freebsd-skq/sys/dev/oce/oce_if.c
Hans Petter Selasky 9fd573c39d Improve transmit sending offload, TSO, algorithm in general.
The current TSO limitation feature only takes the total number of
bytes in an mbuf chain into account and does not limit by the number
of mbufs in a chain. Some kinds of hardware is limited by two
factors. One is the fragment length and the second is the fragment
count. Both of these limits need to be taken into account when doing
TSO. Else some kinds of hardware might have to drop completely valid
mbuf chains because they cannot loaded into the given hardware's DMA
engine. The new way of doing TSO limitation has been made backwards
compatible as input from other FreeBSD developers and will use
defaults for values not set.

Reviewed by:	adrian, rmacklem
Sponsored by:	Mellanox Technologies
MFC after:	1 week
2014-09-22 08:27:27 +00:00

2360 lines
52 KiB
C

/*-
* Copyright (C) 2013 Emulex
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Emulex Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contact Information:
* freebsd-drivers@emulex.com
*
* Emulex
* 3333 Susan Street
* Costa Mesa, CA 92626
*/
/* $FreeBSD$ */
#include "opt_inet6.h"
#include "opt_inet.h"
#include "oce_if.h"
/* UE Status Low CSR */
static char *ue_status_low_desc[] = {
"CEV",
"CTX",
"DBUF",
"ERX",
"Host",
"MPU",
"NDMA",
"PTC ",
"RDMA ",
"RXF ",
"RXIPS ",
"RXULP0 ",
"RXULP1 ",
"RXULP2 ",
"TIM ",
"TPOST ",
"TPRE ",
"TXIPS ",
"TXULP0 ",
"TXULP1 ",
"UC ",
"WDMA ",
"TXULP2 ",
"HOST1 ",
"P0_OB_LINK ",
"P1_OB_LINK ",
"HOST_GPIO ",
"MBOX ",
"AXGMAC0",
"AXGMAC1",
"JTAG",
"MPU_INTPEND"
};
/* UE Status High CSR */
static char *ue_status_hi_desc[] = {
"LPCMEMHOST",
"MGMT_MAC",
"PCS0ONLINE",
"MPU_IRAM",
"PCS1ONLINE",
"PCTL0",
"PCTL1",
"PMEM",
"RR",
"TXPB",
"RXPP",
"XAUI",
"TXP",
"ARM",
"IPC",
"HOST2",
"HOST3",
"HOST4",
"HOST5",
"HOST6",
"HOST7",
"HOST8",
"HOST9",
"NETC",
"Unknown",
"Unknown",
"Unknown",
"Unknown",
"Unknown",
"Unknown",
"Unknown",
"Unknown"
};
/* Driver entry points prototypes */
static int oce_probe(device_t dev);
static int oce_attach(device_t dev);
static int oce_detach(device_t dev);
static int oce_shutdown(device_t dev);
static int oce_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
static void oce_init(void *xsc);
static int oce_multiq_start(struct ifnet *ifp, struct mbuf *m);
static void oce_multiq_flush(struct ifnet *ifp);
/* Driver interrupt routines protypes */
static void oce_intr(void *arg, int pending);
static int oce_setup_intr(POCE_SOFTC sc);
static int oce_fast_isr(void *arg);
static int oce_alloc_intr(POCE_SOFTC sc, int vector,
void (*isr) (void *arg, int pending));
/* Media callbacks prototypes */
static void oce_media_status(struct ifnet *ifp, struct ifmediareq *req);
static int oce_media_change(struct ifnet *ifp);
/* Transmit routines prototypes */
static int oce_tx(POCE_SOFTC sc, struct mbuf **mpp, int wq_index);
static void oce_tx_restart(POCE_SOFTC sc, struct oce_wq *wq);
static void oce_tx_complete(struct oce_wq *wq, uint32_t wqe_idx,
uint32_t status);
static int oce_multiq_transmit(struct ifnet *ifp, struct mbuf *m,
struct oce_wq *wq);
/* Receive routines prototypes */
static void oce_discard_rx_comp(struct oce_rq *rq, struct oce_nic_rx_cqe *cqe);
static int oce_cqe_vtp_valid(POCE_SOFTC sc, struct oce_nic_rx_cqe *cqe);
static int oce_cqe_portid_valid(POCE_SOFTC sc, struct oce_nic_rx_cqe *cqe);
static void oce_rx(struct oce_rq *rq, uint32_t rqe_idx,
struct oce_nic_rx_cqe *cqe);
/* Helper function prototypes in this file */
static int oce_attach_ifp(POCE_SOFTC sc);
static void oce_add_vlan(void *arg, struct ifnet *ifp, uint16_t vtag);
static void oce_del_vlan(void *arg, struct ifnet *ifp, uint16_t vtag);
static int oce_vid_config(POCE_SOFTC sc);
static void oce_mac_addr_set(POCE_SOFTC sc);
static int oce_handle_passthrough(struct ifnet *ifp, caddr_t data);
static void oce_local_timer(void *arg);
static void oce_if_deactivate(POCE_SOFTC sc);
static void oce_if_activate(POCE_SOFTC sc);
static void setup_max_queues_want(POCE_SOFTC sc);
static void update_queues_got(POCE_SOFTC sc);
static void process_link_state(POCE_SOFTC sc,
struct oce_async_cqe_link_state *acqe);
static int oce_tx_asic_stall_verify(POCE_SOFTC sc, struct mbuf *m);
static void oce_get_config(POCE_SOFTC sc);
static struct mbuf *oce_insert_vlan_tag(POCE_SOFTC sc, struct mbuf *m, boolean_t *complete);
/* IP specific */
#if defined(INET6) || defined(INET)
static int oce_init_lro(POCE_SOFTC sc);
static void oce_rx_flush_lro(struct oce_rq *rq);
static struct mbuf * oce_tso_setup(POCE_SOFTC sc, struct mbuf **mpp);
#endif
static device_method_t oce_dispatch[] = {
DEVMETHOD(device_probe, oce_probe),
DEVMETHOD(device_attach, oce_attach),
DEVMETHOD(device_detach, oce_detach),
DEVMETHOD(device_shutdown, oce_shutdown),
DEVMETHOD_END
};
static driver_t oce_driver = {
"oce",
oce_dispatch,
sizeof(OCE_SOFTC)
};
static devclass_t oce_devclass;
DRIVER_MODULE(oce, pci, oce_driver, oce_devclass, 0, 0);
MODULE_DEPEND(oce, pci, 1, 1, 1);
MODULE_DEPEND(oce, ether, 1, 1, 1);
MODULE_VERSION(oce, 1);
/* global vars */
const char component_revision[32] = {"///" COMPONENT_REVISION "///"};
/* Module capabilites and parameters */
uint32_t oce_max_rsp_handled = OCE_MAX_RSP_HANDLED;
uint32_t oce_enable_rss = OCE_MODCAP_RSS;
TUNABLE_INT("hw.oce.max_rsp_handled", &oce_max_rsp_handled);
TUNABLE_INT("hw.oce.enable_rss", &oce_enable_rss);
/* Supported devices table */
static uint32_t supportedDevices[] = {
(PCI_VENDOR_SERVERENGINES << 16) | PCI_PRODUCT_BE2,
(PCI_VENDOR_SERVERENGINES << 16) | PCI_PRODUCT_BE3,
(PCI_VENDOR_EMULEX << 16) | PCI_PRODUCT_BE3,
(PCI_VENDOR_EMULEX << 16) | PCI_PRODUCT_XE201,
(PCI_VENDOR_EMULEX << 16) | PCI_PRODUCT_XE201_VF,
(PCI_VENDOR_EMULEX << 16) | PCI_PRODUCT_SH
};
/*****************************************************************************
* Driver entry points functions *
*****************************************************************************/
static int
oce_probe(device_t dev)
{
uint16_t vendor = 0;
uint16_t device = 0;
int i = 0;
char str[256] = {0};
POCE_SOFTC sc;
sc = device_get_softc(dev);
bzero(sc, sizeof(OCE_SOFTC));
sc->dev = dev;
vendor = pci_get_vendor(dev);
device = pci_get_device(dev);
for (i = 0; i < (sizeof(supportedDevices) / sizeof(uint32_t)); i++) {
if (vendor == ((supportedDevices[i] >> 16) & 0xffff)) {
if (device == (supportedDevices[i] & 0xffff)) {
sprintf(str, "%s:%s", "Emulex CNA NIC function",
component_revision);
device_set_desc_copy(dev, str);
switch (device) {
case PCI_PRODUCT_BE2:
sc->flags |= OCE_FLAGS_BE2;
break;
case PCI_PRODUCT_BE3:
sc->flags |= OCE_FLAGS_BE3;
break;
case PCI_PRODUCT_XE201:
case PCI_PRODUCT_XE201_VF:
sc->flags |= OCE_FLAGS_XE201;
break;
case PCI_PRODUCT_SH:
sc->flags |= OCE_FLAGS_SH;
break;
default:
return ENXIO;
}
return BUS_PROBE_DEFAULT;
}
}
}
return ENXIO;
}
static int
oce_attach(device_t dev)
{
POCE_SOFTC sc;
int rc = 0;
sc = device_get_softc(dev);
rc = oce_hw_pci_alloc(sc);
if (rc)
return rc;
sc->tx_ring_size = OCE_TX_RING_SIZE;
sc->rx_ring_size = OCE_RX_RING_SIZE;
sc->rq_frag_size = OCE_RQ_BUF_SIZE;
sc->flow_control = OCE_DEFAULT_FLOW_CONTROL;
sc->promisc = OCE_DEFAULT_PROMISCUOUS;
LOCK_CREATE(&sc->bmbx_lock, "Mailbox_lock");
LOCK_CREATE(&sc->dev_lock, "Device_lock");
/* initialise the hardware */
rc = oce_hw_init(sc);
if (rc)
goto pci_res_free;
oce_get_config(sc);
setup_max_queues_want(sc);
rc = oce_setup_intr(sc);
if (rc)
goto mbox_free;
rc = oce_queue_init_all(sc);
if (rc)
goto intr_free;
rc = oce_attach_ifp(sc);
if (rc)
goto queues_free;
#if defined(INET6) || defined(INET)
rc = oce_init_lro(sc);
if (rc)
goto ifp_free;
#endif
rc = oce_hw_start(sc);
if (rc)
goto lro_free;
sc->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
oce_add_vlan, sc, EVENTHANDLER_PRI_FIRST);
sc->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
oce_del_vlan, sc, EVENTHANDLER_PRI_FIRST);
rc = oce_stats_init(sc);
if (rc)
goto vlan_free;
oce_add_sysctls(sc);
callout_init(&sc->timer, CALLOUT_MPSAFE);
rc = callout_reset(&sc->timer, 2 * hz, oce_local_timer, sc);
if (rc)
goto stats_free;
return 0;
stats_free:
callout_drain(&sc->timer);
oce_stats_free(sc);
vlan_free:
if (sc->vlan_attach)
EVENTHANDLER_DEREGISTER(vlan_config, sc->vlan_attach);
if (sc->vlan_detach)
EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vlan_detach);
oce_hw_intr_disable(sc);
lro_free:
#if defined(INET6) || defined(INET)
oce_free_lro(sc);
ifp_free:
#endif
ether_ifdetach(sc->ifp);
if_free(sc->ifp);
queues_free:
oce_queue_release_all(sc);
intr_free:
oce_intr_free(sc);
mbox_free:
oce_dma_free(sc, &sc->bsmbx);
pci_res_free:
oce_hw_pci_free(sc);
LOCK_DESTROY(&sc->dev_lock);
LOCK_DESTROY(&sc->bmbx_lock);
return rc;
}
static int
oce_detach(device_t dev)
{
POCE_SOFTC sc = device_get_softc(dev);
LOCK(&sc->dev_lock);
oce_if_deactivate(sc);
UNLOCK(&sc->dev_lock);
callout_drain(&sc->timer);
if (sc->vlan_attach != NULL)
EVENTHANDLER_DEREGISTER(vlan_config, sc->vlan_attach);
if (sc->vlan_detach != NULL)
EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vlan_detach);
ether_ifdetach(sc->ifp);
if_free(sc->ifp);
oce_hw_shutdown(sc);
bus_generic_detach(dev);
return 0;
}
static int
oce_shutdown(device_t dev)
{
int rc;
rc = oce_detach(dev);
return rc;
}
static int
oce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct ifreq *ifr = (struct ifreq *)data;
POCE_SOFTC sc = ifp->if_softc;
int rc = 0;
uint32_t u;
switch (command) {
case SIOCGIFMEDIA:
rc = ifmedia_ioctl(ifp, ifr, &sc->media, command);
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu > OCE_MAX_MTU)
rc = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
oce_init(sc);
}
device_printf(sc->dev, "Interface Up\n");
} else {
LOCK(&sc->dev_lock);
sc->ifp->if_drv_flags &=
~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
oce_if_deactivate(sc);
UNLOCK(&sc->dev_lock);
device_printf(sc->dev, "Interface Down\n");
}
if ((ifp->if_flags & IFF_PROMISC) && !sc->promisc) {
if (!oce_rxf_set_promiscuous(sc, (1 | (1 << 1))))
sc->promisc = TRUE;
} else if (!(ifp->if_flags & IFF_PROMISC) && sc->promisc) {
if (!oce_rxf_set_promiscuous(sc, 0))
sc->promisc = FALSE;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
rc = oce_hw_update_multicast(sc);
if (rc)
device_printf(sc->dev,
"Update multicast address failed\n");
break;
case SIOCSIFCAP:
u = ifr->ifr_reqcap ^ ifp->if_capenable;
if (u & IFCAP_TXCSUM) {
ifp->if_capenable ^= IFCAP_TXCSUM;
ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
if (IFCAP_TSO & ifp->if_capenable &&
!(IFCAP_TXCSUM & ifp->if_capenable)) {
ifp->if_capenable &= ~IFCAP_TSO;
ifp->if_hwassist &= ~CSUM_TSO;
if_printf(ifp,
"TSO disabled due to -txcsum.\n");
}
}
if (u & IFCAP_RXCSUM)
ifp->if_capenable ^= IFCAP_RXCSUM;
if (u & IFCAP_TSO4) {
ifp->if_capenable ^= IFCAP_TSO4;
if (IFCAP_TSO & ifp->if_capenable) {
if (IFCAP_TXCSUM & ifp->if_capenable)
ifp->if_hwassist |= CSUM_TSO;
else {
ifp->if_capenable &= ~IFCAP_TSO;
ifp->if_hwassist &= ~CSUM_TSO;
if_printf(ifp,
"Enable txcsum first.\n");
rc = EAGAIN;
}
} else
ifp->if_hwassist &= ~CSUM_TSO;
}
if (u & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (u & IFCAP_VLAN_HWFILTER) {
ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
oce_vid_config(sc);
}
#if defined(INET6) || defined(INET)
if (u & IFCAP_LRO)
ifp->if_capenable ^= IFCAP_LRO;
#endif
break;
case SIOCGPRIVATE_0:
rc = oce_handle_passthrough(ifp, data);
break;
default:
rc = ether_ioctl(ifp, command, data);
break;
}
return rc;
}
static void
oce_init(void *arg)
{
POCE_SOFTC sc = arg;
LOCK(&sc->dev_lock);
if (sc->ifp->if_flags & IFF_UP) {
oce_if_deactivate(sc);
oce_if_activate(sc);
}
UNLOCK(&sc->dev_lock);
}
static int
oce_multiq_start(struct ifnet *ifp, struct mbuf *m)
{
POCE_SOFTC sc = ifp->if_softc;
struct oce_wq *wq = NULL;
int queue_index = 0;
int status = 0;
if ((m->m_flags & M_FLOWID) != 0)
queue_index = m->m_pkthdr.flowid % sc->nwqs;
wq = sc->wq[queue_index];
LOCK(&wq->tx_lock);
status = oce_multiq_transmit(ifp, m, wq);
UNLOCK(&wq->tx_lock);
return status;
}
static void
oce_multiq_flush(struct ifnet *ifp)
{
POCE_SOFTC sc = ifp->if_softc;
struct mbuf *m;
int i = 0;
for (i = 0; i < sc->nwqs; i++) {
while ((m = buf_ring_dequeue_sc(sc->wq[i]->br)) != NULL)
m_freem(m);
}
if_qflush(ifp);
}
/*****************************************************************************
* Driver interrupt routines functions *
*****************************************************************************/
static void
oce_intr(void *arg, int pending)
{
POCE_INTR_INFO ii = (POCE_INTR_INFO) arg;
POCE_SOFTC sc = ii->sc;
struct oce_eq *eq = ii->eq;
struct oce_eqe *eqe;
struct oce_cq *cq = NULL;
int i, num_eqes = 0;
bus_dmamap_sync(eq->ring->dma.tag, eq->ring->dma.map,
BUS_DMASYNC_POSTWRITE);
do {
eqe = RING_GET_CONSUMER_ITEM_VA(eq->ring, struct oce_eqe);
if (eqe->evnt == 0)
break;
eqe->evnt = 0;
bus_dmamap_sync(eq->ring->dma.tag, eq->ring->dma.map,
BUS_DMASYNC_POSTWRITE);
RING_GET(eq->ring, 1);
num_eqes++;
} while (TRUE);
if (!num_eqes)
goto eq_arm; /* Spurious */
/* Clear EQ entries, but dont arm */
oce_arm_eq(sc, eq->eq_id, num_eqes, FALSE, FALSE);
/* Process TX, RX and MCC. But dont arm CQ*/
for (i = 0; i < eq->cq_valid; i++) {
cq = eq->cq[i];
(*cq->cq_handler)(cq->cb_arg);
}
/* Arm all cqs connected to this EQ */
for (i = 0; i < eq->cq_valid; i++) {
cq = eq->cq[i];
oce_arm_cq(sc, cq->cq_id, 0, TRUE);
}
eq_arm:
oce_arm_eq(sc, eq->eq_id, 0, TRUE, FALSE);
return;
}
static int
oce_setup_intr(POCE_SOFTC sc)
{
int rc = 0, use_intx = 0;
int vector = 0, req_vectors = 0;
if (is_rss_enabled(sc))
req_vectors = MAX((sc->nrqs - 1), sc->nwqs);
else
req_vectors = 1;
if (sc->flags & OCE_FLAGS_MSIX_CAPABLE) {
sc->intr_count = req_vectors;
rc = pci_alloc_msix(sc->dev, &sc->intr_count);
if (rc != 0) {
use_intx = 1;
pci_release_msi(sc->dev);
} else
sc->flags |= OCE_FLAGS_USING_MSIX;
} else
use_intx = 1;
if (use_intx)
sc->intr_count = 1;
/* Scale number of queues based on intr we got */
update_queues_got(sc);
if (use_intx) {
device_printf(sc->dev, "Using legacy interrupt\n");
rc = oce_alloc_intr(sc, vector, oce_intr);
if (rc)
goto error;
} else {
for (; vector < sc->intr_count; vector++) {
rc = oce_alloc_intr(sc, vector, oce_intr);
if (rc)
goto error;
}
}
return 0;
error:
oce_intr_free(sc);
return rc;
}
static int
oce_fast_isr(void *arg)
{
POCE_INTR_INFO ii = (POCE_INTR_INFO) arg;
POCE_SOFTC sc = ii->sc;
if (ii->eq == NULL)
return FILTER_STRAY;
oce_arm_eq(sc, ii->eq->eq_id, 0, FALSE, TRUE);
taskqueue_enqueue_fast(ii->tq, &ii->task);
ii->eq->intr++;
return FILTER_HANDLED;
}
static int
oce_alloc_intr(POCE_SOFTC sc, int vector, void (*isr) (void *arg, int pending))
{
POCE_INTR_INFO ii = &sc->intrs[vector];
int rc = 0, rr;
if (vector >= OCE_MAX_EQ)
return (EINVAL);
/* Set the resource id for the interrupt.
* MSIx is vector + 1 for the resource id,
* INTx is 0 for the resource id.
*/
if (sc->flags & OCE_FLAGS_USING_MSIX)
rr = vector + 1;
else
rr = 0;
ii->intr_res = bus_alloc_resource_any(sc->dev,
SYS_RES_IRQ,
&rr, RF_ACTIVE|RF_SHAREABLE);
ii->irq_rr = rr;
if (ii->intr_res == NULL) {
device_printf(sc->dev,
"Could not allocate interrupt\n");
rc = ENXIO;
return rc;
}
TASK_INIT(&ii->task, 0, isr, ii);
ii->vector = vector;
sprintf(ii->task_name, "oce_task[%d]", ii->vector);
ii->tq = taskqueue_create_fast(ii->task_name,
M_NOWAIT,
taskqueue_thread_enqueue,
&ii->tq);
taskqueue_start_threads(&ii->tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->dev));
ii->sc = sc;
rc = bus_setup_intr(sc->dev,
ii->intr_res,
INTR_TYPE_NET,
oce_fast_isr, NULL, ii, &ii->tag);
return rc;
}
void
oce_intr_free(POCE_SOFTC sc)
{
int i = 0;
for (i = 0; i < sc->intr_count; i++) {
if (sc->intrs[i].tag != NULL)
bus_teardown_intr(sc->dev, sc->intrs[i].intr_res,
sc->intrs[i].tag);
if (sc->intrs[i].tq != NULL)
taskqueue_free(sc->intrs[i].tq);
if (sc->intrs[i].intr_res != NULL)
bus_release_resource(sc->dev, SYS_RES_IRQ,
sc->intrs[i].irq_rr,
sc->intrs[i].intr_res);
sc->intrs[i].tag = NULL;
sc->intrs[i].intr_res = NULL;
}
if (sc->flags & OCE_FLAGS_USING_MSIX)
pci_release_msi(sc->dev);
}
/******************************************************************************
* Media callbacks functions *
******************************************************************************/
static void
oce_media_status(struct ifnet *ifp, struct ifmediareq *req)
{
POCE_SOFTC sc = (POCE_SOFTC) ifp->if_softc;
req->ifm_status = IFM_AVALID;
req->ifm_active = IFM_ETHER;
if (sc->link_status == 1)
req->ifm_status |= IFM_ACTIVE;
else
return;
switch (sc->link_speed) {
case 1: /* 10 Mbps */
req->ifm_active |= IFM_10_T | IFM_FDX;
sc->speed = 10;
break;
case 2: /* 100 Mbps */
req->ifm_active |= IFM_100_TX | IFM_FDX;
sc->speed = 100;
break;
case 3: /* 1 Gbps */
req->ifm_active |= IFM_1000_T | IFM_FDX;
sc->speed = 1000;
break;
case 4: /* 10 Gbps */
req->ifm_active |= IFM_10G_SR | IFM_FDX;
sc->speed = 10000;
break;
case 5: /* 20 Gbps */
req->ifm_active |= IFM_10G_SR | IFM_FDX;
sc->speed = 20000;
break;
case 6: /* 25 Gbps */
req->ifm_active |= IFM_10G_SR | IFM_FDX;
sc->speed = 25000;
break;
case 7: /* 40 Gbps */
req->ifm_active |= IFM_40G_SR4 | IFM_FDX;
sc->speed = 40000;
break;
default:
sc->speed = 0;
break;
}
return;
}
int
oce_media_change(struct ifnet *ifp)
{
return 0;
}
/*****************************************************************************
* Transmit routines functions *
*****************************************************************************/
static int
oce_tx(POCE_SOFTC sc, struct mbuf **mpp, int wq_index)
{
int rc = 0, i, retry_cnt = 0;
bus_dma_segment_t segs[OCE_MAX_TX_ELEMENTS];
struct mbuf *m, *m_temp;
struct oce_wq *wq = sc->wq[wq_index];
struct oce_packet_desc *pd;
struct oce_nic_hdr_wqe *nichdr;
struct oce_nic_frag_wqe *nicfrag;
int num_wqes;
uint32_t reg_value;
boolean_t complete = TRUE;
m = *mpp;
if (!m)
return EINVAL;
if (!(m->m_flags & M_PKTHDR)) {
rc = ENXIO;
goto free_ret;
}
if(oce_tx_asic_stall_verify(sc, m)) {
m = oce_insert_vlan_tag(sc, m, &complete);
if(!m) {
device_printf(sc->dev, "Insertion unsuccessful\n");
return 0;
}
}
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
/* consolidate packet buffers for TSO/LSO segment offload */
#if defined(INET6) || defined(INET)
m = oce_tso_setup(sc, mpp);
#else
m = NULL;
#endif
if (m == NULL) {
rc = ENXIO;
goto free_ret;
}
}
pd = &wq->pckts[wq->pkt_desc_head];
retry:
rc = bus_dmamap_load_mbuf_sg(wq->tag,
pd->map,
m, segs, &pd->nsegs, BUS_DMA_NOWAIT);
if (rc == 0) {
num_wqes = pd->nsegs + 1;
if (IS_BE(sc) || IS_SH(sc)) {
/*Dummy required only for BE3.*/
if (num_wqes & 1)
num_wqes++;
}
if (num_wqes >= RING_NUM_FREE(wq->ring)) {
bus_dmamap_unload(wq->tag, pd->map);
return EBUSY;
}
atomic_store_rel_int(&wq->pkt_desc_head,
(wq->pkt_desc_head + 1) % \
OCE_WQ_PACKET_ARRAY_SIZE);
bus_dmamap_sync(wq->tag, pd->map, BUS_DMASYNC_PREWRITE);
pd->mbuf = m;
nichdr =
RING_GET_PRODUCER_ITEM_VA(wq->ring, struct oce_nic_hdr_wqe);
nichdr->u0.dw[0] = 0;
nichdr->u0.dw[1] = 0;
nichdr->u0.dw[2] = 0;
nichdr->u0.dw[3] = 0;
nichdr->u0.s.complete = complete;
nichdr->u0.s.event = 1;
nichdr->u0.s.crc = 1;
nichdr->u0.s.forward = 0;
nichdr->u0.s.ipcs = (m->m_pkthdr.csum_flags & CSUM_IP) ? 1 : 0;
nichdr->u0.s.udpcs =
(m->m_pkthdr.csum_flags & CSUM_UDP) ? 1 : 0;
nichdr->u0.s.tcpcs =
(m->m_pkthdr.csum_flags & CSUM_TCP) ? 1 : 0;
nichdr->u0.s.num_wqe = num_wqes;
nichdr->u0.s.total_length = m->m_pkthdr.len;
if (m->m_flags & M_VLANTAG) {
nichdr->u0.s.vlan = 1; /*Vlan present*/
nichdr->u0.s.vlan_tag = m->m_pkthdr.ether_vtag;
}
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
if (m->m_pkthdr.tso_segsz) {
nichdr->u0.s.lso = 1;
nichdr->u0.s.lso_mss = m->m_pkthdr.tso_segsz;
}
if (!IS_BE(sc) || !IS_SH(sc))
nichdr->u0.s.ipcs = 1;
}
RING_PUT(wq->ring, 1);
atomic_add_int(&wq->ring->num_used, 1);
for (i = 0; i < pd->nsegs; i++) {
nicfrag =
RING_GET_PRODUCER_ITEM_VA(wq->ring,
struct oce_nic_frag_wqe);
nicfrag->u0.s.rsvd0 = 0;
nicfrag->u0.s.frag_pa_hi = ADDR_HI(segs[i].ds_addr);
nicfrag->u0.s.frag_pa_lo = ADDR_LO(segs[i].ds_addr);
nicfrag->u0.s.frag_len = segs[i].ds_len;
pd->wqe_idx = wq->ring->pidx;
RING_PUT(wq->ring, 1);
atomic_add_int(&wq->ring->num_used, 1);
}
if (num_wqes > (pd->nsegs + 1)) {
nicfrag =
RING_GET_PRODUCER_ITEM_VA(wq->ring,
struct oce_nic_frag_wqe);
nicfrag->u0.dw[0] = 0;
nicfrag->u0.dw[1] = 0;
nicfrag->u0.dw[2] = 0;
nicfrag->u0.dw[3] = 0;
pd->wqe_idx = wq->ring->pidx;
RING_PUT(wq->ring, 1);
atomic_add_int(&wq->ring->num_used, 1);
pd->nsegs++;
}
if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, 1);
wq->tx_stats.tx_reqs++;
wq->tx_stats.tx_wrbs += num_wqes;
wq->tx_stats.tx_bytes += m->m_pkthdr.len;
wq->tx_stats.tx_pkts++;
bus_dmamap_sync(wq->ring->dma.tag, wq->ring->dma.map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
reg_value = (num_wqes << 16) | wq->wq_id;
OCE_WRITE_REG32(sc, db, wq->db_offset, reg_value);
} else if (rc == EFBIG) {
if (retry_cnt == 0) {
m_temp = m_defrag(m, M_NOWAIT);
if (m_temp == NULL)
goto free_ret;
m = m_temp;
*mpp = m_temp;
retry_cnt = retry_cnt + 1;
goto retry;
} else
goto free_ret;
} else if (rc == ENOMEM)
return rc;
else
goto free_ret;
return 0;
free_ret:
m_freem(*mpp);
*mpp = NULL;
return rc;
}
static void
oce_tx_complete(struct oce_wq *wq, uint32_t wqe_idx, uint32_t status)
{
struct oce_packet_desc *pd;
POCE_SOFTC sc = (POCE_SOFTC) wq->parent;
struct mbuf *m;
pd = &wq->pckts[wq->pkt_desc_tail];
atomic_store_rel_int(&wq->pkt_desc_tail,
(wq->pkt_desc_tail + 1) % OCE_WQ_PACKET_ARRAY_SIZE);
atomic_subtract_int(&wq->ring->num_used, pd->nsegs + 1);
bus_dmamap_sync(wq->tag, pd->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(wq->tag, pd->map);
m = pd->mbuf;
m_freem(m);
pd->mbuf = NULL;
if (sc->ifp->if_drv_flags & IFF_DRV_OACTIVE) {
if (wq->ring->num_used < (wq->ring->num_items / 2)) {
sc->ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE);
oce_tx_restart(sc, wq);
}
}
}
static void
oce_tx_restart(POCE_SOFTC sc, struct oce_wq *wq)
{
if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != IFF_DRV_RUNNING)
return;
#if __FreeBSD_version >= 800000
if (!drbr_empty(sc->ifp, wq->br))
#else
if (!IFQ_DRV_IS_EMPTY(&sc->ifp->if_snd))
#endif
taskqueue_enqueue_fast(taskqueue_swi, &wq->txtask);
}
#if defined(INET6) || defined(INET)
static struct mbuf *
oce_tso_setup(POCE_SOFTC sc, struct mbuf **mpp)
{
struct mbuf *m;
#ifdef INET
struct ip *ip;
#endif
#ifdef INET6
struct ip6_hdr *ip6;
#endif
struct ether_vlan_header *eh;
struct tcphdr *th;
uint16_t etype;
int total_len = 0, ehdrlen = 0;
m = *mpp;
if (M_WRITABLE(m) == 0) {
m = m_dup(*mpp, M_NOWAIT);
if (!m)
return NULL;
m_freem(*mpp);
*mpp = m;
}
eh = mtod(m, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
etype = ntohs(eh->evl_encap_proto);
ehdrlen = ETHER_HDR_LEN;
}
switch (etype) {
#ifdef INET
case ETHERTYPE_IP:
ip = (struct ip *)(m->m_data + ehdrlen);
if (ip->ip_p != IPPROTO_TCP)
return NULL;
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
total_len = ehdrlen + (ip->ip_hl << 2) + (th->th_off << 2);
break;
#endif
#ifdef INET6
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(m->m_data + ehdrlen);
if (ip6->ip6_nxt != IPPROTO_TCP)
return NULL;
th = (struct tcphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
total_len = ehdrlen + sizeof(struct ip6_hdr) + (th->th_off << 2);
break;
#endif
default:
return NULL;
}
m = m_pullup(m, total_len);
if (!m)
return NULL;
*mpp = m;
return m;
}
#endif /* INET6 || INET */
void
oce_tx_task(void *arg, int npending)
{
struct oce_wq *wq = arg;
POCE_SOFTC sc = wq->parent;
struct ifnet *ifp = sc->ifp;
int rc = 0;
#if __FreeBSD_version >= 800000
LOCK(&wq->tx_lock);
rc = oce_multiq_transmit(ifp, NULL, wq);
if (rc) {
device_printf(sc->dev,
"TX[%d] restart failed\n", wq->queue_index);
}
UNLOCK(&wq->tx_lock);
#else
oce_start(ifp);
#endif
}
void
oce_start(struct ifnet *ifp)
{
POCE_SOFTC sc = ifp->if_softc;
struct mbuf *m;
int rc = 0;
int def_q = 0; /* Defualt tx queue is 0*/
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
if (!sc->link_status)
return;
do {
IF_DEQUEUE(&sc->ifp->if_snd, m);
if (m == NULL)
break;
LOCK(&sc->wq[def_q]->tx_lock);
rc = oce_tx(sc, &m, def_q);
UNLOCK(&sc->wq[def_q]->tx_lock);
if (rc) {
if (m != NULL) {
sc->wq[def_q]->tx_stats.tx_stops ++;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IFQ_DRV_PREPEND(&ifp->if_snd, m);
m = NULL;
}
break;
}
if (m != NULL)
ETHER_BPF_MTAP(ifp, m);
} while (TRUE);
return;
}
/* Handle the Completion Queue for transmit */
uint16_t
oce_wq_handler(void *arg)
{
struct oce_wq *wq = (struct oce_wq *)arg;
POCE_SOFTC sc = wq->parent;
struct oce_cq *cq = wq->cq;
struct oce_nic_tx_cqe *cqe;
int num_cqes = 0;
bus_dmamap_sync(cq->ring->dma.tag,
cq->ring->dma.map, BUS_DMASYNC_POSTWRITE);
cqe = RING_GET_CONSUMER_ITEM_VA(cq->ring, struct oce_nic_tx_cqe);
while (cqe->u0.dw[3]) {
DW_SWAP((uint32_t *) cqe, sizeof(oce_wq_cqe));
wq->ring->cidx = cqe->u0.s.wqe_index + 1;
if (wq->ring->cidx >= wq->ring->num_items)
wq->ring->cidx -= wq->ring->num_items;
oce_tx_complete(wq, cqe->u0.s.wqe_index, cqe->u0.s.status);
wq->tx_stats.tx_compl++;
cqe->u0.dw[3] = 0;
RING_GET(cq->ring, 1);
bus_dmamap_sync(cq->ring->dma.tag,
cq->ring->dma.map, BUS_DMASYNC_POSTWRITE);
cqe =
RING_GET_CONSUMER_ITEM_VA(cq->ring, struct oce_nic_tx_cqe);
num_cqes++;
}
if (num_cqes)
oce_arm_cq(sc, cq->cq_id, num_cqes, FALSE);
return 0;
}
static int
oce_multiq_transmit(struct ifnet *ifp, struct mbuf *m, struct oce_wq *wq)
{
POCE_SOFTC sc = ifp->if_softc;
int status = 0, queue_index = 0;
struct mbuf *next = NULL;
struct buf_ring *br = NULL;
br = wq->br;
queue_index = wq->queue_index;
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING) {
if (m != NULL)
status = drbr_enqueue(ifp, br, m);
return status;
}
if (m != NULL) {
if ((status = drbr_enqueue(ifp, br, m)) != 0)
return status;
}
while ((next = drbr_peek(ifp, br)) != NULL) {
if (oce_tx(sc, &next, queue_index)) {
if (next == NULL) {
drbr_advance(ifp, br);
} else {
drbr_putback(ifp, br, next);
wq->tx_stats.tx_stops ++;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
break;
}
drbr_advance(ifp, br);
if_inc_counter(ifp, IFCOUNTER_OBYTES, next->m_pkthdr.len);
if (next->m_flags & M_MCAST)
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
ETHER_BPF_MTAP(ifp, next);
}
return 0;
}
/*****************************************************************************
* Receive routines functions *
*****************************************************************************/
static void
oce_rx(struct oce_rq *rq, uint32_t rqe_idx, struct oce_nic_rx_cqe *cqe)
{
uint32_t out;
struct oce_packet_desc *pd;
POCE_SOFTC sc = (POCE_SOFTC) rq->parent;
int i, len, frag_len;
struct mbuf *m = NULL, *tail = NULL;
uint16_t vtag;
len = cqe->u0.s.pkt_size;
if (!len) {
/*partial DMA workaround for Lancer*/
oce_discard_rx_comp(rq, cqe);
goto exit;
}
/* Get vlan_tag value */
if(IS_BE(sc) || IS_SH(sc))
vtag = BSWAP_16(cqe->u0.s.vlan_tag);
else
vtag = cqe->u0.s.vlan_tag;
for (i = 0; i < cqe->u0.s.num_fragments; i++) {
if (rq->packets_out == rq->packets_in) {
device_printf(sc->dev,
"RQ transmit descriptor missing\n");
}
out = rq->packets_out + 1;
if (out == OCE_RQ_PACKET_ARRAY_SIZE)
out = 0;
pd = &rq->pckts[rq->packets_out];
rq->packets_out = out;
bus_dmamap_sync(rq->tag, pd->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(rq->tag, pd->map);
rq->pending--;
frag_len = (len > rq->cfg.frag_size) ? rq->cfg.frag_size : len;
pd->mbuf->m_len = frag_len;
if (tail != NULL) {
/* additional fragments */
pd->mbuf->m_flags &= ~M_PKTHDR;
tail->m_next = pd->mbuf;
tail = pd->mbuf;
} else {
/* first fragment, fill out much of the packet header */
pd->mbuf->m_pkthdr.len = len;
pd->mbuf->m_pkthdr.csum_flags = 0;
if (IF_CSUM_ENABLED(sc)) {
if (cqe->u0.s.l4_cksum_pass) {
pd->mbuf->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
pd->mbuf->m_pkthdr.csum_data = 0xffff;
}
if (cqe->u0.s.ip_cksum_pass) {
if (!cqe->u0.s.ip_ver) { /* IPV4 */
pd->mbuf->m_pkthdr.csum_flags |=
(CSUM_IP_CHECKED|CSUM_IP_VALID);
}
}
}
m = tail = pd->mbuf;
}
pd->mbuf = NULL;
len -= frag_len;
}
if (m) {
if (!oce_cqe_portid_valid(sc, cqe)) {
m_freem(m);
goto exit;
}
m->m_pkthdr.rcvif = sc->ifp;
#if __FreeBSD_version >= 800000
if (rq->queue_index)
m->m_pkthdr.flowid = (rq->queue_index - 1);
else
m->m_pkthdr.flowid = rq->queue_index;
m->m_flags |= M_FLOWID;
#endif
/* This deternies if vlan tag is Valid */
if (oce_cqe_vtp_valid(sc, cqe)) {
if (sc->function_mode & FNM_FLEX10_MODE) {
/* FLEX10. If QnQ is not set, neglect VLAN */
if (cqe->u0.s.qnq) {
m->m_pkthdr.ether_vtag = vtag;
m->m_flags |= M_VLANTAG;
}
} else if (sc->pvid != (vtag & VLAN_VID_MASK)) {
/* In UMC mode generally pvid will be striped by
hw. But in some cases we have seen it comes
with pvid. So if pvid == vlan, neglect vlan.
*/
m->m_pkthdr.ether_vtag = vtag;
m->m_flags |= M_VLANTAG;
}
}
if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, 1);
#if defined(INET6) || defined(INET)
/* Try to queue to LRO */
if (IF_LRO_ENABLED(sc) &&
(cqe->u0.s.ip_cksum_pass) &&
(cqe->u0.s.l4_cksum_pass) &&
(!cqe->u0.s.ip_ver) &&
(rq->lro.lro_cnt != 0)) {
if (tcp_lro_rx(&rq->lro, m, 0) == 0) {
rq->lro_pkts_queued ++;
goto post_done;
}
/* If LRO posting fails then try to post to STACK */
}
#endif
(*sc->ifp->if_input) (sc->ifp, m);
#if defined(INET6) || defined(INET)
post_done:
#endif
/* Update rx stats per queue */
rq->rx_stats.rx_pkts++;
rq->rx_stats.rx_bytes += cqe->u0.s.pkt_size;
rq->rx_stats.rx_frags += cqe->u0.s.num_fragments;
if (cqe->u0.s.pkt_type == OCE_MULTICAST_PACKET)
rq->rx_stats.rx_mcast_pkts++;
if (cqe->u0.s.pkt_type == OCE_UNICAST_PACKET)
rq->rx_stats.rx_ucast_pkts++;
}
exit:
return;
}
static void
oce_discard_rx_comp(struct oce_rq *rq, struct oce_nic_rx_cqe *cqe)
{
uint32_t out, i = 0;
struct oce_packet_desc *pd;
POCE_SOFTC sc = (POCE_SOFTC) rq->parent;
int num_frags = cqe->u0.s.num_fragments;
for (i = 0; i < num_frags; i++) {
if (rq->packets_out == rq->packets_in) {
device_printf(sc->dev,
"RQ transmit descriptor missing\n");
}
out = rq->packets_out + 1;
if (out == OCE_RQ_PACKET_ARRAY_SIZE)
out = 0;
pd = &rq->pckts[rq->packets_out];
rq->packets_out = out;
bus_dmamap_sync(rq->tag, pd->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(rq->tag, pd->map);
rq->pending--;
m_freem(pd->mbuf);
}
}
static int
oce_cqe_vtp_valid(POCE_SOFTC sc, struct oce_nic_rx_cqe *cqe)
{
struct oce_nic_rx_cqe_v1 *cqe_v1;
int vtp = 0;
if (sc->be3_native) {
cqe_v1 = (struct oce_nic_rx_cqe_v1 *)cqe;
vtp = cqe_v1->u0.s.vlan_tag_present;
} else
vtp = cqe->u0.s.vlan_tag_present;
return vtp;
}
static int
oce_cqe_portid_valid(POCE_SOFTC sc, struct oce_nic_rx_cqe *cqe)
{
struct oce_nic_rx_cqe_v1 *cqe_v1;
int port_id = 0;
if (sc->be3_native && (IS_BE(sc) || IS_SH(sc))) {
cqe_v1 = (struct oce_nic_rx_cqe_v1 *)cqe;
port_id = cqe_v1->u0.s.port;
if (sc->port_id != port_id)
return 0;
} else
;/* For BE3 legacy and Lancer this is dummy */
return 1;
}
#if defined(INET6) || defined(INET)
static void
oce_rx_flush_lro(struct oce_rq *rq)
{
struct lro_ctrl *lro = &rq->lro;
struct lro_entry *queued;
POCE_SOFTC sc = (POCE_SOFTC) rq->parent;
if (!IF_LRO_ENABLED(sc))
return;
while ((queued = SLIST_FIRST(&lro->lro_active)) != NULL) {
SLIST_REMOVE_HEAD(&lro->lro_active, next);
tcp_lro_flush(lro, queued);
}
rq->lro_pkts_queued = 0;
return;
}
static int
oce_init_lro(POCE_SOFTC sc)
{
struct lro_ctrl *lro = NULL;
int i = 0, rc = 0;
for (i = 0; i < sc->nrqs; i++) {
lro = &sc->rq[i]->lro;
rc = tcp_lro_init(lro);
if (rc != 0) {
device_printf(sc->dev, "LRO init failed\n");
return rc;
}
lro->ifp = sc->ifp;
}
return rc;
}
void
oce_free_lro(POCE_SOFTC sc)
{
struct lro_ctrl *lro = NULL;
int i = 0;
for (i = 0; i < sc->nrqs; i++) {
lro = &sc->rq[i]->lro;
if (lro)
tcp_lro_free(lro);
}
}
#endif
int
oce_alloc_rx_bufs(struct oce_rq *rq, int count)
{
POCE_SOFTC sc = (POCE_SOFTC) rq->parent;
int i, in, rc;
struct oce_packet_desc *pd;
bus_dma_segment_t segs[6];
int nsegs, added = 0;
struct oce_nic_rqe *rqe;
pd_rxulp_db_t rxdb_reg;
bzero(&rxdb_reg, sizeof(pd_rxulp_db_t));
for (i = 0; i < count; i++) {
in = rq->packets_in + 1;
if (in == OCE_RQ_PACKET_ARRAY_SIZE)
in = 0;
if (in == rq->packets_out)
break; /* no more room */
pd = &rq->pckts[rq->packets_in];
pd->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (pd->mbuf == NULL)
break;
pd->mbuf->m_len = pd->mbuf->m_pkthdr.len = MCLBYTES;
rc = bus_dmamap_load_mbuf_sg(rq->tag,
pd->map,
pd->mbuf,
segs, &nsegs, BUS_DMA_NOWAIT);
if (rc) {
m_free(pd->mbuf);
break;
}
if (nsegs != 1) {
i--;
continue;
}
rq->packets_in = in;
bus_dmamap_sync(rq->tag, pd->map, BUS_DMASYNC_PREREAD);
rqe = RING_GET_PRODUCER_ITEM_VA(rq->ring, struct oce_nic_rqe);
rqe->u0.s.frag_pa_hi = ADDR_HI(segs[0].ds_addr);
rqe->u0.s.frag_pa_lo = ADDR_LO(segs[0].ds_addr);
DW_SWAP(u32ptr(rqe), sizeof(struct oce_nic_rqe));
RING_PUT(rq->ring, 1);
added++;
rq->pending++;
}
if (added != 0) {
for (i = added / OCE_MAX_RQ_POSTS; i > 0; i--) {
rxdb_reg.bits.num_posted = OCE_MAX_RQ_POSTS;
rxdb_reg.bits.qid = rq->rq_id;
OCE_WRITE_REG32(sc, db, PD_RXULP_DB, rxdb_reg.dw0);
added -= OCE_MAX_RQ_POSTS;
}
if (added > 0) {
rxdb_reg.bits.qid = rq->rq_id;
rxdb_reg.bits.num_posted = added;
OCE_WRITE_REG32(sc, db, PD_RXULP_DB, rxdb_reg.dw0);
}
}
return 0;
}
/* Handle the Completion Queue for receive */
uint16_t
oce_rq_handler(void *arg)
{
struct oce_rq *rq = (struct oce_rq *)arg;
struct oce_cq *cq = rq->cq;
POCE_SOFTC sc = rq->parent;
struct oce_nic_rx_cqe *cqe;
int num_cqes = 0, rq_buffers_used = 0;
bus_dmamap_sync(cq->ring->dma.tag,
cq->ring->dma.map, BUS_DMASYNC_POSTWRITE);
cqe = RING_GET_CONSUMER_ITEM_VA(cq->ring, struct oce_nic_rx_cqe);
while (cqe->u0.dw[2]) {
DW_SWAP((uint32_t *) cqe, sizeof(oce_rq_cqe));
RING_GET(rq->ring, 1);
if (cqe->u0.s.error == 0) {
oce_rx(rq, cqe->u0.s.frag_index, cqe);
} else {
rq->rx_stats.rxcp_err++;
if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, 1);
/* Post L3/L4 errors to stack.*/
oce_rx(rq, cqe->u0.s.frag_index, cqe);
}
rq->rx_stats.rx_compl++;
cqe->u0.dw[2] = 0;
#if defined(INET6) || defined(INET)
if (IF_LRO_ENABLED(sc) && rq->lro_pkts_queued >= 16) {
oce_rx_flush_lro(rq);
}
#endif
RING_GET(cq->ring, 1);
bus_dmamap_sync(cq->ring->dma.tag,
cq->ring->dma.map, BUS_DMASYNC_POSTWRITE);
cqe =
RING_GET_CONSUMER_ITEM_VA(cq->ring, struct oce_nic_rx_cqe);
num_cqes++;
if (num_cqes >= (IS_XE201(sc) ? 8 : oce_max_rsp_handled))
break;
}
#if defined(INET6) || defined(INET)
if (IF_LRO_ENABLED(sc))
oce_rx_flush_lro(rq);
#endif
if (num_cqes) {
oce_arm_cq(sc, cq->cq_id, num_cqes, FALSE);
rq_buffers_used = OCE_RQ_PACKET_ARRAY_SIZE - rq->pending;
if (rq_buffers_used > 1)
oce_alloc_rx_bufs(rq, (rq_buffers_used - 1));
}
return 0;
}
/*****************************************************************************
* Helper function prototypes in this file *
*****************************************************************************/
static int
oce_attach_ifp(POCE_SOFTC sc)
{
sc->ifp = if_alloc(IFT_ETHER);
if (!sc->ifp)
return ENOMEM;
ifmedia_init(&sc->media, IFM_IMASK, oce_media_change, oce_media_status);
ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
sc->ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
sc->ifp->if_ioctl = oce_ioctl;
sc->ifp->if_start = oce_start;
sc->ifp->if_init = oce_init;
sc->ifp->if_mtu = ETHERMTU;
sc->ifp->if_softc = sc;
#if __FreeBSD_version >= 800000
sc->ifp->if_transmit = oce_multiq_start;
sc->ifp->if_qflush = oce_multiq_flush;
#endif
if_initname(sc->ifp,
device_get_name(sc->dev), device_get_unit(sc->dev));
sc->ifp->if_snd.ifq_drv_maxlen = OCE_MAX_TX_DESC - 1;
IFQ_SET_MAXLEN(&sc->ifp->if_snd, sc->ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&sc->ifp->if_snd);
sc->ifp->if_hwassist = OCE_IF_HWASSIST;
sc->ifp->if_hwassist |= CSUM_TSO;
sc->ifp->if_hwassist |= (CSUM_IP | CSUM_TCP | CSUM_UDP);
sc->ifp->if_capabilities = OCE_IF_CAPABILITIES;
sc->ifp->if_capabilities |= IFCAP_HWCSUM;
sc->ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
#if defined(INET6) || defined(INET)
sc->ifp->if_capabilities |= IFCAP_TSO;
sc->ifp->if_capabilities |= IFCAP_LRO;
sc->ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
#endif
sc->ifp->if_capenable = sc->ifp->if_capabilities;
sc->ifp->if_baudrate = IF_Gbps(10);
#if __FreeBSD_version >= 1000000
sc->ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
sc->ifp->if_hw_tsomaxsegcount = OCE_MAX_TX_ELEMENTS;
sc->ifp->if_hw_tsomaxsegsize = 4096;
#endif
ether_ifattach(sc->ifp, sc->macaddr.mac_addr);
return 0;
}
static void
oce_add_vlan(void *arg, struct ifnet *ifp, uint16_t vtag)
{
POCE_SOFTC sc = ifp->if_softc;
if (ifp->if_softc != arg)
return;
if ((vtag == 0) || (vtag > 4095))
return;
sc->vlan_tag[vtag] = 1;
sc->vlans_added++;
if (sc->vlans_added <= (sc->max_vlans + 1))
oce_vid_config(sc);
}
static void
oce_del_vlan(void *arg, struct ifnet *ifp, uint16_t vtag)
{
POCE_SOFTC sc = ifp->if_softc;
if (ifp->if_softc != arg)
return;
if ((vtag == 0) || (vtag > 4095))
return;
sc->vlan_tag[vtag] = 0;
sc->vlans_added--;
oce_vid_config(sc);
}
/*
* A max of 64 vlans can be configured in BE. If the user configures
* more, place the card in vlan promiscuous mode.
*/
static int
oce_vid_config(POCE_SOFTC sc)
{
struct normal_vlan vtags[MAX_VLANFILTER_SIZE];
uint16_t ntags = 0, i;
int status = 0;
if ((sc->vlans_added <= MAX_VLANFILTER_SIZE) &&
(sc->ifp->if_capenable & IFCAP_VLAN_HWFILTER)) {
for (i = 0; i < MAX_VLANS; i++) {
if (sc->vlan_tag[i]) {
vtags[ntags].vtag = i;
ntags++;
}
}
if (ntags)
status = oce_config_vlan(sc, (uint8_t) sc->if_id,
vtags, ntags, 1, 0);
} else
status = oce_config_vlan(sc, (uint8_t) sc->if_id,
NULL, 0, 1, 1);
return status;
}
static void
oce_mac_addr_set(POCE_SOFTC sc)
{
uint32_t old_pmac_id = sc->pmac_id;
int status = 0;
status = bcmp((IF_LLADDR(sc->ifp)), sc->macaddr.mac_addr,
sc->macaddr.size_of_struct);
if (!status)
return;
status = oce_mbox_macaddr_add(sc, (uint8_t *)(IF_LLADDR(sc->ifp)),
sc->if_id, &sc->pmac_id);
if (!status) {
status = oce_mbox_macaddr_del(sc, sc->if_id, old_pmac_id);
bcopy((IF_LLADDR(sc->ifp)), sc->macaddr.mac_addr,
sc->macaddr.size_of_struct);
}
if (status)
device_printf(sc->dev, "Failed update macaddress\n");
}
static int
oce_handle_passthrough(struct ifnet *ifp, caddr_t data)
{
POCE_SOFTC sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int rc = ENXIO;
char cookie[32] = {0};
void *priv_data = (void *)ifr->ifr_data;
void *ioctl_ptr;
uint32_t req_size;
struct mbx_hdr req;
OCE_DMA_MEM dma_mem;
struct mbx_common_get_cntl_attr *fw_cmd;
if (copyin(priv_data, cookie, strlen(IOCTL_COOKIE)))
return EFAULT;
if (memcmp(cookie, IOCTL_COOKIE, strlen(IOCTL_COOKIE)))
return EINVAL;
ioctl_ptr = (char *)priv_data + strlen(IOCTL_COOKIE);
if (copyin(ioctl_ptr, &req, sizeof(struct mbx_hdr)))
return EFAULT;
req_size = le32toh(req.u0.req.request_length);
if (req_size > 65536)
return EINVAL;
req_size += sizeof(struct mbx_hdr);
rc = oce_dma_alloc(sc, req_size, &dma_mem, 0);
if (rc)
return ENOMEM;
if (copyin(ioctl_ptr, OCE_DMAPTR(&dma_mem,char), req_size)) {
rc = EFAULT;
goto dma_free;
}
rc = oce_pass_through_mbox(sc, &dma_mem, req_size);
if (rc) {
rc = EIO;
goto dma_free;
}
if (copyout(OCE_DMAPTR(&dma_mem,char), ioctl_ptr, req_size))
rc = EFAULT;
/*
firmware is filling all the attributes for this ioctl except
the driver version..so fill it
*/
if(req.u0.rsp.opcode == OPCODE_COMMON_GET_CNTL_ATTRIBUTES) {
fw_cmd = (struct mbx_common_get_cntl_attr *) ioctl_ptr;
strncpy(fw_cmd->params.rsp.cntl_attr_info.hba_attr.drv_ver_str,
COMPONENT_REVISION, strlen(COMPONENT_REVISION));
}
dma_free:
oce_dma_free(sc, &dma_mem);
return rc;
}
static void
oce_eqd_set_periodic(POCE_SOFTC sc)
{
struct oce_set_eqd set_eqd[OCE_MAX_EQ];
struct oce_aic_obj *aic;
struct oce_eq *eqo;
uint64_t now = 0, delta;
int eqd, i, num = 0;
uint32_t ips = 0;
int tps;
for (i = 0 ; i < sc->neqs; i++) {
eqo = sc->eq[i];
aic = &sc->aic_obj[i];
/* When setting the static eq delay from the user space */
if (!aic->enable) {
eqd = aic->et_eqd;
goto modify_eqd;
}
now = ticks;
/* Over flow check */
if ((now < aic->ticks) || (eqo->intr < aic->intr_prev))
goto done;
delta = now - aic->ticks;
tps = delta/hz;
/* Interrupt rate based on elapsed ticks */
if(tps)
ips = (uint32_t)(eqo->intr - aic->intr_prev) / tps;
if (ips > INTR_RATE_HWM)
eqd = aic->cur_eqd + 20;
else if (ips < INTR_RATE_LWM)
eqd = aic->cur_eqd / 2;
else
goto done;
if (eqd < 10)
eqd = 0;
/* Make sure that the eq delay is in the known range */
eqd = min(eqd, aic->max_eqd);
eqd = max(eqd, aic->min_eqd);
modify_eqd:
if (eqd != aic->cur_eqd) {
set_eqd[num].delay_multiplier = (eqd * 65)/100;
set_eqd[num].eq_id = eqo->eq_id;
aic->cur_eqd = eqd;
num++;
}
done:
aic->intr_prev = eqo->intr;
aic->ticks = now;
}
/* Is there atleast one eq that needs to be modified? */
if(num)
oce_mbox_eqd_modify_periodic(sc, set_eqd, num);
}
static void oce_detect_hw_error(POCE_SOFTC sc)
{
uint32_t ue_low = 0, ue_high = 0, ue_low_mask = 0, ue_high_mask = 0;
uint32_t sliport_status = 0, sliport_err1 = 0, sliport_err2 = 0;
uint32_t i;
if (sc->hw_error)
return;
if (IS_XE201(sc)) {
sliport_status = OCE_READ_REG32(sc, db, SLIPORT_STATUS_OFFSET);
if (sliport_status & SLIPORT_STATUS_ERR_MASK) {
sliport_err1 = OCE_READ_REG32(sc, db, SLIPORT_ERROR1_OFFSET);
sliport_err2 = OCE_READ_REG32(sc, db, SLIPORT_ERROR2_OFFSET);
}
} else {
ue_low = OCE_READ_REG32(sc, devcfg, PCICFG_UE_STATUS_LOW);
ue_high = OCE_READ_REG32(sc, devcfg, PCICFG_UE_STATUS_HIGH);
ue_low_mask = OCE_READ_REG32(sc, devcfg, PCICFG_UE_STATUS_LOW_MASK);
ue_high_mask = OCE_READ_REG32(sc, devcfg, PCICFG_UE_STATUS_HI_MASK);
ue_low = (ue_low & ~ue_low_mask);
ue_high = (ue_high & ~ue_high_mask);
}
/* On certain platforms BE hardware can indicate spurious UEs.
* Allow the h/w to stop working completely in case of a real UE.
* Hence not setting the hw_error for UE detection.
*/
if (sliport_status & SLIPORT_STATUS_ERR_MASK) {
sc->hw_error = TRUE;
device_printf(sc->dev, "Error detected in the card\n");
}
if (sliport_status & SLIPORT_STATUS_ERR_MASK) {
device_printf(sc->dev,
"ERR: sliport status 0x%x\n", sliport_status);
device_printf(sc->dev,
"ERR: sliport error1 0x%x\n", sliport_err1);
device_printf(sc->dev,
"ERR: sliport error2 0x%x\n", sliport_err2);
}
if (ue_low) {
for (i = 0; ue_low; ue_low >>= 1, i++) {
if (ue_low & 1)
device_printf(sc->dev, "UE: %s bit set\n",
ue_status_low_desc[i]);
}
}
if (ue_high) {
for (i = 0; ue_high; ue_high >>= 1, i++) {
if (ue_high & 1)
device_printf(sc->dev, "UE: %s bit set\n",
ue_status_hi_desc[i]);
}
}
}
static void
oce_local_timer(void *arg)
{
POCE_SOFTC sc = arg;
int i = 0;
oce_detect_hw_error(sc);
oce_refresh_nic_stats(sc);
oce_refresh_queue_stats(sc);
oce_mac_addr_set(sc);
/* TX Watch Dog*/
for (i = 0; i < sc->nwqs; i++)
oce_tx_restart(sc, sc->wq[i]);
/* calculate and set the eq delay for optimal interrupt rate */
if (IS_BE(sc) || IS_SH(sc))
oce_eqd_set_periodic(sc);
callout_reset(&sc->timer, hz, oce_local_timer, sc);
}
/* NOTE : This should only be called holding
* DEVICE_LOCK.
*/
static void
oce_if_deactivate(POCE_SOFTC sc)
{
int i, mtime = 0;
int wait_req = 0;
struct oce_rq *rq;
struct oce_wq *wq;
struct oce_eq *eq;
sc->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/*Wait for max of 400ms for TX completions to be done */
while (mtime < 400) {
wait_req = 0;
for_all_wq_queues(sc, wq, i) {
if (wq->ring->num_used) {
wait_req = 1;
DELAY(1);
break;
}
}
mtime += 1;
if (!wait_req)
break;
}
/* Stop intrs and finish any bottom halves pending */
oce_hw_intr_disable(sc);
/* Since taskqueue_drain takes a Gaint Lock, We should not acquire
any other lock. So unlock device lock and require after
completing taskqueue_drain.
*/
UNLOCK(&sc->dev_lock);
for (i = 0; i < sc->intr_count; i++) {
if (sc->intrs[i].tq != NULL) {
taskqueue_drain(sc->intrs[i].tq, &sc->intrs[i].task);
}
}
LOCK(&sc->dev_lock);
/* Delete RX queue in card with flush param */
oce_stop_rx(sc);
/* Invalidate any pending cq and eq entries*/
for_all_evnt_queues(sc, eq, i)
oce_drain_eq(eq);
for_all_rq_queues(sc, rq, i)
oce_drain_rq_cq(rq);
for_all_wq_queues(sc, wq, i)
oce_drain_wq_cq(wq);
/* But still we need to get MCC aync events.
So enable intrs and also arm first EQ
*/
oce_hw_intr_enable(sc);
oce_arm_eq(sc, sc->eq[0]->eq_id, 0, TRUE, FALSE);
DELAY(10);
}
static void
oce_if_activate(POCE_SOFTC sc)
{
struct oce_eq *eq;
struct oce_rq *rq;
struct oce_wq *wq;
int i, rc = 0;
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
oce_hw_intr_disable(sc);
oce_start_rx(sc);
for_all_rq_queues(sc, rq, i) {
rc = oce_start_rq(rq);
if (rc)
device_printf(sc->dev, "Unable to start RX\n");
}
for_all_wq_queues(sc, wq, i) {
rc = oce_start_wq(wq);
if (rc)
device_printf(sc->dev, "Unable to start TX\n");
}
for_all_evnt_queues(sc, eq, i)
oce_arm_eq(sc, eq->eq_id, 0, TRUE, FALSE);
oce_hw_intr_enable(sc);
}
static void
process_link_state(POCE_SOFTC sc, struct oce_async_cqe_link_state *acqe)
{
/* Update Link status */
if ((acqe->u0.s.link_status & ~ASYNC_EVENT_LOGICAL) ==
ASYNC_EVENT_LINK_UP) {
sc->link_status = ASYNC_EVENT_LINK_UP;
if_link_state_change(sc->ifp, LINK_STATE_UP);
} else {
sc->link_status = ASYNC_EVENT_LINK_DOWN;
if_link_state_change(sc->ifp, LINK_STATE_DOWN);
}
}
/* Handle the Completion Queue for the Mailbox/Async notifications */
uint16_t
oce_mq_handler(void *arg)
{
struct oce_mq *mq = (struct oce_mq *)arg;
POCE_SOFTC sc = mq->parent;
struct oce_cq *cq = mq->cq;
int num_cqes = 0, evt_type = 0, optype = 0;
struct oce_mq_cqe *cqe;
struct oce_async_cqe_link_state *acqe;
struct oce_async_event_grp5_pvid_state *gcqe;
struct oce_async_event_qnq *dbgcqe;
bus_dmamap_sync(cq->ring->dma.tag,
cq->ring->dma.map, BUS_DMASYNC_POSTWRITE);
cqe = RING_GET_CONSUMER_ITEM_VA(cq->ring, struct oce_mq_cqe);
while (cqe->u0.dw[3]) {
DW_SWAP((uint32_t *) cqe, sizeof(oce_mq_cqe));
if (cqe->u0.s.async_event) {
evt_type = cqe->u0.s.event_type;
optype = cqe->u0.s.async_type;
if (evt_type == ASYNC_EVENT_CODE_LINK_STATE) {
/* Link status evt */
acqe = (struct oce_async_cqe_link_state *)cqe;
process_link_state(sc, acqe);
} else if ((evt_type == ASYNC_EVENT_GRP5) &&
(optype == ASYNC_EVENT_PVID_STATE)) {
/* GRP5 PVID */
gcqe =
(struct oce_async_event_grp5_pvid_state *)cqe;
if (gcqe->enabled)
sc->pvid = gcqe->tag & VLAN_VID_MASK;
else
sc->pvid = 0;
}
else if(evt_type == ASYNC_EVENT_CODE_DEBUG &&
optype == ASYNC_EVENT_DEBUG_QNQ) {
dbgcqe =
(struct oce_async_event_qnq *)cqe;
if(dbgcqe->valid)
sc->qnqid = dbgcqe->vlan_tag;
sc->qnq_debug_event = TRUE;
}
}
cqe->u0.dw[3] = 0;
RING_GET(cq->ring, 1);
bus_dmamap_sync(cq->ring->dma.tag,
cq->ring->dma.map, BUS_DMASYNC_POSTWRITE);
cqe = RING_GET_CONSUMER_ITEM_VA(cq->ring, struct oce_mq_cqe);
num_cqes++;
}
if (num_cqes)
oce_arm_cq(sc, cq->cq_id, num_cqes, FALSE);
return 0;
}
static void
setup_max_queues_want(POCE_SOFTC sc)
{
/* Check if it is FLEX machine. Is so dont use RSS */
if ((sc->function_mode & FNM_FLEX10_MODE) ||
(sc->function_mode & FNM_UMC_MODE) ||
(sc->function_mode & FNM_VNIC_MODE) ||
(!is_rss_enabled(sc)) ||
IS_BE2(sc)) {
sc->nrqs = 1;
sc->nwqs = 1;
} else {
sc->nrqs = MIN(OCE_NCPUS, sc->nrssqs) + 1;
sc->nwqs = MIN(OCE_NCPUS, sc->nrssqs);
}
if (IS_BE2(sc) && is_rss_enabled(sc))
sc->nrqs = MIN(OCE_NCPUS, sc->nrssqs) + 1;
}
static void
update_queues_got(POCE_SOFTC sc)
{
if (is_rss_enabled(sc)) {
sc->nrqs = sc->intr_count + 1;
sc->nwqs = sc->intr_count;
} else {
sc->nrqs = 1;
sc->nwqs = 1;
}
if (IS_BE2(sc))
sc->nwqs = 1;
}
static int
oce_check_ipv6_ext_hdr(struct mbuf *m)
{
struct ether_header *eh = mtod(m, struct ether_header *);
caddr_t m_datatemp = m->m_data;
if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
m->m_data += sizeof(struct ether_header);
struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
if((ip6->ip6_nxt != IPPROTO_TCP) && \
(ip6->ip6_nxt != IPPROTO_UDP)){
struct ip6_ext *ip6e = NULL;
m->m_data += sizeof(struct ip6_hdr);
ip6e = (struct ip6_ext *) mtod(m, struct ip6_ext *);
if(ip6e->ip6e_len == 0xff) {
m->m_data = m_datatemp;
return TRUE;
}
}
m->m_data = m_datatemp;
}
return FALSE;
}
static int
is_be3_a1(POCE_SOFTC sc)
{
if((sc->flags & OCE_FLAGS_BE3) && ((sc->asic_revision & 0xFF) < 2)) {
return TRUE;
}
return FALSE;
}
static struct mbuf *
oce_insert_vlan_tag(POCE_SOFTC sc, struct mbuf *m, boolean_t *complete)
{
uint16_t vlan_tag = 0;
if(!M_WRITABLE(m))
return NULL;
/* Embed vlan tag in the packet if it is not part of it */
if(m->m_flags & M_VLANTAG) {
vlan_tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
m->m_flags &= ~M_VLANTAG;
}
/* if UMC, ignore vlan tag insertion and instead insert pvid */
if(sc->pvid) {
if(!vlan_tag)
vlan_tag = sc->pvid;
*complete = FALSE;
}
if(vlan_tag) {
m = ether_vlanencap(m, vlan_tag);
}
if(sc->qnqid) {
m = ether_vlanencap(m, sc->qnqid);
*complete = FALSE;
}
return m;
}
static int
oce_tx_asic_stall_verify(POCE_SOFTC sc, struct mbuf *m)
{
if(is_be3_a1(sc) && IS_QNQ_OR_UMC(sc) && \
oce_check_ipv6_ext_hdr(m)) {
return TRUE;
}
return FALSE;
}
static void
oce_get_config(POCE_SOFTC sc)
{
int rc = 0;
uint32_t max_rss = 0;
if ((IS_BE(sc) || IS_SH(sc)) && (!sc->be3_native))
max_rss = OCE_LEGACY_MODE_RSS;
else
max_rss = OCE_MAX_RSS;
if (!IS_BE(sc)) {
rc = oce_get_profile_config(sc, max_rss);
if (rc) {
sc->nwqs = OCE_MAX_WQ;
sc->nrssqs = max_rss;
sc->nrqs = sc->nrssqs + 1;
}
}
else { /* For BE3 don't rely on fw for determining the resources */
sc->nrssqs = max_rss;
sc->nrqs = sc->nrssqs + 1;
sc->nwqs = OCE_MAX_WQ;
sc->max_vlans = MAX_VLANFILTER_SIZE;
}
}