freebsd-skq/sys/pc98/i386/vm_machdep.c
Satoshi Asami 92b4f2e0df Update to current state of PC98 world.
Submitted by:	The FreeBSD(98) development team
1996-07-23 07:46:59 +00:00

862 lines
20 KiB
C

/*-
* Copyright (c) 1982, 1986 The Regents of the University of California.
* Copyright (c) 1989, 1990 William Jolitz
* Copyright (c) 1994 John Dyson
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department, and William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
* $Id: vm_machdep.c,v 1.1.1.1 1996/06/14 10:04:42 asami Exp $
*/
#include "npx.h"
#include "opt_bounce.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/vmmeter.h>
#include <machine/clock.h>
#include <machine/md_var.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_prot.h>
#include <vm/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <sys/user.h>
#ifdef PC98
#include <pc98/pc98/pc98.h>
#include <pc98/pc98/pc98_device.h>
#else
#include <i386/isa/isa.h>
#endif
#ifdef BOUNCE_BUFFERS
static vm_offset_t
vm_bounce_kva __P((int size, int waitok));
static void vm_bounce_kva_free __P((vm_offset_t addr, vm_offset_t size,
int now));
static vm_offset_t
vm_bounce_page_find __P((int count));
static void vm_bounce_page_free __P((vm_offset_t pa, int count));
static volatile int kvasfreecnt;
caddr_t bouncememory;
int bouncepages;
static int bpwait;
static vm_offset_t *bouncepa;
static int bmwait, bmfreeing;
#define BITS_IN_UNSIGNED (8*sizeof(unsigned))
static int bounceallocarraysize;
static unsigned *bounceallocarray;
static int bouncefree;
#if defined(PC98) && defined (EPSON_BOUNCEDMA)
#define SIXTEENMEG (3840*4096) /* 15MB boundary */
#else
#define SIXTEENMEG (4096*4096)
#endif
#define MAXBKVA 1024
int maxbkva = MAXBKVA*PAGE_SIZE;
/* special list that can be used at interrupt time for eventual kva free */
static struct kvasfree {
vm_offset_t addr;
vm_offset_t size;
} kvaf[MAXBKVA];
/*
* get bounce buffer pages (count physically contiguous)
* (only 1 inplemented now)
*/
static vm_offset_t
vm_bounce_page_find(count)
int count;
{
int bit;
int s,i;
if (count != 1)
panic("vm_bounce_page_find -- no support for > 1 page yet!!!");
s = splbio();
retry:
for (i = 0; i < bounceallocarraysize; i++) {
if (bounceallocarray[i] != 0xffffffff) {
bit = ffs(~bounceallocarray[i]);
if (bit) {
bounceallocarray[i] |= 1 << (bit - 1) ;
bouncefree -= count;
splx(s);
return bouncepa[(i * BITS_IN_UNSIGNED + (bit - 1))];
}
}
}
bpwait = 1;
tsleep((caddr_t) &bounceallocarray, PRIBIO, "bncwai", 0);
goto retry;
}
static void
vm_bounce_kva_free(addr, size, now)
vm_offset_t addr;
vm_offset_t size;
int now;
{
int s = splbio();
kvaf[kvasfreecnt].addr = addr;
kvaf[kvasfreecnt].size = size;
++kvasfreecnt;
if( now) {
/*
* this will do wakeups
*/
vm_bounce_kva(0,0);
} else {
if (bmwait) {
/*
* if anyone is waiting on the bounce-map, then wakeup
*/
wakeup((caddr_t) io_map);
bmwait = 0;
}
}
splx(s);
}
/*
* free count bounce buffer pages
*/
static void
vm_bounce_page_free(pa, count)
vm_offset_t pa;
int count;
{
int allocindex;
int index;
int bit;
if (count != 1)
panic("vm_bounce_page_free -- no support for > 1 page yet!!!");
for(index=0;index<bouncepages;index++) {
if( pa == bouncepa[index])
break;
}
if( index == bouncepages)
panic("vm_bounce_page_free: invalid bounce buffer");
allocindex = index / BITS_IN_UNSIGNED;
bit = index % BITS_IN_UNSIGNED;
bounceallocarray[allocindex] &= ~(1 << bit);
bouncefree += count;
if (bpwait) {
bpwait = 0;
wakeup((caddr_t) &bounceallocarray);
}
}
/*
* allocate count bounce buffer kva pages
*/
static vm_offset_t
vm_bounce_kva(size, waitok)
int size;
int waitok;
{
int i;
vm_offset_t kva = 0;
vm_offset_t off;
int s = splbio();
more:
if (!bmfreeing && kvasfreecnt) {
bmfreeing = 1;
for (i = 0; i < kvasfreecnt; i++) {
for(off=0;off<kvaf[i].size;off+=PAGE_SIZE) {
pmap_kremove( kvaf[i].addr + off);
}
kmem_free_wakeup(io_map, kvaf[i].addr,
kvaf[i].size);
}
kvasfreecnt = 0;
bmfreeing = 0;
if( bmwait) {
bmwait = 0;
wakeup( (caddr_t) io_map);
}
}
if( size == 0) {
splx(s);
return 0;
}
if ((kva = kmem_alloc_pageable(io_map, size)) == 0) {
if( !waitok) {
splx(s);
return 0;
}
bmwait = 1;
tsleep((caddr_t) io_map, PRIBIO, "bmwait", 0);
goto more;
}
splx(s);
return kva;
}
/*
* same as vm_bounce_kva -- but really allocate (but takes pages as arg)
*/
vm_offset_t
vm_bounce_kva_alloc(count)
int count;
{
int i;
vm_offset_t kva;
vm_offset_t pa;
if( bouncepages == 0) {
kva = (vm_offset_t) malloc(count*PAGE_SIZE, M_TEMP, M_WAITOK);
return kva;
}
kva = vm_bounce_kva(count*PAGE_SIZE, 1);
for(i=0;i<count;i++) {
pa = vm_bounce_page_find(1);
pmap_kenter(kva + i * PAGE_SIZE, pa);
}
return kva;
}
/*
* same as vm_bounce_kva_free -- but really free
*/
void
vm_bounce_kva_alloc_free(kva, count)
vm_offset_t kva;
int count;
{
int i;
vm_offset_t pa;
if( bouncepages == 0) {
free((caddr_t) kva, M_TEMP);
return;
}
for(i = 0; i < count; i++) {
pa = pmap_kextract(kva + i * PAGE_SIZE);
vm_bounce_page_free(pa, 1);
}
vm_bounce_kva_free(kva, count*PAGE_SIZE, 0);
}
/*
* do the things necessary to the struct buf to implement
* bounce buffers... inserted before the disk sort
*/
void
vm_bounce_alloc(bp)
struct buf *bp;
{
int countvmpg;
vm_offset_t vastart, vaend;
vm_offset_t vapstart, vapend;
vm_offset_t va, kva;
vm_offset_t pa;
int dobounceflag = 0;
int i;
if (bouncepages == 0)
return;
if (bp->b_flags & B_BOUNCE) {
printf("vm_bounce_alloc: called recursively???\n");
return;
}
if (bp->b_bufsize < bp->b_bcount) {
printf(
"vm_bounce_alloc: b_bufsize(0x%lx) < b_bcount(0x%lx) !!\n",
bp->b_bufsize, bp->b_bcount);
panic("vm_bounce_alloc");
}
/*
* This is not really necessary
* if( bp->b_bufsize != bp->b_bcount) {
* printf("size: %d, count: %d\n", bp->b_bufsize, bp->b_bcount);
* }
*/
vastart = (vm_offset_t) bp->b_data;
vaend = (vm_offset_t) bp->b_data + bp->b_bufsize;
vapstart = trunc_page(vastart);
vapend = round_page(vaend);
countvmpg = (vapend - vapstart) / PAGE_SIZE;
/*
* if any page is above 16MB, then go into bounce-buffer mode
*/
va = vapstart;
for (i = 0; i < countvmpg; i++) {
pa = pmap_kextract(va);
if (pa >= SIXTEENMEG)
++dobounceflag;
if( pa == 0)
panic("vm_bounce_alloc: Unmapped page");
va += PAGE_SIZE;
}
if (dobounceflag == 0)
return;
if (bouncepages < dobounceflag)
panic("Not enough bounce buffers!!!");
/*
* allocate a replacement kva for b_addr
*/
kva = vm_bounce_kva(countvmpg*PAGE_SIZE, 1);
#if 0
printf("%s: vapstart: %x, vapend: %x, countvmpg: %d, kva: %x ",
(bp->b_flags & B_READ) ? "read":"write",
vapstart, vapend, countvmpg, kva);
#endif
va = vapstart;
for (i = 0; i < countvmpg; i++) {
pa = pmap_kextract(va);
if (pa >= SIXTEENMEG) {
/*
* allocate a replacement page
*/
vm_offset_t bpa = vm_bounce_page_find(1);
pmap_kenter(kva + (PAGE_SIZE * i), bpa);
#if 0
printf("r(%d): (%x,%x,%x) ", i, va, pa, bpa);
#endif
/*
* if we are writing, the copy the data into the page
*/
if ((bp->b_flags & B_READ) == 0) {
bcopy((caddr_t) va, (caddr_t) kva + (PAGE_SIZE * i), PAGE_SIZE);
}
} else {
/*
* use original page
*/
pmap_kenter(kva + (PAGE_SIZE * i), pa);
}
va += PAGE_SIZE;
}
/*
* flag the buffer as being bounced
*/
bp->b_flags |= B_BOUNCE;
/*
* save the original buffer kva
*/
bp->b_savekva = bp->b_data;
/*
* put our new kva into the buffer (offset by original offset)
*/
bp->b_data = (caddr_t) (((vm_offset_t) kva) |
((vm_offset_t) bp->b_savekva & PAGE_MASK));
#if 0
printf("b_savekva: %x, newva: %x\n", bp->b_savekva, bp->b_data);
#endif
return;
}
/*
* hook into biodone to free bounce buffer
*/
void
vm_bounce_free(bp)
struct buf *bp;
{
int i;
vm_offset_t origkva, bouncekva, bouncekvaend;
/*
* if this isn't a bounced buffer, then just return
*/
if ((bp->b_flags & B_BOUNCE) == 0)
return;
/*
* This check is not necessary
* if (bp->b_bufsize != bp->b_bcount) {
* printf("vm_bounce_free: b_bufsize=%d, b_bcount=%d\n",
* bp->b_bufsize, bp->b_bcount);
* }
*/
origkva = (vm_offset_t) bp->b_savekva;
bouncekva = (vm_offset_t) bp->b_data;
/*
printf("free: %d ", bp->b_bufsize);
*/
/*
* check every page in the kva space for b_addr
*/
for (i = 0; i < bp->b_bufsize; ) {
vm_offset_t mybouncepa;
vm_offset_t copycount;
copycount = round_page(bouncekva + 1) - bouncekva;
mybouncepa = pmap_kextract(trunc_page(bouncekva));
/*
* if this is a bounced pa, then process as one
*/
if ( mybouncepa != pmap_kextract( trunc_page( origkva))) {
vm_offset_t tocopy = copycount;
if (i + tocopy > bp->b_bufsize)
tocopy = bp->b_bufsize - i;
/*
* if this is a read, then copy from bounce buffer into original buffer
*/
if (bp->b_flags & B_READ)
bcopy((caddr_t) bouncekva, (caddr_t) origkva, tocopy);
/*
* free the bounce allocation
*/
/*
printf("(kva: %x, pa: %x)", bouncekva, mybouncepa);
*/
vm_bounce_page_free(mybouncepa, 1);
}
origkva += copycount;
bouncekva += copycount;
i += copycount;
}
/*
printf("\n");
*/
/*
* add the old kva into the "to free" list
*/
bouncekva= trunc_page((vm_offset_t) bp->b_data);
bouncekvaend= round_page((vm_offset_t)bp->b_data + bp->b_bufsize);
/*
printf("freeva: %d\n", (bouncekvaend - bouncekva) / PAGE_SIZE);
*/
vm_bounce_kva_free( bouncekva, (bouncekvaend - bouncekva), 0);
bp->b_data = bp->b_savekva;
bp->b_savekva = 0;
bp->b_flags &= ~B_BOUNCE;
return;
}
/*
* init the bounce buffer system
*/
void
vm_bounce_init()
{
int i;
kvasfreecnt = 0;
if (bouncepages == 0)
return;
bounceallocarraysize = (bouncepages + BITS_IN_UNSIGNED - 1) / BITS_IN_UNSIGNED;
bounceallocarray = malloc(bounceallocarraysize * sizeof(unsigned), M_TEMP, M_NOWAIT);
if (!bounceallocarray)
panic("Cannot allocate bounce resource array");
bouncepa = malloc(bouncepages * sizeof(vm_offset_t), M_TEMP, M_NOWAIT);
if (!bouncepa)
panic("Cannot allocate physical memory array");
for(i=0;i<bounceallocarraysize;i++) {
bounceallocarray[i] = 0xffffffff;
}
for(i=0;i<bouncepages;i++) {
vm_offset_t pa;
if( (pa = pmap_kextract((vm_offset_t) bouncememory + i * PAGE_SIZE)) >= SIXTEENMEG)
panic("bounce memory out of range");
if( pa == 0)
panic("bounce memory not resident");
bouncepa[i] = pa;
bounceallocarray[i/(8*sizeof(int))] &= ~(1<<(i%(8*sizeof(int))));
}
bouncefree = bouncepages;
}
#endif /* BOUNCE_BUFFERS */
/*
* quick version of vm_fault
*/
void
vm_fault_quick(v, prot)
caddr_t v;
int prot;
{
if (prot & VM_PROT_WRITE)
subyte(v, fubyte(v));
else
fubyte(v);
}
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the kernel stack and pcb, making the child
* ready to run, and marking it so that it can return differently
* than the parent. Returns 1 in the child process, 0 in the parent.
* We currently double-map the user area so that the stack is at the same
* address in each process; in the future we will probably relocate
* the frame pointers on the stack after copying.
*/
int
cpu_fork(p1, p2)
register struct proc *p1, *p2;
{
struct pcb *pcb2 = &p2->p_addr->u_pcb;
int sp, offset;
volatile int retval;
/*
* Copy pcb and stack from proc p1 to p2.
* We do this as cheaply as possible, copying only the active
* part of the stack. The stack and pcb need to agree;
* this is tricky, as the final pcb is constructed by savectx,
* but its frame isn't yet on the stack when the stack is copied.
* This should be done differently, with a single call
* that copies and updates the pcb+stack,
* replacing the bcopy and savectx.
*/
__asm __volatile("movl %%esp,%0" : "=r" (sp));
offset = sp - (int)kstack;
retval = 1; /* return 1 in child */
bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset,
(unsigned) ctob(UPAGES) - offset);
p2->p_md.md_regs = p1->p_md.md_regs;
*pcb2 = p1->p_addr->u_pcb;
pcb2->pcb_cr3 = vtophys(p2->p_vmspace->vm_pmap.pm_pdir);
retval = 0; /* return 0 in parent */
savectx(pcb2);
return (retval);
}
void
cpu_exit(p)
register struct proc *p;
{
#ifdef USER_LDT
struct pcb *pcb;
#endif
#if NNPX > 0
npxexit(p);
#endif /* NNPX */
#ifdef USER_LDT
pcb = &p->p_addr->u_pcb;
if (pcb->pcb_ldt != 0) {
if (pcb == curpcb)
lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
pcb->pcb_ldt_len * sizeof(union descriptor));
pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
}
#endif
cnt.v_swtch++;
cpu_switch(p);
panic("cpu_exit");
}
void
cpu_wait(p)
struct proc *p;
{
/* drop per-process resources */
pmap_qremove((vm_offset_t) p->p_addr, UPAGES);
kmem_free(u_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
vmspace_free(p->p_vmspace);
}
/*
* Dump the machine specific header information at the start of a core dump.
*/
int
cpu_coredump(p, vp, cred)
struct proc *p;
struct vnode *vp;
struct ucred *cred;
{
return (vn_rdwr(UIO_WRITE, vp, (caddr_t) p->p_addr, ctob(UPAGES),
(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL,
p));
}
#ifdef notyet
static void
setredzone(pte, vaddr)
u_short *pte;
caddr_t vaddr;
{
/* eventually do this by setting up an expand-down stack segment
for ss0: selector, allowing stack access down to top of u.
this means though that protection violations need to be handled
thru a double fault exception that must do an integral task
switch to a known good context, within which a dump can be
taken. a sensible scheme might be to save the initial context
used by sched (that has physical memory mapped 1:1 at bottom)
and take the dump while still in mapped mode */
}
#endif
/*
* Convert kernel VA to physical address
*/
u_long
kvtop(void *addr)
{
vm_offset_t va;
va = pmap_kextract((vm_offset_t)addr);
if (va == 0)
panic("kvtop: zero page frame");
return((int)va);
}
/*
* Map an IO request into kernel virtual address space.
*
* All requests are (re)mapped into kernel VA space.
* Notice that we use b_bufsize for the size of the buffer
* to be mapped. b_bcount might be modified by the driver.
*/
void
vmapbuf(bp)
register struct buf *bp;
{
register caddr_t addr, v, kva;
vm_offset_t pa;
if ((bp->b_flags & B_PHYS) == 0)
panic("vmapbuf");
for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page(bp->b_data);
addr < bp->b_data + bp->b_bufsize;
addr += PAGE_SIZE, v += PAGE_SIZE) {
/*
* Do the vm_fault if needed; do the copy-on-write thing
* when reading stuff off device into memory.
*/
vm_fault_quick(addr,
(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
pa = trunc_page(pmap_kextract((vm_offset_t) addr));
if (pa == 0)
panic("vmapbuf: page not present");
vm_page_hold(PHYS_TO_VM_PAGE(pa));
pmap_kenter((vm_offset_t) v, pa);
}
kva = bp->b_saveaddr;
bp->b_saveaddr = bp->b_data;
bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
}
/*
* Free the io map PTEs associated with this IO operation.
* We also invalidate the TLB entries and restore the original b_addr.
*/
void
vunmapbuf(bp)
register struct buf *bp;
{
register caddr_t addr;
vm_offset_t pa;
if ((bp->b_flags & B_PHYS) == 0)
panic("vunmapbuf");
for (addr = (caddr_t)trunc_page(bp->b_data);
addr < bp->b_data + bp->b_bufsize;
addr += PAGE_SIZE) {
pa = trunc_page(pmap_kextract((vm_offset_t) addr));
pmap_kremove((vm_offset_t) addr);
vm_page_unhold(PHYS_TO_VM_PAGE(pa));
}
bp->b_data = bp->b_saveaddr;
}
/*
* Force reset the processor by invalidating the entire address space!
*/
void
cpu_reset() {
#ifdef PC98
asm(" cli ");
outb(0x37, 0x0f); /* SHUT 0 = 0 */
outb(0x37, 0x0b); /* SHUT 1 = 0 */
if ((pc98_machine_type & M_EPSON_PC98)
&& (epson_machine_id == 0x20 /*note A*/)) {
epson_outb(0xc17, epson_inb(0xc17) | 0x40);
/* reset port for NOTE_A */
}
outb(0xf0, 0x00); /* reset port */
#else /* IBM-PC */
/*
* Attempt to do a CPU reset via the keyboard controller,
* do not turn of the GateA20, as any machine that fails
* to do the reset here would then end up in no man's land.
*/
#ifndef BROKEN_KEYBOARD_RESET
outb(IO_KBD + 4, 0xFE);
DELAY(500000); /* wait 0.5 sec to see if that did it */
printf("Keyboard reset did not work, attempting CPU shutdown\n");
DELAY(1000000); /* wait 1 sec for printf to complete */
#endif
/* force a shutdown by unmapping entire address space ! */
bzero((caddr_t) PTD, PAGE_SIZE);
/* "good night, sweet prince .... <THUNK!>" */
pmap_update();
#endif
/* NOTREACHED */
while(1);
}
/*
* Grow the user stack to allow for 'sp'. This version grows the stack in
* chunks of SGROWSIZ.
*/
int
grow(p, sp)
struct proc *p;
u_int sp;
{
unsigned int nss;
caddr_t v;
struct vmspace *vm = p->p_vmspace;
if ((caddr_t)sp <= vm->vm_maxsaddr || (unsigned)sp >= (unsigned)USRSTACK)
return (1);
nss = roundup(USRSTACK - (unsigned)sp, PAGE_SIZE);
if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur)
return (0);
if (vm->vm_ssize && roundup(vm->vm_ssize << PAGE_SHIFT,
SGROWSIZ) < nss) {
int grow_amount;
/*
* If necessary, grow the VM that the stack occupies
* to allow for the rlimit. This allows us to not have
* to allocate all of the VM up-front in execve (which
* is expensive).
* Grow the VM by the amount requested rounded up to
* the nearest SGROWSIZ to provide for some hysteresis.
*/
grow_amount = roundup((nss - (vm->vm_ssize << PAGE_SHIFT)), SGROWSIZ);
v = (char *)USRSTACK - roundup(vm->vm_ssize << PAGE_SHIFT,
SGROWSIZ) - grow_amount;
/*
* If there isn't enough room to extend by SGROWSIZ, then
* just extend to the maximum size
*/
if (v < vm->vm_maxsaddr) {
v = vm->vm_maxsaddr;
grow_amount = MAXSSIZ - (vm->vm_ssize << PAGE_SHIFT);
}
if ((grow_amount == 0) || (vm_map_find(&vm->vm_map, NULL, 0, (vm_offset_t *)&v,
grow_amount, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0) != KERN_SUCCESS)) {
return (0);
}
vm->vm_ssize += grow_amount >> PAGE_SHIFT;
}
return (1);
}
/*
* prototype routine to implement the pre-zeroed page mechanism
* this routine is called from the idle loop.
*/
int
vm_page_zero_idle() {
vm_page_t m;
if ((cnt.v_free_count > cnt.v_interrupt_free_min) &&
(m = TAILQ_FIRST(&vm_page_queue_free))) {
TAILQ_REMOVE(&vm_page_queue_free, m, pageq);
enable_intr();
pmap_zero_page(VM_PAGE_TO_PHYS(m));
disable_intr();
TAILQ_INSERT_HEAD(&vm_page_queue_zero, m, pageq);
m->queue = PQ_ZERO;
++vm_page_zero_count;
return 1;
}
return 0;
}