1806 lines
46 KiB
C
1806 lines
46 KiB
C
/*-
|
|
* Common functions for CAM "type" (peripheral) drivers.
|
|
*
|
|
* Copyright (c) 1997, 1998 Justin T. Gibbs.
|
|
* Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/types.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/linker_set.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/devicestat.h>
|
|
#include <sys/bus.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_queue.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_debug.h>
|
|
#include <cam/cam_sim.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_message.h>
|
|
#include <cam/scsi/scsi_pass.h>
|
|
|
|
static u_int camperiphnextunit(struct periph_driver *p_drv,
|
|
u_int newunit, int wired,
|
|
path_id_t pathid, target_id_t target,
|
|
lun_id_t lun);
|
|
static u_int camperiphunit(struct periph_driver *p_drv,
|
|
path_id_t pathid, target_id_t target,
|
|
lun_id_t lun);
|
|
static void camperiphdone(struct cam_periph *periph,
|
|
union ccb *done_ccb);
|
|
static void camperiphfree(struct cam_periph *periph);
|
|
static int camperiphscsistatuserror(union ccb *ccb,
|
|
cam_flags camflags,
|
|
u_int32_t sense_flags,
|
|
union ccb *save_ccb,
|
|
int *openings,
|
|
u_int32_t *relsim_flags,
|
|
u_int32_t *timeout);
|
|
static int camperiphscsisenseerror(union ccb *ccb,
|
|
cam_flags camflags,
|
|
u_int32_t sense_flags,
|
|
union ccb *save_ccb,
|
|
int *openings,
|
|
u_int32_t *relsim_flags,
|
|
u_int32_t *timeout);
|
|
|
|
static int nperiph_drivers;
|
|
struct periph_driver **periph_drivers;
|
|
|
|
MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
|
|
|
|
static int periph_selto_delay = 1000;
|
|
TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
|
|
static int periph_noresrc_delay = 500;
|
|
TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
|
|
static int periph_busy_delay = 500;
|
|
TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
|
|
|
|
|
|
void
|
|
periphdriver_register(void *data)
|
|
{
|
|
struct periph_driver **newdrivers, **old;
|
|
int ndrivers;
|
|
|
|
ndrivers = nperiph_drivers + 2;
|
|
newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
|
|
M_WAITOK);
|
|
if (periph_drivers)
|
|
bcopy(periph_drivers, newdrivers,
|
|
sizeof(*newdrivers) * nperiph_drivers);
|
|
newdrivers[nperiph_drivers] = (struct periph_driver *)data;
|
|
newdrivers[nperiph_drivers + 1] = NULL;
|
|
old = periph_drivers;
|
|
periph_drivers = newdrivers;
|
|
if (old)
|
|
free(old, M_CAMPERIPH);
|
|
nperiph_drivers++;
|
|
}
|
|
|
|
cam_status
|
|
cam_periph_alloc(periph_ctor_t *periph_ctor,
|
|
periph_oninv_t *periph_oninvalidate,
|
|
periph_dtor_t *periph_dtor, periph_start_t *periph_start,
|
|
char *name, cam_periph_type type, struct cam_path *path,
|
|
ac_callback_t *ac_callback, ac_code code, void *arg)
|
|
{
|
|
struct periph_driver **p_drv;
|
|
struct cam_sim *sim;
|
|
struct cam_periph *periph;
|
|
struct cam_periph *cur_periph;
|
|
path_id_t path_id;
|
|
target_id_t target_id;
|
|
lun_id_t lun_id;
|
|
cam_status status;
|
|
u_int init_level;
|
|
|
|
init_level = 0;
|
|
/*
|
|
* Handle Hot-Plug scenarios. If there is already a peripheral
|
|
* of our type assigned to this path, we are likely waiting for
|
|
* final close on an old, invalidated, peripheral. If this is
|
|
* the case, queue up a deferred call to the peripheral's async
|
|
* handler. If it looks like a mistaken re-allocation, complain.
|
|
*/
|
|
if ((periph = cam_periph_find(path, name)) != NULL) {
|
|
|
|
if ((periph->flags & CAM_PERIPH_INVALID) != 0
|
|
&& (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
|
|
periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
|
|
periph->deferred_callback = ac_callback;
|
|
periph->deferred_ac = code;
|
|
return (CAM_REQ_INPROG);
|
|
} else {
|
|
printf("cam_periph_alloc: attempt to re-allocate "
|
|
"valid device %s%d rejected\n",
|
|
periph->periph_name, periph->unit_number);
|
|
}
|
|
return (CAM_REQ_INVALID);
|
|
}
|
|
|
|
periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
|
|
M_NOWAIT);
|
|
|
|
if (periph == NULL)
|
|
return (CAM_RESRC_UNAVAIL);
|
|
|
|
init_level++;
|
|
|
|
xpt_lock_buses();
|
|
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
|
|
if (strcmp((*p_drv)->driver_name, name) == 0)
|
|
break;
|
|
}
|
|
xpt_unlock_buses();
|
|
if (*p_drv == NULL) {
|
|
printf("cam_periph_alloc: invalid periph name '%s'\n", name);
|
|
free(periph, M_CAMPERIPH);
|
|
return (CAM_REQ_INVALID);
|
|
}
|
|
|
|
sim = xpt_path_sim(path);
|
|
path_id = xpt_path_path_id(path);
|
|
target_id = xpt_path_target_id(path);
|
|
lun_id = xpt_path_lun_id(path);
|
|
bzero(periph, sizeof(*periph));
|
|
cam_init_pinfo(&periph->pinfo);
|
|
periph->periph_start = periph_start;
|
|
periph->periph_dtor = periph_dtor;
|
|
periph->periph_oninval = periph_oninvalidate;
|
|
periph->type = type;
|
|
periph->periph_name = name;
|
|
periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
|
|
periph->immediate_priority = CAM_PRIORITY_NONE;
|
|
periph->refcount = 0;
|
|
periph->sim = sim;
|
|
SLIST_INIT(&periph->ccb_list);
|
|
status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
|
|
if (status != CAM_REQ_CMP)
|
|
goto failure;
|
|
|
|
periph->path = path;
|
|
init_level++;
|
|
|
|
status = xpt_add_periph(periph);
|
|
|
|
if (status != CAM_REQ_CMP)
|
|
goto failure;
|
|
|
|
cur_periph = TAILQ_FIRST(&(*p_drv)->units);
|
|
while (cur_periph != NULL
|
|
&& cur_periph->unit_number < periph->unit_number)
|
|
cur_periph = TAILQ_NEXT(cur_periph, unit_links);
|
|
|
|
if (cur_periph != NULL)
|
|
TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
|
|
else {
|
|
TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
|
|
(*p_drv)->generation++;
|
|
}
|
|
|
|
init_level++;
|
|
|
|
status = periph_ctor(periph, arg);
|
|
|
|
if (status == CAM_REQ_CMP)
|
|
init_level++;
|
|
|
|
failure:
|
|
switch (init_level) {
|
|
case 4:
|
|
/* Initialized successfully */
|
|
break;
|
|
case 3:
|
|
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
|
|
xpt_remove_periph(periph);
|
|
/* FALLTHROUGH */
|
|
case 2:
|
|
xpt_free_path(periph->path);
|
|
/* FALLTHROUGH */
|
|
case 1:
|
|
free(periph, M_CAMPERIPH);
|
|
/* FALLTHROUGH */
|
|
case 0:
|
|
/* No cleanup to perform. */
|
|
break;
|
|
default:
|
|
panic("cam_periph_alloc: Unkown init level");
|
|
}
|
|
return(status);
|
|
}
|
|
|
|
/*
|
|
* Find a peripheral structure with the specified path, target, lun,
|
|
* and (optionally) type. If the name is NULL, this function will return
|
|
* the first peripheral driver that matches the specified path.
|
|
*/
|
|
struct cam_periph *
|
|
cam_periph_find(struct cam_path *path, char *name)
|
|
{
|
|
struct periph_driver **p_drv;
|
|
struct cam_periph *periph;
|
|
|
|
xpt_lock_buses();
|
|
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
|
|
|
|
if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
|
|
continue;
|
|
|
|
TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
|
|
if (xpt_path_comp(periph->path, path) == 0) {
|
|
xpt_unlock_buses();
|
|
return(periph);
|
|
}
|
|
}
|
|
if (name != NULL) {
|
|
xpt_unlock_buses();
|
|
return(NULL);
|
|
}
|
|
}
|
|
xpt_unlock_buses();
|
|
return(NULL);
|
|
}
|
|
|
|
cam_status
|
|
cam_periph_acquire(struct cam_periph *periph)
|
|
{
|
|
|
|
if (periph == NULL)
|
|
return(CAM_REQ_CMP_ERR);
|
|
|
|
xpt_lock_buses();
|
|
periph->refcount++;
|
|
xpt_unlock_buses();
|
|
|
|
return(CAM_REQ_CMP);
|
|
}
|
|
|
|
void
|
|
cam_periph_release_locked(struct cam_periph *periph)
|
|
{
|
|
|
|
if (periph == NULL)
|
|
return;
|
|
|
|
xpt_lock_buses();
|
|
if ((--periph->refcount == 0)
|
|
&& (periph->flags & CAM_PERIPH_INVALID)) {
|
|
camperiphfree(periph);
|
|
}
|
|
xpt_unlock_buses();
|
|
}
|
|
|
|
void
|
|
cam_periph_release(struct cam_periph *periph)
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
if (periph == NULL)
|
|
return;
|
|
|
|
sim = periph->sim;
|
|
mtx_assert(sim->mtx, MA_NOTOWNED);
|
|
mtx_lock(sim->mtx);
|
|
cam_periph_release_locked(periph);
|
|
mtx_unlock(sim->mtx);
|
|
}
|
|
|
|
int
|
|
cam_periph_hold(struct cam_periph *periph, int priority)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Increment the reference count on the peripheral
|
|
* while we wait for our lock attempt to succeed
|
|
* to ensure the peripheral doesn't disappear out
|
|
* from user us while we sleep.
|
|
*/
|
|
|
|
if (cam_periph_acquire(periph) != CAM_REQ_CMP)
|
|
return (ENXIO);
|
|
|
|
mtx_assert(periph->sim->mtx, MA_OWNED);
|
|
while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
|
|
periph->flags |= CAM_PERIPH_LOCK_WANTED;
|
|
if ((error = mtx_sleep(periph, periph->sim->mtx, priority,
|
|
"caplck", 0)) != 0) {
|
|
cam_periph_release_locked(periph);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
periph->flags |= CAM_PERIPH_LOCKED;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
cam_periph_unhold(struct cam_periph *periph)
|
|
{
|
|
|
|
mtx_assert(periph->sim->mtx, MA_OWNED);
|
|
|
|
periph->flags &= ~CAM_PERIPH_LOCKED;
|
|
if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
|
|
periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
|
|
wakeup(periph);
|
|
}
|
|
|
|
cam_periph_release_locked(periph);
|
|
}
|
|
|
|
/*
|
|
* Look for the next unit number that is not currently in use for this
|
|
* peripheral type starting at "newunit". Also exclude unit numbers that
|
|
* are reserved by for future "hardwiring" unless we already know that this
|
|
* is a potential wired device. Only assume that the device is "wired" the
|
|
* first time through the loop since after that we'll be looking at unit
|
|
* numbers that did not match a wiring entry.
|
|
*/
|
|
static u_int
|
|
camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
|
|
path_id_t pathid, target_id_t target, lun_id_t lun)
|
|
{
|
|
struct cam_periph *periph;
|
|
char *periph_name;
|
|
int i, val, dunit, r;
|
|
const char *dname, *strval;
|
|
|
|
periph_name = p_drv->driver_name;
|
|
for (;;newunit++) {
|
|
|
|
for (periph = TAILQ_FIRST(&p_drv->units);
|
|
periph != NULL && periph->unit_number != newunit;
|
|
periph = TAILQ_NEXT(periph, unit_links))
|
|
;
|
|
|
|
if (periph != NULL && periph->unit_number == newunit) {
|
|
if (wired != 0) {
|
|
xpt_print(periph->path, "Duplicate Wired "
|
|
"Device entry!\n");
|
|
xpt_print(periph->path, "Second device (%s "
|
|
"device at scbus%d target %d lun %d) will "
|
|
"not be wired\n", periph_name, pathid,
|
|
target, lun);
|
|
wired = 0;
|
|
}
|
|
continue;
|
|
}
|
|
if (wired)
|
|
break;
|
|
|
|
/*
|
|
* Don't match entries like "da 4" as a wired down
|
|
* device, but do match entries like "da 4 target 5"
|
|
* or even "da 4 scbus 1".
|
|
*/
|
|
i = 0;
|
|
dname = periph_name;
|
|
for (;;) {
|
|
r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
|
|
if (r != 0)
|
|
break;
|
|
/* if no "target" and no specific scbus, skip */
|
|
if (resource_int_value(dname, dunit, "target", &val) &&
|
|
(resource_string_value(dname, dunit, "at",&strval)||
|
|
strcmp(strval, "scbus") == 0))
|
|
continue;
|
|
if (newunit == dunit)
|
|
break;
|
|
}
|
|
if (r != 0)
|
|
break;
|
|
}
|
|
return (newunit);
|
|
}
|
|
|
|
static u_int
|
|
camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
|
|
target_id_t target, lun_id_t lun)
|
|
{
|
|
u_int unit;
|
|
int wired, i, val, dunit;
|
|
const char *dname, *strval;
|
|
char pathbuf[32], *periph_name;
|
|
|
|
periph_name = p_drv->driver_name;
|
|
snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
|
|
unit = 0;
|
|
i = 0;
|
|
dname = periph_name;
|
|
for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
|
|
wired = 0) {
|
|
if (resource_string_value(dname, dunit, "at", &strval) == 0) {
|
|
if (strcmp(strval, pathbuf) != 0)
|
|
continue;
|
|
wired++;
|
|
}
|
|
if (resource_int_value(dname, dunit, "target", &val) == 0) {
|
|
if (val != target)
|
|
continue;
|
|
wired++;
|
|
}
|
|
if (resource_int_value(dname, dunit, "lun", &val) == 0) {
|
|
if (val != lun)
|
|
continue;
|
|
wired++;
|
|
}
|
|
if (wired != 0) {
|
|
unit = dunit;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Either start from 0 looking for the next unit or from
|
|
* the unit number given in the resource config. This way,
|
|
* if we have wildcard matches, we don't return the same
|
|
* unit number twice.
|
|
*/
|
|
unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
|
|
|
|
return (unit);
|
|
}
|
|
|
|
void
|
|
cam_periph_invalidate(struct cam_periph *periph)
|
|
{
|
|
|
|
/*
|
|
* We only call this routine the first time a peripheral is
|
|
* invalidated.
|
|
*/
|
|
if (((periph->flags & CAM_PERIPH_INVALID) == 0)
|
|
&& (periph->periph_oninval != NULL))
|
|
periph->periph_oninval(periph);
|
|
|
|
periph->flags |= CAM_PERIPH_INVALID;
|
|
periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
|
|
|
|
xpt_lock_buses();
|
|
if (periph->refcount == 0)
|
|
camperiphfree(periph);
|
|
else if (periph->refcount < 0)
|
|
printf("cam_invalidate_periph: refcount < 0!!\n");
|
|
xpt_unlock_buses();
|
|
}
|
|
|
|
static void
|
|
camperiphfree(struct cam_periph *periph)
|
|
{
|
|
struct periph_driver **p_drv;
|
|
|
|
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
|
|
if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
|
|
break;
|
|
}
|
|
if (*p_drv == NULL) {
|
|
printf("camperiphfree: attempt to free non-existant periph\n");
|
|
return;
|
|
}
|
|
|
|
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
|
|
(*p_drv)->generation++;
|
|
xpt_unlock_buses();
|
|
|
|
if (periph->periph_dtor != NULL)
|
|
periph->periph_dtor(periph);
|
|
xpt_remove_periph(periph);
|
|
|
|
if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
|
|
union ccb ccb;
|
|
void *arg;
|
|
|
|
switch (periph->deferred_ac) {
|
|
case AC_FOUND_DEVICE:
|
|
ccb.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
|
|
xpt_action(&ccb);
|
|
arg = &ccb;
|
|
break;
|
|
case AC_PATH_REGISTERED:
|
|
ccb.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
|
|
xpt_action(&ccb);
|
|
arg = &ccb;
|
|
break;
|
|
default:
|
|
arg = NULL;
|
|
break;
|
|
}
|
|
periph->deferred_callback(NULL, periph->deferred_ac,
|
|
periph->path, arg);
|
|
}
|
|
xpt_free_path(periph->path);
|
|
free(periph, M_CAMPERIPH);
|
|
xpt_lock_buses();
|
|
}
|
|
|
|
/*
|
|
* Map user virtual pointers into kernel virtual address space, so we can
|
|
* access the memory. This won't work on physical pointers, for now it's
|
|
* up to the caller to check for that. (XXX KDM -- should we do that here
|
|
* instead?) This also only works for up to MAXPHYS memory. Since we use
|
|
* buffers to map stuff in and out, we're limited to the buffer size.
|
|
*/
|
|
int
|
|
cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
|
|
{
|
|
int numbufs, i, j;
|
|
int flags[CAM_PERIPH_MAXMAPS];
|
|
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
|
|
u_int32_t lengths[CAM_PERIPH_MAXMAPS];
|
|
u_int32_t dirs[CAM_PERIPH_MAXMAPS];
|
|
/* Some controllers may not be able to handle more data. */
|
|
size_t maxmap = DFLTPHYS;
|
|
|
|
switch(ccb->ccb_h.func_code) {
|
|
case XPT_DEV_MATCH:
|
|
if (ccb->cdm.match_buf_len == 0) {
|
|
printf("cam_periph_mapmem: invalid match buffer "
|
|
"length 0\n");
|
|
return(EINVAL);
|
|
}
|
|
if (ccb->cdm.pattern_buf_len > 0) {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
|
|
lengths[0] = ccb->cdm.pattern_buf_len;
|
|
dirs[0] = CAM_DIR_OUT;
|
|
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
|
|
lengths[1] = ccb->cdm.match_buf_len;
|
|
dirs[1] = CAM_DIR_IN;
|
|
numbufs = 2;
|
|
} else {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
|
|
lengths[0] = ccb->cdm.match_buf_len;
|
|
dirs[0] = CAM_DIR_IN;
|
|
numbufs = 1;
|
|
}
|
|
/*
|
|
* This request will not go to the hardware, no reason
|
|
* to be so strict. vmapbuf() is able to map up to MAXPHYS.
|
|
*/
|
|
maxmap = MAXPHYS;
|
|
break;
|
|
case XPT_SCSI_IO:
|
|
case XPT_CONT_TARGET_IO:
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
|
|
return(0);
|
|
|
|
data_ptrs[0] = &ccb->csio.data_ptr;
|
|
lengths[0] = ccb->csio.dxfer_len;
|
|
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
|
|
numbufs = 1;
|
|
break;
|
|
case XPT_ATA_IO:
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
|
|
return(0);
|
|
|
|
data_ptrs[0] = &ccb->ataio.data_ptr;
|
|
lengths[0] = ccb->ataio.dxfer_len;
|
|
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
|
|
numbufs = 1;
|
|
break;
|
|
default:
|
|
return(EINVAL);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Check the transfer length and permissions first, so we don't
|
|
* have to unmap any previously mapped buffers.
|
|
*/
|
|
for (i = 0; i < numbufs; i++) {
|
|
|
|
flags[i] = 0;
|
|
|
|
/*
|
|
* The userland data pointer passed in may not be page
|
|
* aligned. vmapbuf() truncates the address to a page
|
|
* boundary, so if the address isn't page aligned, we'll
|
|
* need enough space for the given transfer length, plus
|
|
* whatever extra space is necessary to make it to the page
|
|
* boundary.
|
|
*/
|
|
if ((lengths[i] +
|
|
(((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
|
|
printf("cam_periph_mapmem: attempt to map %lu bytes, "
|
|
"which is greater than %lu\n",
|
|
(long)(lengths[i] +
|
|
(((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
|
|
(u_long)maxmap);
|
|
return(E2BIG);
|
|
}
|
|
|
|
if (dirs[i] & CAM_DIR_OUT) {
|
|
flags[i] = BIO_WRITE;
|
|
}
|
|
|
|
if (dirs[i] & CAM_DIR_IN) {
|
|
flags[i] = BIO_READ;
|
|
}
|
|
|
|
}
|
|
|
|
/* this keeps the current process from getting swapped */
|
|
/*
|
|
* XXX KDM should I use P_NOSWAP instead?
|
|
*/
|
|
PHOLD(curproc);
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
/*
|
|
* Get the buffer.
|
|
*/
|
|
mapinfo->bp[i] = getpbuf(NULL);
|
|
|
|
/* save the buffer's data address */
|
|
mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
|
|
|
|
/* put our pointer in the data slot */
|
|
mapinfo->bp[i]->b_data = *data_ptrs[i];
|
|
|
|
/* set the transfer length, we know it's < MAXPHYS */
|
|
mapinfo->bp[i]->b_bufsize = lengths[i];
|
|
|
|
/* set the direction */
|
|
mapinfo->bp[i]->b_iocmd = flags[i];
|
|
|
|
/*
|
|
* Map the buffer into kernel memory.
|
|
*
|
|
* Note that useracc() alone is not a sufficient test.
|
|
* vmapbuf() can still fail due to a smaller file mapped
|
|
* into a larger area of VM, or if userland races against
|
|
* vmapbuf() after the useracc() check.
|
|
*/
|
|
if (vmapbuf(mapinfo->bp[i]) < 0) {
|
|
for (j = 0; j < i; ++j) {
|
|
*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
|
|
vunmapbuf(mapinfo->bp[j]);
|
|
relpbuf(mapinfo->bp[j], NULL);
|
|
}
|
|
relpbuf(mapinfo->bp[i], NULL);
|
|
PRELE(curproc);
|
|
return(EACCES);
|
|
}
|
|
|
|
/* set our pointer to the new mapped area */
|
|
*data_ptrs[i] = mapinfo->bp[i]->b_data;
|
|
|
|
mapinfo->num_bufs_used++;
|
|
}
|
|
|
|
/*
|
|
* Now that we've gotten this far, change ownership to the kernel
|
|
* of the buffers so that we don't run afoul of returning to user
|
|
* space with locks (on the buffer) held.
|
|
*/
|
|
for (i = 0; i < numbufs; i++) {
|
|
BUF_KERNPROC(mapinfo->bp[i]);
|
|
}
|
|
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Unmap memory segments mapped into kernel virtual address space by
|
|
* cam_periph_mapmem().
|
|
*/
|
|
void
|
|
cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
|
|
{
|
|
int numbufs, i;
|
|
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
|
|
|
|
if (mapinfo->num_bufs_used <= 0) {
|
|
/* allow ourselves to be swapped once again */
|
|
PRELE(curproc);
|
|
return;
|
|
}
|
|
|
|
switch (ccb->ccb_h.func_code) {
|
|
case XPT_DEV_MATCH:
|
|
numbufs = min(mapinfo->num_bufs_used, 2);
|
|
|
|
if (numbufs == 1) {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
|
|
} else {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
|
|
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
|
|
}
|
|
break;
|
|
case XPT_SCSI_IO:
|
|
case XPT_CONT_TARGET_IO:
|
|
data_ptrs[0] = &ccb->csio.data_ptr;
|
|
numbufs = min(mapinfo->num_bufs_used, 1);
|
|
break;
|
|
case XPT_ATA_IO:
|
|
data_ptrs[0] = &ccb->ataio.data_ptr;
|
|
numbufs = min(mapinfo->num_bufs_used, 1);
|
|
break;
|
|
default:
|
|
/* allow ourselves to be swapped once again */
|
|
PRELE(curproc);
|
|
return;
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
/* Set the user's pointer back to the original value */
|
|
*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
|
|
|
|
/* unmap the buffer */
|
|
vunmapbuf(mapinfo->bp[i]);
|
|
|
|
/* release the buffer */
|
|
relpbuf(mapinfo->bp[i], NULL);
|
|
}
|
|
|
|
/* allow ourselves to be swapped once again */
|
|
PRELE(curproc);
|
|
}
|
|
|
|
union ccb *
|
|
cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
|
|
{
|
|
struct ccb_hdr *ccb_h;
|
|
|
|
mtx_assert(periph->sim->mtx, MA_OWNED);
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
|
|
|
|
while (SLIST_FIRST(&periph->ccb_list) == NULL) {
|
|
if (periph->immediate_priority > priority)
|
|
periph->immediate_priority = priority;
|
|
xpt_schedule(periph, priority);
|
|
if ((SLIST_FIRST(&periph->ccb_list) != NULL)
|
|
&& (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
|
|
break;
|
|
mtx_assert(periph->sim->mtx, MA_OWNED);
|
|
mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb",
|
|
0);
|
|
}
|
|
|
|
ccb_h = SLIST_FIRST(&periph->ccb_list);
|
|
SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
|
|
return ((union ccb *)ccb_h);
|
|
}
|
|
|
|
void
|
|
cam_periph_ccbwait(union ccb *ccb)
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
sim = xpt_path_sim(ccb->ccb_h.path);
|
|
if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
|
|
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
|
|
mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0);
|
|
}
|
|
|
|
int
|
|
cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
|
|
int (*error_routine)(union ccb *ccb,
|
|
cam_flags camflags,
|
|
u_int32_t sense_flags))
|
|
{
|
|
union ccb *ccb;
|
|
int error;
|
|
int found;
|
|
|
|
error = found = 0;
|
|
|
|
switch(cmd){
|
|
case CAMGETPASSTHRU:
|
|
ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
|
|
xpt_setup_ccb(&ccb->ccb_h,
|
|
ccb->ccb_h.path,
|
|
CAM_PRIORITY_NORMAL);
|
|
ccb->ccb_h.func_code = XPT_GDEVLIST;
|
|
|
|
/*
|
|
* Basically, the point of this is that we go through
|
|
* getting the list of devices, until we find a passthrough
|
|
* device. In the current version of the CAM code, the
|
|
* only way to determine what type of device we're dealing
|
|
* with is by its name.
|
|
*/
|
|
while (found == 0) {
|
|
ccb->cgdl.index = 0;
|
|
ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
|
|
while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
|
|
|
|
/* we want the next device in the list */
|
|
xpt_action(ccb);
|
|
if (strncmp(ccb->cgdl.periph_name,
|
|
"pass", 4) == 0){
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
|
|
(found == 0)) {
|
|
ccb->cgdl.periph_name[0] = '\0';
|
|
ccb->cgdl.unit_number = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* copy the result back out */
|
|
bcopy(ccb, addr, sizeof(union ccb));
|
|
|
|
/* and release the ccb */
|
|
xpt_release_ccb(ccb);
|
|
|
|
break;
|
|
default:
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
return(error);
|
|
}
|
|
|
|
int
|
|
cam_periph_runccb(union ccb *ccb,
|
|
int (*error_routine)(union ccb *ccb,
|
|
cam_flags camflags,
|
|
u_int32_t sense_flags),
|
|
cam_flags camflags, u_int32_t sense_flags,
|
|
struct devstat *ds)
|
|
{
|
|
struct cam_sim *sim;
|
|
int error;
|
|
|
|
error = 0;
|
|
sim = xpt_path_sim(ccb->ccb_h.path);
|
|
mtx_assert(sim->mtx, MA_OWNED);
|
|
|
|
/*
|
|
* If the user has supplied a stats structure, and if we understand
|
|
* this particular type of ccb, record the transaction start.
|
|
*/
|
|
if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
|
|
devstat_start_transaction(ds, NULL);
|
|
|
|
xpt_action(ccb);
|
|
|
|
do {
|
|
cam_periph_ccbwait(ccb);
|
|
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
|
|
error = 0;
|
|
else if (error_routine != NULL)
|
|
error = (*error_routine)(ccb, camflags, sense_flags);
|
|
else
|
|
error = 0;
|
|
|
|
} while (error == ERESTART);
|
|
|
|
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
|
|
cam_release_devq(ccb->ccb_h.path,
|
|
/* relsim_flags */0,
|
|
/* openings */0,
|
|
/* timeout */0,
|
|
/* getcount_only */ FALSE);
|
|
|
|
if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
|
|
devstat_end_transaction(ds,
|
|
ccb->csio.dxfer_len,
|
|
ccb->csio.tag_action & 0xf,
|
|
((ccb->ccb_h.flags & CAM_DIR_MASK) ==
|
|
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
|
|
(ccb->ccb_h.flags & CAM_DIR_OUT) ?
|
|
DEVSTAT_WRITE :
|
|
DEVSTAT_READ, NULL, NULL);
|
|
|
|
return(error);
|
|
}
|
|
|
|
void
|
|
cam_freeze_devq(struct cam_path *path)
|
|
{
|
|
struct ccb_hdr ccb_h;
|
|
|
|
xpt_setup_ccb(&ccb_h, path, CAM_PRIORITY_NORMAL);
|
|
ccb_h.func_code = XPT_NOOP;
|
|
ccb_h.flags = CAM_DEV_QFREEZE;
|
|
xpt_action((union ccb *)&ccb_h);
|
|
}
|
|
|
|
u_int32_t
|
|
cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
|
|
u_int32_t openings, u_int32_t timeout,
|
|
int getcount_only)
|
|
{
|
|
struct ccb_relsim crs;
|
|
|
|
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
|
|
crs.ccb_h.func_code = XPT_REL_SIMQ;
|
|
crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
|
|
crs.release_flags = relsim_flags;
|
|
crs.openings = openings;
|
|
crs.release_timeout = timeout;
|
|
xpt_action((union ccb *)&crs);
|
|
return (crs.qfrozen_cnt);
|
|
}
|
|
|
|
#define saved_ccb_ptr ppriv_ptr0
|
|
static void
|
|
camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
union ccb *saved_ccb;
|
|
cam_status status;
|
|
int frozen;
|
|
int sense;
|
|
struct scsi_start_stop_unit *scsi_cmd;
|
|
u_int32_t relsim_flags, timeout;
|
|
u_int32_t qfrozen_cnt;
|
|
int xpt_done_ccb;
|
|
|
|
xpt_done_ccb = FALSE;
|
|
status = done_ccb->ccb_h.status;
|
|
frozen = (status & CAM_DEV_QFRZN) != 0;
|
|
sense = (status & CAM_AUTOSNS_VALID) != 0;
|
|
status &= CAM_STATUS_MASK;
|
|
|
|
timeout = 0;
|
|
relsim_flags = 0;
|
|
saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
|
|
|
|
/*
|
|
* Unfreeze the queue once if it is already frozen..
|
|
*/
|
|
if (frozen != 0) {
|
|
qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
|
|
/*relsim_flags*/0,
|
|
/*openings*/0,
|
|
/*timeout*/0,
|
|
/*getcount_only*/0);
|
|
}
|
|
|
|
switch (status) {
|
|
case CAM_REQ_CMP:
|
|
{
|
|
/*
|
|
* If we have successfully taken a device from the not
|
|
* ready to ready state, re-scan the device and re-get
|
|
* the inquiry information. Many devices (mostly disks)
|
|
* don't properly report their inquiry information unless
|
|
* they are spun up.
|
|
*
|
|
* If we manually retrieved sense into a CCB and got
|
|
* something other than "NO SENSE" send the updated CCB
|
|
* back to the client via xpt_done() to be processed via
|
|
* the error recovery code again.
|
|
*/
|
|
if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
|
|
scsi_cmd = (struct scsi_start_stop_unit *)
|
|
&done_ccb->csio.cdb_io.cdb_bytes;
|
|
|
|
if (scsi_cmd->opcode == START_STOP_UNIT)
|
|
xpt_async(AC_INQ_CHANGED,
|
|
done_ccb->ccb_h.path, NULL);
|
|
if (scsi_cmd->opcode == REQUEST_SENSE) {
|
|
u_int sense_key;
|
|
|
|
sense_key = saved_ccb->csio.sense_data.flags;
|
|
sense_key &= SSD_KEY;
|
|
if (sense_key != SSD_KEY_NO_SENSE) {
|
|
saved_ccb->ccb_h.status |=
|
|
CAM_AUTOSNS_VALID;
|
|
#if 0
|
|
xpt_print(saved_ccb->ccb_h.path,
|
|
"Recovered Sense\n");
|
|
scsi_sense_print(&saved_ccb->csio);
|
|
cam_error_print(saved_ccb, CAM_ESF_ALL,
|
|
CAM_EPF_ALL);
|
|
#endif
|
|
} else {
|
|
saved_ccb->ccb_h.status &=
|
|
~CAM_STATUS_MASK;
|
|
saved_ccb->ccb_h.status |=
|
|
CAM_AUTOSENSE_FAIL;
|
|
}
|
|
xpt_done_ccb = TRUE;
|
|
}
|
|
}
|
|
bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
|
|
sizeof(union ccb));
|
|
|
|
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
if (xpt_done_ccb == FALSE)
|
|
xpt_action(done_ccb);
|
|
|
|
break;
|
|
}
|
|
case CAM_SCSI_STATUS_ERROR:
|
|
scsi_cmd = (struct scsi_start_stop_unit *)
|
|
&done_ccb->csio.cdb_io.cdb_bytes;
|
|
if (sense != 0) {
|
|
struct ccb_getdev cgd;
|
|
struct scsi_sense_data *sense;
|
|
int error_code, sense_key, asc, ascq;
|
|
scsi_sense_action err_action;
|
|
|
|
sense = &done_ccb->csio.sense_data;
|
|
scsi_extract_sense(sense, &error_code,
|
|
&sense_key, &asc, &ascq);
|
|
|
|
/*
|
|
* Grab the inquiry data for this device.
|
|
*/
|
|
xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
|
|
CAM_PRIORITY_NORMAL);
|
|
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action((union ccb *)&cgd);
|
|
err_action = scsi_error_action(&done_ccb->csio,
|
|
&cgd.inq_data, 0);
|
|
|
|
/*
|
|
* If the error is "invalid field in CDB",
|
|
* and the load/eject flag is set, turn the
|
|
* flag off and try again. This is just in
|
|
* case the drive in question barfs on the
|
|
* load eject flag. The CAM code should set
|
|
* the load/eject flag by default for
|
|
* removable media.
|
|
*/
|
|
|
|
/* XXX KDM
|
|
* Should we check to see what the specific
|
|
* scsi status is?? Or does it not matter
|
|
* since we already know that there was an
|
|
* error, and we know what the specific
|
|
* error code was, and we know what the
|
|
* opcode is..
|
|
*/
|
|
if ((scsi_cmd->opcode == START_STOP_UNIT) &&
|
|
((scsi_cmd->how & SSS_LOEJ) != 0) &&
|
|
(asc == 0x24) && (ascq == 0x00) &&
|
|
(done_ccb->ccb_h.retry_count > 0)) {
|
|
|
|
scsi_cmd->how &= ~SSS_LOEJ;
|
|
|
|
xpt_action(done_ccb);
|
|
|
|
} else if ((done_ccb->ccb_h.retry_count > 1)
|
|
&& ((err_action & SS_MASK) != SS_FAIL)) {
|
|
|
|
/*
|
|
* In this case, the error recovery
|
|
* command failed, but we've got
|
|
* some retries left on it. Give
|
|
* it another try unless this is an
|
|
* unretryable error.
|
|
*/
|
|
|
|
/* set the timeout to .5 sec */
|
|
relsim_flags =
|
|
RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
timeout = 500;
|
|
|
|
xpt_action(done_ccb);
|
|
|
|
break;
|
|
|
|
} else {
|
|
/*
|
|
* Perform the final retry with the original
|
|
* CCB so that final error processing is
|
|
* performed by the owner of the CCB.
|
|
*/
|
|
bcopy(done_ccb->ccb_h.saved_ccb_ptr,
|
|
done_ccb, sizeof(union ccb));
|
|
|
|
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
xpt_action(done_ccb);
|
|
}
|
|
} else {
|
|
/*
|
|
* Eh?? The command failed, but we don't
|
|
* have any sense. What's up with that?
|
|
* Fire the CCB again to return it to the
|
|
* caller.
|
|
*/
|
|
bcopy(done_ccb->ccb_h.saved_ccb_ptr,
|
|
done_ccb, sizeof(union ccb));
|
|
|
|
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
xpt_action(done_ccb);
|
|
|
|
}
|
|
break;
|
|
default:
|
|
bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
|
|
sizeof(union ccb));
|
|
|
|
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
xpt_action(done_ccb);
|
|
|
|
break;
|
|
}
|
|
|
|
/* decrement the retry count */
|
|
/*
|
|
* XXX This isn't appropriate in all cases. Restructure,
|
|
* so that the retry count is only decremented on an
|
|
* actual retry. Remeber that the orignal ccb had its
|
|
* retry count dropped before entering recovery, so
|
|
* doing it again is a bug.
|
|
*/
|
|
if (done_ccb->ccb_h.retry_count > 0)
|
|
done_ccb->ccb_h.retry_count--;
|
|
|
|
qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
|
|
/*relsim_flags*/relsim_flags,
|
|
/*openings*/0,
|
|
/*timeout*/timeout,
|
|
/*getcount_only*/0);
|
|
if (xpt_done_ccb == TRUE)
|
|
(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
|
|
}
|
|
|
|
/*
|
|
* Generic Async Event handler. Peripheral drivers usually
|
|
* filter out the events that require personal attention,
|
|
* and leave the rest to this function.
|
|
*/
|
|
void
|
|
cam_periph_async(struct cam_periph *periph, u_int32_t code,
|
|
struct cam_path *path, void *arg)
|
|
{
|
|
switch (code) {
|
|
case AC_LOST_DEVICE:
|
|
cam_periph_invalidate(periph);
|
|
break;
|
|
case AC_SENT_BDR:
|
|
case AC_BUS_RESET:
|
|
{
|
|
cam_periph_bus_settle(periph, scsi_delay);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
|
|
{
|
|
struct ccb_getdevstats cgds;
|
|
|
|
xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
|
|
cgds.ccb_h.func_code = XPT_GDEV_STATS;
|
|
xpt_action((union ccb *)&cgds);
|
|
cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
|
|
}
|
|
|
|
void
|
|
cam_periph_freeze_after_event(struct cam_periph *periph,
|
|
struct timeval* event_time, u_int duration_ms)
|
|
{
|
|
struct timeval delta;
|
|
struct timeval duration_tv;
|
|
|
|
microtime(&delta);
|
|
timevalsub(&delta, event_time);
|
|
duration_tv.tv_sec = duration_ms / 1000;
|
|
duration_tv.tv_usec = (duration_ms % 1000) * 1000;
|
|
if (timevalcmp(&delta, &duration_tv, <)) {
|
|
timevalsub(&duration_tv, &delta);
|
|
|
|
duration_ms = duration_tv.tv_sec * 1000;
|
|
duration_ms += duration_tv.tv_usec / 1000;
|
|
cam_freeze_devq(periph->path);
|
|
cam_release_devq(periph->path,
|
|
RELSIM_RELEASE_AFTER_TIMEOUT,
|
|
/*reduction*/0,
|
|
/*timeout*/duration_ms,
|
|
/*getcount_only*/0);
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
|
|
u_int32_t sense_flags, union ccb *save_ccb,
|
|
int *openings, u_int32_t *relsim_flags,
|
|
u_int32_t *timeout)
|
|
{
|
|
int error;
|
|
|
|
switch (ccb->csio.scsi_status) {
|
|
case SCSI_STATUS_OK:
|
|
case SCSI_STATUS_COND_MET:
|
|
case SCSI_STATUS_INTERMED:
|
|
case SCSI_STATUS_INTERMED_COND_MET:
|
|
error = 0;
|
|
break;
|
|
case SCSI_STATUS_CMD_TERMINATED:
|
|
case SCSI_STATUS_CHECK_COND:
|
|
error = camperiphscsisenseerror(ccb,
|
|
camflags,
|
|
sense_flags,
|
|
save_ccb,
|
|
openings,
|
|
relsim_flags,
|
|
timeout);
|
|
break;
|
|
case SCSI_STATUS_QUEUE_FULL:
|
|
{
|
|
/* no decrement */
|
|
struct ccb_getdevstats cgds;
|
|
|
|
/*
|
|
* First off, find out what the current
|
|
* transaction counts are.
|
|
*/
|
|
xpt_setup_ccb(&cgds.ccb_h,
|
|
ccb->ccb_h.path,
|
|
CAM_PRIORITY_NORMAL);
|
|
cgds.ccb_h.func_code = XPT_GDEV_STATS;
|
|
xpt_action((union ccb *)&cgds);
|
|
|
|
/*
|
|
* If we were the only transaction active, treat
|
|
* the QUEUE FULL as if it were a BUSY condition.
|
|
*/
|
|
if (cgds.dev_active != 0) {
|
|
int total_openings;
|
|
|
|
/*
|
|
* Reduce the number of openings to
|
|
* be 1 less than the amount it took
|
|
* to get a queue full bounded by the
|
|
* minimum allowed tag count for this
|
|
* device.
|
|
*/
|
|
total_openings = cgds.dev_active + cgds.dev_openings;
|
|
*openings = cgds.dev_active;
|
|
if (*openings < cgds.mintags)
|
|
*openings = cgds.mintags;
|
|
if (*openings < total_openings)
|
|
*relsim_flags = RELSIM_ADJUST_OPENINGS;
|
|
else {
|
|
/*
|
|
* Some devices report queue full for
|
|
* temporary resource shortages. For
|
|
* this reason, we allow a minimum
|
|
* tag count to be entered via a
|
|
* quirk entry to prevent the queue
|
|
* count on these devices from falling
|
|
* to a pessimisticly low value. We
|
|
* still wait for the next successful
|
|
* completion, however, before queueing
|
|
* more transactions to the device.
|
|
*/
|
|
*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
|
|
}
|
|
*timeout = 0;
|
|
error = ERESTART;
|
|
if (bootverbose) {
|
|
xpt_print(ccb->ccb_h.path, "Queue Full\n");
|
|
}
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
}
|
|
case SCSI_STATUS_BUSY:
|
|
/*
|
|
* Restart the queue after either another
|
|
* command completes or a 1 second timeout.
|
|
*/
|
|
if (bootverbose) {
|
|
xpt_print(ccb->ccb_h.path, "Device Busy\n");
|
|
}
|
|
if (ccb->ccb_h.retry_count > 0) {
|
|
ccb->ccb_h.retry_count--;
|
|
error = ERESTART;
|
|
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
|
|
| RELSIM_RELEASE_AFTER_CMDCMPLT;
|
|
*timeout = 1000;
|
|
} else {
|
|
error = EIO;
|
|
}
|
|
break;
|
|
case SCSI_STATUS_RESERV_CONFLICT:
|
|
xpt_print(ccb->ccb_h.path, "Reservation Conflict\n");
|
|
error = EIO;
|
|
break;
|
|
default:
|
|
xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n",
|
|
ccb->csio.scsi_status);
|
|
error = EIO;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
|
|
u_int32_t sense_flags, union ccb *save_ccb,
|
|
int *openings, u_int32_t *relsim_flags,
|
|
u_int32_t *timeout)
|
|
{
|
|
struct cam_periph *periph;
|
|
int error;
|
|
|
|
periph = xpt_path_periph(ccb->ccb_h.path);
|
|
if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
|
|
|
|
/*
|
|
* If error recovery is already in progress, don't attempt
|
|
* to process this error, but requeue it unconditionally
|
|
* and attempt to process it once error recovery has
|
|
* completed. This failed command is probably related to
|
|
* the error that caused the currently active error recovery
|
|
* action so our current recovery efforts should also
|
|
* address this command. Be aware that the error recovery
|
|
* code assumes that only one recovery action is in progress
|
|
* on a particular peripheral instance at any given time
|
|
* (e.g. only one saved CCB for error recovery) so it is
|
|
* imperitive that we don't violate this assumption.
|
|
*/
|
|
error = ERESTART;
|
|
} else {
|
|
scsi_sense_action err_action;
|
|
struct ccb_getdev cgd;
|
|
const char *action_string;
|
|
union ccb* print_ccb;
|
|
|
|
/* A description of the error recovery action performed */
|
|
action_string = NULL;
|
|
|
|
/*
|
|
* The location of the orignal ccb
|
|
* for sense printing purposes.
|
|
*/
|
|
print_ccb = ccb;
|
|
|
|
/*
|
|
* Grab the inquiry data for this device.
|
|
*/
|
|
xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
|
|
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action((union ccb *)&cgd);
|
|
|
|
if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
|
|
err_action = scsi_error_action(&ccb->csio,
|
|
&cgd.inq_data,
|
|
sense_flags);
|
|
else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
|
|
err_action = SS_REQSENSE;
|
|
else
|
|
err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
|
|
|
|
error = err_action & SS_ERRMASK;
|
|
|
|
/*
|
|
* If the recovery action will consume a retry,
|
|
* make sure we actually have retries available.
|
|
*/
|
|
if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
|
|
if (ccb->ccb_h.retry_count > 0)
|
|
ccb->ccb_h.retry_count--;
|
|
else {
|
|
action_string = "Retries Exhausted";
|
|
goto sense_error_done;
|
|
}
|
|
}
|
|
|
|
if ((err_action & SS_MASK) >= SS_START) {
|
|
/*
|
|
* Do common portions of commands that
|
|
* use recovery CCBs.
|
|
*/
|
|
if (save_ccb == NULL) {
|
|
action_string = "No recovery CCB supplied";
|
|
goto sense_error_done;
|
|
}
|
|
bcopy(ccb, save_ccb, sizeof(*save_ccb));
|
|
print_ccb = save_ccb;
|
|
periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
|
|
}
|
|
|
|
switch (err_action & SS_MASK) {
|
|
case SS_NOP:
|
|
action_string = "No Recovery Action Needed";
|
|
error = 0;
|
|
break;
|
|
case SS_RETRY:
|
|
action_string = "Retrying Command (per Sense Data)";
|
|
error = ERESTART;
|
|
break;
|
|
case SS_FAIL:
|
|
action_string = "Unretryable error";
|
|
break;
|
|
case SS_START:
|
|
{
|
|
int le;
|
|
|
|
/*
|
|
* Send a start unit command to the device, and
|
|
* then retry the command.
|
|
*/
|
|
action_string = "Attempting to Start Unit";
|
|
|
|
/*
|
|
* Check for removable media and set
|
|
* load/eject flag appropriately.
|
|
*/
|
|
if (SID_IS_REMOVABLE(&cgd.inq_data))
|
|
le = TRUE;
|
|
else
|
|
le = FALSE;
|
|
|
|
scsi_start_stop(&ccb->csio,
|
|
/*retries*/1,
|
|
camperiphdone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
/*start*/TRUE,
|
|
/*load/eject*/le,
|
|
/*immediate*/FALSE,
|
|
SSD_FULL_SIZE,
|
|
/*timeout*/50000);
|
|
break;
|
|
}
|
|
case SS_TUR:
|
|
{
|
|
/*
|
|
* Send a Test Unit Ready to the device.
|
|
* If the 'many' flag is set, we send 120
|
|
* test unit ready commands, one every half
|
|
* second. Otherwise, we just send one TUR.
|
|
* We only want to do this if the retry
|
|
* count has not been exhausted.
|
|
*/
|
|
int retries;
|
|
|
|
if ((err_action & SSQ_MANY) != 0) {
|
|
action_string = "Polling device for readiness";
|
|
retries = 120;
|
|
} else {
|
|
action_string = "Testing device for readiness";
|
|
retries = 1;
|
|
}
|
|
scsi_test_unit_ready(&ccb->csio,
|
|
retries,
|
|
camperiphdone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
SSD_FULL_SIZE,
|
|
/*timeout*/5000);
|
|
|
|
/*
|
|
* Accomplish our 500ms delay by deferring
|
|
* the release of our device queue appropriately.
|
|
*/
|
|
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
*timeout = 500;
|
|
break;
|
|
}
|
|
case SS_REQSENSE:
|
|
{
|
|
/*
|
|
* Send a Request Sense to the device. We
|
|
* assume that we are in a contingent allegiance
|
|
* condition so we do not tag this request.
|
|
*/
|
|
scsi_request_sense(&ccb->csio, /*retries*/1,
|
|
camperiphdone,
|
|
&save_ccb->csio.sense_data,
|
|
sizeof(save_ccb->csio.sense_data),
|
|
CAM_TAG_ACTION_NONE,
|
|
/*sense_len*/SSD_FULL_SIZE,
|
|
/*timeout*/5000);
|
|
break;
|
|
}
|
|
default:
|
|
panic("Unhandled error action %x", err_action);
|
|
}
|
|
|
|
if ((err_action & SS_MASK) >= SS_START) {
|
|
/*
|
|
* Drop the priority, so that the recovery
|
|
* CCB is the first to execute. Freeze the queue
|
|
* after this command is sent so that we can
|
|
* restore the old csio and have it queued in
|
|
* the proper order before we release normal
|
|
* transactions to the device.
|
|
*/
|
|
ccb->ccb_h.pinfo.priority = CAM_PRIORITY_DEV;
|
|
ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
ccb->ccb_h.saved_ccb_ptr = save_ccb;
|
|
error = ERESTART;
|
|
}
|
|
|
|
sense_error_done:
|
|
if ((err_action & SSQ_PRINT_SENSE) != 0
|
|
&& (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
|
|
cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
if (bootverbose)
|
|
scsi_sense_print(&print_ccb->csio);
|
|
printf("%s\n", action_string);
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Generic error handler. Peripheral drivers usually filter
|
|
* out the errors that they handle in a unique mannor, then
|
|
* call this function.
|
|
*/
|
|
int
|
|
cam_periph_error(union ccb *ccb, cam_flags camflags,
|
|
u_int32_t sense_flags, union ccb *save_ccb)
|
|
{
|
|
const char *action_string;
|
|
cam_status status;
|
|
int frozen;
|
|
int error, printed = 0;
|
|
int openings;
|
|
u_int32_t relsim_flags;
|
|
u_int32_t timeout = 0;
|
|
|
|
action_string = NULL;
|
|
status = ccb->ccb_h.status;
|
|
frozen = (status & CAM_DEV_QFRZN) != 0;
|
|
status &= CAM_STATUS_MASK;
|
|
openings = relsim_flags = 0;
|
|
|
|
switch (status) {
|
|
case CAM_REQ_CMP:
|
|
error = 0;
|
|
break;
|
|
case CAM_SCSI_STATUS_ERROR:
|
|
error = camperiphscsistatuserror(ccb,
|
|
camflags,
|
|
sense_flags,
|
|
save_ccb,
|
|
&openings,
|
|
&relsim_flags,
|
|
&timeout);
|
|
break;
|
|
case CAM_AUTOSENSE_FAIL:
|
|
xpt_print(ccb->ccb_h.path, "AutoSense Failed\n");
|
|
error = EIO; /* we have to kill the command */
|
|
break;
|
|
case CAM_ATA_STATUS_ERROR:
|
|
if (bootverbose && printed == 0) {
|
|
xpt_print(ccb->ccb_h.path,
|
|
"Request completed with CAM_ATA_STATUS_ERROR\n");
|
|
printed++;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case CAM_REQ_CMP_ERR:
|
|
if (bootverbose && printed == 0) {
|
|
xpt_print(ccb->ccb_h.path,
|
|
"Request completed with CAM_REQ_CMP_ERR\n");
|
|
printed++;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case CAM_CMD_TIMEOUT:
|
|
if (bootverbose && printed == 0) {
|
|
xpt_print(ccb->ccb_h.path, "Command timed out\n");
|
|
printed++;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case CAM_UNEXP_BUSFREE:
|
|
if (bootverbose && printed == 0) {
|
|
xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
|
|
printed++;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case CAM_UNCOR_PARITY:
|
|
if (bootverbose && printed == 0) {
|
|
xpt_print(ccb->ccb_h.path,
|
|
"Uncorrected Parity Error\n");
|
|
printed++;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case CAM_DATA_RUN_ERR:
|
|
if (bootverbose && printed == 0) {
|
|
xpt_print(ccb->ccb_h.path, "Data Overrun\n");
|
|
printed++;
|
|
}
|
|
error = EIO; /* we have to kill the command */
|
|
/* decrement the number of retries */
|
|
if (ccb->ccb_h.retry_count > 0) {
|
|
ccb->ccb_h.retry_count--;
|
|
error = ERESTART;
|
|
} else {
|
|
action_string = "Retries Exhausted";
|
|
error = EIO;
|
|
}
|
|
break;
|
|
case CAM_UA_ABORT:
|
|
case CAM_UA_TERMIO:
|
|
case CAM_MSG_REJECT_REC:
|
|
/* XXX Don't know that these are correct */
|
|
error = EIO;
|
|
break;
|
|
case CAM_SEL_TIMEOUT:
|
|
{
|
|
struct cam_path *newpath;
|
|
|
|
if ((camflags & CAM_RETRY_SELTO) != 0) {
|
|
if (ccb->ccb_h.retry_count > 0) {
|
|
|
|
ccb->ccb_h.retry_count--;
|
|
error = ERESTART;
|
|
if (bootverbose && printed == 0) {
|
|
xpt_print(ccb->ccb_h.path,
|
|
"Selection Timeout\n");
|
|
printed++;
|
|
}
|
|
|
|
/*
|
|
* Wait a bit to give the device
|
|
* time to recover before we try again.
|
|
*/
|
|
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
timeout = periph_selto_delay;
|
|
break;
|
|
}
|
|
}
|
|
error = ENXIO;
|
|
/* Should we do more if we can't create the path?? */
|
|
if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
|
|
xpt_path_path_id(ccb->ccb_h.path),
|
|
xpt_path_target_id(ccb->ccb_h.path),
|
|
CAM_LUN_WILDCARD) != CAM_REQ_CMP)
|
|
break;
|
|
|
|
/*
|
|
* Let peripheral drivers know that this device has gone
|
|
* away.
|
|
*/
|
|
xpt_async(AC_LOST_DEVICE, newpath, NULL);
|
|
xpt_free_path(newpath);
|
|
break;
|
|
}
|
|
case CAM_REQ_INVALID:
|
|
case CAM_PATH_INVALID:
|
|
case CAM_DEV_NOT_THERE:
|
|
case CAM_NO_HBA:
|
|
case CAM_PROVIDE_FAIL:
|
|
case CAM_REQ_TOO_BIG:
|
|
case CAM_LUN_INVALID:
|
|
case CAM_TID_INVALID:
|
|
error = EINVAL;
|
|
break;
|
|
case CAM_SCSI_BUS_RESET:
|
|
case CAM_BDR_SENT:
|
|
/*
|
|
* Commands that repeatedly timeout and cause these
|
|
* kinds of error recovery actions, should return
|
|
* CAM_CMD_TIMEOUT, which allows us to safely assume
|
|
* that this command was an innocent bystander to
|
|
* these events and should be unconditionally
|
|
* retried.
|
|
*/
|
|
if (bootverbose && printed == 0) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
if (status == CAM_BDR_SENT)
|
|
printf("Bus Device Reset sent\n");
|
|
else
|
|
printf("Bus Reset issued\n");
|
|
printed++;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case CAM_REQUEUE_REQ:
|
|
/* Unconditional requeue */
|
|
error = ERESTART;
|
|
if (bootverbose && printed == 0) {
|
|
xpt_print(ccb->ccb_h.path, "Request Requeued\n");
|
|
printed++;
|
|
}
|
|
break;
|
|
case CAM_RESRC_UNAVAIL:
|
|
/* Wait a bit for the resource shortage to abate. */
|
|
timeout = periph_noresrc_delay;
|
|
/* FALLTHROUGH */
|
|
case CAM_BUSY:
|
|
if (timeout == 0) {
|
|
/* Wait a bit for the busy condition to abate. */
|
|
timeout = periph_busy_delay;
|
|
}
|
|
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
/* FALLTHROUGH */
|
|
default:
|
|
/* decrement the number of retries */
|
|
if (ccb->ccb_h.retry_count > 0) {
|
|
ccb->ccb_h.retry_count--;
|
|
error = ERESTART;
|
|
if (bootverbose && printed == 0) {
|
|
xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n",
|
|
status);
|
|
printed++;
|
|
}
|
|
} else {
|
|
error = EIO;
|
|
action_string = "Retries Exhausted";
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Attempt a retry */
|
|
if (error == ERESTART || error == 0) {
|
|
if (frozen != 0)
|
|
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
|
|
|
|
if (error == ERESTART) {
|
|
action_string = "Retrying Command";
|
|
xpt_action(ccb);
|
|
}
|
|
|
|
if (frozen != 0)
|
|
cam_release_devq(ccb->ccb_h.path,
|
|
relsim_flags,
|
|
openings,
|
|
timeout,
|
|
/*getcount_only*/0);
|
|
}
|
|
|
|
/*
|
|
* If we have and error and are booting verbosely, whine
|
|
* *unless* this was a non-retryable selection timeout.
|
|
*/
|
|
if (error != 0 && bootverbose &&
|
|
!(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
|
|
|
|
|
|
if (action_string == NULL)
|
|
action_string = "Unretryable Error";
|
|
if (error != ERESTART) {
|
|
xpt_print(ccb->ccb_h.path, "error %d\n", error);
|
|
}
|
|
xpt_print(ccb->ccb_h.path, "%s\n", action_string);
|
|
}
|
|
|
|
return (error);
|
|
}
|