freebsd-skq/sys/geom/geom_ccd.c
Poul-Henning Kamp b99c307a21 Rename the existing BUF_STRATEGY() to DEV_STRATEGY()
substitute BUF_WRITE(foo) for VOP_BWRITE(foo->b_vp, foo)

substitute BUF_STRATEGY(foo) for VOP_STRATEGY(foo->b_vp, foo)

This patch is machine generated except for the ccd.c and buf.h parts.
2000-03-20 11:29:10 +00:00

1727 lines
42 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* $FreeBSD$ */
/* $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $ */
/*
* Copyright (c) 1995 Jason R. Thorpe.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project
* by Jason R. Thorpe.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: cd.c 1.6 90/11/28$
*
* @(#)cd.c 8.2 (Berkeley) 11/16/93
*/
/*
* "Concatenated" disk driver.
*
* Dynamic configuration and disklabel support by:
* Jason R. Thorpe <thorpej@nas.nasa.gov>
* Numerical Aerodynamic Simulation Facility
* Mail Stop 258-6
* NASA Ames Research Center
* Moffett Field, CA 94035
*/
#include "ccd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/malloc.h>
#include <sys/namei.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/disklabel.h>
#include <ufs/ffs/fs.h>
#include <sys/devicestat.h>
#include <sys/fcntl.h>
#include <sys/vnode.h>
#include <sys/ccdvar.h>
#include <vm/vm_zone.h>
#if defined(CCDDEBUG) && !defined(DEBUG)
#define DEBUG
#endif
#ifdef DEBUG
#define CCDB_FOLLOW 0x01
#define CCDB_INIT 0x02
#define CCDB_IO 0x04
#define CCDB_LABEL 0x08
#define CCDB_VNODE 0x10
static int ccddebug = CCDB_FOLLOW | CCDB_INIT | CCDB_IO | CCDB_LABEL |
CCDB_VNODE;
SYSCTL_INT(_debug, OID_AUTO, ccddebug, CTLFLAG_RW, &ccddebug, 0, "");
#undef DEBUG
#endif
#define ccdunit(x) dkunit(x)
#define ccdpart(x) dkpart(x)
/*
This is how mirroring works (only writes are special):
When initiating a write, ccdbuffer() returns two "struct ccdbuf *"s
linked together by the cb_mirror field. "cb_pflags &
CCDPF_MIRROR_DONE" is set to 0 on both of them.
When a component returns to ccdiodone(), it checks if "cb_pflags &
CCDPF_MIRROR_DONE" is set or not. If not, it sets the partner's
flag and returns. If it is, it means its partner has already
returned, so it will go to the regular cleanup.
*/
struct ccdbuf {
struct buf cb_buf; /* new I/O buf */
struct buf *cb_obp; /* ptr. to original I/O buf */
struct ccdbuf *cb_freenext; /* free list link */
int cb_unit; /* target unit */
int cb_comp; /* target component */
int cb_pflags; /* mirror/parity status flag */
struct ccdbuf *cb_mirror; /* mirror counterpart */
};
/* bits in cb_pflags */
#define CCDPF_MIRROR_DONE 1 /* if set, mirror counterpart is done */
#define CCDLABELDEV(dev) \
(makedev(major((dev)), dkmakeminor(ccdunit((dev)), 0, RAW_PART)))
static d_open_t ccdopen;
static d_close_t ccdclose;
static d_strategy_t ccdstrategy;
static d_ioctl_t ccdioctl;
static d_dump_t ccddump;
static d_psize_t ccdsize;
#define NCCDFREEHIWAT 16
#define CDEV_MAJOR 74
#define BDEV_MAJOR 21
static struct cdevsw ccd_cdevsw = {
/* open */ ccdopen,
/* close */ ccdclose,
/* read */ physread,
/* write */ physwrite,
/* ioctl */ ccdioctl,
/* poll */ nopoll,
/* mmap */ nommap,
/* strategy */ ccdstrategy,
/* name */ "ccd",
/* maj */ CDEV_MAJOR,
/* dump */ ccddump,
/* psize */ ccdsize,
/* flags */ D_DISK,
/* bmaj */ BDEV_MAJOR
};
/* called during module initialization */
static void ccdattach __P((void));
static int ccd_modevent __P((module_t, int, void *));
/* called by biodone() at interrupt time */
static void ccdiodone __P((struct buf *bp));
static void ccdstart __P((struct ccd_softc *, struct buf *));
static void ccdinterleave __P((struct ccd_softc *, int));
static void ccdintr __P((struct ccd_softc *, struct buf *));
static int ccdinit __P((struct ccddevice *, char **, struct proc *));
static int ccdlookup __P((char *, struct proc *p, struct vnode **));
static void ccdbuffer __P((struct ccdbuf **ret, struct ccd_softc *,
struct buf *, daddr_t, caddr_t, long));
static void ccdgetdisklabel __P((dev_t));
static void ccdmakedisklabel __P((struct ccd_softc *));
static int ccdlock __P((struct ccd_softc *));
static void ccdunlock __P((struct ccd_softc *));
#ifdef DEBUG
static void printiinfo __P((struct ccdiinfo *));
#endif
/* Non-private for the benefit of libkvm. */
struct ccd_softc *ccd_softc;
struct ccddevice *ccddevs;
struct ccdbuf *ccdfreebufs;
static int numccdfreebufs;
static int numccd = 0;
/*
* getccdbuf() - Allocate and zero a ccd buffer.
*
* This routine is called at splbio().
*/
static __inline
struct ccdbuf *
getccdbuf(struct ccdbuf *cpy)
{
struct ccdbuf *cbp;
/*
* Allocate from freelist or malloc as necessary
*/
if ((cbp = ccdfreebufs) != NULL) {
ccdfreebufs = cbp->cb_freenext;
--numccdfreebufs;
} else {
cbp = malloc(sizeof(struct ccdbuf), M_DEVBUF, M_WAITOK);
}
/*
* Used by mirroring code
*/
if (cpy)
bcopy(cpy, cbp, sizeof(struct ccdbuf));
else
bzero(cbp, sizeof(struct ccdbuf));
/*
* independant struct buf initialization
*/
LIST_INIT(&cbp->cb_buf.b_dep);
BUF_LOCKINIT(&cbp->cb_buf);
BUF_LOCK(&cbp->cb_buf, LK_EXCLUSIVE);
BUF_KERNPROC(&cbp->cb_buf);
return(cbp);
}
/*
* putccdbuf() - Free a ccd buffer.
*
* This routine is called at splbio().
*/
static __inline
void
putccdbuf(struct ccdbuf *cbp)
{
BUF_UNLOCK(&cbp->cb_buf);
BUF_LOCKFREE(&cbp->cb_buf);
if (numccdfreebufs < NCCDFREEHIWAT) {
cbp->cb_freenext = ccdfreebufs;
ccdfreebufs = cbp;
++numccdfreebufs;
} else {
free((caddr_t)cbp, M_DEVBUF);
}
}
/*
* Number of blocks to untouched in front of a component partition.
* This is to avoid violating its disklabel area when it starts at the
* beginning of the slice.
*/
#if !defined(CCD_OFFSET)
#define CCD_OFFSET 16
#endif
/*
* Called by main() during pseudo-device attachment. All we need
* to do is allocate enough space for devices to be configured later, and
* add devsw entries.
*/
static void
ccdattach()
{
int i;
int num = NCCD;
if (num > 1)
printf("ccd0-%d: Concatenated disk drivers\n", num-1);
else
printf("ccd0: Concatenated disk driver\n");
ccd_softc = (struct ccd_softc *)malloc(num * sizeof(struct ccd_softc),
M_DEVBUF, M_NOWAIT);
ccddevs = (struct ccddevice *)malloc(num * sizeof(struct ccddevice),
M_DEVBUF, M_NOWAIT);
if ((ccd_softc == NULL) || (ccddevs == NULL)) {
printf("WARNING: no memory for concatenated disks\n");
if (ccd_softc != NULL)
free(ccd_softc, M_DEVBUF);
if (ccddevs != NULL)
free(ccddevs, M_DEVBUF);
return;
}
numccd = num;
bzero(ccd_softc, num * sizeof(struct ccd_softc));
bzero(ccddevs, num * sizeof(struct ccddevice));
cdevsw_add(&ccd_cdevsw);
/* XXX: is this necessary? */
for (i = 0; i < numccd; ++i)
ccddevs[i].ccd_dk = -1;
}
static int
ccd_modevent(mod, type, data)
module_t mod;
int type;
void *data;
{
int error = 0;
switch (type) {
case MOD_LOAD:
ccdattach();
break;
case MOD_UNLOAD:
printf("ccd0: Unload not supported!\n");
error = EOPNOTSUPP;
break;
default: /* MOD_SHUTDOWN etc */
break;
}
return (error);
}
DEV_MODULE(ccd, ccd_modevent, NULL);
static int
ccdinit(ccd, cpaths, p)
struct ccddevice *ccd;
char **cpaths;
struct proc *p;
{
struct ccd_softc *cs = &ccd_softc[ccd->ccd_unit];
struct ccdcinfo *ci = NULL; /* XXX */
size_t size;
int ix;
struct vnode *vp;
size_t minsize;
int maxsecsize;
struct partinfo dpart;
struct ccdgeom *ccg = &cs->sc_geom;
char tmppath[MAXPATHLEN];
int error = 0;
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccdinit: unit %d\n", ccd->ccd_unit);
#endif
cs->sc_size = 0;
cs->sc_ileave = ccd->ccd_interleave;
cs->sc_nccdisks = ccd->ccd_ndev;
/* Allocate space for the component info. */
cs->sc_cinfo = malloc(cs->sc_nccdisks * sizeof(struct ccdcinfo),
M_DEVBUF, M_WAITOK);
/*
* Verify that each component piece exists and record
* relevant information about it.
*/
maxsecsize = 0;
minsize = 0;
for (ix = 0; ix < cs->sc_nccdisks; ix++) {
vp = ccd->ccd_vpp[ix];
ci = &cs->sc_cinfo[ix];
ci->ci_vp = vp;
/*
* Copy in the pathname of the component.
*/
bzero(tmppath, sizeof(tmppath)); /* sanity */
if ((error = copyinstr(cpaths[ix], tmppath,
MAXPATHLEN, &ci->ci_pathlen)) != 0) {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccd%d: can't copy path, error = %d\n",
ccd->ccd_unit, error);
#endif
goto fail;
}
ci->ci_path = malloc(ci->ci_pathlen, M_DEVBUF, M_WAITOK);
bcopy(tmppath, ci->ci_path, ci->ci_pathlen);
ci->ci_dev = vn_todev(vp);
/*
* Get partition information for the component.
*/
if ((error = VOP_IOCTL(vp, DIOCGPART, (caddr_t)&dpart,
FREAD, p->p_ucred, p)) != 0) {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccd%d: %s: ioctl failed, error = %d\n",
ccd->ccd_unit, ci->ci_path, error);
#endif
goto fail;
}
if (dpart.part->p_fstype == FS_BSDFFS) {
maxsecsize =
((dpart.disklab->d_secsize > maxsecsize) ?
dpart.disklab->d_secsize : maxsecsize);
size = dpart.part->p_size - CCD_OFFSET;
} else {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccd%d: %s: incorrect partition type\n",
ccd->ccd_unit, ci->ci_path);
#endif
error = EFTYPE;
goto fail;
}
/*
* Calculate the size, truncating to an interleave
* boundary if necessary.
*/
if (cs->sc_ileave > 1)
size -= size % cs->sc_ileave;
if (size == 0) {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccd%d: %s: size == 0\n",
ccd->ccd_unit, ci->ci_path);
#endif
error = ENODEV;
goto fail;
}
if (minsize == 0 || size < minsize)
minsize = size;
ci->ci_size = size;
cs->sc_size += size;
}
/*
* Don't allow the interleave to be smaller than
* the biggest component sector.
*/
if ((cs->sc_ileave > 0) &&
(cs->sc_ileave < (maxsecsize / DEV_BSIZE))) {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccd%d: interleave must be at least %d\n",
ccd->ccd_unit, (maxsecsize / DEV_BSIZE));
#endif
error = EINVAL;
goto fail;
}
/*
* If uniform interleave is desired set all sizes to that of
* the smallest component. This will guarentee that a single
* interleave table is generated.
*
* Lost space must be taken into account when calculating the
* overall size. Half the space is lost when CCDF_MIRROR is
* specified. One disk is lost when CCDF_PARITY is specified.
*/
if (ccd->ccd_flags & CCDF_UNIFORM) {
for (ci = cs->sc_cinfo;
ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) {
ci->ci_size = minsize;
}
if (ccd->ccd_flags & CCDF_MIRROR) {
/*
* Check to see if an even number of components
* have been specified. The interleave must also
* be non-zero in order for us to be able to
* guarentee the topology.
*/
if (cs->sc_nccdisks % 2) {
printf("ccd%d: mirroring requires an even number of disks\n", ccd->ccd_unit );
error = EINVAL;
goto fail;
}
if (cs->sc_ileave == 0) {
printf("ccd%d: an interleave must be specified when mirroring\n", ccd->ccd_unit);
error = EINVAL;
goto fail;
}
cs->sc_size = (cs->sc_nccdisks/2) * minsize;
} else if (ccd->ccd_flags & CCDF_PARITY) {
cs->sc_size = (cs->sc_nccdisks-1) * minsize;
} else {
if (cs->sc_ileave == 0) {
printf("ccd%d: an interleave must be specified when using parity\n", ccd->ccd_unit);
error = EINVAL;
goto fail;
}
cs->sc_size = cs->sc_nccdisks * minsize;
}
}
/*
* Construct the interleave table.
*/
ccdinterleave(cs, ccd->ccd_unit);
/*
* Create pseudo-geometry based on 1MB cylinders. It's
* pretty close.
*/
ccg->ccg_secsize = maxsecsize;
ccg->ccg_ntracks = 1;
ccg->ccg_nsectors = 1024 * 1024 / ccg->ccg_secsize;
ccg->ccg_ncylinders = cs->sc_size / ccg->ccg_nsectors;
/*
* Add an devstat entry for this device.
*/
devstat_add_entry(&cs->device_stats, "ccd", ccd->ccd_unit,
ccg->ccg_secsize, DEVSTAT_ALL_SUPPORTED,
DEVSTAT_TYPE_STORARRAY |DEVSTAT_TYPE_IF_OTHER,
DEVSTAT_PRIORITY_ARRAY);
cs->sc_flags |= CCDF_INITED;
cs->sc_cflags = ccd->ccd_flags; /* So we can find out later... */
cs->sc_unit = ccd->ccd_unit;
return (0);
fail:
while (ci > cs->sc_cinfo) {
ci--;
free(ci->ci_path, M_DEVBUF);
}
free(cs->sc_cinfo, M_DEVBUF);
return (error);
}
static void
ccdinterleave(cs, unit)
struct ccd_softc *cs;
int unit;
{
struct ccdcinfo *ci, *smallci;
struct ccdiinfo *ii;
daddr_t bn, lbn;
int ix;
u_long size;
#ifdef DEBUG
if (ccddebug & CCDB_INIT)
printf("ccdinterleave(%x): ileave %d\n", cs, cs->sc_ileave);
#endif
/*
* Allocate an interleave table. The worst case occurs when each
* of N disks is of a different size, resulting in N interleave
* tables.
*
* Chances are this is too big, but we don't care.
*/
size = (cs->sc_nccdisks + 1) * sizeof(struct ccdiinfo);
cs->sc_itable = (struct ccdiinfo *)malloc(size, M_DEVBUF, M_WAITOK);
bzero((caddr_t)cs->sc_itable, size);
/*
* Trivial case: no interleave (actually interleave of disk size).
* Each table entry represents a single component in its entirety.
*
* An interleave of 0 may not be used with a mirror or parity setup.
*/
if (cs->sc_ileave == 0) {
bn = 0;
ii = cs->sc_itable;
for (ix = 0; ix < cs->sc_nccdisks; ix++) {
/* Allocate space for ii_index. */
ii->ii_index = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
ii->ii_ndisk = 1;
ii->ii_startblk = bn;
ii->ii_startoff = 0;
ii->ii_index[0] = ix;
bn += cs->sc_cinfo[ix].ci_size;
ii++;
}
ii->ii_ndisk = 0;
#ifdef DEBUG
if (ccddebug & CCDB_INIT)
printiinfo(cs->sc_itable);
#endif
return;
}
/*
* The following isn't fast or pretty; it doesn't have to be.
*/
size = 0;
bn = lbn = 0;
for (ii = cs->sc_itable; ; ii++) {
/*
* Allocate space for ii_index. We might allocate more then
* we use.
*/
ii->ii_index = malloc((sizeof(int) * cs->sc_nccdisks),
M_DEVBUF, M_WAITOK);
/*
* Locate the smallest of the remaining components
*/
smallci = NULL;
for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_nccdisks];
ci++) {
if (ci->ci_size > size &&
(smallci == NULL ||
ci->ci_size < smallci->ci_size)) {
smallci = ci;
}
}
/*
* Nobody left, all done
*/
if (smallci == NULL) {
ii->ii_ndisk = 0;
break;
}
/*
* Record starting logical block using an sc_ileave blocksize.
*/
ii->ii_startblk = bn / cs->sc_ileave;
/*
* Record starting comopnent block using an sc_ileave
* blocksize. This value is relative to the beginning of
* a component disk.
*/
ii->ii_startoff = lbn;
/*
* Determine how many disks take part in this interleave
* and record their indices.
*/
ix = 0;
for (ci = cs->sc_cinfo;
ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) {
if (ci->ci_size >= smallci->ci_size) {
ii->ii_index[ix++] = ci - cs->sc_cinfo;
}
}
ii->ii_ndisk = ix;
bn += ix * (smallci->ci_size - size);
lbn = smallci->ci_size / cs->sc_ileave;
size = smallci->ci_size;
}
#ifdef DEBUG
if (ccddebug & CCDB_INIT)
printiinfo(cs->sc_itable);
#endif
}
/* ARGSUSED */
static int
ccdopen(dev, flags, fmt, p)
dev_t dev;
int flags, fmt;
struct proc *p;
{
int unit = ccdunit(dev);
struct ccd_softc *cs;
struct disklabel *lp;
int error = 0, part, pmask;
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdopen(%x, %x)\n", dev, flags);
#endif
if (unit >= numccd)
return (ENXIO);
cs = &ccd_softc[unit];
if ((error = ccdlock(cs)) != 0)
return (error);
lp = &cs->sc_label;
part = ccdpart(dev);
pmask = (1 << part);
/*
* If we're initialized, check to see if there are any other
* open partitions. If not, then it's safe to update
* the in-core disklabel.
*/
if ((cs->sc_flags & CCDF_INITED) && (cs->sc_openmask == 0))
ccdgetdisklabel(dev);
/* Check that the partition exists. */
if (part != RAW_PART && ((part >= lp->d_npartitions) ||
(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
error = ENXIO;
goto done;
}
cs->sc_openmask |= pmask;
done:
ccdunlock(cs);
return (0);
}
/* ARGSUSED */
static int
ccdclose(dev, flags, fmt, p)
dev_t dev;
int flags, fmt;
struct proc *p;
{
int unit = ccdunit(dev);
struct ccd_softc *cs;
int error = 0, part;
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdclose(%x, %x)\n", dev, flags);
#endif
if (unit >= numccd)
return (ENXIO);
cs = &ccd_softc[unit];
if ((error = ccdlock(cs)) != 0)
return (error);
part = ccdpart(dev);
/* ...that much closer to allowing unconfiguration... */
cs->sc_openmask &= ~(1 << part);
ccdunlock(cs);
return (0);
}
static void
ccdstrategy(bp)
struct buf *bp;
{
int unit = ccdunit(bp->b_dev);
struct ccd_softc *cs = &ccd_softc[unit];
int s;
int wlabel;
struct disklabel *lp;
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdstrategy(%x): unit %d\n", bp, unit);
#endif
if ((cs->sc_flags & CCDF_INITED) == 0) {
bp->b_error = ENXIO;
bp->b_flags |= B_ERROR;
goto done;
}
/* If it's a nil transfer, wake up the top half now. */
if (bp->b_bcount == 0)
goto done;
lp = &cs->sc_label;
/*
* Do bounds checking and adjust transfer. If there's an
* error, the bounds check will flag that for us.
*/
wlabel = cs->sc_flags & (CCDF_WLABEL|CCDF_LABELLING);
if (ccdpart(bp->b_dev) != RAW_PART) {
if (bounds_check_with_label(bp, lp, wlabel) <= 0)
goto done;
} else {
int pbn; /* in sc_secsize chunks */
long sz; /* in sc_secsize chunks */
pbn = bp->b_blkno / (cs->sc_geom.ccg_secsize / DEV_BSIZE);
sz = howmany(bp->b_bcount, cs->sc_geom.ccg_secsize);
/*
* If out of bounds return an error. If at the EOF point,
* simply read or write less.
*/
if (pbn < 0 || pbn >= cs->sc_size) {
bp->b_resid = bp->b_bcount;
if (pbn != cs->sc_size) {
bp->b_error = EINVAL;
bp->b_flags |= B_ERROR | B_INVAL;
}
goto done;
}
/*
* If the request crosses EOF, truncate the request.
*/
if (pbn + sz > cs->sc_size) {
bp->b_bcount = (cs->sc_size - pbn) *
cs->sc_geom.ccg_secsize;
}
}
bp->b_resid = bp->b_bcount;
/*
* "Start" the unit.
*/
s = splbio();
ccdstart(cs, bp);
splx(s);
return;
done:
biodone(bp);
}
static void
ccdstart(cs, bp)
struct ccd_softc *cs;
struct buf *bp;
{
long bcount, rcount;
struct ccdbuf *cbp[4];
/* XXX! : 2 reads and 2 writes for RAID 4/5 */
caddr_t addr;
daddr_t bn;
struct partition *pp;
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdstart(%x, %x)\n", cs, bp);
#endif
/* Record the transaction start */
devstat_start_transaction(&cs->device_stats);
/*
* Translate the partition-relative block number to an absolute.
*/
bn = bp->b_blkno;
if (ccdpart(bp->b_dev) != RAW_PART) {
pp = &cs->sc_label.d_partitions[ccdpart(bp->b_dev)];
bn += pp->p_offset;
}
/*
* Allocate component buffers and fire off the requests
*/
addr = bp->b_data;
for (bcount = bp->b_bcount; bcount > 0; bcount -= rcount) {
ccdbuffer(cbp, cs, bp, bn, addr, bcount);
rcount = cbp[0]->cb_buf.b_bcount;
if (cs->sc_cflags & CCDF_MIRROR) {
/*
* Mirroring. Writes go to both disks, reads are
* taken from whichever disk seems most appropriate.
*
* We attempt to localize reads to the disk whos arm
* is nearest the read request. We ignore seeks due
* to writes when making this determination and we
* also try to avoid hogging.
*/
if (cbp[0]->cb_buf.b_iocmd == BIO_WRITE) {
cbp[0]->cb_buf.b_vp->v_numoutput++;
cbp[1]->cb_buf.b_vp->v_numoutput++;
BUF_STRATEGY(&cbp[0]->cb_buf);
BUF_STRATEGY(&cbp[1]->cb_buf);
} else {
int pick = cs->sc_pick;
daddr_t range = cs->sc_size / 16;
if (bn < cs->sc_blk[pick] - range ||
bn > cs->sc_blk[pick] + range
) {
cs->sc_pick = pick = 1 - pick;
}
cs->sc_blk[pick] = bn + btodb(rcount);
BUF_STRATEGY(&cbp[pick]->cb_buf);
}
} else {
/*
* Not mirroring
*/
if (cbp[0]->cb_buf.b_iocmd == BIO_WRITE)
cbp[0]->cb_buf.b_vp->v_numoutput++;
BUF_STRATEGY(&cbp[0]->cb_buf);
}
bn += btodb(rcount);
addr += rcount;
}
}
/*
* Build a component buffer header.
*/
static void
ccdbuffer(cb, cs, bp, bn, addr, bcount)
struct ccdbuf **cb;
struct ccd_softc *cs;
struct buf *bp;
daddr_t bn;
caddr_t addr;
long bcount;
{
struct ccdcinfo *ci, *ci2 = NULL; /* XXX */
struct ccdbuf *cbp;
daddr_t cbn, cboff;
off_t cbc;
#ifdef DEBUG
if (ccddebug & CCDB_IO)
printf("ccdbuffer(%x, %x, %d, %x, %d)\n",
cs, bp, bn, addr, bcount);
#endif
/*
* Determine which component bn falls in.
*/
cbn = bn;
cboff = 0;
if (cs->sc_ileave == 0) {
/*
* Serially concatenated and neither a mirror nor a parity
* config. This is a special case.
*/
daddr_t sblk;
sblk = 0;
for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++)
sblk += ci->ci_size;
cbn -= sblk;
} else {
struct ccdiinfo *ii;
int ccdisk, off;
/*
* Calculate cbn, the logical superblock (sc_ileave chunks),
* and cboff, a normal block offset (DEV_BSIZE chunks) relative
* to cbn.
*/
cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */
cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */
/*
* Figure out which interleave table to use.
*/
for (ii = cs->sc_itable; ii->ii_ndisk; ii++) {
if (ii->ii_startblk > cbn)
break;
}
ii--;
/*
* off is the logical superblock relative to the beginning
* of this interleave block.
*/
off = cbn - ii->ii_startblk;
/*
* We must calculate which disk component to use (ccdisk),
* and recalculate cbn to be the superblock relative to
* the beginning of the component. This is typically done by
* adding 'off' and ii->ii_startoff together. However, 'off'
* must typically be divided by the number of components in
* this interleave array to be properly convert it from a
* CCD-relative logical superblock number to a
* component-relative superblock number.
*/
if (ii->ii_ndisk == 1) {
/*
* When we have just one disk, it can't be a mirror
* or a parity config.
*/
ccdisk = ii->ii_index[0];
cbn = ii->ii_startoff + off;
} else {
if (cs->sc_cflags & CCDF_MIRROR) {
/*
* We have forced a uniform mapping, resulting
* in a single interleave array. We double
* up on the first half of the available
* components and our mirror is in the second
* half. This only works with a single
* interleave array because doubling up
* doubles the number of sectors, so there
* cannot be another interleave array because
* the next interleave array's calculations
* would be off.
*/
int ndisk2 = ii->ii_ndisk / 2;
ccdisk = ii->ii_index[off % ndisk2];
cbn = ii->ii_startoff + off / ndisk2;
ci2 = &cs->sc_cinfo[ccdisk + ndisk2];
} else if (cs->sc_cflags & CCDF_PARITY) {
/*
* XXX not implemented yet
*/
int ndisk2 = ii->ii_ndisk - 1;
ccdisk = ii->ii_index[off % ndisk2];
cbn = ii->ii_startoff + off / ndisk2;
if (cbn % ii->ii_ndisk <= ccdisk)
ccdisk++;
} else {
ccdisk = ii->ii_index[off % ii->ii_ndisk];
cbn = ii->ii_startoff + off / ii->ii_ndisk;
}
}
ci = &cs->sc_cinfo[ccdisk];
/*
* Convert cbn from a superblock to a normal block so it
* can be used to calculate (along with cboff) the normal
* block index into this particular disk.
*/
cbn *= cs->sc_ileave;
}
/*
* Fill in the component buf structure.
*/
cbp = getccdbuf(NULL);
cbp->cb_buf.b_flags = bp->b_flags;
cbp->cb_buf.b_iocmd = bp->b_iocmd;
cbp->cb_buf.b_iodone = ccdiodone;
cbp->cb_buf.b_dev = ci->ci_dev; /* XXX */
cbp->cb_buf.b_blkno = cbn + cboff + CCD_OFFSET;
cbp->cb_buf.b_offset = dbtob(cbn + cboff + CCD_OFFSET);
cbp->cb_buf.b_data = addr;
cbp->cb_buf.b_vp = ci->ci_vp;
if (cs->sc_ileave == 0)
cbc = dbtob((off_t)(ci->ci_size - cbn));
else
cbc = dbtob((off_t)(cs->sc_ileave - cboff));
cbp->cb_buf.b_bcount = (cbc < bcount) ? cbc : bcount;
cbp->cb_buf.b_bufsize = cbp->cb_buf.b_bcount;
/*
* context for ccdiodone
*/
cbp->cb_obp = bp;
cbp->cb_unit = cs - ccd_softc;
cbp->cb_comp = ci - cs->sc_cinfo;
#ifdef DEBUG
if (ccddebug & CCDB_IO)
printf(" dev %x(u%d): cbp %x bn %d addr %x bcnt %d\n",
ci->ci_dev, ci-cs->sc_cinfo, cbp, cbp->cb_buf.b_blkno,
cbp->cb_buf.b_data, cbp->cb_buf.b_bcount);
#endif
cb[0] = cbp;
/*
* Note: both I/O's setup when reading from mirror, but only one
* will be executed.
*/
if (cs->sc_cflags & CCDF_MIRROR) {
/* mirror, setup second I/O */
cbp = getccdbuf(cb[0]);
cbp->cb_buf.b_dev = ci2->ci_dev;
cbp->cb_buf.b_vp = ci2->ci_vp;
cbp->cb_comp = ci2 - cs->sc_cinfo;
cb[1] = cbp;
/* link together the ccdbuf's and clear "mirror done" flag */
cb[0]->cb_mirror = cb[1];
cb[1]->cb_mirror = cb[0];
cb[0]->cb_pflags &= ~CCDPF_MIRROR_DONE;
cb[1]->cb_pflags &= ~CCDPF_MIRROR_DONE;
}
}
static void
ccdintr(cs, bp)
struct ccd_softc *cs;
struct buf *bp;
{
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdintr(%x, %x)\n", cs, bp);
#endif
/*
* Request is done for better or worse, wakeup the top half.
*/
if (bp->b_flags & B_ERROR)
bp->b_resid = bp->b_bcount;
devstat_end_transaction_buf(&cs->device_stats, bp);
biodone(bp);
}
/*
* Called at interrupt time.
* Mark the component as done and if all components are done,
* take a ccd interrupt.
*/
static void
ccdiodone(ibp)
struct buf *ibp;
{
struct ccdbuf *cbp = (struct ccdbuf *)ibp;
struct buf *bp = cbp->cb_obp;
int unit = cbp->cb_unit;
int count, s;
s = splbio();
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdiodone(%x)\n", cbp);
if (ccddebug & CCDB_IO) {
printf("ccdiodone: bp %x bcount %d resid %d\n",
bp, bp->b_bcount, bp->b_resid);
printf(" dev %x(u%d), cbp %x bn %d addr %x bcnt %d\n",
cbp->cb_buf.b_dev, cbp->cb_comp, cbp,
cbp->cb_buf.b_blkno, cbp->cb_buf.b_data,
cbp->cb_buf.b_bcount);
}
#endif
/*
* If an error occured, report it. If this is a mirrored
* configuration and the first of two possible reads, do not
* set the error in the bp yet because the second read may
* succeed.
*/
if (cbp->cb_buf.b_flags & B_ERROR) {
const char *msg = "";
if ((ccd_softc[unit].sc_cflags & CCDF_MIRROR) &&
(cbp->cb_buf.b_iocmd == BIO_READ) &&
(cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) {
/*
* We will try our read on the other disk down
* below, also reverse the default pick so if we
* are doing a scan we do not keep hitting the
* bad disk first.
*/
struct ccd_softc *cs = &ccd_softc[unit];
msg = ", trying other disk";
cs->sc_pick = 1 - cs->sc_pick;
cs->sc_blk[cs->sc_pick] = bp->b_blkno;
} else {
bp->b_flags |= B_ERROR;
bp->b_error = cbp->cb_buf.b_error ?
cbp->cb_buf.b_error : EIO;
}
printf("ccd%d: error %d on component %d block %d (ccd block %d)%s\n",
unit, bp->b_error, cbp->cb_comp,
(int)cbp->cb_buf.b_blkno, bp->b_blkno, msg);
}
/*
* Process mirror. If we are writing, I/O has been initiated on both
* buffers and we fall through only after both are finished.
*
* If we are reading only one I/O is initiated at a time. If an
* error occurs we initiate the second I/O and return, otherwise
* we free the second I/O without initiating it.
*/
if (ccd_softc[unit].sc_cflags & CCDF_MIRROR) {
if (cbp->cb_buf.b_iocmd == BIO_WRITE) {
/*
* When writing, handshake with the second buffer
* to determine when both are done. If both are not
* done, return here.
*/
if ((cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) {
cbp->cb_mirror->cb_pflags |= CCDPF_MIRROR_DONE;
putccdbuf(cbp);
splx(s);
return;
}
} else {
/*
* When reading, either dispose of the second buffer
* or initiate I/O on the second buffer if an error
* occured with this one.
*/
if ((cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) {
if (cbp->cb_buf.b_flags & B_ERROR) {
cbp->cb_mirror->cb_pflags |=
CCDPF_MIRROR_DONE;
BUF_STRATEGY(&cbp->cb_mirror->cb_buf);
putccdbuf(cbp);
splx(s);
return;
} else {
putccdbuf(cbp->cb_mirror);
/* fall through */
}
}
}
}
/*
* use b_bufsize to determine how big the original request was rather
* then b_bcount, because b_bcount may have been truncated for EOF.
*
* XXX We check for an error, but we do not test the resid for an
* aligned EOF condition. This may result in character & block
* device access not recognizing EOF properly when read or written
* sequentially, but will not effect filesystems.
*/
count = cbp->cb_buf.b_bufsize;
putccdbuf(cbp);
/*
* If all done, "interrupt".
*/
bp->b_resid -= count;
if (bp->b_resid < 0)
panic("ccdiodone: count");
if (bp->b_resid == 0)
ccdintr(&ccd_softc[unit], bp);
splx(s);
}
static int
ccdioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flag;
struct proc *p;
{
int unit = ccdunit(dev);
int i, j, lookedup = 0, error = 0;
int part, pmask, s;
struct ccd_softc *cs;
struct ccd_ioctl *ccio = (struct ccd_ioctl *)data;
struct ccddevice ccd;
char **cpp;
struct vnode **vpp;
if (unit >= numccd)
return (ENXIO);
cs = &ccd_softc[unit];
bzero(&ccd, sizeof(ccd));
switch (cmd) {
case CCDIOCSET:
if (cs->sc_flags & CCDF_INITED)
return (EBUSY);
if ((flag & FWRITE) == 0)
return (EBADF);
if ((error = ccdlock(cs)) != 0)
return (error);
/* Fill in some important bits. */
ccd.ccd_unit = unit;
ccd.ccd_interleave = ccio->ccio_ileave;
if (ccd.ccd_interleave == 0 &&
((ccio->ccio_flags & CCDF_MIRROR) ||
(ccio->ccio_flags & CCDF_PARITY))) {
printf("ccd%d: disabling mirror/parity, interleave is 0\n", unit);
ccio->ccio_flags &= ~(CCDF_MIRROR | CCDF_PARITY);
}
if ((ccio->ccio_flags & CCDF_MIRROR) &&
(ccio->ccio_flags & CCDF_PARITY)) {
printf("ccd%d: can't specify both mirror and parity, using mirror\n", unit);
ccio->ccio_flags &= ~CCDF_PARITY;
}
if ((ccio->ccio_flags & (CCDF_MIRROR | CCDF_PARITY)) &&
!(ccio->ccio_flags & CCDF_UNIFORM)) {
printf("ccd%d: mirror/parity forces uniform flag\n",
unit);
ccio->ccio_flags |= CCDF_UNIFORM;
}
ccd.ccd_flags = ccio->ccio_flags & CCDF_USERMASK;
/*
* Allocate space for and copy in the array of
* componet pathnames and device numbers.
*/
cpp = malloc(ccio->ccio_ndisks * sizeof(char *),
M_DEVBUF, M_WAITOK);
vpp = malloc(ccio->ccio_ndisks * sizeof(struct vnode *),
M_DEVBUF, M_WAITOK);
error = copyin((caddr_t)ccio->ccio_disks, (caddr_t)cpp,
ccio->ccio_ndisks * sizeof(char **));
if (error) {
free(vpp, M_DEVBUF);
free(cpp, M_DEVBUF);
ccdunlock(cs);
return (error);
}
#ifdef DEBUG
if (ccddebug & CCDB_INIT)
for (i = 0; i < ccio->ccio_ndisks; ++i)
printf("ccdioctl: component %d: 0x%x\n",
i, cpp[i]);
#endif
for (i = 0; i < ccio->ccio_ndisks; ++i) {
#ifdef DEBUG
if (ccddebug & CCDB_INIT)
printf("ccdioctl: lookedup = %d\n", lookedup);
#endif
if ((error = ccdlookup(cpp[i], p, &vpp[i])) != 0) {
for (j = 0; j < lookedup; ++j)
(void)vn_close(vpp[j], FREAD|FWRITE,
p->p_ucred, p);
free(vpp, M_DEVBUF);
free(cpp, M_DEVBUF);
ccdunlock(cs);
return (error);
}
++lookedup;
}
ccd.ccd_cpp = cpp;
ccd.ccd_vpp = vpp;
ccd.ccd_ndev = ccio->ccio_ndisks;
/*
* Initialize the ccd. Fills in the softc for us.
*/
if ((error = ccdinit(&ccd, cpp, p)) != 0) {
for (j = 0; j < lookedup; ++j)
(void)vn_close(vpp[j], FREAD|FWRITE,
p->p_ucred, p);
bzero(&ccd_softc[unit], sizeof(struct ccd_softc));
free(vpp, M_DEVBUF);
free(cpp, M_DEVBUF);
ccdunlock(cs);
return (error);
}
/*
* The ccd has been successfully initialized, so
* we can place it into the array and read the disklabel.
*/
bcopy(&ccd, &ccddevs[unit], sizeof(ccd));
ccio->ccio_unit = unit;
ccio->ccio_size = cs->sc_size;
ccdgetdisklabel(dev);
ccdunlock(cs);
break;
case CCDIOCCLR:
if ((cs->sc_flags & CCDF_INITED) == 0)
return (ENXIO);
if ((flag & FWRITE) == 0)
return (EBADF);
if ((error = ccdlock(cs)) != 0)
return (error);
/* Don't unconfigure if any other partitions are open */
part = ccdpart(dev);
pmask = (1 << part);
if ((cs->sc_openmask & ~pmask)) {
ccdunlock(cs);
return (EBUSY);
}
/*
* Free ccd_softc information and clear entry.
*/
/* Close the components and free their pathnames. */
for (i = 0; i < cs->sc_nccdisks; ++i) {
/*
* XXX: this close could potentially fail and
* cause Bad Things. Maybe we need to force
* the close to happen?
*/
#ifdef DEBUG
if (ccddebug & CCDB_VNODE)
vprint("CCDIOCCLR: vnode info",
cs->sc_cinfo[i].ci_vp);
#endif
(void)vn_close(cs->sc_cinfo[i].ci_vp, FREAD|FWRITE,
p->p_ucred, p);
free(cs->sc_cinfo[i].ci_path, M_DEVBUF);
}
/* Free interleave index. */
for (i = 0; cs->sc_itable[i].ii_ndisk; ++i)
free(cs->sc_itable[i].ii_index, M_DEVBUF);
/* Free component info and interleave table. */
free(cs->sc_cinfo, M_DEVBUF);
free(cs->sc_itable, M_DEVBUF);
cs->sc_flags &= ~CCDF_INITED;
/*
* Free ccddevice information and clear entry.
*/
free(ccddevs[unit].ccd_cpp, M_DEVBUF);
free(ccddevs[unit].ccd_vpp, M_DEVBUF);
ccd.ccd_dk = -1;
bcopy(&ccd, &ccddevs[unit], sizeof(ccd));
/*
* And remove the devstat entry.
*/
devstat_remove_entry(&cs->device_stats);
/* This must be atomic. */
s = splhigh();
ccdunlock(cs);
bzero(cs, sizeof(struct ccd_softc));
splx(s);
break;
case DIOCGDINFO:
if ((cs->sc_flags & CCDF_INITED) == 0)
return (ENXIO);
*(struct disklabel *)data = cs->sc_label;
break;
case DIOCGPART:
if ((cs->sc_flags & CCDF_INITED) == 0)
return (ENXIO);
((struct partinfo *)data)->disklab = &cs->sc_label;
((struct partinfo *)data)->part =
&cs->sc_label.d_partitions[ccdpart(dev)];
break;
case DIOCWDINFO:
case DIOCSDINFO:
if ((cs->sc_flags & CCDF_INITED) == 0)
return (ENXIO);
if ((flag & FWRITE) == 0)
return (EBADF);
if ((error = ccdlock(cs)) != 0)
return (error);
cs->sc_flags |= CCDF_LABELLING;
error = setdisklabel(&cs->sc_label,
(struct disklabel *)data, 0);
if (error == 0) {
if (cmd == DIOCWDINFO)
error = writedisklabel(CCDLABELDEV(dev),
&cs->sc_label);
}
cs->sc_flags &= ~CCDF_LABELLING;
ccdunlock(cs);
if (error)
return (error);
break;
case DIOCWLABEL:
if ((cs->sc_flags & CCDF_INITED) == 0)
return (ENXIO);
if ((flag & FWRITE) == 0)
return (EBADF);
if (*(int *)data != 0)
cs->sc_flags |= CCDF_WLABEL;
else
cs->sc_flags &= ~CCDF_WLABEL;
break;
default:
return (ENOTTY);
}
return (0);
}
static int
ccdsize(dev)
dev_t dev;
{
struct ccd_softc *cs;
int part, size;
if (ccdopen(dev, 0, S_IFCHR, curproc))
return (-1);
cs = &ccd_softc[ccdunit(dev)];
part = ccdpart(dev);
if ((cs->sc_flags & CCDF_INITED) == 0)
return (-1);
if (cs->sc_label.d_partitions[part].p_fstype != FS_SWAP)
size = -1;
else
size = cs->sc_label.d_partitions[part].p_size;
if (ccdclose(dev, 0, S_IFCHR, curproc))
return (-1);
return (size);
}
static int
ccddump(dev)
dev_t dev;
{
/* Not implemented. */
return ENXIO;
}
/*
* Lookup the provided name in the filesystem. If the file exists,
* is a valid block device, and isn't being used by anyone else,
* set *vpp to the file's vnode.
*/
static int
ccdlookup(path, p, vpp)
char *path;
struct proc *p;
struct vnode **vpp; /* result */
{
struct nameidata nd;
struct vnode *vp;
int error;
NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, path, p);
if ((error = vn_open(&nd, FREAD|FWRITE, 0)) != 0) {
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW|CCDB_INIT)
printf("ccdlookup: vn_open error = %d\n", error);
#endif
return (error);
}
vp = nd.ni_vp;
if (vp->v_usecount > 1) {
error = EBUSY;
goto bad;
}
if (!vn_isdisk(vp, &error))
goto bad;
#ifdef DEBUG
if (ccddebug & CCDB_VNODE)
vprint("ccdlookup: vnode info", vp);
#endif
VOP_UNLOCK(vp, 0, p);
NDFREE(&nd, NDF_ONLY_PNBUF);
*vpp = vp;
return (0);
bad:
VOP_UNLOCK(vp, 0, p);
NDFREE(&nd, NDF_ONLY_PNBUF);
/* vn_close does vrele() for vp */
(void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p);
return (error);
}
/*
* Read the disklabel from the ccd. If one is not present, fake one
* up.
*/
static void
ccdgetdisklabel(dev)
dev_t dev;
{
int unit = ccdunit(dev);
struct ccd_softc *cs = &ccd_softc[unit];
char *errstring;
struct disklabel *lp = &cs->sc_label;
struct ccdgeom *ccg = &cs->sc_geom;
bzero(lp, sizeof(*lp));
lp->d_secperunit = cs->sc_size;
lp->d_secsize = ccg->ccg_secsize;
lp->d_nsectors = ccg->ccg_nsectors;
lp->d_ntracks = ccg->ccg_ntracks;
lp->d_ncylinders = ccg->ccg_ncylinders;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
strncpy(lp->d_typename, "ccd", sizeof(lp->d_typename));
lp->d_type = DTYPE_CCD;
strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
lp->d_rpm = 3600;
lp->d_interleave = 1;
lp->d_flags = 0;
lp->d_partitions[RAW_PART].p_offset = 0;
lp->d_partitions[RAW_PART].p_size = cs->sc_size;
lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
lp->d_npartitions = RAW_PART + 1;
lp->d_bbsize = BBSIZE; /* XXX */
lp->d_sbsize = SBSIZE; /* XXX */
lp->d_magic = DISKMAGIC;
lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(&cs->sc_label);
/*
* Call the generic disklabel extraction routine.
*/
errstring = readdisklabel(CCDLABELDEV(dev), &cs->sc_label);
if (errstring != NULL)
ccdmakedisklabel(cs);
#ifdef DEBUG
/* It's actually extremely common to have unlabeled ccds. */
if (ccddebug & CCDB_LABEL)
if (errstring != NULL)
printf("ccd%d: %s\n", unit, errstring);
#endif
}
/*
* Take care of things one might want to take care of in the event
* that a disklabel isn't present.
*/
static void
ccdmakedisklabel(cs)
struct ccd_softc *cs;
{
struct disklabel *lp = &cs->sc_label;
/*
* For historical reasons, if there's no disklabel present
* the raw partition must be marked FS_BSDFFS.
*/
lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
}
/*
* Wait interruptibly for an exclusive lock.
*
* XXX
* Several drivers do this; it should be abstracted and made MP-safe.
*/
static int
ccdlock(cs)
struct ccd_softc *cs;
{
int error;
while ((cs->sc_flags & CCDF_LOCKED) != 0) {
cs->sc_flags |= CCDF_WANTED;
if ((error = tsleep(cs, PRIBIO | PCATCH, "ccdlck", 0)) != 0)
return (error);
}
cs->sc_flags |= CCDF_LOCKED;
return (0);
}
/*
* Unlock and wake up any waiters.
*/
static void
ccdunlock(cs)
struct ccd_softc *cs;
{
cs->sc_flags &= ~CCDF_LOCKED;
if ((cs->sc_flags & CCDF_WANTED) != 0) {
cs->sc_flags &= ~CCDF_WANTED;
wakeup(cs);
}
}
#ifdef DEBUG
static void
printiinfo(ii)
struct ccdiinfo *ii;
{
int ix, i;
for (ix = 0; ii->ii_ndisk; ix++, ii++) {
printf(" itab[%d]: #dk %d sblk %d soff %d",
ix, ii->ii_ndisk, ii->ii_startblk, ii->ii_startoff);
for (i = 0; i < ii->ii_ndisk; i++)
printf(" %d", ii->ii_index[i]);
printf("\n");
}
}
#endif
/* Local Variables: */
/* c-argdecl-indent: 8 */
/* c-continued-statement-offset: 8 */
/* c-indent-level: 8 */
/* End: */