David C Somayajulu 29e6019890 Add support for firmware dump (a.k.a grcdump)
MFC after:5 days
2015-12-23 03:19:12 +00:00

2506 lines
86 KiB
C

/*-
* Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __BXE_H__
#define __BXE_H__
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sx.h>
#include <sys/module.h>
#include <sys/endian.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kobj.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#include <sys/bitstring.h>
#include <sys/limits.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/zlib.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/atomic.h>
#include <machine/resource.h>
#include <machine/endian.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include "device_if.h"
#include "bus_if.h"
#include "pci_if.h"
#if _BYTE_ORDER == _LITTLE_ENDIAN
#ifndef LITTLE_ENDIAN
#define LITTLE_ENDIAN
#endif
#ifndef __LITTLE_ENDIAN
#define __LITTLE_ENDIAN
#endif
#undef BIG_ENDIAN
#undef __BIG_ENDIAN
#else /* _BIG_ENDIAN */
#ifndef BIG_ENDIAN
#define BIG_ENDIAN
#endif
#ifndef __BIG_ENDIAN
#define __BIG_ENDIAN
#endif
#undef LITTLE_ENDIAN
#undef __LITTLE_ENDIAN
#endif
#include "ecore_mfw_req.h"
#include "ecore_fw_defs.h"
#include "ecore_hsi.h"
#include "ecore_reg.h"
#include "bxe_dcb.h"
#include "bxe_stats.h"
#include "bxe_elink.h"
#if __FreeBSD_version < 800054
#if defined(__i386__) || defined(__amd64__)
#define mb() __asm volatile("mfence;" : : : "memory")
#define wmb() __asm volatile("sfence;" : : : "memory")
#define rmb() __asm volatile("lfence;" : : : "memory")
static __inline void prefetch(void *x)
{
__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
}
#else
#define mb()
#define rmb()
#define wmb()
#define prefetch(x)
#endif
#endif
#if __FreeBSD_version >= 1000000
#define PCIR_EXPRESS_DEVICE_STA PCIER_DEVICE_STA
#define PCIM_EXP_STA_TRANSACTION_PND PCIEM_STA_TRANSACTION_PND
#define PCIR_EXPRESS_LINK_STA PCIER_LINK_STA
#define PCIM_LINK_STA_WIDTH PCIEM_LINK_STA_WIDTH
#define PCIM_LINK_STA_SPEED PCIEM_LINK_STA_SPEED
#define PCIR_EXPRESS_DEVICE_CTL PCIER_DEVICE_CTL
#define PCIM_EXP_CTL_MAX_PAYLOAD PCIEM_CTL_MAX_PAYLOAD
#define PCIM_EXP_CTL_MAX_READ_REQUEST PCIEM_CTL_MAX_READ_REQUEST
#endif
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
#endif
#ifndef ARRSIZE
#define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
#endif
#ifndef DIV_ROUND_UP
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#endif
#ifndef roundup
#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
#endif
#ifndef ilog2
static inline
int bxe_ilog2(int x)
{
int log = 0;
while (x >>= 1) log++;
return (log);
}
#define ilog2(x) bxe_ilog2(x)
#endif
#include "ecore_sp.h"
#define BRCM_VENDORID 0x14e4
#define PCI_ANY_ID (uint16_t)(~0U)
struct bxe_device_type
{
uint16_t bxe_vid;
uint16_t bxe_did;
uint16_t bxe_svid;
uint16_t bxe_sdid;
char *bxe_name;
};
#define BCM_PAGE_SHIFT 12
#define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT)
#define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1))
#define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
#if BCM_PAGE_SIZE != 4096
#error Page sizes other than 4KB are unsupported!
#endif
#if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
#define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
#define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
#else
#define U64_LO(addr) ((uint32_t)(addr))
#define U64_HI(addr) (0)
#endif
#define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
#define SET_FLAG(value, mask, flag) \
do { \
(value) &= ~(mask); \
(value) |= ((flag) << (mask##_SHIFT)); \
} while (0)
#define GET_FLAG(value, mask) \
(((value) & (mask)) >> (mask##_SHIFT))
#define GET_FIELD(value, fname) \
(((value) & (fname##_MASK)) >> (fname##_SHIFT))
#define BXE_MAX_SEGMENTS 12 /* 13-1 for parsing buffer */
#define BXE_TSO_MAX_SEGMENTS 32
#define BXE_TSO_MAX_SIZE (65535 + sizeof(struct ether_vlan_header))
#define BXE_TSO_MAX_SEG_SIZE 4096
/* dropless fc FW/HW related params */
#define BRB_SIZE(sc) (CHIP_IS_E3(sc) ? 1024 : 512)
#define MAX_AGG_QS(sc) (CHIP_IS_E1(sc) ? \
ETH_MAX_AGGREGATION_QUEUES_E1 : \
ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
#define FW_DROP_LEVEL(sc) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
#define FW_PREFETCH_CNT 16
#define DROPLESS_FC_HEADROOM 100
/******************/
/* RX SGE defines */
/******************/
#define RX_SGE_NUM_PAGES 2 /* must be a power of 2 */
#define RX_SGE_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
#define RX_SGE_NEXT_PAGE_DESC_CNT 2
#define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
#define RX_SGE_PER_PAGE_MASK (RX_SGE_TOTAL_PER_PAGE - 1)
#define RX_SGE_TOTAL (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
#define RX_SGE_USABLE (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
#define RX_SGE_MAX (RX_SGE_TOTAL - 1)
#define RX_SGE(x) ((x) & RX_SGE_MAX)
#define RX_SGE_NEXT(x) \
((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
#define RX_SGE_MASK_ELEM_SZ 64
#define RX_SGE_MASK_ELEM_SHIFT 6
#define RX_SGE_MASK_ELEM_MASK ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
/*
* Creates a bitmask of all ones in less significant bits.
* idx - index of the most significant bit in the created mask.
*/
#define RX_SGE_ONES_MASK(idx) \
(((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
#define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
/* Number of uint64_t elements in SGE mask array. */
#define RX_SGE_MASK_LEN \
((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
#define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1)
#define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
/*
* dropless fc calculations for SGEs
* Number of required SGEs is the sum of two:
* 1. Number of possible opened aggregations (next packet for
* these aggregations will probably consume SGE immidiatelly)
* 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
* after placement on BD for new TPA aggregation)
* Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
*/
#define NUM_SGE_REQ(sc) \
(MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
#define NUM_SGE_PG_REQ(sc) \
((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
#define SGE_TH_LO(sc) \
(NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
#define SGE_TH_HI(sc) \
(SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
#define PAGES_PER_SGE_SHIFT 0
#define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT)
#define SGE_PAGE_SIZE BCM_PAGE_SIZE
#define SGE_PAGE_SHIFT BCM_PAGE_SHIFT
#define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
#define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE)
#define TPA_AGG_SIZE min((8 * SGE_PAGES), 0xffff)
/*****************/
/* TX BD defines */
/*****************/
#define TX_BD_NUM_PAGES 16 /* must be a power of 2 */
#define TX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
#define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
#define TX_BD_TOTAL (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
#define TX_BD_USABLE (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
#define TX_BD_MAX (TX_BD_TOTAL - 1)
#define TX_BD_NEXT(x) \
((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
((x) + 2) : ((x) + 1))
#define TX_BD(x) ((x) & TX_BD_MAX)
#define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
#define TX_BD_IDX(x) ((x) & TX_BD_USABLE_PER_PAGE)
/*
* Trigger pending transmits when the number of available BDs is greater
* than 1/8 of the total number of usable BDs.
*/
#define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
#define BXE_TX_TIMEOUT 5
/*****************/
/* RX BD defines */
/*****************/
#define RX_BD_NUM_PAGES 8 /* power of 2 */
#define RX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
#define RX_BD_NEXT_PAGE_DESC_CNT 2
#define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
#define RX_BD_PER_PAGE_MASK (RX_BD_TOTAL_PER_PAGE - 1)
#define RX_BD_TOTAL (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
#define RX_BD_USABLE (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
#define RX_BD_MAX (RX_BD_TOTAL - 1)
#if 0
#define NUM_RX_RINGS RX_BD_NUM_PAGES
#define NUM_RX_BD RX_BD_TOTAL
#define MAX_RX_BD RX_BD_MAX
#define MAX_RX_AVAIL RX_BD_USABLE
#endif
#define RX_BD_NEXT(x) \
((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
((x) + 3) : ((x) + 1))
#define RX_BD(x) ((x) & RX_BD_MAX)
#define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
#define RX_BD_IDX(x) ((x) & RX_BD_PER_PAGE_MASK)
/*
* dropless fc calculations for BDs
* Number of BDs should be as number of buffers in BRB:
* Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
* "next" elements on each page
*/
#define NUM_BD_REQ(sc) \
BRB_SIZE(sc)
#define NUM_BD_PG_REQ(sc) \
((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
#define BD_TH_LO(sc) \
(NUM_BD_REQ(sc) + \
NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
FW_DROP_LEVEL(sc))
#define BD_TH_HI(sc) \
(BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
#define MIN_RX_AVAIL(sc) \
((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
#define MIN_RX_SIZE_TPA_HW(sc) \
(CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 : \
ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
#define MIN_RX_SIZE_TPA(sc) \
(max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
#define MIN_RX_SIZE_NONTPA(sc) \
(max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
/***************/
/* RCQ defines */
/***************/
/*
* As long as CQE is X times bigger than BD entry we have to allocate X times
* more pages for CQ ring in order to keep it balanced with BD ring
*/
#define CQE_BD_REL (sizeof(union eth_rx_cqe) / \
sizeof(struct eth_rx_bd))
#define RCQ_NUM_PAGES (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
#define RCQ_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
#define RCQ_NEXT_PAGE_DESC_CNT 1
#define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
#define RCQ_TOTAL (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
#define RCQ_USABLE (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
#define RCQ_MAX (RCQ_TOTAL - 1)
#define RCQ_NEXT(x) \
((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
#define RCQ(x) ((x) & RCQ_MAX)
#define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
#define RCQ_IDX(x) ((x) & RCQ_USABLE_PER_PAGE)
#if 0
#define NUM_RCQ_RINGS RCQ_NUM_PAGES
#define NUM_RCQ_BD RCQ_TOTAL
#define MAX_RCQ_BD RCQ_MAX
#define MAX_RCQ_AVAIL RCQ_USABLE
#endif
/*
* dropless fc calculations for RCQs
* Number of RCQs should be as number of buffers in BRB:
* Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
* "next" elements on each page
*/
#define NUM_RCQ_REQ(sc) \
BRB_SIZE(sc)
#define NUM_RCQ_PG_REQ(sc) \
((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
#define RCQ_TH_LO(sc) \
(NUM_RCQ_REQ(sc) + \
NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
FW_DROP_LEVEL(sc))
#define RCQ_TH_HI(sc) \
(RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
/* This is needed for determening of last_max */
#define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
#define __SGE_MASK_SET_BIT(el, bit) \
do { \
(el) = ((el) | ((uint64_t)0x1 << (bit))); \
} while (0)
#define __SGE_MASK_CLEAR_BIT(el, bit) \
do { \
(el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
} while (0)
#define SGE_MASK_SET_BIT(fp, idx) \
__SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
((idx) & RX_SGE_MASK_ELEM_MASK))
#define SGE_MASK_CLEAR_BIT(fp, idx) \
__SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
((idx) & RX_SGE_MASK_ELEM_MASK))
/* Load / Unload modes */
#define LOAD_NORMAL 0
#define LOAD_OPEN 1
#define LOAD_DIAG 2
#define LOAD_LOOPBACK_EXT 3
#define UNLOAD_NORMAL 0
#define UNLOAD_CLOSE 1
#define UNLOAD_RECOVERY 2
/* Some constants... */
//#define MAX_PATH_NUM 2
//#define E2_MAX_NUM_OF_VFS 64
//#define E1H_FUNC_MAX 8
//#define E2_FUNC_MAX 4 /* per path */
#define MAX_VNIC_NUM 4
#define MAX_FUNC_NUM 8 /* common to all chips */
//#define MAX_NDSB HC_SB_MAX_SB_E2 /* max non-default status block */
#define MAX_RSS_CHAINS 16 /* a constant for HW limit */
#define MAX_MSI_VECTOR 8 /* a constant for HW limit */
#define ILT_NUM_PAGE_ENTRIES 3072
/*
* 57710/11 we use whole table since we have 8 functions.
* 57712 we have only 4 functions, but use same size per func, so only half
* of the table is used.
*/
#define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES / 8)
#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
/*
* the phys address is shifted right 12 bits and has an added
* 1=valid bit added to the 53rd bit
* then since this is a wide register(TM)
* we split it into two 32 bit writes
*/
#define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
#define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
#define ETH_HLEN 14
#define ETH_OVERHEAD (ETH_HLEN + 8 + 8)
#define ETH_MIN_PACKET_SIZE 60
#define ETH_MAX_PACKET_SIZE ETHERMTU /* 1500 */
#define ETH_MAX_JUMBO_PACKET_SIZE 9600
/* TCP with Timestamp Option (32) + IPv6 (40) */
#define ETH_MAX_TPA_HEADER_SIZE 72
/* max supported alignment is 256 (8 shift) */
//#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
#define BXE_RX_ALIGN_SHIFT 8
/* FW uses 2 cache lines alignment for start packet and size */
#define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
#define BXE_FW_RX_ALIGN_END (1 << BXE_RX_ALIGN_SHIFT)
#define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
struct bxe_bar {
struct resource *resource;
int rid;
bus_space_tag_t tag;
bus_space_handle_t handle;
vm_offset_t kva;
};
struct bxe_intr {
struct resource *resource;
int rid;
void *tag;
};
/* Used to manage DMA allocations. */
struct bxe_dma {
struct bxe_softc *sc;
bus_addr_t paddr;
void *vaddr;
bus_dma_tag_t tag;
bus_dmamap_t map;
bus_dma_segment_t seg;
bus_size_t size;
int nseg;
char msg[32];
};
/* attn group wiring */
#define MAX_DYNAMIC_ATTN_GRPS 8
struct attn_route {
uint32_t sig[5];
};
struct iro {
uint32_t base;
uint16_t m1;
uint16_t m2;
uint16_t m3;
uint16_t size;
};
union bxe_host_hc_status_block {
/* pointer to fp status block e2 */
struct host_hc_status_block_e2 *e2_sb;
/* pointer to fp status block e1x */
struct host_hc_status_block_e1x *e1x_sb;
};
union bxe_db_prod {
struct doorbell_set_prod data;
uint32_t raw;
};
struct bxe_sw_tx_bd {
struct mbuf *m;
bus_dmamap_t m_map;
uint16_t first_bd;
uint8_t flags;
/* set on the first BD descriptor when there is a split BD */
#define BXE_TSO_SPLIT_BD (1 << 0)
};
struct bxe_sw_rx_bd {
struct mbuf *m;
bus_dmamap_t m_map;
};
struct bxe_sw_tpa_info {
struct bxe_sw_rx_bd bd;
bus_dma_segment_t seg;
uint8_t state;
#define BXE_TPA_STATE_START 1
#define BXE_TPA_STATE_STOP 2
uint8_t placement_offset;
uint16_t parsing_flags;
uint16_t vlan_tag;
uint16_t len_on_bd;
};
/*
* This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
* instances of the fastpath structure when using multiple queues.
*/
struct bxe_fastpath {
/* pointer back to parent structure */
struct bxe_softc *sc;
struct mtx tx_mtx;
char tx_mtx_name[32];
struct mtx rx_mtx;
char rx_mtx_name[32];
#define BXE_FP_TX_LOCK(fp) mtx_lock(&fp->tx_mtx)
#define BXE_FP_TX_UNLOCK(fp) mtx_unlock(&fp->tx_mtx)
#define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
#define BXE_FP_TX_TRYLOCK(fp) mtx_trylock(&fp->tx_mtx)
#define BXE_FP_RX_LOCK(fp) mtx_lock(&fp->rx_mtx)
#define BXE_FP_RX_UNLOCK(fp) mtx_unlock(&fp->rx_mtx)
#define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
/* status block */
struct bxe_dma sb_dma;
union bxe_host_hc_status_block status_block;
/* transmit chain (tx bds) */
struct bxe_dma tx_dma;
union eth_tx_bd_types *tx_chain;
/* receive chain (rx bds) */
struct bxe_dma rx_dma;
struct eth_rx_bd *rx_chain;
/* receive completion queue chain (rcq bds) */
struct bxe_dma rcq_dma;
union eth_rx_cqe *rcq_chain;
/* receive scatter/gather entry chain (for TPA) */
struct bxe_dma rx_sge_dma;
struct eth_rx_sge *rx_sge_chain;
/* tx mbufs */
bus_dma_tag_t tx_mbuf_tag;
struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
/* rx mbufs */
bus_dma_tag_t rx_mbuf_tag;
struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
bus_dmamap_t rx_mbuf_spare_map;
/* rx sge mbufs */
bus_dma_tag_t rx_sge_mbuf_tag;
struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
bus_dmamap_t rx_sge_mbuf_spare_map;
/* rx tpa mbufs (use the larger size for TPA queue length) */
int tpa_enable; /* disabled per fastpath upon error */
struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
bus_dmamap_t rx_tpa_info_mbuf_spare_map;
uint64_t rx_tpa_queue_used;
#if 0
bus_dmamap_t rx_tpa_mbuf_map[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
bus_dmamap_t rx_tpa_mbuf_spare_map;
struct mbuf *rx_tpa_mbuf_ptr[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
bus_dma_segment_t rx_tpa_mbuf_segs[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
uint8_t tpa_state[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
#endif
uint16_t *sb_index_values;
uint16_t *sb_running_index;
uint32_t ustorm_rx_prods_offset;
uint8_t igu_sb_id; /* status block number in HW */
uint8_t fw_sb_id; /* status block number in FW */
uint32_t rx_buf_size;
int mbuf_alloc_size;
int state;
#define BXE_FP_STATE_CLOSED 0x01
#define BXE_FP_STATE_IRQ 0x02
#define BXE_FP_STATE_OPENING 0x04
#define BXE_FP_STATE_OPEN 0x08
#define BXE_FP_STATE_HALTING 0x10
#define BXE_FP_STATE_HALTED 0x20
/* reference back to this fastpath queue number */
uint8_t index; /* this is also the 'cid' */
#define FP_IDX(fp) (fp->index)
/* interrupt taskqueue (fast) */
struct task tq_task;
struct taskqueue *tq;
char tq_name[32];
/* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
uint8_t cl_id;
#define FP_CL_ID(fp) (fp->cl_id)
uint8_t cl_qzone_id;
uint16_t fp_hc_idx;
/* driver copy of the receive buffer descriptor prod/cons indices */
uint16_t rx_bd_prod;
uint16_t rx_bd_cons;
/* driver copy of the receive completion queue prod/cons indices */
uint16_t rx_cq_prod;
uint16_t rx_cq_cons;
union bxe_db_prod tx_db;
/* Transmit packet producer index (used in eth_tx_bd). */
uint16_t tx_pkt_prod;
uint16_t tx_pkt_cons;
/* Transmit buffer descriptor producer index. */
uint16_t tx_bd_prod;
uint16_t tx_bd_cons;
#if 0
/* status block number in hardware */
uint8_t sb_id;
#define FP_SB_ID(fp) (fp->sb_id)
/* driver copy of the fastpath CSTORM/USTORM indices */
uint16_t fp_c_idx;
uint16_t fp_u_idx;
#endif
uint64_t sge_mask[RX_SGE_MASK_LEN];
uint16_t rx_sge_prod;
struct tstorm_per_queue_stats old_tclient;
struct ustorm_per_queue_stats old_uclient;
struct xstorm_per_queue_stats old_xclient;
struct bxe_eth_q_stats eth_q_stats;
struct bxe_eth_q_stats_old eth_q_stats_old;
/* Pointer to the receive consumer in the status block */
uint16_t *rx_cq_cons_sb;
/* Pointer to the transmit consumer in the status block */
uint16_t *tx_cons_sb;
/* transmit timeout until chip reset */
int watchdog_timer;
/* Free/used buffer descriptor counters. */
//uint16_t used_tx_bd;
/* Last maximal completed SGE */
uint16_t last_max_sge;
//uint16_t rx_sge_free_idx;
//uint8_t segs;
#if __FreeBSD_version >= 800000
#define BXE_BR_SIZE 4096
struct buf_ring *tx_br;
#endif
}; /* struct bxe_fastpath */
/* sriov XXX */
#define BXE_MAX_NUM_OF_VFS 64
#define BXE_VF_CID_WND 0
#define BXE_CIDS_PER_VF (1 << BXE_VF_CID_WND)
#define BXE_CLIENTS_PER_VF 1
#define BXE_FIRST_VF_CID 256
#define BXE_VF_CIDS (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
#define BXE_VF_ID_INVALID 0xFF
#define IS_SRIOV(sc) 0
#define GET_NUM_VFS_PER_PATH(sc) 0
#define GET_NUM_VFS_PER_PF(sc) 0
/* maximum number of fast-path interrupt contexts */
#define FP_SB_MAX_E1x 16
#define FP_SB_MAX_E2 HC_SB_MAX_SB_E2
union cdu_context {
struct eth_context eth;
char pad[1024];
};
/* CDU host DB constants */
#define CDU_ILT_PAGE_SZ_HW 2
#define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
#define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
#define CNIC_ISCSI_CID_MAX 256
#define CNIC_FCOE_CID_MAX 2048
#define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
#define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
#define QM_ILT_PAGE_SZ_HW 0
#define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
#define QM_CID_ROUND 1024
/* TM (timers) host DB constants */
#define TM_ILT_PAGE_SZ_HW 0
#define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
/*#define TM_CONN_NUM (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
#define TM_CONN_NUM 1024
#define TM_ILT_SZ (8 * TM_CONN_NUM)
#define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
/* SRC (Searcher) host DB constants */
#define SRC_ILT_PAGE_SZ_HW 0
#define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
#define SRC_HASH_BITS 10
#define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */
#define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM)
#define SRC_T2_SZ SRC_ILT_SZ
#define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
struct hw_context {
struct bxe_dma vcxt_dma;
union cdu_context *vcxt;
//bus_addr_t cxt_mapping;
size_t size;
};
#define SM_RX_ID 0
#define SM_TX_ID 1
/* defines for multiple tx priority indices */
#define FIRST_TX_ONLY_COS_INDEX 1
#define FIRST_TX_COS_INDEX 0
#define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
#define HC_INDEX_ETH_RX_CQ_CONS 1
#define HC_INDEX_OOO_TX_CQ_CONS 4
#define HC_INDEX_ETH_TX_CQ_CONS_COS0 5
#define HC_INDEX_ETH_TX_CQ_CONS_COS1 6
#define HC_INDEX_ETH_TX_CQ_CONS_COS2 7
#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
/* congestion management fairness mode */
#define CMNG_FNS_NONE 0
#define CMNG_FNS_MINMAX 1
/* CMNG constants, as derived from system spec calculations */
/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
#define DEF_MIN_RATE 100
/* resolution of the rate shaping timer - 400 usec */
#define RS_PERIODIC_TIMEOUT_USEC 400
/* number of bytes in single QM arbitration cycle -
* coefficient for calculating the fairness timer */
#define QM_ARB_BYTES 160000
/* resolution of Min algorithm 1:100 */
#define MIN_RES 100
/* how many bytes above threshold for the minimal credit of Min algorithm*/
#define MIN_ABOVE_THRESH 32768
/* fairness algorithm integration time coefficient -
* for calculating the actual Tfair */
#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
/* memory of fairness algorithm - 2 cycles */
#define FAIR_MEM 2
#define HC_SEG_ACCESS_DEF 0 /* Driver decision 0-3 */
#define HC_SEG_ACCESS_ATTN 4
#define HC_SEG_ACCESS_NORM 0 /* Driver decision 0-1 */
/*
* The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
* control by the number of fast-path status blocks supported by the
* device (HW/FW). Each fast-path status block (FP-SB) aka non-default
* status block represents an independent interrupts context that can
* serve a regular L2 networking queue. However special L2 queues such
* as the FCoE queue do not require a FP-SB and other components like
* the CNIC may consume FP-SB reducing the number of possible L2 queues
*
* If the maximum number of FP-SB available is X then:
* a. If CNIC is supported it consumes 1 FP-SB thus the max number of
* regular L2 queues is Y=X-1
* b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
* c. If the FCoE L2 queue is supported the actual number of L2 queues
* is Y+1
* d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
* slow-path interrupts) or Y+2 if CNIC is supported (one additional
* FP interrupt context for the CNIC).
* e. The number of HW context (CID count) is always X or X+1 if FCoE
* L2 queue is supported. the cid for the FCoE L2 queue is always X.
*
* So this is quite simple for now as no ULPs are supported yet. :-)
*/
#define BXE_NUM_QUEUES(sc) ((sc)->num_queues)
#define BXE_NUM_ETH_QUEUES(sc) BXE_NUM_QUEUES(sc)
#define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
#define BXE_NUM_RX_QUEUES(sc) BXE_NUM_QUEUES(sc)
#define FOR_EACH_QUEUE(sc, var) \
for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
#define FOR_EACH_NONDEFAULT_QUEUE(sc, var) \
for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
#define FOR_EACH_ETH_QUEUE(sc, var) \
for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
#define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var) \
for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
#define FOR_EACH_COS_IN_TX_QUEUE(sc, var) \
for ((var) = 0; (var) < (sc)->max_cos; (var)++)
#define FOR_EACH_CNIC_QUEUE(sc, var) \
for ((var) = BXE_NUM_ETH_QUEUES(sc); \
(var) < BXE_NUM_QUEUES(sc); \
(var)++)
enum {
OOO_IDX_OFFSET,
FCOE_IDX_OFFSET,
FWD_IDX_OFFSET,
};
#define FCOE_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
#define bxe_fcoe_fp(sc) (&sc->fp[FCOE_IDX(sc)])
#define bxe_fcoe(sc, var) (bxe_fcoe_fp(sc)->var)
#define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
#define bxe_fcoe_sp_obj(sc, var) (bxe_fcoe_inner_sp_obj(sc)->var)
#define bxe_fcoe_tx(sc, var) (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
#define OOO_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
#define bxe_ooo_fp(sc) (&sc->fp[OOO_IDX(sc)])
#define bxe_ooo(sc, var) (bxe_ooo_fp(sc)->var)
#define bxe_ooo_inner_sp_obj(sc) (&sc->sp_objs[OOO_IDX(sc)])
#define bxe_ooo_sp_obj(sc, var) (bxe_ooo_inner_sp_obj(sc)->var)
#define FWD_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
#define bxe_fwd_fp(sc) (&sc->fp[FWD_IDX(sc)])
#define bxe_fwd(sc, var) (bxe_fwd_fp(sc)->var)
#define bxe_fwd_inner_sp_obj(sc) (&sc->sp_objs[FWD_IDX(sc)])
#define bxe_fwd_sp_obj(sc, var) (bxe_fwd_inner_sp_obj(sc)->var)
#define bxe_fwd_txdata(fp) (fp->txdata_ptr[FIRST_TX_COS_INDEX])
#define IS_ETH_FP(fp) ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
#define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->sc))
#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
#define IS_FWD_FP(fp) ((fp)->index == FWD_IDX((fp)->sc))
#define IS_FWD_IDX(idx) ((idx) == FWD_IDX(sc))
#define IS_OOO_FP(fp) ((fp)->index == OOO_IDX((fp)->sc))
#define IS_OOO_IDX(idx) ((idx) == OOO_IDX(sc))
enum {
BXE_PORT_QUERY_IDX,
BXE_PF_QUERY_IDX,
BXE_FCOE_QUERY_IDX,
BXE_FIRST_QUEUE_QUERY_IDX,
};
struct bxe_fw_stats_req {
struct stats_query_header hdr;
struct stats_query_entry query[FP_SB_MAX_E1x +
BXE_FIRST_QUEUE_QUERY_IDX];
};
struct bxe_fw_stats_data {
struct stats_counter storm_counters;
struct per_port_stats port;
struct per_pf_stats pf;
//struct fcoe_statistics_params fcoe;
struct per_queue_stats queue_stats[1];
};
/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
#define BXE_IGU_STAS_MSG_VF_CNT 64
#define BXE_IGU_STAS_MSG_PF_CNT 4
#define MAX_DMAE_C 8
/*
* For the main interface up/down code paths, a not-so-fine-grained CORE
* mutex lock is used. Inside this code are various calls to kernel routines
* that can cause a sleep to occur. Namely memory allocations and taskqueue
* handling. If using an MTX lock we are *not* allowed to sleep but we can
* with an SX lock. This define forces the CORE lock to use and SX lock.
* Undefine this and an MTX lock will be used instead. Note that the IOCTL
* path can cause problems since it's called by a non-sleepable thread. To
* alleviate a potential sleep, any IOCTL processing that results in the
* chip/interface being started/stopped/reinitialized, the actual work is
* offloaded to a taskqueue.
*/
#define BXE_CORE_LOCK_SX
/*
* This is the slowpath data structure. It is mapped into non-paged memory
* so that the hardware can access it's contents directly and must be page
* aligned.
*/
struct bxe_slowpath {
#if 0
/*
* The cdu_context array MUST be the first element in this
* structure. It is used during the leading edge ramrod
* operation.
*/
union cdu_context context[MAX_CONTEXT];
/* Used as a DMA source for MAC configuration. */
struct mac_configuration_cmd mac_config;
struct mac_configuration_cmd mcast_config;
#endif
/* used by the DMAE command executer */
struct dmae_command dmae[MAX_DMAE_C];
/* statistics completion */
uint32_t stats_comp;
/* firmware defined statistics blocks */
union mac_stats mac_stats;
struct nig_stats nig_stats;
struct host_port_stats port_stats;
struct host_func_stats func_stats;
//struct host_func_stats func_stats_base;
/* DMAE completion value and data source/sink */
uint32_t wb_comp;
uint32_t wb_data[4];
union {
struct mac_configuration_cmd e1x;
struct eth_classify_rules_ramrod_data e2;
} mac_rdata;
union {
struct tstorm_eth_mac_filter_config e1x;
struct eth_filter_rules_ramrod_data e2;
} rx_mode_rdata;
struct eth_rss_update_ramrod_data rss_rdata;
union {
struct mac_configuration_cmd e1;
struct eth_multicast_rules_ramrod_data e2;
} mcast_rdata;
union {
struct function_start_data func_start;
struct flow_control_configuration pfc_config; /* for DCBX ramrod */
} func_rdata;
/* Queue State related ramrods */
union {
struct client_init_ramrod_data init_data;
struct client_update_ramrod_data update_data;
} q_rdata;
/*
* AFEX ramrod can not be a part of func_rdata union because these
* events might arrive in parallel to other events from func_rdata.
* If they were defined in the same union the data can get corrupted.
*/
struct afex_vif_list_ramrod_data func_afex_rdata;
union drv_info_to_mcp drv_info_to_mcp;
}; /* struct bxe_slowpath */
/*
* Port specifc data structure.
*/
struct bxe_port {
/*
* Port Management Function (for 57711E only).
* When this field is set the driver instance is
* responsible for managing port specifc
* configurations such as handling link attentions.
*/
uint32_t pmf;
/* Ethernet maximum transmission unit. */
uint16_t ether_mtu;
uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
uint32_t ext_phy_config;
/* Port feature config.*/
uint32_t config;
/* Defines the features supported by the PHY. */
uint32_t supported[ELINK_LINK_CONFIG_SIZE];
/* Defines the features advertised by the PHY. */
uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
#define ADVERTISED_10baseT_Half (1 << 1)
#define ADVERTISED_10baseT_Full (1 << 2)
#define ADVERTISED_100baseT_Half (1 << 3)
#define ADVERTISED_100baseT_Full (1 << 4)
#define ADVERTISED_1000baseT_Half (1 << 5)
#define ADVERTISED_1000baseT_Full (1 << 6)
#define ADVERTISED_TP (1 << 7)
#define ADVERTISED_FIBRE (1 << 8)
#define ADVERTISED_Autoneg (1 << 9)
#define ADVERTISED_Asym_Pause (1 << 10)
#define ADVERTISED_Pause (1 << 11)
#define ADVERTISED_2500baseX_Full (1 << 15)
#define ADVERTISED_10000baseT_Full (1 << 16)
uint32_t phy_addr;
/* Used to synchronize phy accesses. */
struct mtx phy_mtx;
char phy_mtx_name[32];
#define BXE_PHY_LOCK(sc) mtx_lock(&sc->port.phy_mtx)
#define BXE_PHY_UNLOCK(sc) mtx_unlock(&sc->port.phy_mtx)
#define BXE_PHY_LOCK_ASSERT(sc) mtx_assert(&sc->port.phy_mtx, MA_OWNED)
/*
* MCP scratchpad address for port specific statistics.
* The device is responsible for writing statistcss
* back to the MCP for use with management firmware such
* as UMP/NC-SI.
*/
uint32_t port_stx;
struct nig_stats old_nig_stats;
}; /* struct bxe_port */
struct bxe_mf_info {
uint32_t mf_config[E1HVN_MAX];
uint32_t vnics_per_port; /* 1, 2 or 4 */
uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
uint32_t path_has_ovlan; /* MF mode in the path (can be different than the MF mode of the function */
#define IS_MULTI_VNIC(sc) ((sc)->devinfo.mf_info.multi_vnics_mode)
#define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
#define VNICS_PER_PATH(sc) \
((sc)->devinfo.mf_info.vnics_per_port * \
((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
uint8_t min_bw[MAX_VNIC_NUM];
uint8_t max_bw[MAX_VNIC_NUM];
uint16_t ext_id; /* vnic outer vlan or VIF ID */
#define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
#define INVALID_VIF_ID 0xFFFF
#define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
#define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
uint16_t default_vlan;
#define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
uint8_t niv_allowed_priorities;
#define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
uint8_t niv_default_cos;
#define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
uint8_t niv_mba_enabled;
enum mf_cfg_afex_vlan_mode afex_vlan_mode;
#define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
int afex_def_vlan_tag;
uint32_t pending_max;
uint16_t flags;
#define MF_INFO_VALID_MAC 0x0001
uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
#define IS_MF(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode != 0))
#define IS_MF_SD(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
#define IS_MF_SI(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
#define IS_MF_AFEX(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
#define IS_MF_SD_MODE(sc) IS_MF_SD(sc)
#define IS_MF_SI_MODE(sc) IS_MF_SI(sc)
#define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
uint32_t mf_protos_supported;
#define MF_PROTO_SUPPORT_ETHERNET 0x1
#define MF_PROTO_SUPPORT_ISCSI 0x2
#define MF_PROTO_SUPPORT_FCOE 0x4
}; /* struct bxe_mf_info */
/* Device information data structure. */
struct bxe_devinfo {
/* PCIe info */
uint16_t vendor_id;
uint16_t device_id;
uint16_t subvendor_id;
uint16_t subdevice_id;
/*
* chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
* C = Chip Number (bits 16-31)
* R = Chip Revision (bits 12-15)
* M = Chip Metal (bits 4-11)
* B = Chip Bond ID (bits 0-3)
*/
uint32_t chip_id;
#define CHIP_ID(sc) ((sc)->devinfo.chip_id & 0xffff0000)
#define CHIP_NUM(sc) ((sc)->devinfo.chip_id >> 16)
/* device ids */
#define CHIP_NUM_57710 0x164e
#define CHIP_NUM_57711 0x164f
#define CHIP_NUM_57711E 0x1650
#define CHIP_NUM_57712 0x1662
#define CHIP_NUM_57712_MF 0x1663
#define CHIP_NUM_57712_VF 0x166f
#define CHIP_NUM_57800 0x168a
#define CHIP_NUM_57800_MF 0x16a5
#define CHIP_NUM_57800_VF 0x16a9
#define CHIP_NUM_57810 0x168e
#define CHIP_NUM_57810_MF 0x16ae
#define CHIP_NUM_57810_VF 0x16af
#define CHIP_NUM_57811 0x163d
#define CHIP_NUM_57811_MF 0x163e
#define CHIP_NUM_57811_VF 0x163f
#define CHIP_NUM_57840_OBS 0x168d
#define CHIP_NUM_57840_OBS_MF 0x16ab
#define CHIP_NUM_57840_4_10 0x16a1
#define CHIP_NUM_57840_2_20 0x16a2
#define CHIP_NUM_57840_MF 0x16a4
#define CHIP_NUM_57840_VF 0x16ad
#define CHIP_REV_SHIFT 12
#define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT)
#define CHIP_REV(sc) ((sc)->devinfo.chip_id & CHIP_REV_MASK)
#define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT)
#define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT)
#define CHIP_REV_Cx (0x2 << CHIP_REV_SHIFT)
#define CHIP_REV_IS_SLOW(sc) \
(CHIP_REV(sc) > 0x00005000)
#define CHIP_REV_IS_FPGA(sc) \
(CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
#define CHIP_REV_IS_EMUL(sc) \
(CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
#define CHIP_REV_IS_ASIC(sc) \
(!CHIP_REV_IS_SLOW(sc))
#define CHIP_METAL(sc) ((sc->devinfo.chip_id) & 0x00000ff0)
#define CHIP_BOND_ID(sc) ((sc->devinfo.chip_id) & 0x0000000f)
#define CHIP_IS_E1(sc) (CHIP_NUM(sc) == CHIP_NUM_57710)
#define CHIP_IS_57710(sc) (CHIP_NUM(sc) == CHIP_NUM_57710)
#define CHIP_IS_57711(sc) (CHIP_NUM(sc) == CHIP_NUM_57711)
#define CHIP_IS_57711E(sc) (CHIP_NUM(sc) == CHIP_NUM_57711E)
#define CHIP_IS_E1H(sc) ((CHIP_IS_57711(sc)) || \
(CHIP_IS_57711E(sc)))
#define CHIP_IS_E1x(sc) (CHIP_IS_E1((sc)) || \
CHIP_IS_E1H((sc)))
#define CHIP_IS_57712(sc) (CHIP_NUM(sc) == CHIP_NUM_57712)
#define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
#define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
#define CHIP_IS_E2(sc) (CHIP_IS_57712(sc) || \
CHIP_IS_57712_MF(sc))
#define CHIP_IS_57800(sc) (CHIP_NUM(sc) == CHIP_NUM_57800)
#define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
#define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
#define CHIP_IS_57810(sc) (CHIP_NUM(sc) == CHIP_NUM_57810)
#define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
#define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
#define CHIP_IS_57811(sc) (CHIP_NUM(sc) == CHIP_NUM_57811)
#define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
#define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
#define CHIP_IS_57840(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS) || \
(CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
(CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
#define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
(CHIP_NUM(sc) == CHIP_NUM_57840_MF))
#define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
#define CHIP_IS_E3(sc) (CHIP_IS_57800(sc) || \
CHIP_IS_57800_MF(sc) || \
CHIP_IS_57800_VF(sc) || \
CHIP_IS_57810(sc) || \
CHIP_IS_57810_MF(sc) || \
CHIP_IS_57810_VF(sc) || \
CHIP_IS_57811(sc) || \
CHIP_IS_57811_MF(sc) || \
CHIP_IS_57811_VF(sc) || \
CHIP_IS_57840(sc) || \
CHIP_IS_57840_MF(sc) || \
CHIP_IS_57840_VF(sc))
#define CHIP_IS_E3A0(sc) (CHIP_IS_E3(sc) && \
(CHIP_REV(sc) == CHIP_REV_Ax))
#define CHIP_IS_E3B0(sc) (CHIP_IS_E3(sc) && \
(CHIP_REV(sc) == CHIP_REV_Bx))
#define USES_WARPCORE(sc) (CHIP_IS_E3(sc))
#define CHIP_IS_E2E3(sc) (CHIP_IS_E2(sc) || \
CHIP_IS_E3(sc))
#define CHIP_IS_MF_CAP(sc) (CHIP_IS_57711E(sc) || \
CHIP_IS_57712_MF(sc) || \
CHIP_IS_E3(sc))
#define IS_VF(sc) (CHIP_IS_57712_VF(sc) || \
CHIP_IS_57800_VF(sc) || \
CHIP_IS_57810_VF(sc) || \
CHIP_IS_57840_VF(sc))
#define IS_PF(sc) (!IS_VF(sc))
/*
* This define is used in two main places:
* 1. In the early stages of nic_load, to know if to configure Parser/Searcher
* to nic-only mode or to offload mode. Offload mode is configured if either
* the chip is E1x (where NIC_MODE register is not applicable), or if cnic
* already registered for this port (which means that the user wants storage
* services).
* 2. During cnic-related load, to know if offload mode is already configured
* in the HW or needs to be configrued. Since the transition from nic-mode to
* offload-mode in HW causes traffic coruption, nic-mode is configured only
* in ports on which storage services where never requested.
*/
#define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
uint8_t chip_port_mode;
#define CHIP_4_PORT_MODE 0x0
#define CHIP_2_PORT_MODE 0x1
#define CHIP_PORT_MODE_NONE 0x2
#define CHIP_PORT_MODE(sc) ((sc)->devinfo.chip_port_mode)
#define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
uint8_t int_block;
#define INT_BLOCK_HC 0
#define INT_BLOCK_IGU 1
#define INT_BLOCK_MODE_NORMAL 0
#define INT_BLOCK_MODE_BW_COMP 2
#define CHIP_INT_MODE_IS_NBC(sc) \
(!CHIP_IS_E1x(sc) && \
!((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
#define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
uint32_t shmem_base;
uint32_t shmem2_base;
uint32_t bc_ver;
char bc_ver_str[32];
uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
struct bxe_mf_info mf_info;
int flash_size;
#define NVRAM_1MB_SIZE 0x20000
#define NVRAM_TIMEOUT_COUNT 30000
#define NVRAM_PAGE_SIZE 256
/* PCIe capability information */
uint32_t pcie_cap_flags;
#define BXE_PM_CAPABLE_FLAG 0x00000001
#define BXE_PCIE_CAPABLE_FLAG 0x00000002
#define BXE_MSI_CAPABLE_FLAG 0x00000004
#define BXE_MSIX_CAPABLE_FLAG 0x00000008
uint16_t pcie_pm_cap_reg;
uint16_t pcie_pcie_cap_reg;
//uint16_t pcie_devctl;
uint16_t pcie_link_width;
uint16_t pcie_link_speed;
uint16_t pcie_msi_cap_reg;
uint16_t pcie_msix_cap_reg;
/* device configuration read from bootcode shared memory */
uint32_t hw_config;
uint32_t hw_config2;
}; /* struct bxe_devinfo */
struct bxe_sp_objs {
struct ecore_vlan_mac_obj mac_obj; /* MACs object */
struct ecore_queue_sp_obj q_obj; /* Queue State object */
}; /* struct bxe_sp_objs */
/*
* Data that will be used to create a link report message. We will keep the
* data used for the last link report in order to prevent reporting the same
* link parameters twice.
*/
struct bxe_link_report_data {
uint16_t line_speed; /* Effective line speed */
unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
};
enum {
BXE_LINK_REPORT_FULL_DUPLEX,
BXE_LINK_REPORT_LINK_DOWN,
BXE_LINK_REPORT_RX_FC_ON,
BXE_LINK_REPORT_TX_FC_ON
};
/* Top level device private data structure. */
struct bxe_softc {
/*
* First entry must be a pointer to the BSD ifnet struct which
* has a first element of 'void *if_softc' (which is us). XXX
*/
if_t ifp;
struct ifmedia ifmedia; /* network interface media structure */
int media;
int state; /* device state */
#define BXE_STATE_CLOSED 0x0000
#define BXE_STATE_OPENING_WAITING_LOAD 0x1000
#define BXE_STATE_OPENING_WAITING_PORT 0x2000
#define BXE_STATE_OPEN 0x3000
#define BXE_STATE_CLOSING_WAITING_HALT 0x4000
#define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
#define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
#define BXE_STATE_DISABLED 0xD000
#define BXE_STATE_DIAG 0xE000
#define BXE_STATE_ERROR 0xF000
int flags;
#define BXE_ONE_PORT_FLAG 0x00000001
#define BXE_NO_ISCSI 0x00000002
#define BXE_NO_FCOE 0x00000004
#define BXE_ONE_PORT(sc) (sc->flags & BXE_ONE_PORT_FLAG)
//#define BXE_NO_WOL_FLAG 0x00000008
//#define BXE_USING_DAC_FLAG 0x00000010
//#define BXE_USING_MSIX_FLAG 0x00000020
//#define BXE_USING_MSI_FLAG 0x00000040
//#define BXE_DISABLE_MSI_FLAG 0x00000080
#define BXE_NO_MCP_FLAG 0x00000200
#define BXE_NOMCP(sc) (sc->flags & BXE_NO_MCP_FLAG)
//#define BXE_SAFC_TX_FLAG 0x00000400
#define BXE_MF_FUNC_DIS 0x00000800
#define BXE_TX_SWITCHING 0x00001000
#define BXE_NO_PULSE 0x00002000
unsigned long debug; /* per-instance debug logging config */
#define MAX_BARS 5
struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
uint16_t doorbell_size;
/* periodic timer callout */
#define PERIODIC_STOP 0
#define PERIODIC_GO 1
volatile unsigned long periodic_flags;
struct callout periodic_callout;
/* chip start/stop/reset taskqueue */
#define CHIP_TQ_NONE 0
#define CHIP_TQ_START 1
#define CHIP_TQ_STOP 2
#define CHIP_TQ_REINIT 3
volatile unsigned long chip_tq_flags;
struct task chip_tq_task;
struct taskqueue *chip_tq;
char chip_tq_name[32];
/* slowpath interrupt taskqueue */
struct task sp_tq_task;
struct taskqueue *sp_tq;
char sp_tq_name[32];
struct bxe_fastpath fp[MAX_RSS_CHAINS];
struct bxe_sp_objs sp_objs[MAX_RSS_CHAINS];
device_t dev; /* parent device handle */
uint8_t unit; /* driver instance number */
int pcie_bus; /* PCIe bus number */
int pcie_device; /* PCIe device/slot number */
int pcie_func; /* PCIe function number */
uint8_t pfunc_rel; /* function relative */
uint8_t pfunc_abs; /* function absolute */
uint8_t path_id; /* function absolute */
#define SC_PATH(sc) (sc->path_id)
#define SC_PORT(sc) (sc->pfunc_rel & 1)
#define SC_FUNC(sc) (sc->pfunc_rel)
#define SC_ABS_FUNC(sc) (sc->pfunc_abs)
#define SC_VN(sc) (sc->pfunc_rel >> 1)
#define SC_L_ID(sc) (SC_VN(sc) << 2)
#define PORT_ID(sc) SC_PORT(sc)
#define PATH_ID(sc) SC_PATH(sc)
#define VNIC_ID(sc) SC_VN(sc)
#define FUNC_ID(sc) SC_FUNC(sc)
#define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
#define SC_FW_MB_IDX_VN(sc, vn) \
(SC_PORT(sc) + (vn) * \
((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
#define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
int if_capen; /* enabled interface capabilities */
struct bxe_devinfo devinfo;
char fw_ver_str[32];
char mf_mode_str[32];
char pci_link_str[32];
const struct iro *iro_array;
#ifdef BXE_CORE_LOCK_SX
struct sx core_sx;
char core_sx_name[32];
#else
struct mtx core_mtx;
char core_mtx_name[32];
#endif
struct mtx sp_mtx;
char sp_mtx_name[32];
struct mtx dmae_mtx;
char dmae_mtx_name[32];
struct mtx fwmb_mtx;
char fwmb_mtx_name[32];
struct mtx print_mtx;
char print_mtx_name[32];
struct mtx stats_mtx;
char stats_mtx_name[32];
struct mtx mcast_mtx;
char mcast_mtx_name[32];
#ifdef BXE_CORE_LOCK_SX
#define BXE_CORE_TRYLOCK(sc) sx_try_xlock(&sc->core_sx)
#define BXE_CORE_LOCK(sc) sx_xlock(&sc->core_sx)
#define BXE_CORE_UNLOCK(sc) sx_xunlock(&sc->core_sx)
#define BXE_CORE_LOCK_ASSERT(sc) sx_assert(&sc->core_sx, SA_XLOCKED)
#else
#define BXE_CORE_TRYLOCK(sc) mtx_trylock(&sc->core_mtx)
#define BXE_CORE_LOCK(sc) mtx_lock(&sc->core_mtx)
#define BXE_CORE_UNLOCK(sc) mtx_unlock(&sc->core_mtx)
#define BXE_CORE_LOCK_ASSERT(sc) mtx_assert(&sc->core_mtx, MA_OWNED)
#endif
#define BXE_SP_LOCK(sc) mtx_lock(&sc->sp_mtx)
#define BXE_SP_UNLOCK(sc) mtx_unlock(&sc->sp_mtx)
#define BXE_SP_LOCK_ASSERT(sc) mtx_assert(&sc->sp_mtx, MA_OWNED)
#define BXE_DMAE_LOCK(sc) mtx_lock(&sc->dmae_mtx)
#define BXE_DMAE_UNLOCK(sc) mtx_unlock(&sc->dmae_mtx)
#define BXE_DMAE_LOCK_ASSERT(sc) mtx_assert(&sc->dmae_mtx, MA_OWNED)
#define BXE_FWMB_LOCK(sc) mtx_lock(&sc->fwmb_mtx)
#define BXE_FWMB_UNLOCK(sc) mtx_unlock(&sc->fwmb_mtx)
#define BXE_FWMB_LOCK_ASSERT(sc) mtx_assert(&sc->fwmb_mtx, MA_OWNED)
#define BXE_PRINT_LOCK(sc) mtx_lock(&sc->print_mtx)
#define BXE_PRINT_UNLOCK(sc) mtx_unlock(&sc->print_mtx)
#define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
#define BXE_STATS_LOCK(sc) mtx_lock(&sc->stats_mtx)
#define BXE_STATS_UNLOCK(sc) mtx_unlock(&sc->stats_mtx)
#define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
#if __FreeBSD_version < 800000
#define BXE_MCAST_LOCK(sc) \
do { \
mtx_lock(&sc->mcast_mtx); \
IF_ADDR_LOCK(sc->ifp); \
} while (0)
#define BXE_MCAST_UNLOCK(sc) \
do { \
IF_ADDR_UNLOCK(sc->ifp); \
mtx_unlock(&sc->mcast_mtx); \
} while (0)
#else
#define BXE_MCAST_LOCK(sc) \
do { \
mtx_lock(&sc->mcast_mtx); \
if_maddr_rlock(sc->ifp); \
} while (0)
#define BXE_MCAST_UNLOCK(sc) \
do { \
if_maddr_runlock(sc->ifp); \
mtx_unlock(&sc->mcast_mtx); \
} while (0)
#endif
#define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
int dmae_ready;
#define DMAE_READY(sc) (sc->dmae_ready)
struct ecore_credit_pool_obj vlans_pool;
struct ecore_credit_pool_obj macs_pool;
struct ecore_rx_mode_obj rx_mode_obj;
struct ecore_mcast_obj mcast_obj;
struct ecore_rss_config_obj rss_conf_obj;
struct ecore_func_sp_obj func_obj;
uint16_t fw_seq;
uint16_t fw_drv_pulse_wr_seq;
uint32_t func_stx;
struct elink_params link_params;
struct elink_vars link_vars;
uint32_t link_cnt;
struct bxe_link_report_data last_reported_link;
char mac_addr_str[32];
int last_reported_link_state;
int tx_ring_size;
int rx_ring_size;
int wol;
int is_leader;
int recovery_state;
#define BXE_RECOVERY_DONE 1
#define BXE_RECOVERY_INIT 2
#define BXE_RECOVERY_WAIT 3
#define BXE_RECOVERY_FAILED 4
#define BXE_RECOVERY_NIC_LOADING 5
uint32_t rx_mode;
#define BXE_RX_MODE_NONE 0
#define BXE_RX_MODE_NORMAL 1
#define BXE_RX_MODE_ALLMULTI 2
#define BXE_RX_MODE_PROMISC 3
#define BXE_MAX_MULTICAST 64
struct bxe_port port;
struct cmng_init cmng;
/* user configs */
int num_queues;
int max_rx_bufs;
int hc_rx_ticks;
int hc_tx_ticks;
int rx_budget;
int max_aggregation_size;
int mrrs;
int autogreeen;
#define AUTO_GREEN_HW_DEFAULT 0
#define AUTO_GREEN_FORCE_ON 1
#define AUTO_GREEN_FORCE_OFF 2
int interrupt_mode;
#define INTR_MODE_INTX 0
#define INTR_MODE_MSI 1
#define INTR_MODE_MSIX 2
int udp_rss;
/* interrupt allocations */
struct bxe_intr intr[MAX_RSS_CHAINS+1];
int intr_count;
uint8_t igu_dsb_id;
uint8_t igu_base_sb;
uint8_t igu_sb_cnt;
//uint8_t min_msix_vec_cnt;
uint32_t igu_base_addr;
//bus_addr_t def_status_blk_mapping;
uint8_t base_fw_ndsb;
#define DEF_SB_IGU_ID 16
#define DEF_SB_ID HC_SP_SB_ID
/* parent bus DMA tag */
bus_dma_tag_t parent_dma_tag;
/* default status block */
struct bxe_dma def_sb_dma;
struct host_sp_status_block *def_sb;
uint16_t def_idx;
uint16_t def_att_idx;
uint32_t attn_state;
struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS];
/* general SP events - stats query, cfc delete, etc */
#define HC_SP_INDEX_ETH_DEF_CONS 3
/* EQ completions */
#define HC_SP_INDEX_EQ_CONS 7
/* FCoE L2 connection completions */
#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6
#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4
/* iSCSI L2 */
#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5
#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
/* event queue */
struct bxe_dma eq_dma;
union event_ring_elem *eq;
uint16_t eq_prod;
uint16_t eq_cons;
uint16_t *eq_cons_sb;
#define NUM_EQ_PAGES 1 /* must be a power of 2 */
#define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
#define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
#define EQ_DESC_MASK (NUM_EQ_DESC - 1)
#define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
#define NEXT_EQ_IDX(x) \
((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
((x) + 2) : ((x) + 1))
/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
#define EQ_DESC(x) ((x) & EQ_DESC_MASK)
/* slow path */
struct bxe_dma sp_dma;
struct bxe_slowpath *sp;
unsigned long sp_state;
/* slow path queue */
struct bxe_dma spq_dma;
struct eth_spe *spq;
#define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe))
#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
#define MAX_SPQ_PENDING 8
uint16_t spq_prod_idx;
struct eth_spe *spq_prod_bd;
struct eth_spe *spq_last_bd;
uint16_t *dsb_sp_prod;
//uint16_t *spq_hw_con;
//uint16_t spq_left;
volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
/* fw decompression buffer */
struct bxe_dma gz_buf_dma;
void *gz_buf;
z_streamp gz_strm;
uint32_t gz_outlen;
#define GUNZIP_BUF(sc) (sc->gz_buf)
#define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
#define GUNZIP_PHYS(sc) (sc->gz_buf_dma.paddr)
#define FW_BUF_SIZE 0x40000
const struct raw_op *init_ops;
const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
const uint32_t *init_data; /* data blob, 32 bit granularity */
uint32_t init_mode_flags;
#define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
/* PRAM blobs - raw data */
const uint8_t *tsem_int_table_data;
const uint8_t *tsem_pram_data;
const uint8_t *usem_int_table_data;
const uint8_t *usem_pram_data;
const uint8_t *xsem_int_table_data;
const uint8_t *xsem_pram_data;
const uint8_t *csem_int_table_data;
const uint8_t *csem_pram_data;
#define INIT_OPS(sc) (sc->init_ops)
#define INIT_OPS_OFFSETS(sc) (sc->init_ops_offsets)
#define INIT_DATA(sc) (sc->init_data)
#define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
#define INIT_TSEM_PRAM_DATA(sc) (sc->tsem_pram_data)
#define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
#define INIT_USEM_PRAM_DATA(sc) (sc->usem_pram_data)
#define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
#define INIT_XSEM_PRAM_DATA(sc) (sc->xsem_pram_data)
#define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
#define INIT_CSEM_PRAM_DATA(sc) (sc->csem_pram_data)
/* ILT
* For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
* context size we need 8 ILT entries.
*/
#define ILT_MAX_L2_LINES 8
struct hw_context context[ILT_MAX_L2_LINES];
struct ecore_ilt *ilt;
#define ILT_MAX_LINES 256
/* max supported number of RSS queues: IGU SBs minus one for CNIC */
#define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
/* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
#if 1
#define BXE_L2_MAX_CID(sc) \
(BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
#else
#define BXE_L2_MAX_CID(sc) /* OOO + FWD */ \
(BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
#endif
#if 1
#define BXE_L2_CID_COUNT(sc) \
(BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
#else
#define BXE_L2_CID_COUNT(sc) /* OOO + FWD */ \
(BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
#endif
#define L2_ILT_LINES(sc) \
(DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
int qm_cid_count;
uint8_t dropless_fc;
#if 0
struct bxe_dma *t2;
#endif
/* total number of FW statistics requests */
uint8_t fw_stats_num;
/*
* This is a memory buffer that will contain both statistics ramrod
* request and data.
*/
struct bxe_dma fw_stats_dma;
/*
* FW statistics request shortcut (points at the beginning of fw_stats
* buffer).
*/
int fw_stats_req_size;
struct bxe_fw_stats_req *fw_stats_req;
bus_addr_t fw_stats_req_mapping;
/*
* FW statistics data shortcut (points at the beginning of fw_stats
* buffer + fw_stats_req_size).
*/
int fw_stats_data_size;
struct bxe_fw_stats_data *fw_stats_data;
bus_addr_t fw_stats_data_mapping;
/* tracking a pending STAT_QUERY ramrod */
uint16_t stats_pending;
/* number of completed statistics ramrods */
uint16_t stats_comp;
uint16_t stats_counter;
uint8_t stats_init;
int stats_state;
struct bxe_eth_stats eth_stats;
struct host_func_stats func_stats;
struct bxe_eth_stats_old eth_stats_old;
struct bxe_net_stats_old net_stats_old;
struct bxe_fw_port_stats_old fw_stats_old;
struct dmae_command stats_dmae; /* used by dmae command loader */
int executer_idx;
int mtu;
/* LLDP params */
struct bxe_config_lldp_params lldp_config_params;
/* DCB support on/off */
int dcb_state;
#define BXE_DCB_STATE_OFF 0
#define BXE_DCB_STATE_ON 1
/* DCBX engine mode */
int dcbx_enabled;
#define BXE_DCBX_ENABLED_OFF 0
#define BXE_DCBX_ENABLED_ON_NEG_OFF 1
#define BXE_DCBX_ENABLED_ON_NEG_ON 2
#define BXE_DCBX_ENABLED_INVALID -1
uint8_t dcbx_mode_uset;
struct bxe_config_dcbx_params dcbx_config_params;
struct bxe_dcbx_port_params dcbx_port_params;
int dcb_version;
uint8_t cnic_support;
uint8_t cnic_enabled;
uint8_t cnic_loaded;
#define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
#define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
#define CNIC_LOADED(sc) 0 /* ((sc)->cnic_loaded) */
/* multiple tx classes of service */
uint8_t max_cos;
#define BXE_MAX_PRIORITY 8
/* priority to cos mapping */
uint8_t prio_to_cos[BXE_MAX_PRIORITY];
int panic;
struct cdev *ioctl_dev;
void *grc_dump;
int trigger_grcdump;
int grcdump_done;
}; /* struct bxe_softc */
/* IOCTL sub-commands for edebug and firmware upgrade */
#define BXE_IOC_RD_NVRAM 1
#define BXE_IOC_WR_NVRAM 2
#define BXE_IOC_STATS_SHOW_NUM 3
#define BXE_IOC_STATS_SHOW_STR 4
#define BXE_IOC_STATS_SHOW_CNT 5
struct bxe_nvram_data {
uint32_t op; /* ioctl sub-command */
uint32_t offset;
uint32_t len;
uint32_t value[1]; /* variable */
};
union bxe_stats_show_data {
uint32_t op; /* ioctl sub-command */
struct {
uint32_t num; /* return number of stats */
uint32_t len; /* length of each string item */
} desc;
/* variable length... */
char str[1]; /* holds names of desc.num stats, each desc.len in length */
/* variable length... */
uint64_t stats[1]; /* holds all stats */
};
/* function init flags */
#define FUNC_FLG_RSS 0x0001
#define FUNC_FLG_STATS 0x0002
/* FUNC_FLG_UNMATCHED 0x0004 */
#define FUNC_FLG_TPA 0x0008
#define FUNC_FLG_SPQ 0x0010
#define FUNC_FLG_LEADING 0x0020 /* PF only */
struct bxe_func_init_params {
bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
bus_addr_t spq_map; /* (dma) valid if FUNC_FLG_SPQ */
uint16_t func_flgs;
uint16_t func_id; /* abs function id */
uint16_t pf_id;
uint16_t spq_prod; /* valid if FUNC_FLG_SPQ */
};
/* memory resources reside at BARs 0, 2, 4 */
/* Run `pciconf -lb` to see mappings */
#define BAR0 0
#define BAR1 2
#define BAR2 4
#ifdef BXE_REG_NO_INLINE
uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
#define REG_RD8(sc, offset) bxe_reg_read8(sc, offset)
#define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
#define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
#define REG_WR8(sc, offset, val) bxe_reg_write8(sc, offset, val)
#define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
#define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
#else /* not BXE_REG_NO_INLINE */
#define REG_WR8(sc, offset, val) \
bus_space_write_1(sc->bar[BAR0].tag, \
sc->bar[BAR0].handle, \
offset, val)
#define REG_WR16(sc, offset, val) \
bus_space_write_2(sc->bar[BAR0].tag, \
sc->bar[BAR0].handle, \
offset, val)
#define REG_WR32(sc, offset, val) \
bus_space_write_4(sc->bar[BAR0].tag, \
sc->bar[BAR0].handle, \
offset, val)
#define REG_RD8(sc, offset) \
bus_space_read_1(sc->bar[BAR0].tag, \
sc->bar[BAR0].handle, \
offset)
#define REG_RD16(sc, offset) \
bus_space_read_2(sc->bar[BAR0].tag, \
sc->bar[BAR0].handle, \
offset)
#define REG_RD32(sc, offset) \
bus_space_read_4(sc->bar[BAR0].tag, \
sc->bar[BAR0].handle, \
offset)
#endif /* BXE_REG_NO_INLINE */
#define REG_RD(sc, offset) REG_RD32(sc, offset)
#define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
#define REG_RD_IND(sc, offset) bxe_reg_rd_ind(sc, offset)
#define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
#define BXE_SP(sc, var) (&(sc)->sp->var)
#define BXE_SP_MAPPING(sc, var) \
(sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
#define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
#define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
#if 0
#define bxe_fp(sc, nr, var) ((sc)->fp[nr].var)
#define bxe_sp_obj(sc, fp) ((sc)->sp_objs[(fp)->index])
#define bxe_fp_stats(sc, fp) (&(sc)->fp_stats[(fp)->index])
#define bxe_fp_qstats(sc, fp) (&(sc)->fp_stats[(fp)->index].eth_q_stats)
#endif
#define REG_RD_DMAE(sc, offset, valp, len32) \
do { \
bxe_read_dmae(sc, offset, len32); \
memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
} while (0)
#define REG_WR_DMAE(sc, offset, valp, len32) \
do { \
memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4); \
bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
} while (0)
#define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
REG_WR_DMAE(sc, offset, valp, len32)
#define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
REG_RD_DMAE(sc, offset, valp, len32)
#define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap) \
do { \
/* if (le32_swap) { */ \
/* BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
/* } */ \
memcpy(GUNZIP_BUF(sc), data, len32 * 4); \
ecore_write_big_buf_wb(sc, addr, len32); \
} while (0)
#define BXE_DB_MIN_SHIFT 3 /* 8 bytes */
#define BXE_DB_SHIFT 7 /* 128 bytes */
#if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
#error "Minimum DB doorbell stride is 8"
#endif
#define DPM_TRIGGER_TYPE 0x40
#define DOORBELL(sc, cid, val) \
do { \
bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle, \
((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
(uint32_t)val); \
} while(0)
#define SHMEM_ADDR(sc, field) \
(sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
#define SHMEM_RD(sc, field) REG_RD(sc, SHMEM_ADDR(sc, field))
#define SHMEM_RD16(sc, field) REG_RD16(sc, SHMEM_ADDR(sc, field))
#define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
#define SHMEM2_ADDR(sc, field) \
(sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
#define SHMEM2_HAS(sc, field) \
(sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) > \
offsetof(struct shmem2_region, field)))
#define SHMEM2_RD(sc, field) REG_RD(sc, SHMEM2_ADDR(sc, field))
#define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
#define MFCFG_ADDR(sc, field) \
(sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
#define MFCFG_RD(sc, field) REG_RD(sc, MFCFG_ADDR(sc, field))
#define MFCFG_RD16(sc, field) REG_RD16(sc, MFCFG_ADDR(sc, field))
#define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
/* DMAE command defines */
#define DMAE_TIMEOUT -1
#define DMAE_PCI_ERROR -2 /* E2 and onward */
#define DMAE_NOT_RDY -3
#define DMAE_PCI_ERR_FLAG 0x80000000
#define DMAE_SRC_PCI 0
#define DMAE_SRC_GRC 1
#define DMAE_DST_NONE 0
#define DMAE_DST_PCI 1
#define DMAE_DST_GRC 2
#define DMAE_COMP_PCI 0
#define DMAE_COMP_GRC 1
#define DMAE_COMP_REGULAR 0
#define DMAE_COM_SET_ERR 1
#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_COMMAND_SRC_SHIFT)
#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_COMMAND_SRC_SHIFT)
#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_COMMAND_DST_SHIFT)
#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_COMMAND_DST_SHIFT)
#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_COMMAND_C_DST_SHIFT)
#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_COMMAND_C_DST_SHIFT)
#define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_PORT_0 0
#define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
#define DMAE_SRC_PF 0
#define DMAE_SRC_VF 1
#define DMAE_DST_PF 0
#define DMAE_DST_VF 1
#define DMAE_C_SRC 0
#define DMAE_C_DST 1
#define DMAE_LEN32_RD_MAX 0x80
#define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
#define MAX_DMAE_C_PER_PORT 8
#define INIT_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
#define PMF_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
static const uint32_t dmae_reg_go_c[] = {
DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
};
#define ATTN_NIG_FOR_FUNC (1L << 8)
#define ATTN_SW_TIMER_4_FUNC (1L << 9)
#define GPIO_2_FUNC (1L << 10)
#define GPIO_3_FUNC (1L << 11)
#define GPIO_4_FUNC (1L << 12)
#define ATTN_GENERAL_ATTN_1 (1L << 13)
#define ATTN_GENERAL_ATTN_2 (1L << 14)
#define ATTN_GENERAL_ATTN_3 (1L << 15)
#define ATTN_GENERAL_ATTN_4 (1L << 13)
#define ATTN_GENERAL_ATTN_5 (1L << 14)
#define ATTN_GENERAL_ATTN_6 (1L << 15)
#define ATTN_HARD_WIRED_MASK 0xff00
#define ATTENTION_ID 4
#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
#define MAX_IGU_ATTN_ACK_TO 100
#define STORM_ASSERT_ARRAY_SIZE 50
#define BXE_PMF_LINK_ASSERT(sc) \
GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
#define BXE_MC_ASSERT_BITS \
(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
#define BXE_MCP_ASSERT \
GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
#define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
#define BXE_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
#define MULTI_MASK 0x7f
#define PFS_PER_PORT(sc) \
((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
#define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
#define FIRST_ABS_FUNC_IN_PORT(sc) \
((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ? \
PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
#define FOREACH_ABS_FUNC_IN_PORT(sc, i) \
for ((i) = FIRST_ABS_FUNC_IN_PORT(sc); \
(i) < MAX_FUNC_NUM; \
(i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
#define BXE_SWCID_SHIFT 17
#define BXE_SWCID_MASK ((0x1 << BXE_SWCID_SHIFT) - 1)
#define SW_CID(x) (le32toh(x) & BXE_SWCID_MASK)
#define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
#define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
#define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
#define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
#define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
/* must be used on a CID before placing it on a HW ring */
#define HW_CID(sc, x) \
((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
#define SPEED_10 10
#define SPEED_100 100
#define SPEED_1000 1000
#define SPEED_2500 2500
#define SPEED_10000 10000
#define PCI_PM_D0 1
#define PCI_PM_D3hot 2
int bxe_test_bit(int nr, volatile unsigned long * addr);
void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
void bxe_clear_bit(int nr, volatile unsigned long * addr);
int bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
int bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
int bxe_cmpxchg(volatile int *addr, int old, int new);
void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
uint32_t val);
uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
struct bxe_dma *dma, const char *msg);
void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
uint8_t dst_type, uint8_t with_comp,
uint8_t comp_type);
void bxe_post_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int idx);
void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
uint32_t dst_addr, uint32_t len32);
void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
uint32_t addr, uint32_t len);
void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
uint32_t cid);
void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
uint8_t sb_index, uint8_t disable,
uint16_t usec);
int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
uint32_t data_hi, uint32_t data_lo, int cmd_type);
void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
uint8_t segment, uint16_t index, uint8_t op,
uint8_t update);
void ecore_init_e1_firmware(struct bxe_softc *sc);
void ecore_init_e1h_firmware(struct bxe_softc *sc);
void ecore_init_e2_firmware(struct bxe_softc *sc);
void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
size_t size, uint32_t *data);
/*********************/
/* LOGGING AND DEBUG */
/*********************/
/* debug logging codepaths */
#define DBG_LOAD 0x00000001 /* load and unload */
#define DBG_INTR 0x00000002 /* interrupt handling */
#define DBG_SP 0x00000004 /* slowpath handling */
#define DBG_STATS 0x00000008 /* stats updates */
#define DBG_TX 0x00000010 /* packet transmit */
#define DBG_RX 0x00000020 /* packet receive */
#define DBG_PHY 0x00000040 /* phy/link handling */
#define DBG_IOCTL 0x00000080 /* ioctl handling */
#define DBG_MBUF 0x00000100 /* dumping mbuf info */
#define DBG_REGS 0x00000200 /* register access */
#define DBG_LRO 0x00000400 /* lro processing */
#define DBG_ASSERT 0x80000000 /* debug assert */
#define DBG_ALL 0xFFFFFFFF /* flying monkeys */
#define DBASSERT(sc, exp, msg) \
do { \
if (__predict_false(sc->debug & DBG_ASSERT)) { \
if (__predict_false(!(exp))) { \
panic msg; \
} \
} \
} while (0)
/* log a debug message */
#define BLOGD(sc, codepath, format, args...) \
do { \
if (__predict_false(sc->debug & (codepath))) { \
device_printf((sc)->dev, \
"%s(%s:%d) " format, \
__FUNCTION__, \
__FILE__, \
__LINE__, \
## args); \
} \
} while(0)
/* log a info message */
#define BLOGI(sc, format, args...) \
do { \
if (__predict_false(sc->debug)) { \
device_printf((sc)->dev, \
"%s(%s:%d) " format, \
__FUNCTION__, \
__FILE__, \
__LINE__, \
## args); \
} else { \
device_printf((sc)->dev, \
format, \
## args); \
} \
} while(0)
/* log a warning message */
#define BLOGW(sc, format, args...) \
do { \
if (__predict_false(sc->debug)) { \
device_printf((sc)->dev, \
"%s(%s:%d) WARNING: " format, \
__FUNCTION__, \
__FILE__, \
__LINE__, \
## args); \
} else { \
device_printf((sc)->dev, \
"WARNING: " format, \
## args); \
} \
} while(0)
/* log a error message */
#define BLOGE(sc, format, args...) \
do { \
if (__predict_false(sc->debug)) { \
device_printf((sc)->dev, \
"%s(%s:%d) ERROR: " format, \
__FUNCTION__, \
__FILE__, \
__LINE__, \
## args); \
} else { \
device_printf((sc)->dev, \
"ERROR: " format, \
## args); \
} \
sc->trigger_grcdump |= 0x1; \
} while(0)
#ifdef ECORE_STOP_ON_ERROR
#define bxe_panic(sc, msg) \
do { \
panic msg; \
} while (0)
#else
#define bxe_panic(sc, msg) \
device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
#endif
#define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
#define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
void bxe_dump_mem(struct bxe_softc *sc, char *tag,
uint8_t *mem, uint32_t len);
void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
struct mbuf *m, uint8_t contents);
/***********/
/* INLINES */
/***********/
static inline uint32_t
reg_poll(struct bxe_softc *sc,
uint32_t reg,
uint32_t expected,
int ms,
int wait)
{
uint32_t val;
do {
val = REG_RD(sc, reg);
if (val == expected) {
break;
}
ms -= wait;
DELAY(wait * 1000);
} while (ms > 0);
return (val);
}
static inline void
bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
{
mb(); /* status block is written to by the chip */
fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
}
static inline void
bxe_igu_ack_sb_gen(struct bxe_softc *sc,
uint8_t igu_sb_id,
uint8_t segment,
uint16_t index,
uint8_t op,
uint8_t update,
uint32_t igu_addr)
{
struct igu_regular cmd_data = {0};
cmd_data.sb_id_and_flags =
((index << IGU_REGULAR_SB_INDEX_SHIFT) |
(segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
(update << IGU_REGULAR_BUPDATE_SHIFT) |
(op << IGU_REGULAR_ENABLE_INT_SHIFT));
BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
cmd_data.sb_id_and_flags, igu_addr);
REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
/* Make sure that ACK is written */
bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
BUS_SPACE_BARRIER_WRITE);
mb();
}
static inline void
bxe_hc_ack_sb(struct bxe_softc *sc,
uint8_t sb_id,
uint8_t storm,
uint16_t index,
uint8_t op,
uint8_t update)
{
uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
COMMAND_REG_INT_ACK);
struct igu_ack_register igu_ack;
igu_ack.status_block_index = index;
igu_ack.sb_id_and_flags =
((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
(storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
(update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
(op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
/* Make sure that ACK is written */
bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
BUS_SPACE_BARRIER_WRITE);
mb();
}
static inline void
bxe_ack_sb(struct bxe_softc *sc,
uint8_t igu_sb_id,
uint8_t storm,
uint16_t index,
uint8_t op,
uint8_t update)
{
if (sc->devinfo.int_block == INT_BLOCK_HC)
bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
else {
uint8_t segment;
if (CHIP_INT_MODE_IS_BC(sc)) {
segment = storm;
} else if (igu_sb_id != sc->igu_dsb_id) {
segment = IGU_SEG_ACCESS_DEF;
} else if (storm == ATTENTION_ID) {
segment = IGU_SEG_ACCESS_ATTN;
} else {
segment = IGU_SEG_ACCESS_DEF;
}
bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
}
}
static inline uint16_t
bxe_hc_ack_int(struct bxe_softc *sc)
{
uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
COMMAND_REG_SIMD_MASK);
uint32_t result = REG_RD(sc, hc_addr);
mb();
return (result);
}
static inline uint16_t
bxe_igu_ack_int(struct bxe_softc *sc)
{
uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
uint32_t result = REG_RD(sc, igu_addr);
BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
result, igu_addr);
mb();
return (result);
}
static inline uint16_t
bxe_ack_int(struct bxe_softc *sc)
{
mb();
if (sc->devinfo.int_block == INT_BLOCK_HC) {
return (bxe_hc_ack_int(sc));
} else {
return (bxe_igu_ack_int(sc));
}
}
static inline int
func_by_vn(struct bxe_softc *sc,
int vn)
{
return (2 * vn + SC_PORT(sc));
}
/*
* Statistics ID are global per chip/path, while Client IDs for E1x
* are per port.
*/
static inline uint8_t
bxe_stats_id(struct bxe_fastpath *fp)
{
struct bxe_softc *sc = fp->sc;
if (!CHIP_IS_E1x(sc)) {
#if 0
/* there are special statistics counters for FCoE 136..140 */
if (IS_FCOE_FP(fp)) {
return (sc->cnic_base_cl_id + (sc->pf_num >> 1));
}
#endif
return (fp->cl_id);
}
return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
}
#endif /* __BXE_H__ */