr, param));
|
|
}
|
|
|
|
int
|
|
thread_create(struct thread *td, struct rtprio *rtp,
|
|
int (*initialize_thread)(struct thread *, void *), void *thunk)
|
|
{
|
|
struct thread *newtd;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
p = td->td_proc;
|
|
|
|
if (rtp != NULL) {
|
|
switch(rtp->type) {
|
|
case RTP_PRIO_REALTIME:
|
|
case RTP_PRIO_FIFO:
|
|
/* Only root can set scheduler policy */
|
|
if (priv_check(td, PRIV_SCHED_SETPOLICY) != 0)
|
|
return (EPERM);
|
|
if (rtp->prio > RTP_PRIO_MAX)
|
|
return (EINVAL);
|
|
break;
|
|
case RTP_PRIO_NORMAL:
|
|
rtp->prio = 0;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
#ifdef RACCT
|
|
if (racct_enable) {
|
|
PROC_LOCK(p);
|
|
error = racct_add(p, RACCT_NTHR, 1);
|
|
PROC_UNLOCK(p);
|
|
if (error != 0)
|
|
return (EPROCLIM);
|
|
}
|
|
#endif
|
|
|
|
/* Initialize our td */
|
|
error = kern_thr_alloc(p, 0, &newtd);
|
|
if (error)
|
|
goto fail;
|
|
|
|
cpu_copy_thread(newtd, td);
|
|
|
|
bzero(&newtd->td_startzero,
|
|
__rangeof(struct thread, td_startzero, td_endzero));
|
|
bcopy(&td->td_startcopy, &newtd->td_startcopy,
|
|
__rangeof(struct thread, td_startcopy, td_endcopy));
|
|
newtd->td_proc = td->td_proc;
|
|
newtd->td_rb_list = newtd->td_rbp_list = newtd->td_rb_inact = 0;
|
|
thread_cow_get(newtd, td);
|
|
|
|
error = initialize_thread(newtd, thunk);
|
|
if (error != 0) {
|
|
thread_cow_free(newtd);
|
|
thread_free(newtd);
|
|
goto fail;
|
|
}
|
|
|
|
PROC_LOCK(p);
|
|
p->p_flag |= P_HADTHREADS;
|
|
thread_link(newtd, p);
|
|
bcopy(p->p_comm, newtd->td_name, sizeof(newtd->td_name));
|
|
thread_lock(td);
|
|
/* let the scheduler know about these things. */
|
|
sched_fork_thread(td, newtd);
|
|
thread_unlock(td);
|
|
if (P_SHOULDSTOP(p))
|
|
newtd->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
|
|
if (p->p_ptevents & PTRACE_LWP)
|
|
newtd->td_dbgflags |= TDB_BORN;
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
tidhash_add(newtd);
|
|
|
|
thread_lock(newtd);
|
|
if (rtp != NULL) {
|
|
if (!(td->td_pri_class == PRI_TIMESHARE &&
|
|
rtp->type == RTP_PRIO_NORMAL)) {
|
|
rtp_to_pri(rtp, newtd);
|
|
sched_prio(newtd, newtd->td_user_pri);
|
|
} /* ignore timesharing class */
|
|
}
|
|
TD_SET_CAN_RUN(newtd);
|
|
sched_add(newtd, SRQ_BORING);
|
|
thread_unlock(newtd);
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
#ifdef RACCT
|
|
if (racct_enable) {
|
|
PROC_LOCK(p);
|
|
racct_sub(p, RACCT_NTHR, 1);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sys_thr_self(struct thread *td, struct thr_self_args *uap)
|
|
/* long *id */
|
|
{
|
|
int error;
|
|
|
|
error = suword_lwpid(uap->id, (unsigned)td->td_tid);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sys_thr_exit(struct thread *td, struct thr_exit_args *uap)
|
|
/* long *state */
|
|
{
|
|
|
|
umtx_thread_exit(td);
|
|
|
|
/* Signal userland that it can free the stack. */
|
|
if ((void *)uap->state != NULL) {
|
|
suword_lwpid(uap->state, 1);
|
|
kern_umtx_wake(td, uap->state, INT_MAX, 0);
|
|
}
|
|
|
|
return (kern_thr_exit(td));
|
|
}
|
|
|
|
int
|
|
kern_thr_exit(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = td->td_proc;
|
|
|
|
/*
|
|
* If all of the threads in a process call this routine to
|
|
* exit (e.g. all threads call pthread_exit()), exactly one
|
|
* thread should return to the caller to terminate the process
|
|
* instead of the thread.
|
|
*
|
|
* Checking p_numthreads alone is not sufficient since threads
|
|
* might be committed to terminating while the PROC_LOCK is
|
|
* dropped in either ptracestop() or while removing this thread
|
|
* from the tidhash. Instead, the p_pendingexits field holds
|
|
* the count of threads in either of those states and a thread
|
|
* is considered the "last" thread if all of the other threads
|
|
* in a process are already terminating.
|
|
*/
|
|
PROC_LOCK(p);
|
|
if (p->p_numthreads == p->p_pendingexits + 1) {
|
|
/*
|
|
* Ignore attempts to shut down last thread in the
|
|
* proc. This will actually call _exit(2) in the
|
|
* usermode trampoline when it returns.
|
|
*/
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
p->p_pendingexits++;
|
|
td->td_dbgflags |= TDB_EXIT;
|
|
if (p->p_ptevents & PTRACE_LWP)
|
|
ptracestop(td, SIGTRAP, NULL);
|
|
PROC_UNLOCK(p);
|
|
tidhash_remove(td);
|
|
PROC_LOCK(p);
|
|
p->p_pendingexits--;
|
|
|
|
/*
|
|
* The check above should prevent all other threads from this
|
|
* process from exiting while the PROC_LOCK is dropped, so
|
|
* there must be at least one other thread other than the
|
|
* current thread.
|
|
*/
|
|
KASSERT(p->p_numthreads > 1, ("too few threads"));
|
|
racct_sub(p, RACCT_NTHR, 1);
|
|
tdsigcleanup(td);
|
|
PROC_SLOCK(p);
|
|
thread_stopped(p);
|
|
thread_exit();
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
int
|
|
sys_thr_kill(struct thread *td, struct thr_kill_args *uap)
|
|
/* long id, int sig */
|
|
{
|
|
ksiginfo_t ksi;
|
|
struct thread *ttd;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
p = td->td_proc;
|
|
ksiginfo_init(&ksi);
|
|
ksi.ksi_signo = uap->sig;
|
|
ksi.ksi_code = SI_LWP;
|
|
ksi.ksi_pid = p->p_pid;
|
|
ksi.ksi_uid = td->td_ucred->cr_ruid;
|
|
if (uap->id == -1) {
|
|
if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
|
|
error = EINVAL;
|
|
} else {
|
|
error = ESRCH;
|
|
PROC_LOCK(p);
|
|
FOREACH_THREAD_IN_PROC(p, ttd) {
|
|
if (ttd != td) {
|
|
error = 0;
|
|
if (uap->sig == 0)
|
|
break;
|
|
tdksignal(ttd, uap->sig, &ksi);
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
} else {
|
|
error = 0;
|
|
ttd = tdfind((lwpid_t)uap->id, p->p_pid);
|
|
if (ttd == NULL)
|
|
return (ESRCH);
|
|
if (uap->sig == 0)
|
|
;
|
|
else if (!_SIG_VALID(uap->sig))
|
|
error = EINVAL;
|
|
else
|
|
tdksignal(ttd, uap->sig, &ksi);
|
|
PROC_UNLOCK(ttd->td_proc);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sys_thr_kill2(struct thread *td, struct thr_kill2_args *uap)
|
|
/* pid_t pid, long id, int sig */
|
|
{
|
|
ksiginfo_t ksi;
|
|
struct thread *ttd;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
AUDIT_ARG_SIGNUM(uap->sig);
|
|
|
|
ksiginfo_init(&ksi);
|
|
ksi.ksi_signo = uap->sig;
|
|
ksi.ksi_code = SI_LWP;
|
|
ksi.ksi_pid = td->td_proc->p_pid;
|
|
ksi.ksi_uid = td->td_ucred->cr_ruid;
|
|
if (uap->id == -1) {
|
|
if ((p = pfind(uap->pid)) == NULL)
|
|
return (ESRCH);
|
|
AUDIT_ARG_PROCESS(p);
|
|
error = p_cansignal(td, p, uap->sig);
|
|
if (error) {
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
|
|
error = EINVAL;
|
|
} else {
|
|
error = ESRCH;
|
|
FOREACH_THREAD_IN_PROC(p, ttd) {
|
|
if (ttd != td) {
|
|
error = 0;
|
|
if (uap->sig == 0)
|
|
break;
|
|
tdksignal(ttd, uap->sig, &ksi);
|
|
}
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
} else {
|
|
ttd = tdfind((lwpid_t)uap->id, uap->pid);
|
|
if (ttd == NULL)
|
|
return (ESRCH);
|
|
p = ttd->td_proc;
|
|
AUDIT_ARG_PROCESS(p);
|
|
error = p_cansignal(td, p, uap->sig);
|
|
if (uap->sig == 0)
|
|
;
|
|
else if (!_SIG_VALID(uap->sig))
|
|
error = EINVAL;
|
|
else
|
|
tdksignal(ttd, uap->sig, &ksi);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sys_thr_suspend(struct thread *td, struct thr_suspend_args *uap)
|
|
/* const struct timespec *timeout */
|
|
{
|
|
struct timespec ts, *tsp;
|
|
int error;
|
|
|
|
tsp = NULL;
|
|
if (uap->timeout != NULL) {
|
|
error = umtx_copyin_timeout(uap->timeout, &ts);
|
|
if (error != 0)
|
|
return (error);
|
|
tsp = &ts;
|
|
}
|
|
|
|
return (kern_thr_suspend(td, tsp));
|
|
}
|
|
|
|
int
|
|
kern_thr_suspend(struct thread *td, struct timespec *tsp)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct timeval tv;
|
|
int error = 0;
|
|
int timo = 0;
|
|
|
|
if (td->td_pflags & TDP_WAKEUP) {
|
|
td->td_pflags &= ~TDP_WAKEUP;
|
|
return (0);
|
|
}
|
|
|
|
if (tsp != NULL) {
|
|
if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
|
|
error = EWOULDBLOCK;
|
|
else {
|
|
TIMESPEC_TO_TIMEVAL(&tv, tsp);
|
|
timo = tvtohz(&tv);
|
|
}
|
|
}
|
|
|
|
PROC_LOCK(p);
|
|
if (error == 0 && (td->td_flags & TDF_THRWAKEUP) == 0)
|
|
error = msleep((void *)td, &p->p_mtx,
|
|
PCATCH, "lthr", timo);
|
|
|
|
if (td->td_flags & TDF_THRWAKEUP) {
|
|
thread_lock(td);
|
|
td->td_flags &= ~TDF_THRWAKEUP;
|
|
thread_unlock(td);
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
if (error == EWOULDBLOCK)
|
|
error = ETIMEDOUT;
|
|
else if (error == ERESTART) {
|
|
if (timo != 0)
|
|
error = EINTR;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sys_thr_wake(struct thread *td, struct thr_wake_args *uap)
|
|
/* long id */
|
|
{
|
|
struct proc *p;
|
|
struct thread *ttd;
|
|
|
|
if (uap->id == td->td_tid) {
|
|
td->td_pflags |= TDP_WAKEUP;
|
|
return (0);
|
|
}
|
|
|
|
p = td->td_proc;
|
|
ttd = tdfind((lwpid_t)uap->id, p->p_pid);
|
|
if (ttd == NULL)
|
|
return (ESRCH);
|
|
thread_lock(ttd);
|
|
ttd->td_flags |= TDF_THRWAKEUP;
|
|
thread_unlock(ttd);
|
|
wakeup((void *)ttd);
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sys_thr_set_name(struct thread *td, struct thr_set_name_args *uap)
|
|
{
|
|
struct proc *p;
|
|
char name[MAXCOMLEN + 1];
|
|
struct thread *ttd;
|
|
int error;
|
|
|
|
error = 0;
|
|
name[0] = '\0';
|
|
if (uap->name != NULL) {
|
|
error = copyinstr(uap->name, name, sizeof(name), NULL);
|
|
if (error == ENAMETOOLONG) {
|
|
error = copyin(uap->name, name, sizeof(name) - 1);
|
|
name[sizeof(name) - 1] = '\0';
|
|
}
|
|
if (error)
|
|
return (error);
|
|
}
|
|
p = td->td_proc;
|
|
ttd = tdfind((lwpid_t)uap->id, p->p_pid);
|
|
if (ttd == NULL)
|
|
return (ESRCH);
|
|
strcpy(ttd->td_name, name);
|
|
#ifdef KTR
|
|
sched_clear_tdname(ttd);
|
|
#endif
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kern_thr_alloc(struct proc *p, int pages, struct thread **ntd)
|
|
{
|
|
|
|
/* Have race condition but it is cheap. */
|
|
if (p->p_numthreads >= max_threads_per_proc) {
|
|
++max_threads_hits;
|
|
return (EPROCLIM);
|
|
}
|
|
|
|
*ntd = thread_alloc(pages);
|
|
if (*ntd == NULL)
|
|
return (ENOMEM);
|
|
|
|
return (0);
|
|
}
|