3255f4fca4
Disable "cache line streaming" for aic7890/91 Rev A chips. I have never seen these chips fail using this feature, but some of Adaptec's regression tests have. Explicitly set "cache line streaming" to on for aic7896/97 chips. This was happening before, but this documents the fact that these chips will not function correctly without CACHETHEEN set. aic7xxx.h: Add new bug types. Fix a typo in a comment. aic7xxx.reg: Add a definition for the SHVALID bit in SSTAT3 for Ultra2/3 chips. This bit inicates whether the bottom most (current) element in the S/G fifo has exhausted its data count. aic7xxx.seq: Be more careful in how we turn off the secondary DMA channel. Being less careful may hang the PCI bus arbitor that negotiates between the two DMA engines. Remove an unecessary and incorrect flag set operation in the overrun case. On Ultra2/3 controllers, clear the dma FIFO before starting to handle an overrun. We don't want any residual bytes from the beginning of the overrun to cause the code that shuts down the DMA engine from hanging because the FIFO is not (and never will be) empty. If the data fifo is empty by the time we notice that a read transaction has completed, there is no need to hit the flush bit on aic7890/91 hardware that will not perform an auto-flush. Skip some cycles by short circuiting the manual flush code in this case. When transitioning out of data phase, make sure that we have the next S/G element loaded for the following reconnect if there is more work to do. The code would do this in most cases before, but there was a small window where the current S/G element could be exhausted before our fetch of the next S/G element completed. Since the S/G fetch is already initiated at this point, it makes sense to just wait for the segment to arrive instead of incuring even more latency by canceling the fetch and initiating it later. Fast path the end of data phase handling for the last S/G segment. In the general case, we might have worked ahead a bit by stuffing the S/G FIFO with additional segments. If we stop before using them all, we need to fixup our location in the S/G stream. Since we can't work past the last S/G segment, no fixups are ever required if we stop somewhere in that final segment. Fix a little buglet in the target mode dma bug handler. We were employing the workaround in all cases instead of only for the chips that require it. Fix the cause of SCB timeouts and possible "lost data" during read operations on the aic7890. When sending a data on any Ultra2/3 controller, the final segment must be marked as such so the FIFO will be flushed and cleaned up correctly when the transfer is ended. We failed to do this for the CDB transfer and so, if the target immediately transfered from command to data phase without an intervening disconnection, the first segment transferred would be any residual bytes from the cdb transfer. The Ultra160 controllers for some reason were not affected by this problem. Many Thanks to Tor Egge for bringing the aic7890 problem to my attention, providing analysis, as well as a mechanism to reproduce the problem.
1471 lines
30 KiB
Reg
1471 lines
30 KiB
Reg
/*
|
|
* Aic7xxx register and scratch ram definitions.
|
|
*
|
|
* Copyright (c) 1994-2000 Justin Gibbs.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU Public License ("GPL").
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* This file is processed by the aic7xxx_asm utility for use in assembling
|
|
* firmware for the aic7xxx family of SCSI host adapters as well as to generate
|
|
* a C header file for use in the kernel portion of the Aic7xxx driver.
|
|
*
|
|
* All page numbers refer to the Adaptec AIC-7770 Data Book available from
|
|
* Adaptec's Technical Documents Department 1-800-934-2766
|
|
*/
|
|
|
|
/*
|
|
* SCSI Sequence Control (p. 3-11).
|
|
* Each bit, when set starts a specific SCSI sequence on the bus
|
|
*/
|
|
register SCSISEQ {
|
|
address 0x000
|
|
access_mode RW
|
|
bit TEMODE 0x80
|
|
bit ENSELO 0x40
|
|
bit ENSELI 0x20
|
|
bit ENRSELI 0x10
|
|
bit ENAUTOATNO 0x08
|
|
bit ENAUTOATNI 0x04
|
|
bit ENAUTOATNP 0x02
|
|
bit SCSIRSTO 0x01
|
|
}
|
|
|
|
/*
|
|
* SCSI Transfer Control 0 Register (pp. 3-13).
|
|
* Controls the SCSI module data path.
|
|
*/
|
|
register SXFRCTL0 {
|
|
address 0x001
|
|
access_mode RW
|
|
bit DFON 0x80
|
|
bit DFPEXP 0x40
|
|
bit FAST20 0x20
|
|
bit CLRSTCNT 0x10
|
|
bit SPIOEN 0x08
|
|
bit SCAMEN 0x04
|
|
bit CLRCHN 0x02
|
|
}
|
|
|
|
/*
|
|
* SCSI Transfer Control 1 Register (pp. 3-14,15).
|
|
* Controls the SCSI module data path.
|
|
*/
|
|
register SXFRCTL1 {
|
|
address 0x002
|
|
access_mode RW
|
|
bit BITBUCKET 0x80
|
|
bit SWRAPEN 0x40
|
|
bit ENSPCHK 0x20
|
|
mask STIMESEL 0x18
|
|
bit ENSTIMER 0x04
|
|
bit ACTNEGEN 0x02
|
|
bit STPWEN 0x01 /* Powered Termination */
|
|
}
|
|
|
|
/*
|
|
* SCSI Control Signal Read Register (p. 3-15).
|
|
* Reads the actual state of the SCSI bus pins
|
|
*/
|
|
register SCSISIGI {
|
|
address 0x003
|
|
access_mode RO
|
|
bit CDI 0x80
|
|
bit IOI 0x40
|
|
bit MSGI 0x20
|
|
bit ATNI 0x10
|
|
bit SELI 0x08
|
|
bit BSYI 0x04
|
|
bit REQI 0x02
|
|
bit ACKI 0x01
|
|
/*
|
|
* Possible phases in SCSISIGI
|
|
*/
|
|
mask PHASE_MASK CDI|IOI|MSGI
|
|
mask P_DATAOUT 0x00
|
|
mask P_DATAIN IOI
|
|
mask P_COMMAND CDI
|
|
mask P_MESGOUT CDI|MSGI
|
|
mask P_STATUS CDI|IOI
|
|
mask P_MESGIN CDI|IOI|MSGI
|
|
}
|
|
|
|
/*
|
|
* SCSI Control Signal Write Register (p. 3-16).
|
|
* Writing to this register modifies the control signals on the bus. Only
|
|
* those signals that are allowed in the current mode (Initiator/Target) are
|
|
* asserted.
|
|
*/
|
|
register SCSISIGO {
|
|
address 0x003
|
|
access_mode WO
|
|
bit CDO 0x80
|
|
bit IOO 0x40
|
|
bit MSGO 0x20
|
|
bit ATNO 0x10
|
|
bit SELO 0x08
|
|
bit BSYO 0x04
|
|
bit REQO 0x02
|
|
bit ACKO 0x01
|
|
/*
|
|
* Possible phases to write into SCSISIG0
|
|
*/
|
|
mask PHASE_MASK CDI|IOI|MSGI
|
|
mask P_DATAOUT 0x00
|
|
mask P_DATAIN IOI
|
|
mask P_COMMAND CDI
|
|
mask P_MESGOUT CDI|MSGI
|
|
mask P_STATUS CDI|IOI
|
|
mask P_MESGIN CDI|IOI|MSGI
|
|
}
|
|
|
|
/*
|
|
* SCSI Rate Control (p. 3-17).
|
|
* Contents of this register determine the Synchronous SCSI data transfer
|
|
* rate and the maximum synchronous Req/Ack offset. An offset of 0 in the
|
|
* SOFS (3:0) bits disables synchronous data transfers. Any offset value
|
|
* greater than 0 enables synchronous transfers.
|
|
*/
|
|
register SCSIRATE {
|
|
address 0x004
|
|
access_mode RW
|
|
bit WIDEXFER 0x80 /* Wide transfer control */
|
|
bit ENABLE_CRC 0x40 /* CRC for D-Phases */
|
|
bit SINGLE_EDGE 0x10 /* Disable DT Transfers */
|
|
mask SXFR 0x70 /* Sync transfer rate */
|
|
mask SXFR_ULTRA2 0x0f /* Sync transfer rate */
|
|
mask SOFS 0x0f /* Sync offset */
|
|
}
|
|
|
|
/*
|
|
* SCSI ID (p. 3-18).
|
|
* Contains the ID of the board and the current target on the
|
|
* selected channel.
|
|
*/
|
|
register SCSIID {
|
|
address 0x005
|
|
access_mode RW
|
|
mask TID 0xf0 /* Target ID mask */
|
|
mask TWIN_TID 0x70
|
|
bit TWIN_CHNLB 0x80
|
|
mask OID 0x0f /* Our ID mask */
|
|
/*
|
|
* SCSI Maximum Offset (p. 4-61 aic7890/91 Data Book)
|
|
* The aic7890/91 allow an offset of up to 127 transfers in both wide
|
|
* and narrow mode.
|
|
*/
|
|
alias SCSIOFFSET
|
|
mask SOFS_ULTRA2 0x7f /* Sync offset U2 chips */
|
|
}
|
|
|
|
/*
|
|
* SCSI Latched Data (p. 3-19).
|
|
* Read/Write latches used to transfer data on the SCSI bus during
|
|
* Automatic or Manual PIO mode. SCSIDATH can be used for the
|
|
* upper byte of a 16bit wide asynchronouse data phase transfer.
|
|
*/
|
|
register SCSIDATL {
|
|
address 0x006
|
|
access_mode RW
|
|
}
|
|
|
|
register SCSIDATH {
|
|
address 0x007
|
|
access_mode RW
|
|
}
|
|
|
|
/*
|
|
* SCSI Transfer Count (pp. 3-19,20)
|
|
* These registers count down the number of bytes transferred
|
|
* across the SCSI bus. The counter is decremented only once
|
|
* the data has been safely transferred. SDONE in SSTAT0 is
|
|
* set when STCNT goes to 0
|
|
*/
|
|
register STCNT {
|
|
address 0x008
|
|
size 3
|
|
access_mode RW
|
|
}
|
|
|
|
/* ALT_MODE register on Ultra160 chips */
|
|
register OPTIONMODE {
|
|
address 0x008
|
|
access_mode RW
|
|
bit AUTORATEEN 0x80
|
|
bit AUTOACKEN 0x40
|
|
bit ATNMGMNTEN 0x20
|
|
bit BUSFREEREV 0x10
|
|
bit EXPPHASEDIS 0x08
|
|
bit SCSIDATL_IMGEN 0x04
|
|
bit AUTO_MSGOUT_DE 0x02
|
|
bit DIS_MSGIN_DUALEDGE 0x01
|
|
mask OPTIONMODE_DEFAULTS AUTO_MSGOUT_DE|DIS_MSGIN_DUALEDGE
|
|
}
|
|
|
|
/* ALT_MODE register on Ultra160 chips */
|
|
register TARGCRCCNT {
|
|
address 0x00a
|
|
size 2
|
|
access_mode RW
|
|
}
|
|
|
|
/*
|
|
* Clear SCSI Interrupt 0 (p. 3-20)
|
|
* Writing a 1 to a bit clears the associated SCSI Interrupt in SSTAT0.
|
|
*/
|
|
register CLRSINT0 {
|
|
address 0x00b
|
|
access_mode WO
|
|
bit CLRSELDO 0x40
|
|
bit CLRSELDI 0x20
|
|
bit CLRSELINGO 0x10
|
|
bit CLRSWRAP 0x08
|
|
bit CLRSPIORDY 0x02
|
|
}
|
|
|
|
/*
|
|
* SCSI Status 0 (p. 3-21)
|
|
* Contains one set of SCSI Interrupt codes
|
|
* These are most likely of interest to the sequencer
|
|
*/
|
|
register SSTAT0 {
|
|
address 0x00b
|
|
access_mode RO
|
|
bit TARGET 0x80 /* Board acting as target */
|
|
bit SELDO 0x40 /* Selection Done */
|
|
bit SELDI 0x20 /* Board has been selected */
|
|
bit SELINGO 0x10 /* Selection In Progress */
|
|
bit SWRAP 0x08 /* 24bit counter wrap */
|
|
bit IOERR 0x08 /* LVD Tranceiver mode changed */
|
|
bit SDONE 0x04 /* STCNT = 0x000000 */
|
|
bit SPIORDY 0x02 /* SCSI PIO Ready */
|
|
bit DMADONE 0x01 /* DMA transfer completed */
|
|
}
|
|
|
|
/*
|
|
* Clear SCSI Interrupt 1 (p. 3-23)
|
|
* Writing a 1 to a bit clears the associated SCSI Interrupt in SSTAT1.
|
|
*/
|
|
register CLRSINT1 {
|
|
address 0x00c
|
|
access_mode WO
|
|
bit CLRSELTIMEO 0x80
|
|
bit CLRATNO 0x40
|
|
bit CLRSCSIRSTI 0x20
|
|
bit CLRBUSFREE 0x08
|
|
bit CLRSCSIPERR 0x04
|
|
bit CLRPHASECHG 0x02
|
|
bit CLRREQINIT 0x01
|
|
}
|
|
|
|
/*
|
|
* SCSI Status 1 (p. 3-24)
|
|
*/
|
|
register SSTAT1 {
|
|
address 0x00c
|
|
access_mode RO
|
|
bit SELTO 0x80
|
|
bit ATNTARG 0x40
|
|
bit SCSIRSTI 0x20
|
|
bit PHASEMIS 0x10
|
|
bit BUSFREE 0x08
|
|
bit SCSIPERR 0x04
|
|
bit PHASECHG 0x02
|
|
bit REQINIT 0x01
|
|
}
|
|
|
|
/*
|
|
* SCSI Status 2 (pp. 3-25,26)
|
|
*/
|
|
register SSTAT2 {
|
|
address 0x00d
|
|
access_mode RO
|
|
bit OVERRUN 0x80
|
|
bit SHVALID 0x40 /* Shaddow Layer non-zero */
|
|
bit EXP_ACTIVE 0x10 /* SCSI Expander Active */
|
|
mask SFCNT 0x1f
|
|
}
|
|
|
|
/*
|
|
* SCSI Status 3 (p. 3-26)
|
|
*/
|
|
register SSTAT3 {
|
|
address 0x00e
|
|
access_mode RO
|
|
mask SCSICNT 0xf0
|
|
mask OFFCNT 0x0f
|
|
}
|
|
|
|
/*
|
|
* SCSI ID for the aic7890/91 chips
|
|
*/
|
|
register SCSIID_ULTRA2 {
|
|
address 0x00f
|
|
access_mode RW
|
|
mask TID 0xf0 /* Target ID mask */
|
|
mask OID 0x0f /* Our ID mask */
|
|
}
|
|
|
|
/*
|
|
* SCSI Interrupt Mode 1 (p. 3-28)
|
|
* Setting any bit will enable the corresponding function
|
|
* in SIMODE0 to interrupt via the IRQ pin.
|
|
*/
|
|
register SIMODE0 {
|
|
address 0x010
|
|
access_mode RW
|
|
bit ENSELDO 0x40
|
|
bit ENSELDI 0x20
|
|
bit ENSELINGO 0x10
|
|
bit ENSWRAP 0x08
|
|
bit ENIOERR 0x08 /* LVD Tranceiver mode changes */
|
|
bit ENSDONE 0x04
|
|
bit ENSPIORDY 0x02
|
|
bit ENDMADONE 0x01
|
|
}
|
|
|
|
/*
|
|
* SCSI Interrupt Mode 1 (pp. 3-28,29)
|
|
* Setting any bit will enable the corresponding function
|
|
* in SIMODE1 to interrupt via the IRQ pin.
|
|
*/
|
|
register SIMODE1 {
|
|
address 0x011
|
|
access_mode RW
|
|
bit ENSELTIMO 0x80
|
|
bit ENATNTARG 0x40
|
|
bit ENSCSIRST 0x20
|
|
bit ENPHASEMIS 0x10
|
|
bit ENBUSFREE 0x08
|
|
bit ENSCSIPERR 0x04
|
|
bit ENPHASECHG 0x02
|
|
bit ENREQINIT 0x01
|
|
}
|
|
|
|
/*
|
|
* SCSI Data Bus (High) (p. 3-29)
|
|
* This register reads data on the SCSI Data bus directly.
|
|
*/
|
|
register SCSIBUSL {
|
|
address 0x012
|
|
access_mode RO
|
|
}
|
|
|
|
register SCSIBUSH {
|
|
address 0x013
|
|
access_mode RO
|
|
}
|
|
|
|
/*
|
|
* SCSI/Host Address (p. 3-30)
|
|
* These registers hold the host address for the byte about to be
|
|
* transferred on the SCSI bus. They are counted up in the same
|
|
* manner as STCNT is counted down. SHADDR should always be used
|
|
* to determine the address of the last byte transferred since HADDR
|
|
* can be skewed by write ahead.
|
|
*/
|
|
register SHADDR {
|
|
address 0x014
|
|
size 4
|
|
access_mode RO
|
|
}
|
|
|
|
/*
|
|
* Selection Timeout Timer (p. 3-30)
|
|
*/
|
|
register SELTIMER {
|
|
address 0x018
|
|
access_mode RW
|
|
bit STAGE6 0x20
|
|
bit STAGE5 0x10
|
|
bit STAGE4 0x08
|
|
bit STAGE3 0x04
|
|
bit STAGE2 0x02
|
|
bit STAGE1 0x01
|
|
alias TARGIDIN
|
|
}
|
|
|
|
/*
|
|
* Selection/Reselection ID (p. 3-31)
|
|
* Upper four bits are the device id. The ONEBIT is set when the re/selecting
|
|
* device did not set its own ID.
|
|
*/
|
|
register SELID {
|
|
address 0x019
|
|
access_mode RW
|
|
mask SELID_MASK 0xf0
|
|
bit ONEBIT 0x08
|
|
}
|
|
|
|
register SCAMCTL {
|
|
address 0x01a
|
|
access_mode RW
|
|
bit ENSCAMSELO 0x80
|
|
bit CLRSCAMSELID 0x40
|
|
bit ALTSTIM 0x20
|
|
bit DFLTTID 0x10
|
|
mask SCAMLVL 0x03
|
|
}
|
|
|
|
/*
|
|
* Target Mode Selecting in ID bitmask (aic7890/91/96/97)
|
|
*/
|
|
register TARGID {
|
|
address 0x01b
|
|
size 2
|
|
access_mode RW
|
|
}
|
|
|
|
/*
|
|
* Serial Port I/O Cabability register (p. 4-95 aic7860 Data Book)
|
|
* Indicates if external logic has been attached to the chip to
|
|
* perform the tasks of accessing a serial eeprom, testing termination
|
|
* strength, and performing cable detection. On the aic7860, most of
|
|
* these features are handled on chip, but on the aic7855 an attached
|
|
* aic3800 does the grunt work.
|
|
*/
|
|
register SPIOCAP {
|
|
address 0x01b
|
|
access_mode RW
|
|
bit SOFT1 0x80
|
|
bit SOFT0 0x40
|
|
bit SOFTCMDEN 0x20
|
|
bit HAS_BRDCTL 0x10 /* External Board control */
|
|
bit SEEPROM 0x08 /* External serial eeprom logic */
|
|
bit EEPROM 0x04 /* Writable external BIOS ROM */
|
|
bit ROM 0x02 /* Logic for accessing external ROM */
|
|
bit SSPIOCPS 0x01 /* Termination and cable detection */
|
|
}
|
|
|
|
register BRDCTL {
|
|
address 0x01d
|
|
bit BRDDAT7 0x80
|
|
bit BRDDAT6 0x40
|
|
bit BRDDAT5 0x20
|
|
bit BRDSTB 0x10
|
|
bit BRDCS 0x08
|
|
bit BRDRW 0x04
|
|
bit BRDCTL1 0x02
|
|
bit BRDCTL0 0x01
|
|
/* 7890 Definitions */
|
|
bit BRDDAT4 0x10
|
|
bit BRDDAT3 0x08
|
|
bit BRDDAT2 0x04
|
|
bit BRDRW_ULTRA2 0x02
|
|
bit BRDSTB_ULTRA2 0x01
|
|
}
|
|
|
|
/*
|
|
* Serial EEPROM Control (p. 4-92 in 7870 Databook)
|
|
* Controls the reading and writing of an external serial 1-bit
|
|
* EEPROM Device. In order to access the serial EEPROM, you must
|
|
* first set the SEEMS bit that generates a request to the memory
|
|
* port for access to the serial EEPROM device. When the memory
|
|
* port is not busy servicing another request, it reconfigures
|
|
* to allow access to the serial EEPROM. When this happens, SEERDY
|
|
* gets set high to verify that the memory port access has been
|
|
* granted.
|
|
*
|
|
* After successful arbitration for the memory port, the SEECS bit of
|
|
* the SEECTL register is connected to the chip select. The SEECK,
|
|
* SEEDO, and SEEDI are connected to the clock, data out, and data in
|
|
* lines respectively. The SEERDY bit of SEECTL is useful in that it
|
|
* gives us an 800 nsec timer. After a write to the SEECTL register,
|
|
* the SEERDY goes high 800 nsec later. The one exception to this is
|
|
* when we first request access to the memory port. The SEERDY goes
|
|
* high to signify that access has been granted and, for this case, has
|
|
* no implied timing.
|
|
*
|
|
* See 93cx6.c for detailed information on the protocol necessary to
|
|
* read the serial EEPROM.
|
|
*/
|
|
register SEECTL {
|
|
address 0x01e
|
|
bit EXTARBACK 0x80
|
|
bit EXTARBREQ 0x40
|
|
bit SEEMS 0x20
|
|
bit SEERDY 0x10
|
|
bit SEECS 0x08
|
|
bit SEECK 0x04
|
|
bit SEEDO 0x02
|
|
bit SEEDI 0x01
|
|
}
|
|
/*
|
|
* SCSI Block Control (p. 3-32)
|
|
* Controls Bus type and channel selection. In a twin channel configuration
|
|
* addresses 0x00-0x1e are gated to the appropriate channel based on this
|
|
* register. SELWIDE allows for the coexistence of 8bit and 16bit devices
|
|
* on a wide bus.
|
|
*/
|
|
register SBLKCTL {
|
|
address 0x01f
|
|
access_mode RW
|
|
bit DIAGLEDEN 0x80 /* Aic78X0 only */
|
|
bit DIAGLEDON 0x40 /* Aic78X0 only */
|
|
bit AUTOFLUSHDIS 0x20
|
|
bit SELBUSB 0x08
|
|
bit ENAB40 0x08 /* LVD transceiver active */
|
|
bit ENAB20 0x04 /* SE/HVD transceiver active */
|
|
bit SELWIDE 0x02
|
|
bit XCVR 0x01 /* External transceiver active */
|
|
}
|
|
|
|
/*
|
|
* Sequencer Control (p. 3-33)
|
|
* Error detection mode and speed configuration
|
|
*/
|
|
register SEQCTL {
|
|
address 0x060
|
|
access_mode RW
|
|
bit PERRORDIS 0x80
|
|
bit PAUSEDIS 0x40
|
|
bit FAILDIS 0x20
|
|
bit FASTMODE 0x10
|
|
bit BRKADRINTEN 0x08
|
|
bit STEP 0x04
|
|
bit SEQRESET 0x02
|
|
bit LOADRAM 0x01
|
|
}
|
|
|
|
/*
|
|
* Sequencer RAM Data (p. 3-34)
|
|
* Single byte window into the Scratch Ram area starting at the address
|
|
* specified by SEQADDR0 and SEQADDR1. To write a full word, simply write
|
|
* four bytes in succession. The SEQADDRs will increment after the most
|
|
* significant byte is written
|
|
*/
|
|
register SEQRAM {
|
|
address 0x061
|
|
access_mode RW
|
|
}
|
|
|
|
/*
|
|
* Sequencer Address Registers (p. 3-35)
|
|
* Only the first bit of SEQADDR1 holds addressing information
|
|
*/
|
|
register SEQADDR0 {
|
|
address 0x062
|
|
access_mode RW
|
|
}
|
|
|
|
register SEQADDR1 {
|
|
address 0x063
|
|
access_mode RW
|
|
mask SEQADDR1_MASK 0x01
|
|
}
|
|
|
|
/*
|
|
* Accumulator
|
|
* We cheat by passing arguments in the Accumulator up to the kernel driver
|
|
*/
|
|
register ACCUM {
|
|
address 0x064
|
|
access_mode RW
|
|
accumulator
|
|
}
|
|
|
|
register SINDEX {
|
|
address 0x065
|
|
access_mode RW
|
|
sindex
|
|
}
|
|
|
|
register DINDEX {
|
|
address 0x066
|
|
access_mode RW
|
|
}
|
|
|
|
register ALLONES {
|
|
address 0x069
|
|
access_mode RO
|
|
allones
|
|
}
|
|
|
|
register ALLZEROS {
|
|
address 0x06a
|
|
access_mode RO
|
|
allzeros
|
|
}
|
|
|
|
register NONE {
|
|
address 0x06a
|
|
access_mode WO
|
|
none
|
|
}
|
|
|
|
register FLAGS {
|
|
address 0x06b
|
|
access_mode RO
|
|
bit ZERO 0x02
|
|
bit CARRY 0x01
|
|
}
|
|
|
|
register SINDIR {
|
|
address 0x06c
|
|
access_mode RO
|
|
}
|
|
|
|
register DINDIR {
|
|
address 0x06d
|
|
access_mode WO
|
|
}
|
|
|
|
register FUNCTION1 {
|
|
address 0x06e
|
|
access_mode RW
|
|
}
|
|
|
|
register STACK {
|
|
address 0x06f
|
|
access_mode RO
|
|
}
|
|
|
|
/*
|
|
* Board Control (p. 3-43)
|
|
*/
|
|
register BCTL {
|
|
address 0x084
|
|
access_mode RW
|
|
bit ACE 0x08
|
|
bit ENABLE 0x01
|
|
}
|
|
|
|
/*
|
|
* On the aic78X0 chips, Board Control is replaced by the DSCommand
|
|
* register (p. 4-64)
|
|
*/
|
|
register DSCOMMAND0 {
|
|
address 0x084
|
|
access_mode RW
|
|
bit CACHETHEN 0x80 /* Cache Threshold enable */
|
|
bit DPARCKEN 0x40 /* Data Parity Check Enable */
|
|
bit MPARCKEN 0x20 /* Memory Parity Check Enable */
|
|
bit EXTREQLCK 0x10 /* External Request Lock */
|
|
/* aic7890/91/96/97 only */
|
|
bit INTSCBRAMSEL 0x08 /* Internal SCB RAM Select */
|
|
bit RAMPS 0x04 /* External SCB RAM Present */
|
|
bit USCBSIZE32 0x02 /* Use 32byte SCB Page Size */
|
|
bit CIOPARCKEN 0x01 /* Internal bus parity error enable */
|
|
}
|
|
|
|
/*
|
|
* Bus On/Off Time (p. 3-44)
|
|
*/
|
|
register BUSTIME {
|
|
address 0x085
|
|
access_mode RW
|
|
mask BOFF 0xf0
|
|
mask BON 0x0f
|
|
}
|
|
|
|
/*
|
|
* Bus Speed (p. 3-45) aic7770 only
|
|
*/
|
|
register BUSSPD {
|
|
address 0x086
|
|
access_mode RW
|
|
mask DFTHRSH 0xc0
|
|
mask STBOFF 0x38
|
|
mask STBON 0x07
|
|
mask DFTHRSH_100 0xc0
|
|
}
|
|
|
|
/* aic7850/55/60/70/80/95 only */
|
|
register DSPCISTATUS {
|
|
address 0x086
|
|
mask DFTHRSH_100 0xc0
|
|
}
|
|
|
|
/* aic7890/91/96/97 only */
|
|
register HS_MAILBOX {
|
|
address 0x086
|
|
mask HOST_MAILBOX 0xF0
|
|
mask SEQ_MAILBOX 0x0F
|
|
mask HOST_TQINPOS 0x80 /* Boundary at either 0 or 128 */
|
|
}
|
|
|
|
const HOST_MAILBOX_SHIFT 4
|
|
const SEQ_MAILBOX_SHIFT 0
|
|
|
|
/*
|
|
* Host Control (p. 3-47) R/W
|
|
* Overall host control of the device.
|
|
*/
|
|
register HCNTRL {
|
|
address 0x087
|
|
access_mode RW
|
|
bit POWRDN 0x40
|
|
bit SWINT 0x10
|
|
bit IRQMS 0x08
|
|
bit PAUSE 0x04
|
|
bit INTEN 0x02
|
|
bit CHIPRST 0x01
|
|
bit CHIPRSTACK 0x01
|
|
}
|
|
|
|
/*
|
|
* Host Address (p. 3-48)
|
|
* This register contains the address of the byte about
|
|
* to be transferred across the host bus.
|
|
*/
|
|
register HADDR {
|
|
address 0x088
|
|
size 4
|
|
access_mode RW
|
|
}
|
|
|
|
register HCNT {
|
|
address 0x08c
|
|
size 3
|
|
access_mode RW
|
|
}
|
|
|
|
/*
|
|
* SCB Pointer (p. 3-49)
|
|
* Gate one of the SCBs into the SCBARRAY window.
|
|
*/
|
|
register SCBPTR {
|
|
address 0x090
|
|
access_mode RW
|
|
}
|
|
|
|
/*
|
|
* Interrupt Status (p. 3-50)
|
|
* Status for system interrupts
|
|
*/
|
|
register INTSTAT {
|
|
address 0x091
|
|
access_mode RW
|
|
bit BRKADRINT 0x08
|
|
bit SCSIINT 0x04
|
|
bit CMDCMPLT 0x02
|
|
bit SEQINT 0x01
|
|
mask BAD_PHASE SEQINT /* unknown scsi bus phase */
|
|
mask SEND_REJECT 0x10|SEQINT /* sending a message reject */
|
|
mask NO_IDENT 0x20|SEQINT /* no IDENTIFY after reconnect*/
|
|
mask NO_MATCH 0x30|SEQINT /* no cmd match for reconnect */
|
|
mask IGN_WIDE_RES 0x40|SEQINT /* Complex IGN Wide Res Msg */
|
|
mask BAD_STATUS 0x70|SEQINT /* Bad status from target */
|
|
mask RESIDUAL 0x80|SEQINT /* Residual byte count != 0 */
|
|
mask TRACEPOINT2 0x90|SEQINT
|
|
mask HOST_MSG_LOOP 0xa0|SEQINT /*
|
|
* The bus is ready for the
|
|
* host to perform another
|
|
* message transaction. This
|
|
* mechanism is used for things
|
|
* like sync/wide negotiation
|
|
* that require a kernel based
|
|
* message state engine.
|
|
*/
|
|
mask PERR_DETECTED 0xb0|SEQINT /*
|
|
* Either the phase_lock
|
|
* or inb_next routine has
|
|
* noticed a parity error.
|
|
*/
|
|
mask TRACEPOINT 0xd0|SEQINT
|
|
mask DATA_OVERRUN 0xf0|SEQINT /*
|
|
* Target attempted to write
|
|
* beyond the bounds of its
|
|
* command.
|
|
*/
|
|
|
|
mask SEQINT_MASK 0xf0|SEQINT /* SEQINT Status Codes */
|
|
mask INT_PEND (BRKADRINT|SEQINT|SCSIINT|CMDCMPLT)
|
|
}
|
|
|
|
/*
|
|
* Hard Error (p. 3-53)
|
|
* Reporting of catastrophic errors. You usually cannot recover from
|
|
* these without a full board reset.
|
|
*/
|
|
register ERROR {
|
|
address 0x092
|
|
access_mode RO
|
|
bit CIOPARERR 0x80 /* Ultra2 only */
|
|
bit PCIERRSTAT 0x40 /* PCI only */
|
|
bit MPARERR 0x20 /* PCI only */
|
|
bit DPARERR 0x10 /* PCI only */
|
|
bit SQPARERR 0x08
|
|
bit ILLOPCODE 0x04
|
|
bit ILLSADDR 0x02
|
|
bit ILLHADDR 0x01
|
|
}
|
|
|
|
/*
|
|
* Clear Interrupt Status (p. 3-52)
|
|
*/
|
|
register CLRINT {
|
|
address 0x092
|
|
access_mode WO
|
|
bit CLRPARERR 0x10 /* PCI only */
|
|
bit CLRBRKADRINT 0x08
|
|
bit CLRSCSIINT 0x04
|
|
bit CLRCMDINT 0x02
|
|
bit CLRSEQINT 0x01
|
|
}
|
|
|
|
register DFCNTRL {
|
|
address 0x093
|
|
access_mode RW
|
|
bit PRELOADEN 0x80 /* aic7890 only */
|
|
bit WIDEODD 0x40
|
|
bit SCSIEN 0x20
|
|
bit SDMAEN 0x10
|
|
bit SDMAENACK 0x10
|
|
bit HDMAEN 0x08
|
|
bit HDMAENACK 0x08
|
|
bit DIRECTION 0x04
|
|
bit FIFOFLUSH 0x02
|
|
bit FIFORESET 0x01
|
|
}
|
|
|
|
register DFSTATUS {
|
|
address 0x094
|
|
access_mode RO
|
|
bit PRELOAD_AVAIL 0x80
|
|
bit DWORDEMP 0x20
|
|
bit MREQPEND 0x10
|
|
bit HDONE 0x08
|
|
bit DFTHRESH 0x04
|
|
bit FIFOFULL 0x02
|
|
bit FIFOEMP 0x01
|
|
}
|
|
|
|
register DFWADDR {
|
|
address 0x95
|
|
access_mode RW
|
|
}
|
|
|
|
register DFRADDR {
|
|
address 0x97
|
|
access_mode RW
|
|
}
|
|
|
|
register DFDAT {
|
|
address 0x099
|
|
access_mode RW
|
|
}
|
|
|
|
/*
|
|
* SCB Auto Increment (p. 3-59)
|
|
* Byte offset into the SCB Array and an optional bit to allow auto
|
|
* incrementing of the address during download and upload operations
|
|
*/
|
|
register SCBCNT {
|
|
address 0x09a
|
|
access_mode RW
|
|
bit SCBAUTO 0x80
|
|
mask SCBCNT_MASK 0x1f
|
|
}
|
|
|
|
/*
|
|
* Queue In FIFO (p. 3-60)
|
|
* Input queue for queued SCBs (commands that the seqencer has yet to start)
|
|
*/
|
|
register QINFIFO {
|
|
address 0x09b
|
|
access_mode RW
|
|
}
|
|
|
|
/*
|
|
* Queue In Count (p. 3-60)
|
|
* Number of queued SCBs
|
|
*/
|
|
register QINCNT {
|
|
address 0x09c
|
|
access_mode RO
|
|
}
|
|
|
|
/*
|
|
* Queue Out FIFO (p. 3-61)
|
|
* Queue of SCBs that have completed and await the host
|
|
*/
|
|
register QOUTFIFO {
|
|
address 0x09d
|
|
access_mode WO
|
|
}
|
|
|
|
register CRCCONTROL1 {
|
|
address 0x09d
|
|
access_mode RW
|
|
bit CRCONSEEN 0x80
|
|
bit CRCVALCHKEN 0x40
|
|
bit CRCENDCHKEN 0x20
|
|
bit CRCREQCHKEN 0x10
|
|
bit TARGCRCENDEN 0x08
|
|
bit TARGCRCCNTEN 0x04
|
|
}
|
|
|
|
|
|
/*
|
|
* Queue Out Count (p. 3-61)
|
|
* Number of queued SCBs in the Out FIFO
|
|
*/
|
|
register QOUTCNT {
|
|
address 0x09e
|
|
access_mode RO
|
|
}
|
|
|
|
register SCSIPHASE {
|
|
address 0x09e
|
|
access_mode RO
|
|
bit STATUS_PHASE 0x20
|
|
bit COMMAND_PHASE 0x10
|
|
bit MSG_IN_PHASE 0x08
|
|
bit MSG_OUT_PHASE 0x04
|
|
bit DATA_IN_PHASE 0x02
|
|
bit DATA_OUT_PHASE 0x01
|
|
}
|
|
|
|
/*
|
|
* Special Function
|
|
*/
|
|
register SFUNCT {
|
|
address 0x09f
|
|
access_mode RW
|
|
bit ALT_MODE 0x80
|
|
}
|
|
|
|
/*
|
|
* SCB Definition (p. 5-4)
|
|
*/
|
|
scb {
|
|
address 0x0a0
|
|
SCB_CONTROL {
|
|
size 1
|
|
bit TARGET_SCB 0x80
|
|
bit DISCENB 0x40
|
|
bit TAG_ENB 0x20
|
|
bit MK_MESSAGE 0x10
|
|
bit ULTRAENB 0x08
|
|
bit DISCONNECTED 0x04
|
|
mask SCB_TAG_TYPE 0x03
|
|
}
|
|
SCB_SCSIID {
|
|
size 1
|
|
bit TWIN_CHNLB 0x80
|
|
mask TWIN_TID 0x70
|
|
mask TID 0xf0
|
|
mask OID 0x0f
|
|
}
|
|
SCB_LUN {
|
|
mask LID 0xff
|
|
size 1
|
|
}
|
|
SCB_CDB_LEN {
|
|
size 1
|
|
}
|
|
SCB_CDB_PTR {
|
|
size 4
|
|
alias SCB_RESIDUAL_DATACNT
|
|
alias SCB_CDB_STORE
|
|
alias SCB_TARGET_INFO
|
|
}
|
|
SCB_RESIDUAL_SGPTR {
|
|
size 4
|
|
}
|
|
SCB_SCSI_STATUS {
|
|
size 1
|
|
}
|
|
SCB_CDB_STORE_PAD {
|
|
size 3
|
|
}
|
|
SCB_DATAPTR {
|
|
size 4
|
|
}
|
|
SCB_DATACNT {
|
|
/*
|
|
* The last byte is really the high address bits for
|
|
* the data address.
|
|
*/
|
|
size 4
|
|
bit SG_LAST_SEG 0x80 /* In the fourth byte */
|
|
mask SG_HIGH_ADDR_BITS 0x7F /* In the fourth byte */
|
|
}
|
|
SCB_SGPTR {
|
|
size 4
|
|
bit SG_RESID_VALID 0x04 /* In the first byte */
|
|
bit SG_FULL_RESID 0x02 /* In the first byte */
|
|
bit SG_LIST_NULL 0x01 /* In the first byte */
|
|
}
|
|
SCB_TAG {
|
|
size 1
|
|
}
|
|
SCB_SCSIRATE {
|
|
size 1
|
|
}
|
|
SCB_SCSIOFFSET {
|
|
size 1
|
|
}
|
|
SCB_NEXT {
|
|
size 1
|
|
}
|
|
SCB_64_BTT {
|
|
size 16
|
|
}
|
|
SCB_64_SPARE {
|
|
size 16
|
|
}
|
|
}
|
|
|
|
const SCB_32BYTE_SIZE 30 /* Cards supporting 32byte scbs */
|
|
const SCB_64BYTE_SIZE 32 /* Cards supporting 64byte scbs */
|
|
|
|
const SG_SIZEOF 0x08 /* sizeof(struct ahc_dma) */
|
|
|
|
/* --------------------- AHA-2840-only definitions -------------------- */
|
|
|
|
register SEECTL_2840 {
|
|
address 0x0c0
|
|
access_mode RW
|
|
bit CS_2840 0x04
|
|
bit CK_2840 0x02
|
|
bit DO_2840 0x01
|
|
}
|
|
|
|
register STATUS_2840 {
|
|
address 0x0c1
|
|
access_mode RW
|
|
bit EEPROM_TF 0x80
|
|
mask BIOS_SEL 0x60
|
|
mask ADSEL 0x1e
|
|
bit DI_2840 0x01
|
|
}
|
|
|
|
/* --------------------- AIC-7870-only definitions -------------------- */
|
|
|
|
register CCHADDR {
|
|
address 0x0E0
|
|
size 8
|
|
}
|
|
|
|
register CCHCNT {
|
|
address 0x0E8
|
|
}
|
|
|
|
register CCSGRAM {
|
|
address 0x0E9
|
|
}
|
|
|
|
register CCSGADDR {
|
|
address 0x0EA
|
|
}
|
|
|
|
register CCSGCTL {
|
|
address 0x0EB
|
|
bit CCSGDONE 0x80
|
|
bit CCSGEN 0x08
|
|
bit SG_FETCH_NEEDED 0x02 /* Bit used for software state */
|
|
bit CCSGRESET 0x01
|
|
}
|
|
|
|
register CCSCBCNT {
|
|
address 0xEF
|
|
}
|
|
|
|
register CCSCBCTL {
|
|
address 0x0EE
|
|
bit CCSCBDONE 0x80
|
|
bit ARRDONE 0x40 /* SCB Array prefetch done */
|
|
bit CCARREN 0x10
|
|
bit CCSCBEN 0x08
|
|
bit CCSCBDIR 0x04
|
|
bit CCSCBRESET 0x01
|
|
}
|
|
|
|
register CCSCBADDR {
|
|
address 0x0ED
|
|
}
|
|
|
|
register CCSCBRAM {
|
|
address 0xEC
|
|
}
|
|
|
|
/*
|
|
* SCB bank address (7895/7896/97 only)
|
|
*/
|
|
register SCBBADDR {
|
|
address 0x0F0
|
|
access_mode RW
|
|
}
|
|
|
|
register CCSCBPTR {
|
|
address 0x0F1
|
|
}
|
|
|
|
register HNSCB_QOFF {
|
|
address 0x0F4
|
|
}
|
|
|
|
register SNSCB_QOFF {
|
|
address 0x0F6
|
|
}
|
|
|
|
register SDSCB_QOFF {
|
|
address 0x0F8
|
|
}
|
|
|
|
register QOFF_CTLSTA {
|
|
address 0x0FA
|
|
bit SCB_AVAIL 0x40
|
|
bit SNSCB_ROLLOVER 0x20
|
|
bit SDSCB_ROLLOVER 0x10
|
|
mask SCB_QSIZE 0x07
|
|
mask SCB_QSIZE_256 0x06
|
|
}
|
|
|
|
register DFF_THRSH {
|
|
address 0x0FB
|
|
mask WR_DFTHRSH 0x70
|
|
mask RD_DFTHRSH 0x07
|
|
mask RD_DFTHRSH_MIN 0x00
|
|
mask RD_DFTHRSH_25 0x01
|
|
mask RD_DFTHRSH_50 0x02
|
|
mask RD_DFTHRSH_63 0x03
|
|
mask RD_DFTHRSH_75 0x04
|
|
mask RD_DFTHRSH_85 0x05
|
|
mask RD_DFTHRSH_90 0x06
|
|
mask RD_DFTHRSH_MAX 0x07
|
|
mask WR_DFTHRSH_MIN 0x00
|
|
mask WR_DFTHRSH_25 0x10
|
|
mask WR_DFTHRSH_50 0x20
|
|
mask WR_DFTHRSH_63 0x30
|
|
mask WR_DFTHRSH_75 0x40
|
|
mask WR_DFTHRSH_85 0x50
|
|
mask WR_DFTHRSH_90 0x60
|
|
mask WR_DFTHRSH_MAX 0x70
|
|
}
|
|
|
|
register SG_CACHE_PRE {
|
|
access_mode WO
|
|
address 0x0fc
|
|
mask SG_ADDR_MASK 0xf8
|
|
bit ODD_SEG 0x04
|
|
bit LAST_SEG 0x02
|
|
bit LAST_SEG_DONE 0x01
|
|
}
|
|
|
|
register SG_CACHE_SHADOW {
|
|
access_mode RO
|
|
address 0x0fc
|
|
mask SG_ADDR_MASK 0xf8
|
|
bit ODD_SEG 0x04
|
|
bit LAST_SEG 0x02
|
|
bit LAST_SEG_DONE 0x01
|
|
}
|
|
/* ---------------------- Scratch RAM Offsets ------------------------- */
|
|
/* These offsets are either to values that are initialized by the board's
|
|
* BIOS or are specified by the sequencer code.
|
|
*
|
|
* The host adapter card (at least the BIOS) uses 20-2f for SCSI
|
|
* device information, 32-33 and 5a-5f as well. As it turns out, the
|
|
* BIOS trashes 20-2f, writing the synchronous negotiation results
|
|
* on top of the BIOS values, so we re-use those for our per-target
|
|
* scratchspace (actually a value that can be copied directly into
|
|
* SCSIRATE). The kernel driver will enable synchronous negotiation
|
|
* for all targets that have a value other than 0 in the lower four
|
|
* bits of the target scratch space. This should work regardless of
|
|
* whether the bios has been installed.
|
|
*/
|
|
|
|
scratch_ram {
|
|
address 0x020
|
|
|
|
/*
|
|
* 1 byte per target starting at this address for configuration values
|
|
*/
|
|
CMDSIZE_TABLE {
|
|
alias TARG_SCSIRATE
|
|
size 8
|
|
}
|
|
BUSY_TARGETS {
|
|
size 16
|
|
}
|
|
/*
|
|
* Bit vector of targets that have ULTRA enabled.
|
|
*/
|
|
ULTRA_ENB {
|
|
size 2
|
|
}
|
|
/*
|
|
* Bit vector of targets that have disconnection disabled.
|
|
*/
|
|
DISC_DSB {
|
|
size 2
|
|
}
|
|
/*
|
|
* Single byte buffer used to designate the type or message
|
|
* to send to a target.
|
|
*/
|
|
MSG_OUT {
|
|
size 1
|
|
}
|
|
/* Parameters for DMA Logic */
|
|
DMAPARAMS {
|
|
size 1
|
|
bit PRELOADEN 0x80
|
|
bit WIDEODD 0x40
|
|
bit SCSIEN 0x20
|
|
bit SDMAEN 0x10
|
|
bit SDMAENACK 0x10
|
|
bit HDMAEN 0x08
|
|
bit HDMAENACK 0x08
|
|
bit DIRECTION 0x04
|
|
bit FIFOFLUSH 0x02
|
|
bit FIFORESET 0x01
|
|
}
|
|
SEQ_FLAGS {
|
|
size 1
|
|
bit IDENTIFY_SEEN 0x80
|
|
bit SCBPTR_VALID 0x40
|
|
bit TARGET_CMD_IS_TAGGED 0x40
|
|
bit DPHASE 0x20
|
|
/* Target flags */
|
|
bit TARG_CMD_PENDING 0x10
|
|
bit CMDPHASE_PENDING 0x08
|
|
bit DPHASE_PENDING 0x04
|
|
bit SPHASE_PENDING 0x02
|
|
bit NO_DISCONNECT 0x01
|
|
}
|
|
/*
|
|
* Temporary storage for the
|
|
* target/channel/lun of a
|
|
* reconnecting target
|
|
*/
|
|
SAVED_SCSIID {
|
|
size 1
|
|
}
|
|
SAVED_LUN {
|
|
size 1
|
|
}
|
|
/*
|
|
* The last bus phase as seen by the sequencer.
|
|
*/
|
|
LASTPHASE {
|
|
size 1
|
|
bit CDI 0x80
|
|
bit IOI 0x40
|
|
bit MSGI 0x20
|
|
mask PHASE_MASK CDI|IOI|MSGI
|
|
mask P_DATAOUT 0x00
|
|
mask P_DATAIN IOI
|
|
mask P_COMMAND CDI
|
|
mask P_MESGOUT CDI|MSGI
|
|
mask P_STATUS CDI|IOI
|
|
mask P_MESGIN CDI|IOI|MSGI
|
|
mask P_BUSFREE 0x01
|
|
}
|
|
/*
|
|
* head of list of SCBs awaiting
|
|
* selection
|
|
*/
|
|
WAITING_SCBH {
|
|
size 1
|
|
}
|
|
/*
|
|
* head of list of SCBs that are
|
|
* disconnected. Used for SCB
|
|
* paging.
|
|
*/
|
|
DISCONNECTED_SCBH {
|
|
size 1
|
|
}
|
|
/*
|
|
* head of list of SCBs that are
|
|
* not in use. Used for SCB paging.
|
|
*/
|
|
FREE_SCBH {
|
|
size 1
|
|
}
|
|
/*
|
|
* Address of the hardware scb array in the host.
|
|
*/
|
|
HSCB_ADDR {
|
|
size 4
|
|
}
|
|
/*
|
|
* Base address of our shared data with the kernel driver in host
|
|
* memory. This includes the qinfifo, qoutfifo, and target mode
|
|
* incoming command queue.
|
|
*/
|
|
SHARED_DATA_ADDR {
|
|
size 4
|
|
}
|
|
KERNEL_QINPOS {
|
|
size 1
|
|
}
|
|
QINPOS {
|
|
size 1
|
|
}
|
|
QOUTPOS {
|
|
size 1
|
|
}
|
|
/*
|
|
* Kernel and sequencer offsets into the queue of
|
|
* incoming target mode command descriptors. The
|
|
* queue is full when the KERNEL_TQINPOS == TQINPOS.
|
|
*/
|
|
KERNEL_TQINPOS {
|
|
size 1
|
|
}
|
|
TQINPOS {
|
|
size 1
|
|
}
|
|
ARG_1 {
|
|
size 1
|
|
mask SEND_MSG 0x80
|
|
mask SEND_SENSE 0x40
|
|
mask SEND_REJ 0x20
|
|
mask MSGOUT_PHASEMIS 0x10
|
|
mask EXIT_MSG_LOOP 0x08
|
|
mask CONT_MSG_LOOP 0x04
|
|
mask CONT_TARG_SESSION 0x02
|
|
alias RETURN_1
|
|
}
|
|
ARG_2 {
|
|
size 1
|
|
alias RETURN_2
|
|
}
|
|
|
|
/*
|
|
* Snapshot of MSG_OUT taken after each message is sent.
|
|
*/
|
|
LAST_MSG {
|
|
size 1
|
|
}
|
|
|
|
/*
|
|
* Interrupt kernel for a message to this target on
|
|
* the next transaction. This is usually used for
|
|
* negotiation requests.
|
|
*/
|
|
TARGET_MSG_REQUEST {
|
|
size 2
|
|
}
|
|
|
|
/*
|
|
* Sequences the kernel driver has okayed for us. This allows
|
|
* the driver to do things like prevent initiator or target
|
|
* operations.
|
|
*/
|
|
SCSISEQ_TEMPLATE {
|
|
size 1
|
|
bit ENSELO 0x40
|
|
bit ENSELI 0x20
|
|
bit ENRSELI 0x10
|
|
bit ENAUTOATNO 0x08
|
|
bit ENAUTOATNI 0x04
|
|
bit ENAUTOATNP 0x02
|
|
}
|
|
|
|
/*
|
|
* Track whether the transfer byte count for
|
|
* the current data phase is odd.
|
|
*/
|
|
DATA_COUNT_ODD {
|
|
size 1
|
|
}
|
|
|
|
/*
|
|
* The initiator specified tag for this target mode transaction.
|
|
*/
|
|
INITIATOR_TAG {
|
|
size 1
|
|
}
|
|
|
|
/*
|
|
* These are reserved registers in the card's scratch ram. Some of
|
|
* the values are specified in the AHA2742 technical reference manual
|
|
* and are initialized by the BIOS at boot time.
|
|
*/
|
|
SCSICONF {
|
|
address 0x05a
|
|
size 1
|
|
bit TERM_ENB 0x80
|
|
bit RESET_SCSI 0x40
|
|
bit ENSPCHK 0x20
|
|
mask HSCSIID 0x07 /* our SCSI ID */
|
|
mask HWSCSIID 0x0f /* our SCSI ID if Wide Bus */
|
|
}
|
|
HOSTCONF {
|
|
address 0x05d
|
|
size 1
|
|
}
|
|
HA_274_BIOSCTRL {
|
|
address 0x05f
|
|
size 1
|
|
mask BIOSMODE 0x30
|
|
mask BIOSDISABLED 0x30
|
|
bit CHANNEL_B_PRIMARY 0x08
|
|
}
|
|
/*
|
|
* Per target SCSI offset values for Ultra2 controllers.
|
|
*/
|
|
TARG_OFFSET {
|
|
address 0x070
|
|
size 16
|
|
}
|
|
}
|
|
|
|
const TID_SHIFT 4
|
|
const SCB_LIST_NULL 0xff
|
|
const TARGET_CMD_CMPLT 0xfe
|
|
|
|
const CCSGADDR_MAX 0x80
|
|
const CCSGRAM_MAXSEGS 16
|
|
|
|
/* WDTR Message values */
|
|
const BUS_8_BIT 0x00
|
|
const BUS_16_BIT 0x01
|
|
const BUS_32_BIT 0x02
|
|
|
|
/* Offset maximums */
|
|
const MAX_OFFSET_8BIT 0x0f
|
|
const MAX_OFFSET_16BIT 0x08
|
|
const MAX_OFFSET_ULTRA2 0x7f
|
|
const HOST_MSG 0xff
|
|
|
|
/* Target mode command processing constants */
|
|
const CMD_GROUP_CODE_SHIFT 0x05
|
|
|
|
const STATUS_BUSY 0x08
|
|
const STATUS_QUEUE_FULL 0x28
|
|
const SCB_TARGET_PHASES 0
|
|
const SCB_TARGET_DATA_DIR 1
|
|
const SCB_TARGET_STATUS 2
|
|
const SCB_INITIATOR_TAG 3
|
|
const TARGET_DATA_IN 1
|
|
|
|
/*
|
|
* Downloaded (kernel inserted) constants
|
|
*/
|
|
/* Offsets into the SCBID array where different data is stored */
|
|
const QOUTFIFO_OFFSET download
|
|
const QINFIFO_OFFSET download
|