freebsd-skq/sys/dev/cfi/cfi_core.c
allanjude 480a8566d1 Fix AMD type flash write operations, and display chip information at boot
Applies to MX flash chips on AR9132 and RT3050

Submitted by:	Hiroki Mori <yamori813@yahoo.co.jp>
Reviewed by:	imp, sbruno
Differential Revision:	https://reviews.freebsd.org/D14279
2019-03-24 06:28:25 +00:00

1019 lines
25 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2007, Juniper Networks, Inc.
* Copyright (c) 2012-2013, SRI International
* All rights reserved.
*
* Portions of this software were developed by SRI International and the
* University of Cambridge Computer Laboratory under DARPA/AFRL contract
* (FA8750-10-C-0237) ("CTSRD"), as part of the DARPA CRASH research
* programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_cfi.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <sys/kenv.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <dev/cfi/cfi_reg.h>
#include <dev/cfi/cfi_var.h>
static void cfi_add_sysctls(struct cfi_softc *);
extern struct cdevsw cfi_cdevsw;
char cfi_driver_name[] = "cfi";
devclass_t cfi_devclass;
devclass_t cfi_diskclass;
uint32_t
cfi_read_raw(struct cfi_softc *sc, u_int ofs)
{
uint32_t val;
ofs &= ~(sc->sc_width - 1);
switch (sc->sc_width) {
case 1:
val = bus_space_read_1(sc->sc_tag, sc->sc_handle, ofs);
break;
case 2:
val = bus_space_read_2(sc->sc_tag, sc->sc_handle, ofs);
break;
case 4:
val = bus_space_read_4(sc->sc_tag, sc->sc_handle, ofs);
break;
default:
val = ~0;
break;
}
return (val);
}
uint32_t
cfi_read(struct cfi_softc *sc, u_int ofs)
{
uint32_t val;
uint16_t sval;
ofs &= ~(sc->sc_width - 1);
switch (sc->sc_width) {
case 1:
val = bus_space_read_1(sc->sc_tag, sc->sc_handle, ofs);
break;
case 2:
sval = bus_space_read_2(sc->sc_tag, sc->sc_handle, ofs);
#ifdef CFI_HARDWAREBYTESWAP
val = sval;
#else
val = le16toh(sval);
#endif
break;
case 4:
val = bus_space_read_4(sc->sc_tag, sc->sc_handle, ofs);
#ifndef CFI_HARDWAREBYTESWAP
val = le32toh(val);
#endif
break;
default:
val = ~0;
break;
}
return (val);
}
static void
cfi_write(struct cfi_softc *sc, u_int ofs, u_int val)
{
ofs &= ~(sc->sc_width - 1);
switch (sc->sc_width) {
case 1:
bus_space_write_1(sc->sc_tag, sc->sc_handle, ofs, val);
break;
case 2:
#ifdef CFI_HARDWAREBYTESWAP
bus_space_write_2(sc->sc_tag, sc->sc_handle, ofs, val);
#else
bus_space_write_2(sc->sc_tag, sc->sc_handle, ofs, htole16(val));
#endif
break;
case 4:
#ifdef CFI_HARDWAREBYTESWAP
bus_space_write_4(sc->sc_tag, sc->sc_handle, ofs, val);
#else
bus_space_write_4(sc->sc_tag, sc->sc_handle, ofs, htole32(val));
#endif
break;
}
}
/*
* This is same workaound as NetBSD sys/dev/nor/cfi.c cfi_reset_default()
*/
static void
cfi_reset_default(struct cfi_softc *sc)
{
cfi_write(sc, 0, CFI_BCS_READ_ARRAY2);
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
}
uint8_t
cfi_read_qry(struct cfi_softc *sc, u_int ofs)
{
uint8_t val;
cfi_write(sc, CFI_QRY_CMD_ADDR * sc->sc_width, CFI_QRY_CMD_DATA);
val = cfi_read(sc, ofs * sc->sc_width);
cfi_reset_default(sc);
return (val);
}
static void
cfi_amd_write(struct cfi_softc *sc, u_int ofs, u_int addr, u_int data)
{
cfi_write(sc, ofs + AMD_ADDR_START, CFI_AMD_UNLOCK);
cfi_write(sc, ofs + AMD_ADDR_ACK, CFI_AMD_UNLOCK_ACK);
cfi_write(sc, ofs + addr, data);
}
static char *
cfi_fmtsize(uint32_t sz)
{
static char buf[8];
static const char *sfx[] = { "", "K", "M", "G" };
int sfxidx;
sfxidx = 0;
while (sfxidx < 3 && sz > 1023) {
sz /= 1024;
sfxidx++;
}
sprintf(buf, "%u%sB", sz, sfx[sfxidx]);
return (buf);
}
int
cfi_probe(device_t dev)
{
char desc[80];
struct cfi_softc *sc;
char *vend_str;
int error;
uint16_t iface, vend;
sc = device_get_softc(dev);
sc->sc_dev = dev;
sc->sc_rid = 0;
sc->sc_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
RF_ACTIVE);
if (sc->sc_res == NULL)
return (ENXIO);
sc->sc_tag = rman_get_bustag(sc->sc_res);
sc->sc_handle = rman_get_bushandle(sc->sc_res);
if (sc->sc_width == 0) {
sc->sc_width = 1;
while (sc->sc_width <= 4) {
if (cfi_read_qry(sc, CFI_QRY_IDENT) == 'Q')
break;
sc->sc_width <<= 1;
}
} else if (cfi_read_qry(sc, CFI_QRY_IDENT) != 'Q') {
error = ENXIO;
goto out;
}
if (sc->sc_width > 4) {
error = ENXIO;
goto out;
}
/* We got a Q. Check if we also have the R and the Y. */
if (cfi_read_qry(sc, CFI_QRY_IDENT + 1) != 'R' ||
cfi_read_qry(sc, CFI_QRY_IDENT + 2) != 'Y') {
error = ENXIO;
goto out;
}
/* Get the vendor and command set. */
vend = cfi_read_qry(sc, CFI_QRY_VEND) |
(cfi_read_qry(sc, CFI_QRY_VEND + 1) << 8);
sc->sc_cmdset = vend;
switch (vend) {
case CFI_VEND_AMD_ECS:
case CFI_VEND_AMD_SCS:
vend_str = "AMD/Fujitsu";
break;
case CFI_VEND_INTEL_ECS:
vend_str = "Intel/Sharp";
break;
case CFI_VEND_INTEL_SCS:
vend_str = "Intel";
break;
case CFI_VEND_MITSUBISHI_ECS:
case CFI_VEND_MITSUBISHI_SCS:
vend_str = "Mitsubishi";
break;
default:
vend_str = "Unknown vendor";
break;
}
/* Get the device size. */
sc->sc_size = 1U << cfi_read_qry(sc, CFI_QRY_SIZE);
/* Sanity-check the I/F */
iface = cfi_read_qry(sc, CFI_QRY_IFACE) |
(cfi_read_qry(sc, CFI_QRY_IFACE + 1) << 8);
/*
* Adding 1 to iface will give us a bit-wise "switch"
* that allows us to test for the interface width by
* testing a single bit.
*/
iface++;
error = (iface & sc->sc_width) ? 0 : EINVAL;
if (error)
goto out;
snprintf(desc, sizeof(desc), "%s - %s", vend_str,
cfi_fmtsize(sc->sc_size));
device_set_desc_copy(dev, desc);
out:
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_res);
return (error);
}
int
cfi_attach(device_t dev)
{
struct cfi_softc *sc;
u_int blksz, blocks;
u_int r, u;
uint64_t mtoexp, ttoexp;
#ifdef CFI_SUPPORT_STRATAFLASH
uint64_t ppr;
char name[KENV_MNAMELEN], value[32];
#endif
sc = device_get_softc(dev);
sc->sc_dev = dev;
sc->sc_rid = 0;
sc->sc_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
#ifndef ATSE_CFI_HACK
RF_ACTIVE);
#else
RF_ACTIVE | RF_SHAREABLE);
#endif
if (sc->sc_res == NULL)
return (ENXIO);
sc->sc_tag = rman_get_bustag(sc->sc_res);
sc->sc_handle = rman_get_bushandle(sc->sc_res);
/* Get time-out values for erase, write, and buffer write. */
ttoexp = cfi_read_qry(sc, CFI_QRY_TTO_ERASE);
mtoexp = cfi_read_qry(sc, CFI_QRY_MTO_ERASE);
if (ttoexp == 0) {
device_printf(dev, "erase timeout == 0, using 2^16ms\n");
ttoexp = 16;
}
if (ttoexp > 41) {
device_printf(dev, "insane timeout: 2^%jdms\n", ttoexp);
return (EINVAL);
}
if (mtoexp == 0) {
device_printf(dev, "max erase timeout == 0, using 2^%jdms\n",
ttoexp + 4);
mtoexp = 4;
}
if (ttoexp + mtoexp > 41) {
device_printf(dev, "insane max erase timeout: 2^%jd\n",
ttoexp + mtoexp);
return (EINVAL);
}
sc->sc_typical_timeouts[CFI_TIMEOUT_ERASE] = SBT_1MS * (1ULL << ttoexp);
sc->sc_max_timeouts[CFI_TIMEOUT_ERASE] =
sc->sc_typical_timeouts[CFI_TIMEOUT_ERASE] * (1ULL << mtoexp);
ttoexp = cfi_read_qry(sc, CFI_QRY_TTO_WRITE);
mtoexp = cfi_read_qry(sc, CFI_QRY_MTO_WRITE);
if (ttoexp == 0) {
device_printf(dev, "write timeout == 0, using 2^18ns\n");
ttoexp = 18;
}
if (ttoexp > 51) {
device_printf(dev, "insane write timeout: 2^%jdus\n", ttoexp);
return (EINVAL);
}
if (mtoexp == 0) {
device_printf(dev, "max write timeout == 0, using 2^%jdms\n",
ttoexp + 4);
mtoexp = 4;
}
if (ttoexp + mtoexp > 51) {
device_printf(dev, "insane max write timeout: 2^%jdus\n",
ttoexp + mtoexp);
return (EINVAL);
}
sc->sc_typical_timeouts[CFI_TIMEOUT_WRITE] = SBT_1US * (1ULL << ttoexp);
sc->sc_max_timeouts[CFI_TIMEOUT_WRITE] =
sc->sc_typical_timeouts[CFI_TIMEOUT_WRITE] * (1ULL << mtoexp);
ttoexp = cfi_read_qry(sc, CFI_QRY_TTO_BUFWRITE);
mtoexp = cfi_read_qry(sc, CFI_QRY_MTO_BUFWRITE);
/* Don't check for 0, it means not-supported. */
if (ttoexp > 51) {
device_printf(dev, "insane write timeout: 2^%jdus\n", ttoexp);
return (EINVAL);
}
if (ttoexp + mtoexp > 51) {
device_printf(dev, "insane max write timeout: 2^%jdus\n",
ttoexp + mtoexp);
return (EINVAL);
}
sc->sc_typical_timeouts[CFI_TIMEOUT_BUFWRITE] =
SBT_1US * (1ULL << cfi_read_qry(sc, CFI_QRY_TTO_BUFWRITE));
sc->sc_max_timeouts[CFI_TIMEOUT_BUFWRITE] =
sc->sc_typical_timeouts[CFI_TIMEOUT_BUFWRITE] *
(1ULL << cfi_read_qry(sc, CFI_QRY_MTO_BUFWRITE));
/* Get the maximum size of a multibyte program */
if (sc->sc_typical_timeouts[CFI_TIMEOUT_BUFWRITE] != 0)
sc->sc_maxbuf = 1 << (cfi_read_qry(sc, CFI_QRY_MAXBUF) |
cfi_read_qry(sc, CFI_QRY_MAXBUF) << 8);
else
sc->sc_maxbuf = 0;
/* Get erase regions. */
sc->sc_regions = cfi_read_qry(sc, CFI_QRY_NREGIONS);
sc->sc_region = malloc(sc->sc_regions * sizeof(struct cfi_region),
M_TEMP, M_WAITOK | M_ZERO);
for (r = 0; r < sc->sc_regions; r++) {
blocks = cfi_read_qry(sc, CFI_QRY_REGION(r)) |
(cfi_read_qry(sc, CFI_QRY_REGION(r) + 1) << 8);
sc->sc_region[r].r_blocks = blocks + 1;
blksz = cfi_read_qry(sc, CFI_QRY_REGION(r) + 2) |
(cfi_read_qry(sc, CFI_QRY_REGION(r) + 3) << 8);
sc->sc_region[r].r_blksz = (blksz == 0) ? 128 :
blksz * 256;
}
/* Reset the device to a default state. */
cfi_write(sc, 0, CFI_BCS_CLEAR_STATUS);
if (bootverbose) {
device_printf(dev, "[");
for (r = 0; r < sc->sc_regions; r++) {
printf("%ux%s%s", sc->sc_region[r].r_blocks,
cfi_fmtsize(sc->sc_region[r].r_blksz),
(r == sc->sc_regions - 1) ? "]\n" : ",");
}
}
if (sc->sc_cmdset == CFI_VEND_AMD_ECS ||
sc->sc_cmdset == CFI_VEND_AMD_SCS) {
cfi_amd_write(sc, 0, AMD_ADDR_START, CFI_AMD_AUTO_SELECT);
sc->sc_manid = cfi_read(sc, 0);
sc->sc_devid = cfi_read(sc, 2);
device_printf(dev, "Manufacturer ID:%x Device ID:%x\n",
sc->sc_manid, sc->sc_devid);
cfi_write(sc, 0, CFI_BCS_READ_ARRAY2);
}
u = device_get_unit(dev);
sc->sc_nod = make_dev(&cfi_cdevsw, u, UID_ROOT, GID_WHEEL, 0600,
"%s%u", cfi_driver_name, u);
sc->sc_nod->si_drv1 = sc;
cfi_add_sysctls(sc);
#ifdef CFI_SUPPORT_STRATAFLASH
/*
* Store the Intel factory PPR in the environment. In some
* cases it is the most unique ID on a board.
*/
if (cfi_intel_get_factory_pr(sc, &ppr) == 0) {
if (snprintf(name, sizeof(name), "%s.factory_ppr",
device_get_nameunit(dev)) < (sizeof(name) - 1) &&
snprintf(value, sizeof(value), "0x%016jx", ppr) <
(sizeof(value) - 1))
(void) kern_setenv(name, value);
}
#endif
device_add_child(dev, "cfid", -1);
bus_generic_attach(dev);
return (0);
}
static void
cfi_add_sysctls(struct cfi_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
ctx = device_get_sysctl_ctx(sc->sc_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"typical_erase_timout_count",
CTLFLAG_RD, &sc->sc_tto_counts[CFI_TIMEOUT_ERASE],
0, "Number of times the typical erase timeout was exceeded");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"max_erase_timout_count",
CTLFLAG_RD, &sc->sc_mto_counts[CFI_TIMEOUT_ERASE], 0,
"Number of times the maximum erase timeout was exceeded");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"typical_write_timout_count",
CTLFLAG_RD, &sc->sc_tto_counts[CFI_TIMEOUT_WRITE], 0,
"Number of times the typical write timeout was exceeded");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"max_write_timout_count",
CTLFLAG_RD, &sc->sc_mto_counts[CFI_TIMEOUT_WRITE], 0,
"Number of times the maximum write timeout was exceeded");
if (sc->sc_maxbuf > 0) {
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"typical_bufwrite_timout_count",
CTLFLAG_RD, &sc->sc_tto_counts[CFI_TIMEOUT_BUFWRITE], 0,
"Number of times the typical buffered write timeout was "
"exceeded");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"max_bufwrite_timout_count",
CTLFLAG_RD, &sc->sc_mto_counts[CFI_TIMEOUT_BUFWRITE], 0,
"Number of times the maximum buffered write timeout was "
"exceeded");
}
}
int
cfi_detach(device_t dev)
{
struct cfi_softc *sc;
sc = device_get_softc(dev);
destroy_dev(sc->sc_nod);
free(sc->sc_region, M_TEMP);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_res);
return (0);
}
static bool
cfi_check_erase(struct cfi_softc *sc, u_int ofs, u_int sz)
{
bool result;
int i;
uint32_t val;
result = FALSE;
for (i = 0; i < sz; i += sc->sc_width) {
val = cfi_read(sc, ofs + i);
switch (sc->sc_width) {
case 1:
if (val != 0xff)
goto out;
continue;
case 2:
if (val != 0xffff)
goto out;
continue;
case 4:
if (val != 0xffffffff)
goto out;
continue;
}
}
result = TRUE;
out:
return (result);
}
static int
cfi_wait_ready(struct cfi_softc *sc, u_int ofs, sbintime_t start,
enum cfi_wait_cmd cmd)
{
int done, error, tto_exceeded;
uint32_t st0 = 0, st = 0;
sbintime_t now;
done = 0;
error = 0;
tto_exceeded = 0;
while (!done && !error) {
/*
* Save time before we start so we always do one check
* after the timeout has expired.
*/
now = sbinuptime();
switch (sc->sc_cmdset) {
case CFI_VEND_INTEL_ECS:
case CFI_VEND_INTEL_SCS:
st = cfi_read(sc, ofs);
done = (st & CFI_INTEL_STATUS_WSMS);
if (done) {
/* NB: bit 0 is reserved */
st &= ~(CFI_INTEL_XSTATUS_RSVD |
CFI_INTEL_STATUS_WSMS |
CFI_INTEL_STATUS_RSVD);
if (st & CFI_INTEL_STATUS_DPS)
error = EPERM;
else if (st & CFI_INTEL_STATUS_PSLBS)
error = EIO;
else if (st & CFI_INTEL_STATUS_ECLBS)
error = ENXIO;
else if (st)
error = EACCES;
}
break;
case CFI_VEND_AMD_SCS:
case CFI_VEND_AMD_ECS:
st0 = cfi_read(sc, ofs);
st = cfi_read(sc, ofs);
done = ((st & 0x40) == (st0 & 0x40)) ? 1 : 0;
break;
}
if (tto_exceeded ||
now > start + sc->sc_typical_timeouts[cmd]) {
if (!tto_exceeded) {
tto_exceeded = 1;
sc->sc_tto_counts[cmd]++;
#ifdef CFI_DEBUG_TIMEOUT
device_printf(sc->sc_dev,
"typical timeout exceeded (cmd %d)", cmd);
#endif
}
if (now > start + sc->sc_max_timeouts[cmd]) {
sc->sc_mto_counts[cmd]++;
#ifdef CFI_DEBUG_TIMEOUT
device_printf(sc->sc_dev,
"max timeout exceeded (cmd %d)", cmd);
#endif
}
}
}
if (!done && !error)
error = ETIMEDOUT;
if (error)
printf("\nerror=%d (st 0x%x st0 0x%x)\n", error, st, st0);
return (error);
}
int
cfi_write_block(struct cfi_softc *sc)
{
union {
uint8_t *x8;
uint16_t *x16;
uint32_t *x32;
} ptr, cpyprt;
register_t intr;
int error, i, j, neederase = 0;
uint32_t st;
u_int wlen;
sbintime_t start;
u_int minsz;
uint32_t val;
/* Intel flash must be unlocked before modification */
switch (sc->sc_cmdset) {
case CFI_VEND_INTEL_ECS:
case CFI_VEND_INTEL_SCS:
cfi_write(sc, sc->sc_wrofs, CFI_INTEL_LBS);
cfi_write(sc, sc->sc_wrofs, CFI_INTEL_UB);
cfi_write(sc, sc->sc_wrofs, CFI_BCS_READ_ARRAY);
break;
}
/* Check if an erase is required. */
for (i = 0; i < sc->sc_wrbufsz; i++)
if ((sc->sc_wrbuf[i] & sc->sc_wrbufcpy[i]) != sc->sc_wrbuf[i]) {
neederase = 1;
break;
}
if (neederase) {
intr = intr_disable();
start = sbinuptime();
/* Erase the block. */
switch (sc->sc_cmdset) {
case CFI_VEND_INTEL_ECS:
case CFI_VEND_INTEL_SCS:
cfi_write(sc, sc->sc_wrofs, CFI_BCS_BLOCK_ERASE);
cfi_write(sc, sc->sc_wrofs, CFI_BCS_CONFIRM);
break;
case CFI_VEND_AMD_SCS:
case CFI_VEND_AMD_ECS:
/* find minimum sector size */
minsz = sc->sc_region[0].r_blksz;
for (i = 1; i < sc->sc_regions; i++) {
if (sc->sc_region[i].r_blksz < minsz)
minsz = sc->sc_region[i].r_blksz;
}
cfi_amd_write(sc, sc->sc_wrofs, AMD_ADDR_START,
CFI_AMD_ERASE_SECTOR);
cfi_amd_write(sc, sc->sc_wrofs,
sc->sc_wrofs >> (ffs(minsz) - 1),
CFI_AMD_BLOCK_ERASE);
for (i = 0; i < CFI_AMD_MAXCHK; ++i) {
if (cfi_check_erase(sc, sc->sc_wrofs,
sc->sc_wrbufsz))
break;
DELAY(10);
}
if (i == CFI_AMD_MAXCHK) {
printf("\nCFI Sector Erase time out error\n");
return (ENODEV);
}
break;
default:
/* Better safe than sorry... */
intr_restore(intr);
return (ENODEV);
}
intr_restore(intr);
error = cfi_wait_ready(sc, sc->sc_wrofs, start,
CFI_TIMEOUT_ERASE);
if (error)
goto out;
} else
error = 0;
/* Write the block using a multibyte write if supported. */
ptr.x8 = sc->sc_wrbuf;
cpyprt.x8 = sc->sc_wrbufcpy;
if (sc->sc_maxbuf > sc->sc_width) {
switch (sc->sc_cmdset) {
case CFI_VEND_INTEL_ECS:
case CFI_VEND_INTEL_SCS:
for (i = 0; i < sc->sc_wrbufsz; i += wlen) {
wlen = MIN(sc->sc_maxbuf, sc->sc_wrbufsz - i);
intr = intr_disable();
start = sbinuptime();
do {
cfi_write(sc, sc->sc_wrofs + i,
CFI_BCS_BUF_PROG_SETUP);
if (sbinuptime() > start + sc->sc_max_timeouts[CFI_TIMEOUT_BUFWRITE]) {
error = ETIMEDOUT;
goto out;
}
st = cfi_read(sc, sc->sc_wrofs + i);
} while (! (st & CFI_INTEL_STATUS_WSMS));
cfi_write(sc, sc->sc_wrofs + i,
(wlen / sc->sc_width) - 1);
switch (sc->sc_width) {
case 1:
bus_space_write_region_1(sc->sc_tag,
sc->sc_handle, sc->sc_wrofs + i,
ptr.x8 + i, wlen);
break;
case 2:
bus_space_write_region_2(sc->sc_tag,
sc->sc_handle, sc->sc_wrofs + i,
ptr.x16 + i / 2, wlen / 2);
break;
case 4:
bus_space_write_region_4(sc->sc_tag,
sc->sc_handle, sc->sc_wrofs + i,
ptr.x32 + i / 4, wlen / 4);
break;
}
cfi_write(sc, sc->sc_wrofs + i,
CFI_BCS_CONFIRM);
intr_restore(intr);
error = cfi_wait_ready(sc, sc->sc_wrofs + i,
start, CFI_TIMEOUT_BUFWRITE);
if (error != 0)
goto out;
}
goto out;
default:
/* Fall through to single word case */
break;
}
}
/* Write the block one byte/word at a time. */
for (i = 0; i < sc->sc_wrbufsz; i += sc->sc_width) {
/* Avoid writing unless we are actually changing bits */
if (!neederase) {
switch (sc->sc_width) {
case 1:
if(*(ptr.x8 + i) == *(cpyprt.x8 + i))
continue;
break;
case 2:
if(*(ptr.x16 + i / 2) == *(cpyprt.x16 + i / 2))
continue;
break;
case 4:
if(*(ptr.x32 + i / 4) == *(cpyprt.x32 + i / 4))
continue;
break;
}
}
/*
* Make sure the command to start a write and the
* actual write happens back-to-back without any
* excessive delays.
*/
intr = intr_disable();
start = sbinuptime();
switch (sc->sc_cmdset) {
case CFI_VEND_INTEL_ECS:
case CFI_VEND_INTEL_SCS:
cfi_write(sc, sc->sc_wrofs + i, CFI_BCS_PROGRAM);
break;
case CFI_VEND_AMD_SCS:
case CFI_VEND_AMD_ECS:
cfi_amd_write(sc, 0, AMD_ADDR_START, CFI_AMD_PROGRAM);
break;
}
switch (sc->sc_width) {
case 1:
bus_space_write_1(sc->sc_tag, sc->sc_handle,
sc->sc_wrofs + i, *(ptr.x8 + i));
break;
case 2:
bus_space_write_2(sc->sc_tag, sc->sc_handle,
sc->sc_wrofs + i, *(ptr.x16 + i / 2));
break;
case 4:
bus_space_write_4(sc->sc_tag, sc->sc_handle,
sc->sc_wrofs + i, *(ptr.x32 + i / 4));
break;
}
intr_restore(intr);
if (sc->sc_cmdset == CFI_VEND_AMD_ECS ||
sc->sc_cmdset == CFI_VEND_AMD_SCS) {
for (j = 0; j < CFI_AMD_MAXCHK; ++j) {
switch (sc->sc_width) {
case 1:
val = *(ptr.x8 + i);
break;
case 2:
val = *(ptr.x16 + i / 2);
break;
case 4:
val = *(ptr.x32 + i / 4);
break;
}
if (cfi_read(sc, sc->sc_wrofs + i) == val)
break;
DELAY(10);
}
if (j == CFI_AMD_MAXCHK) {
printf("\nCFI Program Verify time out error\n");
error = ENXIO;
goto out;
}
} else {
error = cfi_wait_ready(sc, sc->sc_wrofs, start,
CFI_TIMEOUT_WRITE);
if (error)
goto out;
}
}
/* error is 0. */
out:
cfi_reset_default(sc);
/* Relock Intel flash */
switch (sc->sc_cmdset) {
case CFI_VEND_INTEL_ECS:
case CFI_VEND_INTEL_SCS:
cfi_write(sc, sc->sc_wrofs, CFI_INTEL_LBS);
cfi_write(sc, sc->sc_wrofs, CFI_INTEL_LB);
cfi_write(sc, sc->sc_wrofs, CFI_BCS_READ_ARRAY);
break;
}
return (error);
}
#ifdef CFI_SUPPORT_STRATAFLASH
/*
* Intel StrataFlash Protection Register Support.
*
* The memory includes a 128-bit Protection Register that can be
* used for security. There are two 64-bit segments; one is programmed
* at the factory with a unique 64-bit number which is immutable.
* The other segment is left blank for User (OEM) programming.
* The User/OEM segment is One Time Programmable (OTP). It can also
* be locked to prevent any further writes by setting bit 0 of the
* Protection Lock Register (PLR). The PLR can written only once.
*/
static uint16_t
cfi_get16(struct cfi_softc *sc, int off)
{
uint16_t v = bus_space_read_2(sc->sc_tag, sc->sc_handle, off<<1);
return v;
}
#ifdef CFI_ARMEDANDDANGEROUS
static void
cfi_put16(struct cfi_softc *sc, int off, uint16_t v)
{
bus_space_write_2(sc->sc_tag, sc->sc_handle, off<<1, v);
}
#endif
/*
* Read the factory-defined 64-bit segment of the PR.
*/
int
cfi_intel_get_factory_pr(struct cfi_softc *sc, uint64_t *id)
{
if (sc->sc_cmdset != CFI_VEND_INTEL_ECS)
return EOPNOTSUPP;
KASSERT(sc->sc_width == 2, ("sc_width %d", sc->sc_width));
cfi_write(sc, 0, CFI_INTEL_READ_ID);
*id = ((uint64_t)cfi_get16(sc, CFI_INTEL_PR(0)))<<48 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(1)))<<32 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(2)))<<16 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(3)));
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return 0;
}
/*
* Read the User/OEM 64-bit segment of the PR.
*/
int
cfi_intel_get_oem_pr(struct cfi_softc *sc, uint64_t *id)
{
if (sc->sc_cmdset != CFI_VEND_INTEL_ECS)
return EOPNOTSUPP;
KASSERT(sc->sc_width == 2, ("sc_width %d", sc->sc_width));
cfi_write(sc, 0, CFI_INTEL_READ_ID);
*id = ((uint64_t)cfi_get16(sc, CFI_INTEL_PR(4)))<<48 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(5)))<<32 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(6)))<<16 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(7)));
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return 0;
}
/*
* Write the User/OEM 64-bit segment of the PR.
* XXX should allow writing individual words/bytes
*/
int
cfi_intel_set_oem_pr(struct cfi_softc *sc, uint64_t id)
{
#ifdef CFI_ARMEDANDDANGEROUS
register_t intr;
int i, error;
sbintime_t start;
#endif
if (sc->sc_cmdset != CFI_VEND_INTEL_ECS)
return EOPNOTSUPP;
KASSERT(sc->sc_width == 2, ("sc_width %d", sc->sc_width));
#ifdef CFI_ARMEDANDDANGEROUS
for (i = 7; i >= 4; i--, id >>= 16) {
intr = intr_disable();
start = sbinuptime();
cfi_write(sc, 0, CFI_INTEL_PP_SETUP);
cfi_put16(sc, CFI_INTEL_PR(i), id&0xffff);
intr_restore(intr);
error = cfi_wait_ready(sc, CFI_BCS_READ_STATUS, start,
CFI_TIMEOUT_WRITE);
if (error)
break;
}
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return error;
#else
device_printf(sc->sc_dev, "%s: OEM PR not set, "
"CFI_ARMEDANDDANGEROUS not configured\n", __func__);
return ENXIO;
#endif
}
/*
* Read the contents of the Protection Lock Register.
*/
int
cfi_intel_get_plr(struct cfi_softc *sc, uint32_t *plr)
{
if (sc->sc_cmdset != CFI_VEND_INTEL_ECS)
return EOPNOTSUPP;
KASSERT(sc->sc_width == 2, ("sc_width %d", sc->sc_width));
cfi_write(sc, 0, CFI_INTEL_READ_ID);
*plr = cfi_get16(sc, CFI_INTEL_PLR);
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return 0;
}
/*
* Write the Protection Lock Register to lock down the
* user-settable segment of the Protection Register.
* NOTE: this operation is not reversible.
*/
int
cfi_intel_set_plr(struct cfi_softc *sc)
{
#ifdef CFI_ARMEDANDDANGEROUS
register_t intr;
int error;
sbintime_t start;
#endif
if (sc->sc_cmdset != CFI_VEND_INTEL_ECS)
return EOPNOTSUPP;
KASSERT(sc->sc_width == 2, ("sc_width %d", sc->sc_width));
#ifdef CFI_ARMEDANDDANGEROUS
/* worthy of console msg */
device_printf(sc->sc_dev, "set PLR\n");
intr = intr_disable();
binuptime(&start);
cfi_write(sc, 0, CFI_INTEL_PP_SETUP);
cfi_put16(sc, CFI_INTEL_PLR, 0xFFFD);
intr_restore(intr);
error = cfi_wait_ready(sc, CFI_BCS_READ_STATUS, start,
CFI_TIMEOUT_WRITE);
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return error;
#else
device_printf(sc->sc_dev, "%s: PLR not set, "
"CFI_ARMEDANDDANGEROUS not configured\n", __func__);
return ENXIO;
#endif
}
#endif /* CFI_SUPPORT_STRATAFLASH */